JP2017174689A - Carbon nanotube wire and carbon nanotube wire-connected structure - Google Patents

Carbon nanotube wire and carbon nanotube wire-connected structure Download PDF

Info

Publication number
JP2017174689A
JP2017174689A JP2016060731A JP2016060731A JP2017174689A JP 2017174689 A JP2017174689 A JP 2017174689A JP 2016060731 A JP2016060731 A JP 2016060731A JP 2016060731 A JP2016060731 A JP 2016060731A JP 2017174689 A JP2017174689 A JP 2017174689A
Authority
JP
Japan
Prior art keywords
carbon nanotube
wire
nanotube wire
cnt
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016060731A
Other languages
Japanese (ja)
Inventor
泰 木原
Yasushi Kihara
泰 木原
一富 三好
Kazutomi Miyoshi
一富 三好
賢悟 水戸瀬
Kengo Mitose
賢悟 水戸瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2016060731A priority Critical patent/JP2017174689A/en
Publication of JP2017174689A publication Critical patent/JP2017174689A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a carbon nanotube wire that prevents conductivity from decreasing in the interfacial connection between a carbon nanotube wire and a terminal, and achieves excellent conductivity and strength at a joint part to the terminal, and a carbon nanotube-connected structure.SOLUTION: A carbon nanotube (CNT) wire 11 comprises a metal-containing member 31 that is provided at a joint part 30 between the CNT wire 11 and a terminal 20 that is connected to the longitudinal end 11a of the CNT wire 11, the metal-containing member 31 disposed on a side face 11a-1 of the longitudinal end 11a of the CNT wire 11.SELECTED DRAWING: Figure 1

Description

本発明は、複数のカーボンナノチューブを束ねてなるカーボンナノチューブ束の複数を撚り合わせてなるカーボンナノチューブ線材、及びカーボンナノチューブ線材と該線材の長手方向端部に接続される端子とを備えるカーボンナノチューブ線材接続構造に関する。   The present invention relates to a carbon nanotube wire connection comprising a carbon nanotube wire formed by twisting a plurality of carbon nanotube bundles formed by bundling a plurality of carbon nanotubes, and a carbon nanotube wire and a terminal connected to a longitudinal end portion of the wire. Concerning structure.

従来、自動車や産業機器などの様々な分野における電力線や信号線として、一又は複数の線材からなる芯線と、該芯線を被覆する絶縁被覆とからなる電線が用いられている。芯線を構成する線材の材料としては、通常、電気特性の観点から銅又は銅合金が使用されるが、近年、軽量化の観点からアルミニウム又はアルミニウム合金が提案されている。例えば、アルミニウムの比重は銅の比重の約1/3、アルミニウムの導電率は銅の導電率の約2/3(純銅を100%IACSの基準とした場合、純アルミニウムは約66%IACS)であり、アルミニウム線材に、銅線材と同じ電流を流すためには、アルミニウム線材の断面積を、銅の線材の断面積の約1.5倍と大きくする必要があるが、そのように断面積を大きくしたアルミニウム線材を用いたとしても、アルミニウム線材の質量は、純銅の線材の質量の半分程度であることから、アルミニウム線材を使用することは、軽量化の観点から有利である。   Conventionally, as power lines and signal lines in various fields such as automobiles and industrial equipment, electric wires composed of a core wire made of one or a plurality of wires and an insulating coating covering the core wire have been used. As the material of the wire constituting the core wire, copper or a copper alloy is usually used from the viewpoint of electrical characteristics, but in recent years, aluminum or an aluminum alloy has been proposed from the viewpoint of weight reduction. For example, the specific gravity of aluminum is about 1/3 of the specific gravity of copper, and the electrical conductivity of aluminum is about 2/3 of the electrical conductivity of copper (pure aluminum is about 66% IACS when pure copper is used as the standard of 100% IACS). Yes, to allow the same current to flow through the aluminum wire as the copper wire, the cross-sectional area of the aluminum wire must be about 1.5 times the cross-sectional area of the copper wire. Even if a large aluminum wire is used, the mass of the aluminum wire is about half of the mass of the pure copper wire, so the use of the aluminum wire is advantageous from the viewpoint of weight reduction.

上記のような背景のもと、昨今では、自動車、産業機器等の高性能化・高機能化が進められており、これに伴い、各種電気機器、制御機器などの配設数が増加するとともに、これら機器に使用される電気配線体の配線数も増加する傾向にある。また、その一方で、環境対応のために自動車等の移動体の燃費を向上させるため、線材の軽量化が強く望まれている。   Based on the above background, in recent years, higher performance and higher functionality of automobiles, industrial equipment, etc. are being promoted, and with this increase in the number of various electrical equipment, control equipment, etc. There is also a tendency for the number of wirings of electrical wiring bodies used in these devices to increase. On the other hand, in order to improve the fuel efficiency of moving bodies such as automobiles for environmental reasons, it is strongly desired to reduce the weight of wires.

こうした更なる軽量化を達成するための新たな手段の一つとして、カーボンナノチューブを線材として活用する技術が新たに提案されている。カーボンナノチューブは、六角形格子の網目構造を有する筒状体の単層、あるいは略同軸で配された多層で構成される3次元網目構造体であり、軽量であると共に、導電性、電流容量、弾性、機械的強度等の特性に優れるため、電力線や信号線に使用されている金属に代替する材料として注目されている。   As one of new means for achieving such further weight reduction, a technique for utilizing carbon nanotubes as a wire has been newly proposed. The carbon nanotube is a single layer of a cylindrical body having a hexagonal lattice network structure, or a three-dimensional network structure composed of multiple layers arranged substantially coaxially, and is lightweight and has conductivity, current capacity, Because of its excellent properties such as elasticity and mechanical strength, it has attracted attention as a material that can replace metals used in power lines and signal lines.

カーボンナノチューブの比重は、銅の比重の約1/5(アルミニウムの約1/2)であり、また、カーボンナノチューブ単体は、銅(抵抗率1.68×10−6Ω・cm)よりも高導電性を示す。したがって理論的には、複数のカーボンナノチューブを撚り合わせてカーボンナノチューブ集合体を形成すれば、更なる軽量化、高導電率の実現が可能となる。しかしながら、nm単位のカーボンナノチューブを撚り合わせて、μm〜mm単位のカーボンナノチューブ線材を作製した場合、構成単位となる1本当たりの外径が非常に小さいため、カーボンナノチューブ間の接触抵抗や内部欠陥形成が要因となり、線材全体の抵抗値が増大してしまうという問題があることから、カーボンナノチューブをそのまま線材として使用することが困難であった。また、カーボンナノチューブ線材に端子を接続してカーボンナノチューブ線材接続構造体を作製する場合、車両などの移動体用の接続構造体に求められる電気的特性、機械的強度を実現するために、カーボンナノチューブ線材と端子との接合部における導電性、強度等を確保する必要があった。 The specific gravity of the carbon nanotube is about 1/5 of the specific gravity of copper (about 1/2 of aluminum), and the single carbon nanotube is higher than copper (resistivity 1.68 × 10 −6 Ω · cm). Shows conductivity. Therefore, theoretically, if a carbon nanotube aggregate is formed by twisting a plurality of carbon nanotubes, further weight reduction and high electrical conductivity can be realized. However, when carbon nanotube wires in the unit of μm to mm are produced by twisting carbon nanotubes in nm units, the outer diameter per one constituting unit is very small. Due to the problem that the resistance value of the entire wire is increased due to the formation, it is difficult to use the carbon nanotube as a wire as it is. In addition, when a carbon nanotube wire connecting structure is produced by connecting a terminal to a carbon nanotube wire, the carbon nanotube is used to realize the electrical characteristics and mechanical strength required for a connecting structure for a moving body such as a vehicle. It was necessary to ensure conductivity, strength, and the like at the joint between the wire and the terminal.

そこで、カーボンナノチューブ撚線(線材)の端部でCVD(chemical vapor Deposition)等によってCNTを成長させ、当該端部から伸びた成長CNTを他のカーボンナノチューブ撚線或いはその成長CNTと接続することにより、カーボンナノチューブ撚線同士の接続強度や電気的特性を実現することが可能な製造方法が提案されている(特許文献1)。   Therefore, by growing CNT at the end of the carbon nanotube stranded wire (wire) by CVD (chemical vapor deposition) or the like, and connecting the grown CNT extending from the end with another carbon nanotube stranded wire or the grown CNT A manufacturing method capable of realizing connection strength and electrical characteristics between carbon nanotube stranded wires has been proposed (Patent Document 1).

特開2013−47402号公報JP 2013-47402 A

しかしながら、上記特許文献では、複数のカーボンナノチューブを撚り合わせてなるカーボンナノチューブ線材の端部同士を、成長CNTを介して接続することが開示されているにすぎず、カーボンナノチューブ線材と端子との接合部における導電性、強度については開示されていない。特に、カーボンナノチューブ線材(炭素)と金属製端子(銅等)は異種材料であり、接合部に異種材料の界面が形成されることから、カーボンナノチューブ線材に金属製端子を接合し難いという問題がある。   However, in the above-mentioned patent document, it is only disclosed that ends of the carbon nanotube wire formed by twisting a plurality of carbon nanotubes are connected to each other through the grown CNT, and the bonding between the carbon nanotube wire and the terminal is disclosed. The electrical conductivity and strength of the part are not disclosed. In particular, the carbon nanotube wire (carbon) and the metal terminal (copper, etc.) are different materials, and the interface of the different materials is formed at the joint, which makes it difficult to join the metal terminal to the carbon nanotube wire. is there.

本発明の目的は、カーボンナノチューブ線材と端子との界面接続における導電性の低下を抑制して、端子との接合部における良好な導電性及び強度を実現することができるカーボンナノチューブ線材、及びカーボンナノチューブ接続構造体を提供することにある。   An object of the present invention is to suppress a decrease in conductivity at the interface connection between a carbon nanotube wire and a terminal, and to realize good conductivity and strength at a joint portion with the terminal, and a carbon nanotube It is to provide a connection structure.

上記目的を達成するために、本発明のカーボンナノチューブ線材は、複数のカーボンナノチューブ束を撚り合わせてなるカーボンナノチューブ線材であって、前記カーボンナノチューブ線材の長手方向端部に接続される端子との接合部に設けられ、前記カーボンナノチューブ線材の前記長手方向端部の側面に配置された所定金属含有部材を備えることを特徴とする。   In order to achieve the above object, the carbon nanotube wire of the present invention is a carbon nanotube wire obtained by twisting a plurality of carbon nanotube bundles, and is bonded to a terminal connected to a longitudinal end portion of the carbon nanotube wire. And a predetermined metal-containing member disposed on the side surface of the end portion in the longitudinal direction of the carbon nanotube wire.

前記カーボンナノチューブ線材は、前記カーボンナノチューブ線材の長手方向に亘って含有された他の金属部材を有し、前記カーボンナノチューブ線材におけるカーボンナノチューブに対する前記所定金属の金属含有量が、前記カーボンナノチューブに対する前記他の金属部材の金属含有量よりも大きい。   The carbon nanotube wire has another metal member contained in the longitudinal direction of the carbon nanotube wire, and the metal content of the predetermined metal with respect to the carbon nanotube in the carbon nanotube wire is determined by the other metal member with respect to the carbon nanotube. It is larger than the metal content of the metal member.

また、前記所定金属含有部材が、前記カーボンナノチューブ線材の前記長手方向端部を被覆する被覆層であり、前記被覆層が、前記接合部の全体に亘って形成されている。   Moreover, the said predetermined metal containing member is a coating layer which coat | covers the said longitudinal direction edge part of the said carbon nanotube wire, and the said coating layer is formed over the whole said junction part.

