JP7348714B2 - Carbon nanotube wire, carbon nanotube-coated electric wire, method for producing carbon nanotube wire, and method for processing carbon nanotube-coated electric wire - Google Patents

Carbon nanotube wire, carbon nanotube-coated electric wire, method for producing carbon nanotube wire, and method for processing carbon nanotube-coated electric wire Download PDF

Info

Publication number
JP7348714B2
JP7348714B2 JP2018069827A JP2018069827A JP7348714B2 JP 7348714 B2 JP7348714 B2 JP 7348714B2 JP 2018069827 A JP2018069827 A JP 2018069827A JP 2018069827 A JP2018069827 A JP 2018069827A JP 7348714 B2 JP7348714 B2 JP 7348714B2
Authority
JP
Japan
Prior art keywords
carbon nanotube
wire
cnt
impregnation
nanotube wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018069827A
Other languages
Japanese (ja)
Other versions
JP2019179727A (en
Inventor
正治 小泉
英樹 會澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2018069827A priority Critical patent/JP7348714B2/en
Publication of JP2019179727A publication Critical patent/JP2019179727A/en
Application granted granted Critical
Publication of JP7348714B2 publication Critical patent/JP7348714B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/14Extreme weather resilient electric power supply systems, e.g. strengthening power lines or underground power cables

Description

本発明は、複数のカーボンナノチューブで構成されるカーボンナノチューブ線材、該カーボンナノチューブ線材を絶縁材料で被覆したカーボンナノチューブ被覆電線、カーボンナノチューブ線材の製造方法、及びカーボンナノチューブ被覆電線の加工方法に関する。 The present invention relates to a carbon nanotube wire made of a plurality of carbon nanotubes, a carbon nanotube-coated electric wire in which the carbon nanotube wire is coated with an insulating material, a method for manufacturing a carbon nanotube wire, and a method for processing a carbon nanotube-coated electric wire.

カーボンナノチューブは、様々な特性を有する素材であり、多くの分野への応用が期待されている。 Carbon nanotubes are materials with various properties and are expected to be applied to many fields.

例えば、CNTは、六角形格子の網目構造を有する筒状体の単層、または略同軸で配された多層で構成される3次元網目構造体であり、軽量であると共に、導電性、熱伝導性、機械的強度等の諸特性に優れる。しかし、CNTを線材化することは容易ではなく、CNTを線材として利用する技術は提案されていない。 For example, CNT is a three-dimensional network structure consisting of a single layer of cylindrical bodies with a hexagonal lattice network structure, or multiple layers arranged approximately coaxially, and is lightweight and has good electrical and thermal conductivity. It has excellent properties such as hardness and mechanical strength. However, it is not easy to make CNTs into wires, and no technology has been proposed for using CNTs as wires.

また、複数のカーボンナノチューブが束ねられてなるカーボンナノチューブ集合体の単数から、又は複数のカーボンナノチューブ集合体が束ねられて形成されるカーボンナノチューブ線材を導体として様々な用途に適用する場合、外部との絶縁性を確保するために、カーボンナノチューブ線材を絶縁材料で被覆したカーボンナノチューブ被覆電線が用いられる。カーボンナノチューブ被覆電線を結線する際には、例えばカーボンナノチューブ被覆電線の長手方向端部における絶縁被覆層を除去してカーボンナノチューブ線材の長手方向端部を露出させ、この露出部分を外部端子等と接続することで、カーボンナノチューブ被覆電線と外部との電気的な接続が行われる。 In addition, when applying a single carbon nanotube aggregate formed by bundling a plurality of carbon nanotubes or a carbon nanotube wire formed by bundling a plurality of carbon nanotubes as a conductor to various uses, it is necessary to In order to ensure insulation, a carbon nanotube-covered electric wire is used, which is a carbon nanotube wire coated with an insulating material. When connecting carbon nanotube-coated electric wires, for example, the insulation coating layer at the longitudinal ends of the carbon nanotube-coated electric wires is removed to expose the longitudinal ends of the carbon nanotube wires, and this exposed portion is connected to external terminals, etc. By doing so, electrical connection between the carbon nanotube-coated electric wire and the outside is established.

被覆電線の絶縁被覆層を除去する方法としては、例えば、互いに対向配置された固定側プレート及び可動側プレートの双方に設けられた各スリット内に、露出している芯線を上側から導入して複数本の被覆電線を係止させた後、両プレートを離反させることで、端部被覆部を芯線から引き抜く構成が提案されている(特許文献1)。 As a method for removing the insulation coating layer of the covered electric wire, for example, the exposed core wire is introduced from above into each slit provided in both the fixed side plate and the movable side plate that are arranged to face each other. A configuration has been proposed in which the end covering portion is pulled out from the core wire by separating both plates after the covered wire is locked (Patent Document 1).

また、金属被覆電線の被覆を除去する方法として、剥皮ヘッドに刃物支持体を移動自在に設け、該刃物支持体には複数の剥皮用刃物を、それぞれ異なる切込み深さに並設し、刃物支持体を移動させることにより、双方の剥皮ヘッドに設けた剥皮用刃物を適宜組み合わせて対向させることで、少ない種類の剥皮用刃物で絶縁被覆層の厚みが異なる多種類の被覆電線の剥皮を行うことが可能な構成が提案されている(特許文献2)。 In addition, as a method for removing the coating from a metal-coated electric wire, a blade support is movably provided in the stripping head, and a plurality of stripping blades are arranged in parallel at different cutting depths on the blade support. By moving the body and appropriately combining the stripping knives provided on both stripping heads and facing them, it is possible to strip many types of coated wires with different thicknesses of insulation coating layers using a small number of types of stripping knives. A configuration in which this is possible has been proposed (Patent Document 2).

特開平09-182233号公報Japanese Patent Application Publication No. 09-182233 特開平09-046844号公報Japanese Patent Application Publication No. 09-046844

複数のカーボンナノチューブ集合体が束ねられて形成されているカーボンナノチューブ線材、例えばカーボンナノチューブ撚り線の場合、カーボンナノチューブ一本の外径がナノメートルオーダと極微小であるため、樹脂被覆する際に樹脂がカーボンナノチューブ撚り線に含浸しやすく、カーボンナノチューブ撚り線に含浸した樹脂を除去するのが困難になる。例えば、カーボンナノチューブ撚り線を絶縁ワニスでコーティングすると、絶縁ワニスがカーボンナノチューブ間或いはカーボンナノチューブ集合体間に含浸してしまうため、被覆除去が困難となる。また、上記カーボンナノチューブ撚り線に押出被覆層を形成すると、取り切れなかったバリなどの存在に因って絶縁ワニスと押出被覆層の樹脂との密着性が強固になり、被覆除去がより一層困難となる。 In the case of carbon nanotube wires, such as carbon nanotube strands, which are formed by bundling multiple carbon nanotube aggregates, the outer diameter of each carbon nanotube is extremely small, on the order of nanometers, so when coating with resin, easily impregnates the carbon nanotube strands, making it difficult to remove the resin impregnated into the carbon nanotube strands. For example, if carbon nanotube strands are coated with insulating varnish, the insulating varnish will be impregnated between carbon nanotubes or between aggregates of carbon nanotubes, making it difficult to remove the coating. In addition, when an extruded coating layer is formed on the carbon nanotube strands, the adhesion between the insulating varnish and the resin of the extruded coating layer becomes strong due to the presence of burrs that cannot be removed, making removal of the coating even more difficult. becomes.

また、上記従来の技術は、一般的な絶縁被覆層の除去方法であるか、或いは導体が金属線材である被覆電線を対象とした被覆除去方法であり、カーボンナノチューブ撚り線を被覆したカーボンナノチューブ被覆電線の被覆除去を想定していない。このため、カーボンナノチューブ間或いはカーボンナノチューブ集合体間の絶縁被覆層を十分に除去することができず、当該露出部分と外部端子等との接続部における電気的な接続信頼性が低下する。 Furthermore, the above-mentioned conventional technique is a general method for removing an insulating coating layer, or a coating removal method for coated electric wires whose conductors are metal wires, and is a method for removing a carbon nanotube coating covering a carbon nanotube stranded wire. It is not assumed that the wire insulation will be removed. Therefore, the insulating coating layer between carbon nanotubes or between aggregates of carbon nanotubes cannot be sufficiently removed, and the reliability of electrical connection at the connection between the exposed portion and an external terminal or the like is reduced.