前記所定金属含有部材に含有される所定金属は、タンタル、チタン、ニッケル、パラジウム、銅、銀、金、鉄及びコバルトからなる群から選択される少なくとも1つの材料である。   The predetermined metal contained in the predetermined metal-containing member is at least one material selected from the group consisting of tantalum, titanium, nickel, palladium, copper, silver, gold, iron, and cobalt.

前記所定金属は、遷移金属であるのが好ましい。   The predetermined metal is preferably a transition metal.

前記所定金属含有部材は、前記所定金属が含有された導電性接着剤を硬化した物である。   The predetermined metal-containing member is obtained by curing a conductive adhesive containing the predetermined metal.

また、前記カーボンナノチューブ線材は、異種元素がドープされているのが好ましい。   The carbon nanotube wire is preferably doped with a different element.

また、前記カーボンナノチューブ線材を構成するカーボンナノチューブが、2層又は3層の層構造を有するのが好ましい。   The carbon nanotubes constituting the carbon nanotube wire preferably have a two-layer or three-layer structure.

上記目的を達成するために、本発明のカーボンナノチューブ線材接続構造体は、複数のカーボンナノチューブ束を撚り合わせてなるカーボンナノチューブ線材と、前記カーボンナノチューブ線材に接続される端子とを備えるカーボンナノチューブ線材接続構造体であって、前記カーボンナノチューブ線材の長手方向端部と前記端子とが接合された接合部に設けられ、前記カーボンナノチューブ線材の前記長手方向端部の側面と前記端子の内側面との間に介在する所定金属含有部材を備えることを特徴とする。   In order to achieve the above object, a carbon nanotube wire connecting structure according to the present invention comprises a carbon nanotube wire connecting a plurality of carbon nanotube bundles and a terminal connected to the carbon nanotube wire. It is a structure, and is provided at a joint portion where the longitudinal end portion of the carbon nanotube wire and the terminal are joined, and between the side surface of the longitudinal end portion of the carbon nanotube wire and the inner side surface of the terminal. And a predetermined metal-containing member interposed between the two.

複数のカーボンナノチューブ束を撚り合わせてなるカーボンナノチューブ線材と、前記カーボンナノチューブ線材に接続される端子とを備えるカーボンナノチューブ線材接続構造体であって、前記カーボンナノチューブ線材の長手方向端部と前記端子とが接合された接合部に設けられ、前記カーボンナノチューブ線材の前記端部の側面と前記端子の内側面との間に介在する所定金属含有部材を備え、前記所定金属含有部材に含有される金属は、タンタル、チタン、ニッケル、パラジウム、銅、銀、金、鉄及びコバルトからなる群から選択される少なくとも1つの材料であることを特徴とする。   A carbon nanotube wire connecting structure comprising a carbon nanotube wire formed by twisting a plurality of carbon nanotube bundles and a terminal connected to the carbon nanotube wire, the longitudinal end of the carbon nanotube wire and the terminal Provided with a predetermined metal-containing member provided between the side surface of the end portion of the carbon nanotube wire and the inner side surface of the terminal, wherein the metal contained in the predetermined metal-containing member is And at least one material selected from the group consisting of tantalum, titanium, nickel, palladium, copper, silver, gold, iron and cobalt.

前記接合部において、前記カーボンナノチューブ線材の前記長手方向端部が、前記所定金属含有部材を介して前記端子に圧着されている。   In the joint portion, the end portion in the longitudinal direction of the carbon nanotube wire is crimped to the terminal via the predetermined metal-containing member.

本発明によれば、所定金属含有部材が、カーボンナノチューブ線材の長手方向端部に接続される端子との接合部に設けられ、且つカーボンナノチューブ線材の上記長手方向端部の側面に配置されるので、カーボンナノチューブ線材の側面と端子との間に所定金属含有部材を介在させることができ、カーボンナノチューブ線材が、当該所定金属含有部材を介して端子と良好に接合される。したがって、カーボンナノチューブ線材と端子との界面接続における導電性の低下を抑制して、端子との接合部における良好な導電性及び強度を実現することができる。   According to the present invention, the predetermined metal-containing member is provided at the junction with the terminal connected to the longitudinal end of the carbon nanotube wire, and is disposed on the side surface of the longitudinal end of the carbon nanotube wire. The predetermined metal-containing member can be interposed between the side surface of the carbon nanotube wire and the terminal, and the carbon nanotube wire is satisfactorily bonded to the terminal via the predetermined metal-containing member. Therefore, it is possible to suppress the decrease in conductivity at the interface connection between the carbon nanotube wire and the terminal, and to realize good conductivity and strength at the joint portion with the terminal.

また、上記所定金属含有部材に含有される所定金属が、タンタル、チタン、ニッケル、パラジウム、銅、銀、金、鉄及びコバルトからなる群から選択される少なくとも1つの材料であるので、当該所定金属含有部材と端子との界面接続における導電性が良好となり、端子との接合部においてより良好な導電性及び強度を実現することができる。   Further, since the predetermined metal contained in the predetermined metal-containing member is at least one material selected from the group consisting of tantalum, titanium, nickel, palladium, copper, silver, gold, iron and cobalt, the predetermined metal The conductivity at the interface connection between the containing member and the terminal becomes good, and better conductivity and strength can be realized at the joint portion with the terminal.

本発明の実施形態に係るカーボンナノチューブ線材接続構造体の構成を概略的に示す図であり、(a)は斜視図、(b)は圧着前の状態を示す斜視図、(c)は、カーボンナノチューブ線材と端子との接合部の線I−Iに沿う断面図を示す。It is a figure which shows roughly the structure of the carbon nanotube wire connecting structure which concerns on embodiment of this invention, (a) is a perspective view, (b) is a perspective view which shows the state before crimping, (c) is carbon Sectional drawing which follows the line II of the junction part of a nanotube wire rod and a terminal is shown. (a)〜(d)は、図1のカーボンナノチューブ線材接続構造体の製造方法の一例を示す図である。(A)-(d) is a figure which shows an example of the manufacturing method of the carbon nanotube wire connection structure of FIG. (a)及び(b)は、図2のカーボンナノチューブ線材接続構造体の製造方法の変形例を示す図である。(A) And (b) is a figure which shows the modification of the manufacturing method of the carbon nanotube wire connecting structure of FIG. (a)〜(d)は、図1のカーボンナノチューブ線材接続構造体の変形例及びその製造方法を示す図である。(A)-(d) is a figure which shows the modification of the carbon nanotube wire connection structure of FIG. 1, and its manufacturing method. 図1のカーボンナノチューブ線材接続構造体における端子の変形例を示す斜視図であり、(a)は圧着後、(b)は圧着前の状態を示す。It is a perspective view which shows the modification of the terminal in the carbon nanotube wire connecting structure of FIG. 1, (a) after crimping | compression-bonding, (b) shows the state before crimping. 図1のカーボンナノチューブ線材接続構造体における端子の他の変形例を示す図である。It is a figure which shows the other modification of the terminal in the carbon nanotube wire connection structure of FIG.

以下、本発明の実施形態を、図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

<カーボンナノチューブ線材接続構造体の構成>
図1は、本発明の実施形態に係るカーボンナノチューブ線材接続構造体の構成を概略的に示す図であり、(a)は斜視図、(b)は圧着前の状態を示す斜視図、(c)は、カーボンナノチューブ線材と端子との接合部の線I−Iに沿う断面図を示す。なお、図1におけるカーボンナノチューブ線材接続構造体は、その一例を示すものであり、本発明に係る各構成の形状、寸法等は、図1のものに限られないものとする。
<Configuration of carbon nanotube wire connecting structure>
1A and 1B are diagrams schematically showing a configuration of a carbon nanotube wire connecting structure according to an embodiment of the present invention, in which FIG. 1A is a perspective view, FIG. 1B is a perspective view showing a state before crimping, and FIG. ) Shows a cross-sectional view taken along line II of the joint between the carbon nanotube wire and the terminal. Note that the carbon nanotube wire connecting structure in FIG. 1 is an example, and the shape, dimensions, and the like of each component according to the present invention are not limited to those in FIG.

図1(a)及び(b)に示すように、カーボンナノチューブ線材接続構造体1(以下、CNT線材接続構造体という)は、複数のカーボンナノチューブ束11A(以下、CNT束という)を撚り合わせてなるカーボンナノチューブ線材11(以下、CNT線材という)と、CNT線材11に接続される端子20とを備える。本実施形態では、CNT電線10が、CNT線材11と、該CNT線材を被覆する絶縁被覆12とを有しており、CNT電線10の端部に端子20が取り付けられている。   As shown in FIGS. 1A and 1B, a carbon nanotube wire connecting structure 1 (hereinafter referred to as a CNT wire connecting structure) is obtained by twisting a plurality of carbon nanotube bundles 11A (hereinafter referred to as CNT bundles). A carbon nanotube wire 11 (hereinafter referred to as a CNT wire) and a terminal 20 connected to the CNT wire 11. In the present embodiment, the CNT electric wire 10 includes a CNT wire 11 and an insulating coating 12 that covers the CNT wire, and a terminal 20 is attached to an end of the CNT electric wire 10.

(端子の構成)
端子20は、不図示の外部端子と電気的に接続されるコネクタ部21と、該コネクタ部と連結され且つCNT電線10と圧着される電線圧着部22と、コネクタ部21と電線圧着部22とを連結するトランジション部23とを有する。この端子20は、金属基体からなり、この金属基体を金属材料(銅、アルミニウム、鉄、またはこれらを主成分とする合金等)からなる母材のみで構成するか、或いは導電性と強度を確保するために母材上に金属を主成分とするめっき層を設けて構成することができる。
(Terminal configuration)
The terminal 20 includes a connector portion 21 that is electrically connected to an external terminal (not shown), a wire crimping portion 22 that is connected to the connector portion and is crimped to the CNT electric wire 10, and the connector portion 21 and the wire crimping portion 22. And a transition part 23 for connecting the two. The terminal 20 is made of a metal substrate, and the metal substrate is composed only of a base material made of a metal material (copper, aluminum, iron, or an alloy containing these as a main component), or ensures conductivity and strength. For this purpose, a plating layer mainly composed of metal can be provided on the base material.

めっき層は、母材の一部あるいは全部に適宜設けられるものであり、接点特性や耐環境性の観点からすずや銀、金等の貴金属が好ましい。めっき層は1層以上あっても良く、例えば鉄(Fe)やニッケル(Ni)、コバルト(Co)またはこれらを主成分とする合金等の下地をさらに設けてもよい。このめっき層の厚さは、母材の保護及びコスト等を考慮し、合計で0.3μm〜3.0μmである。めっき層が母材の一部に設けられる場合、当該めっき層は、ストライプやスポットなどの形状で形成される。CNTに対して1層目に相当するめっき層は、カーボンナノチューブとの密着力に優れた金属、2層目以上は電気伝導の優れた金属であることが好ましい。   The plating layer is appropriately provided on a part or the whole of the base material, and a noble metal such as tin, silver, or gold is preferable from the viewpoint of contact characteristics and environmental resistance. There may be one or more plating layers, and for example, a base such as iron (Fe), nickel (Ni), cobalt (Co), or an alloy containing these as a main component may be further provided. The thickness of the plating layer is 0.3 μm to 3.0 μm in total in consideration of protection of the base material and cost. When the plating layer is provided on a part of the base material, the plating layer is formed in a shape such as a stripe or a spot. The plating layer corresponding to the first layer with respect to CNT is preferably a metal having excellent adhesion to carbon nanotubes, and the second and higher layers are preferably metals having excellent electrical conductivity.