本発明の目的は、カーボンナノチューブ線材の絶縁被覆層を容易に且つ十分に除去することができ、外部との電気的な接続信頼性を向上することができるカーボンナノチューブ線材、カーボンナノチューブ被覆電線、カーボンナノチューブ線材の製造方法及びカーボンナノチューブ被覆電線の加工方法を提供することにある。 An object of the present invention is to provide a carbon nanotube wire, a carbon nanotube-coated electric wire, and a carbon nanotube wire that can easily and sufficiently remove the insulating coating layer of the carbon nanotube wire and improve the reliability of electrical connection with the outside. An object of the present invention is to provide a method for manufacturing a nanotube wire and a method for processing a carbon nanotube-coated electric wire.

上記目的を達成するために、本発明のカーボンナノチューブ線材は、複数のカーボンナノチューブで構成されるカーボンナノチューブ集合体の単数から、又は複数の前記カーボンナノチューブ集合体が束ねられて形成されているカーボンナノチューブ線材であって、前記カーボンナノチューブ線材の外周部に、その周方向全体に亘り、前記カーボンナノチューブ線材を被覆する絶縁被覆層を構成する被覆材の前記カーボンナノチューブ線材への含浸を抑制する1又は複数の含浸抑制部を備えることを特徴とする。 In order to achieve the above object, the carbon nanotube wire of the present invention is made of a single carbon nanotube aggregate composed of a plurality of carbon nanotubes, or a carbon nanotube formed by bundling a plurality of carbon nanotube aggregates. One or more wire rods that suppress impregnation into the carbon nanotube wire of a coating material constituting an insulating coating layer that covers the carbon nanotube wire at the outer peripheral portion of the carbon nanotube wire over the entire circumferential direction. It is characterized by comprising an impregnation suppressing part.

前記含浸抑制部は、前記カーボンナノチューブ線材の最表層に位置する前記カーボンナノチューブ同士を連結する連結構造を有するのが好ましい。 Preferably, the impregnation suppressing portion has a connection structure that connects the carbon nanotubes located at the outermost layer of the carbon nanotube wire.

前記複数の含浸抑制部が、前記カーボンナノチューブ線材の長手方向に間欠的に配置されていてもよい。 The plurality of impregnation suppressing parts may be arranged intermittently in the longitudinal direction of the carbon nanotube wire.

前記1又は複数の含浸抑制部が、少なくとも前記カーボンナノチューブ線材の長手方向端部に形成されるのが好ましい。 It is preferable that the one or more impregnation suppressing parts are formed at least at the longitudinal ends of the carbon nanotube wire.

前記含浸抑制部は、導電性ペースト、めっき及びはんだから選択されたいずれかの材料で構成されることができる。 The impregnation suppressing portion may be made of any material selected from conductive paste, plating, and solder.

前記カーボンナノチューブ線材は、前記カーボンナノチューブ線材の外周部に設けられ、且つ前記含浸抑制部以外の部分に配置される1又は複数のエナメル系樹脂被覆部を更に備えていてもよい。 The carbon nanotube wire may further include one or more enamel-based resin coating parts provided on the outer periphery of the carbon nanotube wire and arranged in a part other than the impregnation suppressing part.

上記目的を達成するために、本発明のカーボンナノチューブ被覆電線は、カーボンナノチューブ線材と、前記カーボンナノチューブ線材を被覆する絶縁被覆層と、前記カーボンナノチューブ線材と前記絶縁被覆層との間で、前記カーボンナノチューブ線材の周方向全体に亘り、前記絶縁被覆層を構成する被覆材の前記カーボンナノチューブ線材への含浸を抑制する1又は複数の含浸抑制部とを備えることを特徴とする。 In order to achieve the above object, the carbon nanotube-coated electric wire of the present invention includes a carbon nanotube wire, an insulating coating layer covering the carbon nanotube wire, and a carbon nanotube wire between the carbon nanotube wire and the insulating coating layer. It is characterized by comprising one or more impregnation suppressing parts that suppress impregnation of the carbon nanotube wire with a coating material constituting the insulating coating layer over the entire circumferential direction of the nanotube wire.

上記目的を達成するために、本発明のカーボンナノチューブ線材の被覆電線の製造方法は、カーボンナノチューブ線材の外周部に、その周方向全体に亘って、前記カーボンナノチューブ線材の絶縁被覆層を構成する被覆材の前記カーボンナノチューブ線材への含浸を抑制する1又は複数の含浸抑制部を形成する工程と、前記含浸抑制部に対して前記カーボンナノチューブ線材とは反対側に前記絶縁被覆層を形成する工程と、を有することを特徴とする。 In order to achieve the above object, the method for manufacturing a coated electric wire of a carbon nanotube wire according to the present invention includes a coating that constitutes an insulating coating layer of the carbon nanotube wire over the entire circumferential direction of the outer circumference of the carbon nanotube wire. a step of forming one or more impregnation suppressing portions for suppressing impregnation of the material into the carbon nanotube wire; and a step of forming the insulating coating layer on the opposite side of the carbon nanotube wire with respect to the impregnation suppressing portion. It is characterized by having the following.

上記目的を達成するために、本発明のカーボンナノチューブ線材の被覆電線の加工方法は、カーボンナノチューブ線材と、前記カーボンナノチューブ線材を被覆する絶縁被覆層と、前記カーボンナノチューブ線材と前記絶縁被覆層との間で、前記カーボンナノチューブ線材の周方向全体に亘り、前記絶縁被覆層を構成する被覆材の前記カーボンナノチューブ線材への含浸を抑制する1又は複数の含浸抑制部とを備えるカーボンナノチューブ被覆電線の加工方法であって、前記含浸抑制部に対して前記カーボンナノチューブ線材とは反対側に形成された絶縁被覆層を除去することを特徴とする。 In order to achieve the above object, the method of processing a coated electric wire of carbon nanotube wire of the present invention includes: a carbon nanotube wire; Processing of a carbon nanotube-coated electric wire, comprising one or more impregnation suppressing parts that suppress impregnation of a coating material constituting the insulating coating layer into the carbon nanotube wire over the entire circumferential direction of the carbon nanotube wire. The method is characterized in that an insulating coating layer formed on a side opposite to the carbon nanotube wire with respect to the impregnation suppressing portion is removed.

本発明によれば、1又は複数の含浸抑制部が、カーボンナノチューブ線材の外周部にその周方向全体に亘って設けられており、上記カーボンナノチューブ線材を被覆する絶縁被覆層を構成する被覆材の当該カーボンナノチューブ線材への含浸を抑制するので、含浸抑制部のカーボンナノチューブ線材とは反対側に絶縁被覆層を形成した際に、絶縁被覆層の被覆材がカーボンナノチューブ間或いはカーボンナノチューブ集合体間に侵入し難くなり、被覆材の取り残しが生じ難くなる。よって、絶縁被覆層を容易に且つ十分に除去することができ、外部との電気的な接続信頼性を向上することができる。 According to the present invention, one or more impregnation suppressing portions are provided on the outer peripheral portion of the carbon nanotube wire over the entire circumferential direction, and the impregnation suppressing portion is provided on the outer peripheral portion of the carbon nanotube wire, and the impregnation suppressing portion is provided on the outer peripheral portion of the carbon nanotube wire, and the impregnation suppressing portion is provided on the outer peripheral portion of the carbon nanotube wire. Since the impregnation of the carbon nanotube wire is suppressed, when an insulating coating layer is formed on the side opposite to the carbon nanotube wire of the impregnation suppressing part, the coating material of the insulating coating layer does not spread between carbon nanotubes or between carbon nanotube aggregates. It becomes difficult to penetrate and it becomes difficult to leave coating material behind. Therefore, the insulating coating layer can be easily and sufficiently removed, and the reliability of electrical connection with the outside can be improved.