コネクタ部21は、雄型圧着端子等の挿入タブの挿入を許容するボックス部であり、挿入タブを収容するための収容口21aを有している。本実施形態ではコネクタ部21が雌型端子であるが、雄型端子等の他の形状であってもよい。   The connector portion 21 is a box portion that allows insertion of an insertion tab such as a male crimp terminal, and has an accommodation port 21a for accommodating the insertion tab. In the present embodiment, the connector portion 21 is a female terminal, but may have other shapes such as a male terminal.

トランジション部23は、コネクタ部21と電線圧着部22の橋渡しとなる部分であり、幅方向断面略コの字型に形成されている。トランジション部23は立体的に形成されていても、平面的に形成されていてもよいが、端子長手方向の曲げに対する機械的強度の観点からは、長手方向の断面2次モーメントが大きくなるように設計するのが好ましい。   The transition portion 23 is a portion that serves as a bridge between the connector portion 21 and the wire crimping portion 22, and is formed in a substantially U-shaped cross section in the width direction. The transition portion 23 may be three-dimensionally or planarly formed, but from the viewpoint of mechanical strength against bending in the longitudinal direction of the terminal, the secondary moment in the longitudinal direction is increased. It is preferable to design.

電線圧着部22は、トランジション部23を介してコネクタ部21に連結された線材圧着部22Aと、線材圧着部22Aと長手方向(図中のX方向)に沿って並べて設けられ、線材圧着部22Aのトランジション部23とは反対側に配置された被覆圧着部22Bとを有しており、これらが上記金属基体にて一体成形されている。電線圧着部22の内側面22aには、複数の突起あるいはセレーションなどで形成される凹凸部24が設けられている。   The wire crimping part 22 is provided side by side along the wire crimping part 22A connected to the connector part 21 via the transition part 23, the wire crimping part 22A and the longitudinal direction (X direction in the figure), and the wire crimping part 22A. And a cover crimping portion 22B disposed on the opposite side of the transition portion 23, and these are integrally molded with the metal substrate. The inner surface 22a of the wire crimping portion 22 is provided with an uneven portion 24 formed by a plurality of protrusions or serrations.

圧着前の線材圧着部22Aは、図1(b)に示すように、幅方向断面略U型に形成された部位であり、バレル底部22A−1と、その幅方向(図中のY方向)に関してその両側から斜め外側上方に延出する一対のバレル片22A−2,22A−2とで構成されている。圧着前の被覆圧着部22Bも、線材圧着部22Aと同様、幅方向断面略U型に形成された部位であり、バレル底部22B−1と、幅方向Yに関してその両側から斜め外側上方に延出する一対のバレル片22B−2,22B−2とで構成されている。一対のバレル片22A−2,22A−2及び一対のバレル片22B−2,22B−2は、それぞれ内側に折り曲げて加締められており、線材圧着部22AがCNT線材11の長手方向端部11aに、被覆圧着部22Bが絶縁被覆12にそれぞれ接合されている。   As shown in FIG. 1B, the wire crimping portion 22A before crimping is a portion formed in a substantially U-shaped cross section in the width direction, and the barrel bottom portion 22A-1 and its width direction (Y direction in the figure). Is formed of a pair of barrel pieces 22A-2 and 22A-2 extending obliquely upward from both sides. Similarly to the wire crimping portion 22A, the coated crimping portion 22B before crimping is a portion formed in a substantially U-shaped cross section in the width direction, and extends obliquely outward and upward from both sides of the barrel bottom portion 22B-1 and the width direction Y. And a pair of barrel pieces 22B-2 and 22B-2. The pair of barrel pieces 22A-2, 22A-2 and the pair of barrel pieces 22B-2, 22B-2 are respectively bent and crimped inside, and the wire crimping portion 22A is the longitudinal end portion 11a of the CNT wire 11. In addition, the coating crimping portions 22B are joined to the insulating coating 12, respectively.

(所定金属含有部材の構成)
図1(c)は、CNT線材11と端子20との接合部30の線I−Iに沿う断面図である。同図に示すように、CNT線材接続構造体1は、CNT線材11の長手方向端部11aと端子20とが接合された接合部30に設けられ、且つCNT線材11の長手方向端部11aの側面11a−1と端子20の内側面22aとの間に介在する所定金属含有部材31を備える。本実施形態では、接合部30は、CNT線材11の長手方向端部11aと、線材圧着部22Aのバレル底部22A−1及び一対のバレル片22A−2,22A−2とが圧着された部位であり、この接合部30において、CNT線材11の長手方向端部11aが所定金属含有部材31を介して端子20に圧着されている。好ましくは、所定金属含有部材31は、CNT線材11の長手方向端部11aを被覆する被覆層であり、該被覆層が接合部30の全体に亘って形成されている。
(Configuration of specified metal-containing member)
FIG. 1C is a cross-sectional view taken along the line II of the joint portion 30 between the CNT wire 11 and the terminal 20. As shown in the figure, the CNT wire connecting structure 1 is provided at a joint 30 where the longitudinal end 11a of the CNT wire 11 and the terminal 20 are joined, and the longitudinal end 11a of the CNT wire 11 is formed. A predetermined metal-containing member 31 interposed between the side surface 11a-1 and the inner side surface 22a of the terminal 20 is provided. In the present embodiment, the joining portion 30 is a portion where the longitudinal end portion 11a of the CNT wire 11, the barrel bottom 22A-1 of the wire crimping portion 22A, and the pair of barrel pieces 22A-2 and 22A-2 are crimped. Yes, in the joint portion 30, the longitudinal end portion 11 a of the CNT wire 11 is crimped to the terminal 20 via a predetermined metal-containing member 31. Preferably, the predetermined metal-containing member 31 is a coating layer that covers the longitudinal end portion 11 a of the CNT wire 11, and the coating layer is formed over the entire joint portion 30.

所定金属含有部材31は、導電性部材であり、後述する所定金属が含有された流動性部材を固化或いは硬化した物である。流動性部材は、ペースト状はんだ、めっき又は導電性接着剤である。
上記ペースト状はんだは、例えばはんだ粉末とフラックスとを所定比率で混合したクリームはんだに、後述する所定金属が含有されてなる。はんだ粉末は、例えばSn−Pb系の鉛含有はんだや、Sn−Ag−Cu系、Sn−Cu系、Sn−Zn系などの鉛フリーはんだである。フラックスは、例えば樹脂、添加剤及び溶剤からなり、金属表面の酸化防止、酸化膜の除去、再酸化防止などの役割を果たす。
上記めっきは、例えば後述する所定金属が含有されためっきであり、はんだめっき、銅めっき、ニッケルめっき、ニッケル−亜鉛合金めっき、パラジウムめっき、コバルトめっき、錫めっき又は銀めっきである。
上記導電性接着剤は、例えば導電性材料からなるフィラーが充填されたエポキシ系などの導電性樹脂に、後述する所定金属が含有されてなる。
また、銅ナノ粒子、銀ナノ粒子、金ナノ粒子などの金属微粒子を使用した接合材料を用いても良い。
The predetermined metal-containing member 31 is a conductive member, and is a solidified or cured product of a fluid member containing a predetermined metal described later. The fluid member is paste solder, plating, or a conductive adhesive.
For example, the paste solder contains a predetermined metal described later in a cream solder in which a solder powder and a flux are mixed at a predetermined ratio. The solder powder is, for example, Sn-Pb-based lead-containing solder or Sn-Ag-Cu-based, Sn-Cu-based, Sn-Zn-based lead-free solder. The flux is made of, for example, a resin, an additive, and a solvent, and plays a role of preventing metal surface oxidation, removing an oxide film, preventing reoxidation, and the like.
The plating is, for example, plating containing a predetermined metal described later, and is solder plating, copper plating, nickel plating, nickel-zinc alloy plating, palladium plating, cobalt plating, tin plating, or silver plating.
The conductive adhesive includes, for example, a predetermined metal described later in a conductive resin such as an epoxy resin filled with a filler made of a conductive material.
Further, a bonding material using metal fine particles such as copper nanoparticles, silver nanoparticles, and gold nanoparticles may be used.

所定金属含有部材31に含有される所定金属は、遷移金属が好ましい。また、所定金属含有部材31に含有される所定金属は、タンタル(Ta)、チタン(Ti)、ニッケル(Ni)、パラジウム(Pd)、銅(Cu)、銀(Ag)、金(Au)、鉄(Fe)及びコバルト(Co)からなる群から選択される少なくとも1つの材料であるのが好ましく、これらの合金であってもよい。上記の1又は複数の材料が所定金属含有部材31に含有されていると、上記所定金属の結晶構造とCNT線材11におけるCNTの結晶構造との相性が良好であるため、所定金属含有部材31と端子20との界面接続における導電性が良好となる。遷移金属は、他の金属と化合物を容易に形成する特徴を有しており、複数の遷移金属を構成させることにより、異なる金属との界面おいて優れた密着性、電気伝導性を発現させることが出来る。とりわけ、電気伝導率の高い、銅、銀、金、ニッケルの層を設けることにより、接合界面の電気伝導が良好となる。また、所定金属含有部材31に含有される金属は、六方晶金属であるのが好ましい。CNT線材11と端子20との接合部30で優れた導電性を実現することができる。   The predetermined metal contained in the predetermined metal-containing member 31 is preferably a transition metal. The predetermined metal contained in the predetermined metal-containing member 31 is tantalum (Ta), titanium (Ti), nickel (Ni), palladium (Pd), copper (Cu), silver (Ag), gold (Au), It is preferably at least one material selected from the group consisting of iron (Fe) and cobalt (Co), and may be an alloy thereof. If the one or more materials are contained in the predetermined metal-containing member 31, the compatibility between the crystal structure of the predetermined metal and the CNT crystal structure in the CNT wire 11 is good. The conductivity at the interface connection with the terminal 20 is good. Transition metals have the characteristic of easily forming compounds with other metals. By forming multiple transition metals, excellent adhesion and electrical conductivity can be developed at the interface with different metals. I can do it. In particular, by providing a copper, silver, gold, or nickel layer having high electrical conductivity, electrical conductivity at the bonding interface is improved. Moreover, it is preferable that the metal contained in the predetermined metal-containing member 31 is a hexagonal metal. Excellent electrical conductivity can be realized at the joint 30 between the CNT wire 11 and the terminal 20.

本実施形態では、CNT線材接続構造体1が、CNT線材11と端子20との接合部30に所定金属含有部材31を備えるが、CNT線材11自体が所定金属含有部材31を備えていてもよい。すなわち、CNT線材11が、CNT線材11の長手方向端部11aに接続される端子20との接合部30に設けられ且つCNT線材11の長手方向端部11aの側面11a−1に配置された金属含有部材31を備えていてもよい。   In this embodiment, the CNT wire connecting structure 1 includes the predetermined metal-containing member 31 at the joint portion 30 between the CNT wire 11 and the terminal 20, but the CNT wire 11 itself may include the predetermined metal-containing member 31. . That is, the metal in which the CNT wire 11 is provided at the joint 30 with the terminal 20 connected to the longitudinal end 11a of the CNT wire 11 and is disposed on the side surface 11a-1 of the longitudinal end 11a of the CNT wire 11. The containing member 31 may be provided.

(CNT線材及びCNTの構成)
CNT線材11は、1層以上の層構造を有するCNTの複数が束ねられてなるCNT束11A,11A同士を撚り合わせて構成されている(図1(b))。CNT線材11の外径は、0.01〜1mmである。
(Configuration of CNT wire and CNT)
The CNT wire 11 is formed by twisting CNT bundles 11A and 11A formed by bundling a plurality of CNTs having a layer structure of one or more layers (FIG. 1 (b)). The outer diameter of the CNT wire 11 is 0.01 to 1 mm.