本発明の実施形態に係るカーボンナノチューブ被覆電線の構成を示す斜視図である。1 is a perspective view showing the configuration of a carbon nanotube-coated electric wire according to an embodiment of the present invention. 図1におけるカーボンナノチューブ線材の変形例を示す斜視図である。2 is a perspective view showing a modification of the carbon nanotube wire in FIG. 1. FIG. 図1におけるカーボンナノチューブ線材の他の変形例を示す斜視図である。2 is a perspective view showing another modification of the carbon nanotube wire in FIG. 1. FIG. 図1のカーボンナノチューブ被覆電線の製造方法の一例を示すフローチャートである。2 is a flowchart showing an example of a method for manufacturing the carbon nanotube-coated electric wire of FIG. 1. FIG.

以下、本発明の実施形態に係るカーボンナノチューブ被覆電線を、図面を参照しながら説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a carbon nanotube-coated electric wire according to an embodiment of the present invention will be described with reference to the drawings.

[カーボンナノチューブ被覆電線の構成]
図1に示すように、本発明の実施形態に係るカーボンナノチューブ被覆電線(以下、「CNT被覆電線」ともいう。)1は、カーボンナノチューブ線材(以下、「CNT線材」ともいう)10と、CNT線材10を被覆する絶縁被覆層21と、CNT線材10と絶縁被覆層21との間で、CNT線材10の周方向全体に亘り、絶縁被覆層21を構成する被覆材のCNT線材10への含浸を抑制する複数の含浸抑制部31,31,31とを備える。
CNT被覆電線1は、CNT線材10の外周面に絶縁被覆層21が被覆された構成となっている。すなわち、CNT線材10の長手方向に沿って絶縁被覆層21が形成されている。CNT被覆電線1では、CNT線材10の外周面全体が、絶縁被覆層21によって被覆されている。また、CNT被覆電線1では、含浸抑制部31が形成されている部分以外の部分で、絶縁被覆層21はCNT線材10の外周面と直接接した態様となっている。図1では、CNT線材10は、1本のCNT線材10からなる素線(単線)となっているが、CNT線材10は、複数本のCNT線材10を撚り合わせた撚り線の状態でもよい。CNT線材10を撚り線の形態とすることで、CNT線材10の円相当直径や断面積を適宜調節することができる。
[Configuration of carbon nanotube coated wire]
As shown in FIG. 1, a carbon nanotube-coated electric wire (hereinafter also referred to as "CNT-coated electric wire") 1 according to an embodiment of the present invention includes a carbon nanotube wire (hereinafter also referred to as "CNT wire") 10 and a CNT Impregnation of the coating material constituting the insulation coating layer 21 into the CNT wire 10 over the entire circumferential direction of the CNT wire 10 between the insulation coating layer 21 that covers the wire 10 and the CNT wire 10 and the insulation coating layer 21. A plurality of impregnation suppressing parts 31, 31, 31 are provided.
The CNT-coated electric wire 1 has a structure in which the outer peripheral surface of a CNT wire 10 is coated with an insulating coating layer 21. That is, the insulating coating layer 21 is formed along the longitudinal direction of the CNT wire 10. In the CNT-covered electric wire 1 , the entire outer peripheral surface of the CNT wire 10 is covered with an insulating coating layer 21 . Further, in the CNT-covered electric wire 1, the insulating coating layer 21 is in direct contact with the outer circumferential surface of the CNT wire 10 in a portion other than the portion where the impregnation suppressing portion 31 is formed. In FIG. 1, the CNT wire 10 is a wire (single wire) made of one CNT wire 10, but the CNT wire 10 may be in the form of a stranded wire in which a plurality of CNT wires 10 are twisted together. By forming the CNT wire 10 in the form of a stranded wire, the equivalent circular diameter and cross-sectional area of the CNT wire 10 can be adjusted as appropriate.