CNT線材11は、複数のCNTが纏められた束状体となっており、これら複数のCNTの軸方向がほぼ揃って配されている。CNT線材11は、CNT束11Aに異種元素がドープされてなるカーボンナノチューブ複合体の複数を撚り合わせて構成されてもよい。   The CNT wire 11 is a bundle in which a plurality of CNTs are gathered, and the axial directions of the plurality of CNTs are substantially aligned. The CNT wire 11 may be configured by twisting a plurality of carbon nanotube composites formed by doping CNT bundles 11A with different elements.

CNTは、単層構造又は複層構造を有する筒状体であり、それぞれSWNT(single-walled nanotube)、MWNT(multi-walled nanotube)と呼ばれる。例えば、2層構造を有するCNTは、六角形格子の網目構造を有する2つの筒状体が略同軸で配された3次元網目構造体となっており、DWNT(Double-walled nanotube)と呼ばれる。構成単位である六角形格子は、その頂点に炭素原子が配された六員環であり、他の六員環と隣接してこれらが連続的に結合している。   The CNT is a cylindrical body having a single-layer structure or a multi-layer structure, and is called SWNT (single-walled nanotube) and MWNT (multi-walled nanotube), respectively. For example, a CNT having a two-layer structure has a three-dimensional network structure in which two cylindrical bodies having a hexagonal lattice network structure are arranged substantially coaxially, and is called DWNT (Double-walled nanotube). The hexagonal lattice, which is a structural unit, is a six-membered ring in which a carbon atom is arranged at the apex, and these are continuously bonded adjacent to another six-membered ring.

CNTの性質は、上記のような筒状体のカイラリティ(chirality)に依存する。カイラリティは、アームチェア型、ジグザグ型、及びそれ以外のカイラル型に大別され、アームチェア型は金属性、カイラル型は半導体性、ジグザグ型はその中間の挙動を示す。よってCNTの導電性はいずれのカイラリティを有するかによって大きく異なり、CNT集合体の導電性を向上させるには、金属性の挙動を示すアームチェア型のCNTの割合を増大させることが重要とされてきた。一方、半導体性を有するカイラル型のCNTに電子供与性もしくは電子受容性を持つ物質(異種元素)をドープすることにより、金属的挙動を示すことが分かっている。また、一般的な金属では、異種元素をドープすることによって金属内部での伝導電子の散乱が起こって導電性が低下するが、これと同様に、金属性CNTに異種元素をドープした場合には、導電性の低下を引き起こす。   The nature of CNT depends on the chirality of the cylindrical body as described above. Chirality is broadly divided into armchair type, zigzag type, and other chiral types. Armchair type is metallic, chiral type is semiconducting, and zigzag type shows intermediate behavior. Therefore, the conductivity of CNTs varies greatly depending on which chirality is present, and in order to improve the conductivity of CNT aggregates, it has been important to increase the proportion of armchair CNTs that exhibit metallic behavior. It was. On the other hand, it has been found that doping a chiral CNT having semiconducting properties with a substance (heterogeneous element) having an electron donating property or an electron accepting property exhibits a metallic behavior. In addition, in general metals, doping of different elements causes scattering of conduction electrons inside the metal, resulting in a decrease in conductivity. Similarly, when metallic CNTs are doped with different elements. , Causing a decrease in conductivity.

このように、金属性CNT及び半導体性CNTへのドーピング効果は、導電性の観点からはトレードオフの関係にあると言えることから、理論的には金属性CNTと半導体性CNTとを別個に作製し、半導体性CNTにのみドーピング処理を施した後、これらを組み合わせることが望ましい。しかし、現状の製法技術では金属性CNTと半導体性CNTとを選択的に作り分けることは困難であり、金属性CNTと半導体性CNTが混在した状態で作製される。このため、金属性CNTと半導体性CNTの混合物からなるCNT線材の導電性を向上させるには、異種元素・分子によるドーピング処理が効果的となるCNT構造を選択することが好ましい。   Thus, since the doping effect on metallic CNT and semiconducting CNT can be said to have a trade-off relationship from the viewpoint of conductivity, theoretically, metallic CNT and semiconducting CNT are produced separately. In addition, it is desirable to combine these after performing doping treatment only on the semiconducting CNTs. However, it is difficult to selectively produce metallic CNT and semiconducting CNT selectively with the current manufacturing technique, and the metallic CNT and semiconducting CNT are produced in a mixed state. For this reason, in order to improve the electrical conductivity of the CNT wire made of a mixture of metallic CNT and semiconducting CNT, it is preferable to select a CNT structure in which the doping treatment with different elements / molecules is effective.

複数のCNTの集合体で構成されるCNT束11Aにおいて、複数のCNTの個数に対する、2層構造又は3層構造を有するCNTの個数の和の比率が50%以上であるのが好ましく、75%以上であるのがより好ましい。すなわち、一のCNT束を構成する全CNTの総数をNTOTAL、上記全CNTのうち2層構造を有するCNT(2)の数の和をNCNT(2)、上記全CNTのうち3層構造を有するCNT(3)の数の和をNCNT(3)としたとき、下記式(1)で表すことができる。
(NCNT(2)+NCNT(3))/NTOTAL×100(%)≧50(%) ・・・(1)
In the CNT bundle 11A composed of an assembly of a plurality of CNTs, the ratio of the sum of the number of CNTs having a two-layer structure or a three-layer structure to the number of the plurality of CNTs is preferably 50% or more, and 75% The above is more preferable. That is, the total number of all CNTs constituting one CNT bundle is N TOTAL , the sum of the number of CNTs (2) having a two-layer structure among all the CNTs is N CNT (2) , and the three-layer structure among all the CNTs When the sum of the number of CNTs (3) having N is N CNT (3) , it can be represented by the following formula (1).
(N CNT (2) + N CNT (3) ) / N TOTAL × 100 (%) ≧ 50 (%) (1)

2層構造又は3層構造のような層数が少ないCNTは、それより層数の多いCNTよりも比較的導電性が高い。また、ドーパントは、CNTの最内層の内部、もしくは複数のCNTで形成されるCNT間の隙間に導入される。CNTの層間距離はグラファイトの層間距離である0.335nmと同等であり、多層CNTの場合その層間にドーパントが入り込むことはサイズ的に困難である。このことからドーピング効果はCNTの内部および外部にドーパントが導入されることで発現するが、多層CNTの場合は最外層および最内層に接していない内部に位置するチューブのドープ効果が発現しにくくなる。以上のような理由により、複層構造のCNTにそれぞれドーピング処理を施した際には、2層構造又は3層構造を有するCNTでのドーピング効果が最も高い。また、ドーパントは、強い求電子性もしくは求核性を示す、反応性の高い試薬であることが多い。単層構造のCNTは多層よりも剛性が弱く、耐薬品性に劣るためにドーピング処理を施すと、CNT自体の構造が破壊されてしまうことがある。よって本発明ではCNT集合体に含まれる2層構造又は3層構造を有するCNTの個数に着目する。また、2層又は3層構造のCNTの個数の和の比率が50%未満であると、単層構造或いは4層以上の複層構造を有するCNTの比率が高くなり、CNT集合体全体としてドーピング効果が小さくなり、高導電率が得にくくなる。よって、2層又は3層構造のCNTの個数の和の比率を上記範囲内の値とする。   A CNT with a small number of layers such as a two-layer structure or a three-layer structure has a relatively higher conductivity than a CNT with a larger number of layers. In addition, the dopant is introduced into the innermost layer of the CNT or in a gap between the CNTs formed by a plurality of CNTs. The interlayer distance of CNT is equivalent to 0.335 nm which is the interlayer distance of graphite, and in the case of multilayer CNT, it is difficult in terms of size for the dopant to enter the interlayer. From this, the doping effect is manifested by introducing dopants inside and outside the CNT, but in the case of multi-walled CNT, the doping effect of the tube located inside the outermost layer and the innermost layer that is not in contact with the innermost layer becomes difficult to manifest. . For the reasons described above, when doping treatment is performed on CNTs having a multi-layer structure, the doping effect of CNTs having a two-layer structure or a three-layer structure is the highest. In addition, the dopant is often a highly reactive reagent that exhibits strong electrophilicity or nucleophilicity. CNTs having a single-layer structure are less rigid than multilayers and have poor chemical resistance. Therefore, when a doping process is performed, the structure of the CNTs itself may be destroyed. Therefore, the present invention focuses on the number of CNTs having a two-layer structure or a three-layer structure included in the CNT aggregate. In addition, when the ratio of the sum of the number of CNTs having a two-layer structure or a three-layer structure is less than 50%, the ratio of CNTs having a single-layer structure or a multi-layer structure of four or more layers increases, and the CNT aggregate as a whole is doped. The effect is reduced and high conductivity is difficult to obtain. Therefore, the ratio of the sum of the number of CNTs having a two-layer or three-layer structure is set to a value within the above range.

CNTにドープされるドーパントは、導電性が向上すれば特に限定はないが、例えば硝酸、硫酸、ヨウ素、臭素、カリウム、ナトリウム、ホウ素及び窒素からなる群から選択される1つ以上の異種元素もしくは分子である。   The dopant doped in CNT is not particularly limited as long as the conductivity is improved. For example, one or more different elements selected from the group consisting of nitric acid, sulfuric acid, iodine, bromine, potassium, sodium, boron, and nitrogen or Is a molecule.

また、CNT束11Aを構成するCNTの最外層の外径は5.0nm以下であるのが好ましい。CNT束11Aを構成するCNTの最外層の外径が5.0nmを超えると、CNT間および最内層の隙間に起因する空孔率が大きくなり、導電性が低下してしまうため、好ましくない。したがって、CNT束11Aを構成するCNTの最外層の外径を5.0nm以下とする。   In addition, the outer diameter of the outermost layer of CNT constituting the CNT bundle 11A is preferably 5.0 nm or less. If the outer diameter of the outermost layer of the CNTs constituting the CNT bundle 11A exceeds 5.0 nm, the porosity due to the gap between the CNTs and the innermost layer is increased, which is not preferable. Therefore, the outer diameter of the outermost layer of CNT constituting the CNT bundle 11A is set to 5.0 nm or less.

CNT線材11は、線材全体の強度及び導電性の観点から、その分散された他の金属部材を有していてもよい。他の金属部材は、例えば長尺状の線材或いは粒子であり、このような形状を有する他の金属部材がCNTに混合されている。上記他の金属部材の金属は、例えば銅、銅合金、アルミニウム、アルミニウム合金を主成分とする材料である。
本発明における所定金属含有部材31は、上述のように、CNT線材11の長手方向端部11aに配置されるものであり、CNT線材11の長手方向に亘って含有される他の金属部材とは異なる。本発明のCNT線材11の接合部におけるCNT線材に対する含有量は、1wt%〜80wt%が好ましく、より好ましくは10〜50wt%である。1wt%以上とすることで接続部の金属含有量が増え金属圧着時の勘合がし易くなり、80wt%以下とすることで導電性と重さのバランスを担保でき、50wt%以下とすることで導電性と重さをより好適に保つことができる。また、CNT線材11におけるCNTに対する上記所定金属の金属含有量は、当該CNTに対する上記他の金属部材の金属含有量よりも大きい。尚、本発明のCNT線材11は、炭素(C)を主成分とする線材であり、銅、銅合金、アルミニウム、アルミニウム合金等の金属を主成分とする線材と異なることは言うまでもない。
The CNT wire 11 may have other dispersed metal members from the viewpoint of the strength and conductivity of the entire wire. The other metal member is, for example, a long wire or particle, and the other metal member having such a shape is mixed with the CNT. The metal of said other metal member is a material which has copper, copper alloy, aluminum, and aluminum alloy as a main component, for example.
As described above, the predetermined metal-containing member 31 in the present invention is disposed at the longitudinal end portion 11a of the CNT wire 11 and is a metal member contained along the longitudinal direction of the CNT wire 11. Different. The content of the CNT wire 11 according to the present invention with respect to the CNT wire is preferably 1 wt% to 80 wt%, more preferably 10 to 50 wt%. By setting the metal content at 1 wt% or more, the metal content of the connecting portion is increased and fitting at the time of metal crimping is facilitated. By setting it to 80 wt% or less, the balance between conductivity and weight can be ensured, and by setting it to 50 wt% or less. Conductivity and weight can be kept more suitable. Further, the metal content of the predetermined metal with respect to the CNT in the CNT wire 11 is larger than the metal content of the other metal member with respect to the CNT. Note that the CNT wire 11 of the present invention is a wire mainly composed of carbon (C), and needless to say, is different from a wire mainly composed of metal such as copper, copper alloy, aluminum, and aluminum alloy.