このCNT線材10は、複数のCNT11a,11a,・・・で構成されるカーボンナノチューブ集合体(以下、「CNT集合体」ともいう。)11の単数から、または複数が束ねられて形成されている。ここで、CNT線材とはCNTの割合が90質量%以上のCNT線材を意味する。なお、CNT線材におけるCNT割合の算定においては、メッキやドーパントの質量は除く。図1では、CNT線材10は、CNT集合体11が、複数、撚り合わされた構成となっている。CNT集合体11の長手方向が、CNT線材10の長手方向を形成している。従って、CNT集合体11は、線状となっている。CNT線材10における複数のCNT集合体11,11,・・・は、その長軸方向がほぼ揃って配されている。従って、CNT線材10における複数のCNT集合体11,11,・・・は、配向している。素線であるCNT線材10の円相当直径は、特に限定されないが、例えば、0.01mm以上4.0mm以下である。また、CNT線材10は、CNT集合体11が、複数、束ねられて構成されていてもよい。撚り線とした1本のCNT線材10の円相当直径は、特に限定されないが、例えば、0.1mm以上15mm以下である。複数のCNT線材からCNT線材を構成した場合もCNT線材と称し、この場合には断面積の上限は限定されない。 This CNT wire 10 is formed from a single carbon nanotube aggregate (hereinafter also referred to as "CNT aggregate") 11 composed of a plurality of CNTs 11a, 11a, . . . or by bundling a plurality of carbon nanotubes. . Here, the CNT wire means a CNT wire in which the proportion of CNT is 90% by mass or more. Note that in calculating the CNT ratio in the CNT wire, the mass of plating and dopant is excluded. In FIG. 1, the CNT wire 10 has a configuration in which a plurality of CNT aggregates 11 are twisted together. The longitudinal direction of the CNT aggregate 11 forms the longitudinal direction of the CNT wire 10. Therefore, the CNT aggregate 11 has a linear shape. The plurality of CNT aggregates 11, 11, . . . in the CNT wire 10 are arranged with their long axes substantially aligned. Therefore, the plurality of CNT aggregates 11, 11, . . . in the CNT wire 10 are oriented. The equivalent circle diameter of the CNT wire 10, which is a wire, is not particularly limited, but is, for example, 0.01 mm or more and 4.0 mm or less. Further, the CNT wire 10 may be configured by bundling a plurality of CNT aggregates 11. The equivalent circle diameter of one twisted CNT wire 10 is not particularly limited, but is, for example, 0.1 mm or more and 15 mm or less. A CNT wire made of a plurality of CNT wires is also referred to as a CNT wire, and in this case, the upper limit of the cross-sectional area is not limited.

図1のCNT線材10は、CNT集合体11の複数が撚り合わされた構成となっているが、これに限らず、図2に示すように、CNT集合体11の長手方向とCNT線材10の長手方向が同一或いは実質的に同一である状態を含んでいてもよい。すなわち、CNT線材10は、CNT集合体11の複数が撚り合わされていない状態で束ねられているものを含んでいてもよい。 Although the CNT wire 10 in FIG. 1 has a structure in which a plurality of CNT aggregates 11 are twisted together, the structure is not limited to this, and as shown in FIG. It may also include a state in which the directions are the same or substantially the same. That is, the CNT wire 10 may include a plurality of CNT aggregates 11 that are bundled without being twisted together.

CNT集合体11は、1層以上の層構造を有するCNT11aの束である。CNT11aの長手方向が、CNT集合体11の長手方向を形成している。CNT集合体11における複数のCNT11a,11a、・・・は、その長軸方向がほぼ揃って配されている。従って、CNT集合体11における複数のCNT11a,11a、・・・は、配向している。CNT集合体11の円相当直径は、例えば、20nm以上1000nm以下であり、より典型的には、20nm以上80nm以下である。CNT11aの最外層の幅寸法は、例えば、1.0nm以上5.0nm以下である。 The CNT aggregate 11 is a bundle of CNTs 11a having a layered structure of one or more layers. The longitudinal direction of the CNTs 11a forms the longitudinal direction of the CNT aggregate 11. The plurality of CNTs 11a, 11a, . . . in the CNT aggregate 11 are arranged with their long axes substantially aligned. Therefore, the plurality of CNTs 11a, 11a, . . . in the CNT aggregate 11 are oriented. The equivalent circle diameter of the CNT aggregate 11 is, for example, 20 nm or more and 1000 nm or less, more typically 20 nm or more and 80 nm or less. The width dimension of the outermost layer of the CNT 11a is, for example, 1.0 nm or more and 5.0 nm or less.