<カーボンナノチューブ線材接続構造体の製造方法>
図2(a)〜(d)は、図1のカーボンナノチューブ線材接続構造体1の製造方法の一例を示す図である。
先ず、CNT電線10の絶縁被覆12の一部を剥いで、CNT線材11の長手方向端部11aを露出させたものを準備する(図2(a))。次いで、銅または銅合金の金属基体からなる板材を圧延して、所定厚さの板材を作製する。このとき、必要に応じて、母材からなる板材全体或いは板材の一部にめっき層を設けて金属部材を形成し、また、繰り返し形状の構成単位となる各板状部位における圧着部用板状体の表面に凹凸部を形成する。その後、この金属基体からなる板材を、プレス加工(1次プレス)にて、複数の圧着端子が平面展開した状態となるように、繰り返し形状で打ち抜く。その後、繰り返し形状の構成単位となる各板状部位に曲げ加工を施して(2次プレス)、コネクタ部21、トランジション部23及び線材圧着部22を有する端子20を形成する。
<Method for producing carbon nanotube wire connecting structure>
2A to 2D are views showing an example of a method for manufacturing the carbon nanotube wire connecting structure 1 shown in FIG.
First, a part of the insulating coating 12 of the CNT electric wire 10 is peeled off to expose the longitudinal end 11a of the CNT wire 11 (FIG. 2A). Next, a plate material made of a copper or copper alloy metal substrate is rolled to produce a plate material having a predetermined thickness. At this time, if necessary, a metal layer is formed by providing a plating layer on the whole plate material or a part of the plate material, and the plate shape for the crimping portion in each plate-shaped portion that becomes a repetitive unit. An uneven portion is formed on the surface of the body. Thereafter, the plate material made of the metal substrate is punched out in a repetitive shape by pressing (primary pressing) so that a plurality of crimp terminals are in a flattened state. Thereafter, bending is performed on each plate-like portion serving as a repetitive unit (secondary press) to form the terminal 20 having the connector portion 21, the transition portion 23, and the wire crimping portion 22.

次に、上記のように作製された端子20をCNT線材11の長手方向端部11aと圧着し、CNT線材接続構造体1’を形成する(図2(b))。このとき、線材圧着部22Aのバレル底部22A−1にCNT線材11の長手方向端部11aを載置すると共に、被覆圧着部22Bのバレル底部22B−1に絶縁被覆12を載置して、一対のバレル片22A−2,22A−2及び一対のバレル片22B−2,22B−2をそれぞれ内側に折り曲げて加締める。これにより、線材圧着部22AがCNT線材11の長手方向端部11aに、被覆圧着部22Bが絶縁被覆12にそれぞれ接合され、CNT線材11の長手方向端部11aと線材圧着部22Aとの接合部30が形成される。   Next, the terminal 20 manufactured as described above is pressure-bonded to the longitudinal end portion 11a of the CNT wire 11 to form a CNT wire connection structure 1 '(FIG. 2B). At this time, the longitudinal end portion 11a of the CNT wire 11 is placed on the barrel bottom portion 22A-1 of the wire crimping portion 22A, and the insulating coating 12 is placed on the barrel bottom portion 22B-1 of the covering crimping portion 22B. The barrel pieces 22A-2 and 22A-2 and the pair of barrel pieces 22B-2 and 22B-2 are bent inward and crimped. Thereby, the wire crimping portion 22A is joined to the longitudinal end portion 11a of the CNT wire 11, and the coating crimping portion 22B is joined to the insulating coating 12, respectively, and the joining portion between the longitudinal end portion 11a of the CNT wire 11 and the wire crimping portion 22A. 30 is formed.

次に、上記所定金属を含有するペースト状はんだなどの流動性部材31’が保持されたディスペンサ40を接合部30の上方に配置し、ディスペンサDのノズル先端から流動性部材を滴下して、接合部30に流動性部材31’を塗布する。これにより、流動性部材31’が接合部30内に到達し、CNT線材11におけるCNT束11A間の空隙部や、CNT線材11の長手方向端部11aの側面11a−1と線材圧着部22Aの内側面との間の空隙部に充填される。そして、接合部30の上方から当該接合部30の全体又は部分的にレーザ光Lを照射して流動性部材31’を加熱、溶融し(図2(d))、その後冷却して硬化する。これにより、CNT線材11の長手方向端部11aの側面11a−1と線材圧着部22Aの内側面22aとの間に所定金属含有部材31が形成され、CNT線材接続構造体1が作製される。   Next, the dispenser 40 holding the fluid member 31 ′ such as paste solder containing the predetermined metal is disposed above the joint portion 30, and the fluid member is dropped from the tip of the nozzle of the dispenser D to join. A fluid member 31 ′ is applied to the portion 30. As a result, the fluid member 31 ′ reaches the joint 30, and the gap between the CNT bundles 11 </ b> A in the CNT wire 11, the side surface 11 a-1 of the longitudinal end portion 11 a of the CNT wire 11, and the wire crimping portion 22 </ b> A. The gap between the inner side surface is filled. The fluid member 31 ′ is heated and melted by irradiating the entire or part of the joint 30 with the laser beam L from above the joint 30 (FIG. 2D), and then cooled and hardened. Thereby, the predetermined metal containing member 31 is formed between the side surface 11a-1 of the longitudinal direction end part 11a of the CNT wire 11, and the inner surface 22a of the wire crimping part 22A, and the CNT wire connection structure 1 is produced.

CNT線材11は、銅やアルミニウムの金属線に較べ低弾性でかつ線径が細いので、従来の端末部の様な加締め等による機械的保持では十分な保持力が得られない。そこで、接合部30に所定金属含有部材31を配置して、複数のCNTを強固に束ねて端子20との圧着時に所定金属含有部材31を塑性変形させることにより、CNT端末でのCNT保持力が安定し、CNT線材11と端子20との良好な機械的接続を実現することができる。CNT線材11全体をハンダや導電性接着剤で覆い、その後、その部位を端子で加締めても良い。
また、一本のCNT束11Aの外径は数十nm程度と極めて小さく、ミクロンオーダ−の外径を有するCNT線材を作製するには多数本のCNT束を纏める必要があるが、CNT線材11の長手方向端部11aに所定金属含有部材31を配置することで、当該端部において複数のCNT束11Aを互いに固定することができ、製造時における作業性や取扱性を向上することが可能となる。
Since the CNT wire 11 is less elastic and has a smaller wire diameter than copper or aluminum metal wires, a sufficient holding force cannot be obtained by mechanical holding such as caulking as in a conventional terminal portion. Therefore, by disposing the predetermined metal-containing member 31 in the joint 30 and firmly bundling a plurality of CNTs and plastically deforming the predetermined metal-containing member 31 when crimping to the terminal 20, the CNT holding force at the CNT terminal is increased. Stable and good mechanical connection between the CNT wire 11 and the terminal 20 can be realized. The entire CNT wire 11 may be covered with solder or a conductive adhesive, and then the part may be crimped with a terminal.
Further, the outer diameter of one CNT bundle 11A is as small as about several tens of nanometers, and it is necessary to collect a large number of CNT bundles in order to produce a CNT wire having a micron order outer diameter. By disposing the predetermined metal-containing member 31 at the longitudinal end portion 11a, a plurality of CNT bundles 11A can be fixed to each other at the end portion, and workability and handling at the time of manufacturing can be improved. Become.

なお、図2に示す製造方法では、接合部30の上方から当該接合部30全体にレーザ光Lを照射するが、これに限らず、流動性部材31’が導電性接着剤である場合には、当該接合部30の一部を加熱することで(部分加熱)、流動性部材31’を硬化させてもよい。   In the manufacturing method shown in FIG. 2, the laser beam L is irradiated to the entire joint 30 from above the joint 30, but not limited to this, when the fluid member 31 ′ is a conductive adhesive The fluidic member 31 ′ may be cured by heating a part of the joint 30 (partial heating).

また、図2に示す製造方法では、ペースト状はんだを用いて所定金属含有部材31を形成する場合を説明したが、はんだめっきを用いて所定金属含有部材31を形成することもできる。例えば、図3(a)に示すように、CNT電線10の絶縁被覆12の一部を剥いで、CNT線材11の長手方向端部11aを露出させたものを準備する。そして、CNT線材11の長手方向端部11aをはんだ槽40の溶融はんだに浸漬し、はんだ槽40内の超音波振動板41を用いて溶融はんだに超音波振動を付与し、所定時間経過後、長手方向端部11aを溶融はんだから引き上げる。これにより、CNT線材11の長手方向端部11aの側面11a−1に、はんだめっきからなる所定金属含有部材31が配置される(図3(b))。   In the manufacturing method shown in FIG. 2, the case where the predetermined metal-containing member 31 is formed using paste solder has been described, but the predetermined metal-containing member 31 can also be formed using solder plating. For example, as shown to Fig.3 (a), what peeled off a part of insulation coating 12 of the CNT electric wire 10 and exposed the longitudinal direction edge part 11a of the CNT wire 11 is prepared. And the longitudinal direction edge part 11a of the CNT wire 11 is immersed in the molten solder of the solder tank 40, ultrasonic vibration is applied to the molten solder using the ultrasonic vibration plate 41 in the solder tank 40, and after a predetermined time, The longitudinal end portion 11a is pulled up from the molten solder. Thereby, the predetermined metal containing member 31 which consists of solder plating is arrange | positioned at the side surface 11a-1 of the longitudinal direction edge part 11a of the CNT wire 11 (FIG.3 (b)).

その後、図2(b)に示す方法と同様にして、線材圧着部22Aのバレル底部22A−1にCNT線材11の端部11aを設置すると共に、被覆圧着部22Bのバレル底部22B−1に絶縁被覆12を設置して、一対のバレル片22A−2,22A−2及び一対のバレル片22B−2,22B−2をそれぞれ内側に折り曲げて加締める。これにより、線材圧着部22AがCNT線材11の長手方向端部11aに、被覆圧着部22Bが絶縁被覆12にそれぞれ接合される。すなわち、溶融はんだを用いる図3の製造方法では、圧着前に、CNT線材11の長手方向端部11aに流動性部材31’を塗布して、CNT線材11の長手方向端部11aの側面11a−1に所定金属含有部材31を形成する。本製造方法によれば、CNT線材11の長手方向端部11aの側面11a−1と線材圧着部22Aの内側面22aとの間に、所定金属含有部材31を確実に介在させることができる。   Thereafter, in the same manner as shown in FIG. 2B, the end portion 11a of the CNT wire 11 is installed on the barrel bottom 22A-1 of the wire crimping portion 22A, and insulated from the barrel bottom 22B-1 of the coated crimping portion 22B. The covering 12 is installed, and the pair of barrel pieces 22A-2 and 22A-2 and the pair of barrel pieces 22B-2 and 22B-2 are bent inward and crimped. Thereby, the wire crimping portion 22A is joined to the longitudinal end portion 11a of the CNT wire 11, and the coating crimping portion 22B is joined to the insulating coating 12. That is, in the manufacturing method of FIG. 3 using the molten solder, before the crimping, the flowable member 31 ′ is applied to the longitudinal end portion 11a of the CNT wire 11, and the side surface 11a− of the longitudinal end portion 11a of the CNT wire 11 is applied. 1, a predetermined metal-containing member 31 is formed. According to this manufacturing method, the predetermined metal-containing member 31 can be reliably interposed between the side surface 11a-1 of the longitudinal end portion 11a of the CNT wire 11 and the inner side surface 22a of the wire crimping portion 22A.

図4(a)〜(d)は、図1のCNT線材接続構造体1の変形例及びその製造方法を示す図である。図1のCNT線材接続構造体1は、CNT線材11といわゆるオープンバレル型の端子20との接続構造を有するが、これに限らず、CNT線材11とクローズドバレル型の端子との接続構造を有していてもよい。   4A to 4D are views showing a modification of the CNT wire connecting structure 1 shown in FIG. 1 and a method for manufacturing the same. The CNT wire connection structure 1 in FIG. 1 has a connection structure between the CNT wire 11 and a so-called open barrel type terminal 20, but is not limited thereto, and has a connection structure between the CNT wire 11 and a closed barrel type terminal. You may do it.

具体的には、端子60は、不図示の外部端子と電気的に接続されるコネクタ部21と、該コネクタ部とトランジション部23を介して設けられ、CNT電線10と圧着される電線圧着部61とを備える(図4(a))。電線圧着部61は、トランジション部23側が閉塞された形状(片端閉塞形状)を有する筒部材であって、CNT電線10の絶縁被覆12と圧着される被覆圧着部61Aと、電線挿入口62側からトランジション部23側に向かって縮径する縮径部61Bと、CNT線材11と圧着される線材圧着部61Cと、挿入口62側からトランジション部23側に向かって更に縮径し、その端部が溶接により閉塞される縮径部61Dとを有している。コネクタ部21及びトランジション部23の構成は、図1の端子20と同じであるので、その説明を省略する。   Specifically, the terminal 60 is provided via a connector portion 21 electrically connected to an external terminal (not shown), and the connector portion and the transition portion 23, and a wire crimping portion 61 that is crimped to the CNT electric wire 10. (FIG. 4A). The wire crimping portion 61 is a cylindrical member having a shape (one-end closed shape) in which the transition portion 23 side is closed, and from the side of the wire insertion port 62 and a covering crimping portion 61A to be crimped to the insulating coating 12 of the CNT electric wire 10. The diameter-reduced part 61B that is reduced in diameter toward the transition part 23 side, the wire-material crimping part 61C that is crimped to the CNT wire 11, and the diameter is further reduced from the insertion port 62 side toward the transition part 23 side. And a reduced diameter portion 61D closed by welding. Since the structure of the connector part 21 and the transition part 23 is the same as the terminal 20 of FIG. 1, the description is abbreviate | omitted.

この電線圧着部61は、例えば平面展開した金属基体を立体的にプレス加工すると共に、断面が略C字型となる筒状体を形成し、この筒状体の開放部分(突き合わせ部)をレーザ溶接することにより形成される。筒状体のレーザ溶接は、該筒状体の長手方向(X方向)に沿って行われるため、その長手方向と略同一の方向に帯状溶接部(溶接ビード)が形成され、これにより電線圧着部61が形成される。また、電線圧着部61を形成した後、電線圧着部61のトランジション部23側の端部がレーザ溶接によって封止されるのが好ましい。この封止溶接は、圧着端子の長手方向に対して垂直な方向(Y方向)に沿って行われる。この封止溶接により、トランジション部20側からの水分等の浸入が防止される。また、線材圧着部61Cの内周面61aには、複数の突起或いはセレーション等で形成される凹凸部63が設けられてもよい(図4(b))。   For example, the wire crimping portion 61 three-dimensionally presses a flatly developed metal base and forms a cylindrical body having a substantially C-shaped cross section. The open portion (butting portion) of the cylindrical body is formed by a laser. It is formed by welding. Laser welding of the tubular body is performed along the longitudinal direction (X direction) of the tubular body, so that a belt-like welded portion (weld bead) is formed in the substantially same direction as the longitudinal direction, thereby crimping the wire. Part 61 is formed. Moreover, after forming the wire crimping part 61, it is preferable that the edge part by the side of the transition part 23 of the wire crimping part 61 is sealed by laser welding. This sealing welding is performed along a direction (Y direction) perpendicular to the longitudinal direction of the crimp terminal. By this sealing welding, intrusion of moisture and the like from the transition portion 20 side is prevented. Further, an uneven portion 63 formed by a plurality of protrusions or serrations may be provided on the inner peripheral surface 61a of the wire crimping portion 61C (FIG. 4B).

端子60を用いてCNT線材接続構造体1Aを作製する場合、先ず、電線圧着部61内におけるトランジション部23側端部の内部空間64に、流動性部材65’(例えば、ペースト状はんだ)を所定量充填する(図4(b))。次に、CNT線材11の長手方向端部11aを電線圧着部61内に挿入し、線材圧着部61CにCNT線材11の長手方向端部11aを載置すると共に、被覆圧着部61Aに絶縁被覆12を載置する(図4(c))。このとき、長手方向端部11aの先端が流動性部材65’に到達し、流動性部材65’が、内部空間64から長手方向端部11aの側面11a−1と線材圧着部61Cの内周面61aとの間の空間に流れ込む。そして、電線圧着部61に熱エネルギーを付与して、当該電線圧着部61を介して流動性部材65’を部分的又は全体的に加熱、溶融し、その後冷却して固化する。   When the CNT wire connecting structure 1A is manufactured using the terminal 60, first, a fluid member 65 ′ (for example, paste solder) is placed in the internal space 64 at the transition part 23 side end in the wire crimping part 61. A fixed amount is filled (FIG. 4B). Next, the longitudinal end portion 11a of the CNT wire 11 is inserted into the wire crimping portion 61, the longitudinal end portion 11a of the CNT wire 11 is placed on the wire crimping portion 61C, and the insulation coating 12 is applied to the covering crimping portion 61A. Is placed (FIG. 4C). At this time, the distal end of the longitudinal end portion 11a reaches the fluid member 65 ′, and the fluid member 65 ′ moves from the inner space 64 to the side surface 11a-1 of the longitudinal end portion 11a and the inner circumferential surface of the wire crimping portion 61C. It flows into the space between 61a. Then, heat energy is applied to the wire crimping portion 61, and the fluid member 65 'is partially or entirely heated and melted through the wire crimping portion 61, and then cooled and solidified.

次いで、電線圧着部61を加締めて、電線圧着部61をCNT線材11と圧着する(図4(d))。これにより、CNT線材11の長手方向端部11aと端子60の線材圧着部61Cとの接合部66が形成され、この接合部66において、CNT線材11の長手方向端部11aの側面11a−1と線材圧着部61Cの内側面61aとの間に所定金属含有部材65が形成される。尚、圧着時に電線圧着部61の全体を加締めずに、被覆圧着部61Aのみを加締めて被覆圧着部61Aと絶縁被覆12とを圧着してもよい。本変形例によっても、CNT線材11の長手方向端部11aの側面11a−1と線材圧着部61Cの内側面61aとの間に所定金属含有部材65を確実に介在させることができる。また、所定金属含有部材65が圧着荷重に対する緩衝材の役割を果たすため、圧着によってCNT線材11の機械的、電気的特性が劣化するのを防止することができる。   Next, the wire crimping portion 61 is crimped, and the wire crimping portion 61 is crimped to the CNT wire 11 (FIG. 4D). Thereby, the junction part 66 of the longitudinal direction edge part 11a of the CNT wire 11 and the wire crimping | compression-bonding part 61C of the terminal 60 is formed, and in this junction part 66, the side surface 11a-1 of the longitudinal direction edge part 11a of the CNT wire 11 and A predetermined metal-containing member 65 is formed between the inner surface 61a of the wire crimping portion 61C. Note that the crimping portion 61A and the insulating coating 12 may be crimped by crimping only the covering crimping portion 61A without crimping the entire wire crimping portion 61 during crimping. Also according to this modification, the predetermined metal-containing member 65 can be reliably interposed between the side surface 11a-1 of the longitudinal end portion 11a of the CNT wire 11 and the inner side surface 61a of the wire crimping portion 61C. In addition, since the predetermined metal-containing member 65 serves as a buffer material against the pressure bonding load, it is possible to prevent the mechanical and electrical characteristics of the CNT wire 11 from deteriorating due to the pressure bonding.

上述したように、本実施形態によれば、所定金属含有部材31が、CNT線材11の長手方向端部11aに接続される端子20との接合部30に設けられ、且つCNT線材11の長手方向端部11aの側面11a−1に配置されるので、CNT線材11の側面11a−1と端子20との間に所定金属含有部材31を介在させることができ、CNT線材11が、当該所定金属含有部材を介して端子20と良好に接合される。したがって、CNT線材11と端子20との界面接続における導電性の低下を抑制して、端子20との接合部30における良好な導電性及び強度を実現することができる。   As described above, according to the present embodiment, the predetermined metal-containing member 31 is provided at the joint 30 with the terminal 20 connected to the longitudinal end 11a of the CNT wire 11 and the longitudinal direction of the CNT wire 11 Since it arrange | positions at the side surface 11a-1 of the edge part 11a, the predetermined metal containing member 31 can be interposed between the side surface 11a-1 of the CNT wire 11, and the terminal 20, and the CNT wire 11 contains the predetermined metal containing The terminal 20 is satisfactorily joined with the member. Therefore, it is possible to suppress a decrease in conductivity at the interface connection between the CNT wire 11 and the terminal 20 and to realize good conductivity and strength at the joint portion 30 with the terminal 20.

また、所定金属含有部材31に含有される所定金属が、タンタル、チタン、ニッケル、パラジウム、銅、銀、金、鉄及びコバルトからなる群から選択される少なくとも1つの材料であるので、所定金属含有部材31と端子20との界面接続における導電性が良好となり、端子20との接合部30においてより良好な導電性及び強度を実現することができる。   Further, since the predetermined metal contained in the predetermined metal-containing member 31 is at least one material selected from the group consisting of tantalum, titanium, nickel, palladium, copper, silver, gold, iron and cobalt, the predetermined metal containing The conductivity at the interface connection between the member 31 and the terminal 20 becomes good, and better conductivity and strength can be realized at the joint portion 30 with the terminal 20.

以上、本発明の実施形態に係るCNT接続構造体およびその製造方法について述べたが、本発明は記述の実施形態に限定されるものではなく、本発明の技術思想に基づいて各種の変形および変更が可能である。   Although the CNT connection structure and the manufacturing method thereof according to the embodiments of the present invention have been described above, the present invention is not limited to the described embodiments, and various modifications and changes can be made based on the technical idea of the present invention. Is possible.

上記実施形態では、CNT線材接続構造体は、CNT電線10とオープンバレル型の端子20との接続構造、或いはCNT電線10とクローズドバレル型の端子60との接続構造を有しているが、CNT電線と他の形状の端子との接続構造を有していてもよい。
例えば、図5(a)において、CNT線材接続構造体1Bの端子70は、不図示の外部端子と電気的に接続されるコネクタ部21と、該コネクタ部とトランジション部23を介して設けられ、CNT電線10と圧着される電線圧着部71とを備えている。
In the above embodiment, the CNT wire connecting structure has a connection structure between the CNT electric wire 10 and the open barrel type terminal 20 or a connection structure between the CNT electric wire 10 and the closed barrel type terminal 60. You may have the connection structure of an electric wire and the terminal of another shape.
For example, in FIG. 5A, the terminal 70 of the CNT wire connecting structure 1B is provided via a connector part 21 electrically connected to an external terminal (not shown), the connector part and the transition part 23, A CNT wire 10 and a wire crimping portion 71 to be crimped are provided.

圧着前の電線圧着部71は、図5(b)に示すように、長手方向に関してその両端が開放した形状(両端開放形状)を有する筒部材であって、トランジション部23を介してコネクタ部21に連結され且つCNT線材11と圧着される線材圧着部71Aと、線材圧着部71Aのトランジション部23とは反対側に配置され、絶縁被覆12と圧着される被覆圧着部71Bとを有しており、これらが金属基体にて一体成形されている。電線圧着部71は、被覆圧着部71Bの長手方向端部に電線挿入口72を有すると共に、線材圧着部71Aの長手方向端部に開口73を有している。コネクタ部21及びトランジション部23の構成は、図1の端子20と基本的に同じであるので、その説明を省略する。   As shown in FIG. 5B, the wire crimping portion 71 before crimping is a cylindrical member having a shape in which both ends thereof are open in the longitudinal direction (both ends open shape), and the connector portion 21 via the transition portion 23. And a wire crimping portion 71A that is crimped to the CNT wire 11, and a coating crimping portion 71B that is disposed on the opposite side of the transition crimping portion 23 of the wire crimping portion 71A and that is crimped to the insulating coating 12. These are integrally formed of a metal substrate. The electric wire crimping portion 71 has an electric wire insertion port 72 at the longitudinal end portion of the covering crimping portion 71B and an opening 73 at the longitudinal end portion of the wire crimping portion 71A. Since the structure of the connector part 21 and the transition part 23 is fundamentally the same as the terminal 20 of FIG. 1, the description is abbreviate | omitted.

端子70を用いてCNT線材接続構造体1Bを作製する場合には、例えば、CNT線材11の長手方向端部11aに流動性部材を塗布する。そして、電線挿入口72からCNT線材11の長手方向端部11aを挿入し、線材圧着部71AにCNT線材11の長手方向端部11aを載置すると共に、被覆圧着部71Bに絶縁被覆12を載置する(図5(b))。これにより、流動性部材が、CNT線材11におけるCNT束11A間の空隙部や、CNT線材11の長手方向端部11aの側面11a−1と線材圧着部71Aの内側面との間の空隙部に充填される。   When producing the CNT wire connecting structure 1 </ b> B using the terminals 70, for example, a fluid member is applied to the longitudinal end portion 11 a of the CNT wire 11. Then, the longitudinal end 11a of the CNT wire 11 is inserted from the wire insertion port 72, the longitudinal end 11a of the CNT wire 11 is placed on the wire crimping portion 71A, and the insulating coating 12 is placed on the covering crimping portion 71B. (FIG. 5B). Thereby, a fluid member is in the space | gap part between the side surfaces 11a-1 of the longitudinal direction edge part 11a of the CNT wire 11, and the inner surface of 71 A of wire rods in the space | interval between the CNT bundles 11A in the CNT wire 11. Filled.

次いで、電線圧着部71を加締めて電線圧着部71をCNT線材11に圧着し、更に電線圧着部71に熱エネルギーを付与して、当該電線圧着部71を介して流動性部材を部分的又は全体的に加熱、溶融し、その後冷却して固化する(図5(a))。これにより、CNT線材11の長手方向端部11aと端子70の線材圧着部71Aとが接合された接合部75が形成され、この接合部75において、CNT線材11の長手方向端部11aの側面11a−1と線材圧着部71Aの内側面との間に所定金属含有部材74が形成される。本接続構造体によっても、CNT線材11の長手方向端部11aの側面11a−1と線材圧着部71Aの内側面との間に所定金属含有部材74を介在させることができる。   Next, the wire crimping portion 71 is crimped to crimp the wire crimping portion 71 to the CNT wire 11, further applying thermal energy to the wire crimping portion 71, and the fluid member is partially or via the wire crimping portion 71. The whole is heated and melted and then cooled and solidified (FIG. 5A). Thereby, the joining part 75 in which the longitudinal direction end part 11a of the CNT wire 11 and the wire crimping part 71A of the terminal 70 are joined is formed, and in this joining part 75, the side surface 11a of the longitudinal direction end part 11a of the CNT wire 11 is formed. -1 and a predetermined metal-containing member 74 is formed between the inner surface of the wire crimping portion 71A. Also with this connection structure, the predetermined metal-containing member 74 can be interposed between the side surface 11a-1 of the longitudinal end portion 11a of the CNT wire 11 and the inner surface of the wire crimping portion 71A.

また、図1のCNT線材接続構造体1では、端子のコネクタ部が雌型端子であるが、コネクタ部の細部形状は、特に限定されず、外部端子と係止あるいは嵌合して電気的に接続し得るものであれば、他の形状を有していてもよい。例えば図6に示すように、丸型端子80は、電線圧着部22と平板状のトランジション部81を介して一体接続され、中央の孔82にボルト等が挿通されて他の部材に固定されるリング部83を有していてもよい。
また、他の変形例として、CNT線材接続構造体が、雌型端子のコネクタ部に代えて、雄型端子のコネクタ部を有していてもよく、雄型端子が、例えば長尺状の接続部(挿入タブ)であってもよい。
Further, in the CNT wire connecting structure 1 in FIG. 1, the connector portion of the terminal is a female terminal, but the detailed shape of the connector portion is not particularly limited, and is electrically engaged with or engaged with an external terminal. As long as it can be connected, it may have another shape. For example, as shown in FIG. 6, the round terminal 80 is integrally connected to the wire crimping portion 22 via a flat plate-like transition portion 81, and a bolt or the like is inserted into the central hole 82 and fixed to another member. You may have the ring part 83. FIG.
As another modification, the CNT wire connecting structure may have a male terminal connector instead of the female terminal connector, and the male terminal is, for example, a long connection. Part (insert tab).

1 CNT線材接続構造体
1’ CNT線材接続構造体
1A CNT線材接続構造体
1B CNT線材接続構造体
11 CNT線材
11A CNT束
11a 長手方向端部
11a−1 側面
12 絶縁被覆
20 端子
20a 内側面
21 コネクタ部
22 電線圧着部
22A 線材圧着部
22A−1 バレル底部
22A−2,22A−2 一対のバレル片
22B 被覆圧着部
22B−1 バレル底部
22B−2,22B−2一対のバレル片
22a 内側面
23 トランジション部
24 凹凸部
30 接合部
31 所定金属含有部材
31’ 流動性部材
40 はんだ槽
41 超音波振動板
60 端子
61 電線圧着部
61A 被覆圧着部
61B 縮径部
61C 線材圧着部
61D 縮径部
61a 内周面
62 電線挿入口
63 凹凸部
64 内部空間
65’ 流動性部材
65 所定金属含有部材
66 接合部
70 端子
71 電線圧着部
71A 線材圧着部
71B 被覆圧着部
72 電線挿入口
74 所定金属含有部材
75 接合部
80 丸形端子
81 トランジション部
82 孔
83 リング部
D ディスペンサ
L レーザ光
1 CNT wire connecting structure 1 'CNT wire connecting structure
1A CNT wire connecting structure 1B CNT wire connecting structure 11 CNT wire 11A CNT bundle 11a Longitudinal end 11a-1 Side surface 12 Insulation coating 20 Terminal 20a Inner side surface 21 Connector portion 22 Electric wire crimping portion 22A Wire rod crimping portion 22A-1 Barrel Bottom portion 22A-2, 22A-2 Pair of barrel pieces 22B Covering crimping portion 22B-1 Barrel bottom portions 22B-2, 22B-2 Pair of barrel pieces 22a Inner side surface 23 Transition portion 24 Concavity and convexity portion 30 Joint portion 31 Predetermined metal-containing member 31 'Flowable member 40 Solder bath 41 Ultrasonic diaphragm 60 Terminal 61 Wire crimping portion 61A Covering crimping portion 61B Reduced diameter portion 61C Wire rod crimping portion 61D Reduced diameter portion 61a Inner circumferential surface 62 Wire insertion port 63 Uneven portion 64 Internal space 65' Flowable member 65 Predetermined metal-containing member 66 Joining portion 70 Terminal 71 Wire crimping portion 71A Wire rod crimping portion 71 Coating crimping portion 72 inserting slot 74 a predetermined metal containing member 75 joint 80 round pin 81 the transition portion 82 hole 83 ring section D dispenser
L Laser light

Claims (11)

複数のカーボンナノチューブ束を撚り合わせてなるカーボンナノチューブ線材であって、
前記カーボンナノチューブ線材の長手方向端部に接続される端子との接合部に設けられ、前記カーボンナノチューブ線材の前記長手方向端部の側面に配置された所定金属含有部材を備えることを特徴とする、カーボンナノチューブ線材。
A carbon nanotube wire formed by twisting a plurality of carbon nanotube bundles,
It is provided at a joint portion with a terminal connected to a longitudinal end portion of the carbon nanotube wire, and includes a predetermined metal-containing member disposed on a side surface of the longitudinal end portion of the carbon nanotube wire, Carbon nanotube wire.
前記カーボンナノチューブ線材の長手方向に亘って含有された金属部材を有し、
前記カーボンナノチューブ線材におけるカーボンナノチューブに対する前記所定金属の金属含有量が、前記カーボンナノチューブに対する前記他の金属部材の金属含有量よりも大きいことを特徴とする、請求項1記載のカーボンナノチューブ線材。
Having a metal member contained over the longitudinal direction of the carbon nanotube wire,
2. The carbon nanotube wire according to claim 1, wherein a metal content of the predetermined metal with respect to the carbon nanotube in the carbon nanotube wire is larger than a metal content of the other metal member with respect to the carbon nanotube.
前記所定金属含有部材が、前記カーボンナノチューブ線材の前記長手方向端部を被覆する被覆層であり、
前記被覆層が、前記接合部の全体に亘って形成されていることを特徴とする、請求項1記載のカーボンナノチューブ線材。
The predetermined metal-containing member is a coating layer that covers the longitudinal end of the carbon nanotube wire;
The carbon nanotube wire according to claim 1, wherein the coating layer is formed over the entire joint.
前記所定金属含有部材に含有される所定金属は、タンタル、チタン、ニッケル、パラジウム、銅、銀、金、鉄及びコバルトからなる群から選択される少なくとも1つの材料であることを特徴とする、請求項1〜3のいずれか1項に記載のカーボンナノチューブ線材。   The predetermined metal contained in the predetermined metal-containing member is at least one material selected from the group consisting of tantalum, titanium, nickel, palladium, copper, silver, gold, iron, and cobalt. Item 4. The carbon nanotube wire according to any one of Items 1 to 3. 前記所定金属は、遷移金属であることを特徴とする、請求項4記載のカーボンナノチューブ線材。   The carbon nanotube wire according to claim 4, wherein the predetermined metal is a transition metal. 前記所定金属含有部材は、前記所定金属が含有された導電性接着剤を硬化した物であることを特徴とする、請求項1〜5のいずれか1項に記載のカーボンナノチューブ線材。   The carbon nanotube wire according to claim 1, wherein the predetermined metal-containing member is a cured product of a conductive adhesive containing the predetermined metal. 異種元素がドープされていることを特徴とする、請求項1又は2記載のカーボンナノチューブ線材。   The carbon nanotube wire according to claim 1 or 2, wherein a different element is doped. 前記カーボンナノチューブ線材を構成するカーボンナノチューブが、2層又は3層の層構造を有することを特徴とする、請求項1〜3のいずれか1項に記載のカーボンナノチューブ線材。   4. The carbon nanotube wire according to claim 1, wherein the carbon nanotubes constituting the carbon nanotube wire have a two-layer or three-layer structure. 5. 複数のカーボンナノチューブ束を撚り合わせてなるカーボンナノチューブ線材と、前記カーボンナノチューブ線材に接続される端子とを備えるカーボンナノチューブ線材接続構造体であって、
前記カーボンナノチューブ線材の長手方向端部と前記端子とが接合された接合部に設けられ、前記カーボンナノチューブ線材の前記長手方向端部の側面と前記端子の内側面との間に介在する所定金属含有部材を備えることを特徴とする、カーボンナノチューブ線材接続構造体。
A carbon nanotube wire connecting structure comprising a carbon nanotube wire formed by twisting a plurality of carbon nanotube bundles, and a terminal connected to the carbon nanotube wire,
Included with a predetermined metal provided at a joint where the longitudinal end of the carbon nanotube wire and the terminal are joined, and interposed between the side of the longitudinal end of the carbon nanotube wire and the inner side of the terminal A carbon nanotube wire connecting structure comprising a member.
複数のカーボンナノチューブ束を撚り合わせてなるカーボンナノチューブ線材と、前記カーボンナノチューブ線材に接続される端子とを備えるカーボンナノチューブ線材接続構造体であって、
前記カーボンナノチューブ線材の長手方向端部と前記端子とが接合された接合部に設けられ、前記カーボンナノチューブ線材の前記端部の側面と前記端子の内側面との間に介在する所定金属含有部材を備え、
前記所定金属含有部材に含有される金属は、タンタル、チタン、ニッケル、パラジウム、銅、銀、金、鉄及びコバルトからなる群から選択される少なくとも1つの材料であることを特徴とする、カーボンナノチューブ線材接続構造体。
A carbon nanotube wire connecting structure comprising a carbon nanotube wire formed by twisting a plurality of carbon nanotube bundles, and a terminal connected to the carbon nanotube wire,
A predetermined metal-containing member provided at a joint where the longitudinal end of the carbon nanotube wire and the terminal are joined, and interposed between a side surface of the end of the carbon nanotube wire and an inner surface of the terminal; Prepared,
The metal contained in the predetermined metal-containing member is at least one material selected from the group consisting of tantalum, titanium, nickel, palladium, copper, silver, gold, iron, and cobalt. Wire connecting structure.
前記接合部において、前記カーボンナノチューブ線材の前記長手方向端部が、前記所定金属含有部材を介して前記端子に圧着されていることを特徴とする、請求項9又は10記載のカーボンナノチューブ線材接続構造体。   11. The carbon nanotube wire connecting structure according to claim 9, wherein the longitudinal end portion of the carbon nanotube wire is crimped to the terminal via the predetermined metal-containing member in the joint portion. body.
JP2016060731A 2016-03-24 2016-03-24 Carbon nanotube wire and carbon nanotube wire-connected structure Pending JP2017174689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016060731A JP2017174689A (en) 2016-03-24 2016-03-24 Carbon nanotube wire and carbon nanotube wire-connected structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016060731A JP2017174689A (en) 2016-03-24 2016-03-24 Carbon nanotube wire and carbon nanotube wire-connected structure

Publications (1)

Publication Number Publication Date
JP2017174689A true JP2017174689A (en) 2017-09-28

Family

ID=59971422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016060731A Pending JP2017174689A (en) 2016-03-24 2016-03-24 Carbon nanotube wire and carbon nanotube wire-connected structure

Country Status (1)

Country Link
JP (1) JP2017174689A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108598719A (en) * 2018-05-01 2018-09-28 深圳供电局有限公司 One kind three is laminated connection device
JP2019065431A (en) * 2017-10-03 2019-04-25 古河電気工業株式会社 Carbon nanotube wire, carbon nanotube wire connection structure, and method for manufacturing carbon nanotube wire
US10574015B1 (en) 2018-08-21 2020-02-25 Lear Corporation Terminal assembly and method
US10581181B1 (en) 2018-08-21 2020-03-03 Lear Corporation Terminal assembly and method
US10693246B2 (en) 2018-08-21 2020-06-23 Lear Corporation Terminal assembly for use with conductors of different sizes and method of assembling
WO2020203725A1 (en) * 2019-03-29 2020-10-08 古河電気工業株式会社 Connection structure for substrate and carbon nanotube wire
JP2021153038A (en) * 2020-03-18 2021-09-30 矢崎総業株式会社 Manufacturing method of wire with terminal, and wire with terminal
WO2021201096A1 (en) * 2020-03-31 2021-10-07 古河電気工業株式会社 Connection structure for carbon nanotube wire
CN114846199A (en) * 2019-12-27 2022-08-02 特线工业株式会社 Method for producing long article comprising carbon nanotubes
US11611159B2 (en) 2020-03-18 2023-03-21 Yazaki Corporation Method of manufacturing terminal-equipped electrical wire and terminal-equipped electrical wire
JP7370917B2 (en) 2019-03-29 2023-10-30 古河電気工業株式会社 connection structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53158891U (en) * 1977-05-20 1978-12-13
JPS57176014U (en) * 1981-05-01 1982-11-06
JP2008129938A (en) * 2006-11-22 2008-06-05 Hmi:Kk Portable storage device and system using the storage device
JP2012074180A (en) * 2010-09-28 2012-04-12 Yazaki Corp Connection structure of fiber conductor
JP2013047402A (en) * 2011-08-29 2013-03-07 Denso Corp Carbon nano-tube yarn connection body and method for producing the same
JP2013062123A (en) * 2011-09-13 2013-04-04 Yazaki Corp Connection structure of terminal and connection method of terminal
JP2014096337A (en) * 2012-11-12 2014-05-22 Hong Kong Seiryu Yugenkoshi Connection structure of coated carbon fiber wire

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53158891U (en) * 1977-05-20 1978-12-13
JPS57176014U (en) * 1981-05-01 1982-11-06
JP2008129938A (en) * 2006-11-22 2008-06-05 Hmi:Kk Portable storage device and system using the storage device
JP2012074180A (en) * 2010-09-28 2012-04-12 Yazaki Corp Connection structure of fiber conductor
JP2013047402A (en) * 2011-08-29 2013-03-07 Denso Corp Carbon nano-tube yarn connection body and method for producing the same
JP2013062123A (en) * 2011-09-13 2013-04-04 Yazaki Corp Connection structure of terminal and connection method of terminal
JP2014096337A (en) * 2012-11-12 2014-05-22 Hong Kong Seiryu Yugenkoshi Connection structure of coated carbon fiber wire

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019065431A (en) * 2017-10-03 2019-04-25 古河電気工業株式会社 Carbon nanotube wire, carbon nanotube wire connection structure, and method for manufacturing carbon nanotube wire
JP7097165B2 (en) 2017-10-03 2022-07-07 古河電気工業株式会社 Method for manufacturing carbon nanotube wire rod, carbon nanotube wire rod connection structure and carbon nanotube wire rod
CN108598719A (en) * 2018-05-01 2018-09-28 深圳供电局有限公司 One kind three is laminated connection device
CN108598719B (en) * 2018-05-01 2024-04-05 深圳供电局有限公司 Three-layer crimping device
US10574015B1 (en) 2018-08-21 2020-02-25 Lear Corporation Terminal assembly and method
US10581181B1 (en) 2018-08-21 2020-03-03 Lear Corporation Terminal assembly and method
US10693246B2 (en) 2018-08-21 2020-06-23 Lear Corporation Terminal assembly for use with conductors of different sizes and method of assembling
CN113646254A (en) * 2019-03-29 2021-11-12 古河电气工业株式会社 Connection structure of substrate and carbon nanotube wire
EP3950574A4 (en) * 2019-03-29 2023-05-03 Furukawa Electric Co., Ltd. Connection structure for substrate and carbon nanotube wire
JP7370917B2 (en) 2019-03-29 2023-10-30 古河電気工業株式会社 connection structure
WO2020203725A1 (en) * 2019-03-29 2020-10-08 古河電気工業株式会社 Connection structure for substrate and carbon nanotube wire
CN114846199A (en) * 2019-12-27 2022-08-02 特线工业株式会社 Method for producing long article comprising carbon nanotubes
CN114846199B (en) * 2019-12-27 2023-08-08 特线工业株式会社 Method for producing long article composed of carbon nanotubes
JP2021153038A (en) * 2020-03-18 2021-09-30 矢崎総業株式会社 Manufacturing method of wire with terminal, and wire with terminal
JP7143369B2 (en) 2020-03-18 2022-09-28 矢崎総業株式会社 Method for manufacturing electric wire with terminal and electric wire with terminal
US11611159B2 (en) 2020-03-18 2023-03-21 Yazaki Corporation Method of manufacturing terminal-equipped electrical wire and terminal-equipped electrical wire
WO2021201096A1 (en) * 2020-03-31 2021-10-07 古河電気工業株式会社 Connection structure for carbon nanotube wire

Similar Documents

Publication Publication Date Title
JP2017174689A (en) Carbon nanotube wire and carbon nanotube wire-connected structure
EP2896051B1 (en) Bulk carbon nanotube and metallic composites and method of fabricating
US10115492B2 (en) Electrically conductive carbon nanotube wire having a metallic coating and methods of forming same
JP2014187031A5 (en) Terminal and wire connection structure
EP2960999A1 (en) Terminal, wiring connection structure, and method for manufacturing terminal
CN107342466A (en) A kind of joint and its ultrasonic welding method of copper tip and aluminum conductor
JP6738627B2 (en) Carbon nanotube wire and carbon nanotube wire connecting structure
US8900021B2 (en) Electrical contact terminal with improved connection portion
CN101635394A (en) Cable with crimping terminal and method of making the same
JP6928526B2 (en) Manufacturing method of carbon nanotube wire rod, carbon nanotube wire rod connecting structure and carbon nanotube wire rod
TW201320484A (en) Electrical contact component
JP3226612U (en) Copper-aluminum joint
JP6767292B2 (en) Carbon nanotube wire rod and carbon nanotube wire rod connection structure
WO2024056048A1 (en) Novel aluminum terminal
JP2017091800A (en) Conductive member
WO2011148977A1 (en) Conductive material and method for producing same
EP2673843B1 (en) Electrical connector for connecting electrical cables to electrical terminals
JP2010182492A (en) Terminal, and method of connecting terminal and electric wire
JP6719244B2 (en) Carbon nanotube wire connecting method and carbon nanotube wire connecting structure
US20190036234A1 (en) Cable with nanoparticle paste
JP7097165B2 (en) Method for manufacturing carbon nanotube wire rod, carbon nanotube wire rod connection structure and carbon nanotube wire rod
JP7370917B2 (en) connection structure
US20110076861A1 (en) Laminar electrical connector
CN109019563B (en) Porous metal composite structure
JP2020181686A (en) Carbon nanotube wire material, carbon nanotube wire material connecting structure, and manufacturing method of carbon nanotube wire material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180305

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180305

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180409

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181005

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20181015

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20181102