CNT集合体11を構成するCNT11aは、単層構造又は複層構造を有する筒状体であり、それぞれ、SWNT(single-walled nanotube)、MWNT(multi-walled nanotube)と呼ばれる。CNT集合体11には、3層構造以上の層構造を有するCNTや単層構造の層構造を有するCNTも含まれていてもよく、3層構造以上の層構造を有するCNTまたは単層構造の層構造を有するCNTから形成されていてもよい。 The CNTs 11a constituting the CNT aggregate 11 are cylindrical bodies having a single-layer structure or a multi-layer structure, and are called SWNTs (single-walled nanotubes) and MWNTs (multi-walled nanotubes), respectively. The CNT aggregate 11 may also include CNTs having a layer structure of three or more layers or CNTs having a single layer structure. It may be formed from CNTs having a layered structure.

2層構造を有するCNT11aでは、六角形格子の網目構造を有する2つの筒状体が略同軸で配された3次元網目構造体となっており、DWNT(Double-walled nanotube)と呼ばれる。構成単位である六角形格子は、その頂点に炭素原子が配された六員環であり、他の六員環と隣接してこれらが連続的に結合している。 The CNT 11a having a two-layer structure has a three-dimensional network structure in which two cylindrical bodies having a hexagonal lattice network structure are arranged substantially coaxially, and is called a DWNT (Double-walled nanotube). The hexagonal lattice, which is a constituent unit, is a six-membered ring with a carbon atom at its apex, and these six-membered rings are adjacent to and continuously bonded to other six-membered rings.

例えば、2層構造又は3層構造のような層数が少ないCNTは、それより層数の多いCNTよりも比較的導電性が高く、ドーピング処理を施した際には、2層構造又は3層構造を有するCNTでのドーピング効果が最も高い。従って、CNT線材10の導電性をさらに向上させる点から、2層構造又は3層構造を有するCNTの割合を増大させることが好ましい。具体的には、CNT全体に対する2層構造又は3層構造をもつCNTの割合が50個数%以上が好ましく、75個数%以上がより好ましい。2層構造又は3層構造をもつCNTの割合は、CNT集合体11の断面を透過型電子顕微鏡(TEM)で観察及び解析し、100個の範囲内の所定数の任意のCNTを選択し、それぞれのCNTの層数を測定することで算出することができる。 For example, CNTs with a small number of layers, such as a two-layer structure or a three-layer structure, have relatively higher conductivity than CNTs with a larger number of layers. The doping effect is highest in structured CNTs. Therefore, in order to further improve the conductivity of the CNT wire 10, it is preferable to increase the proportion of CNTs having a two-layer structure or a three-layer structure. Specifically, the ratio of CNTs having a two-layer structure or three-layer structure to the total CNTs is preferably 50% by number or more, and more preferably 75% by number or more. The proportion of CNTs having a two-layer structure or three-layer structure is determined by observing and analyzing the cross section of the CNT aggregate 11 with a transmission electron microscope (TEM), selecting a predetermined number of arbitrary CNTs within a range of 100, and It can be calculated by measuring the number of layers of each CNT.

次に、CNT線材10の外周部に設けられる含浸抑制部について説明する。
上述したように、CNT被覆電線1は複数の含浸抑制部31,31、31を備えているが、CNT線材10が複数の含浸抑制部31,31、31を備えると捉えることもできる。すなわち、CNT線材10は、CNT線材10の外周部に、その周方向全体に亘り、CNT線材10を被覆する絶縁被覆層21を構成する被覆材のCNT線材10への含浸を抑制する複数の含浸抑制部31,31,・・・を備えている。
図1では、CNT線材10が3つの含浸抑制部31,31,31を備えているが、これに限らず、1つの含浸抑制部31を備えていてもよい。本実施形態では、含浸抑制部31は、CNT線材10の外周部全体を覆うように、CNT線材10の外周部に環状に設けられている。
Next, the impregnation suppressing portion provided on the outer peripheral portion of the CNT wire 10 will be explained.
As described above, the CNT coated electric wire 1 includes the plurality of impregnation suppressing parts 31, 31, 31, but it can also be considered that the CNT wire 10 includes the plurality of impregnating suppressing parts 31, 31, 31. That is, the CNT wire 10 has a plurality of impregnations on the outer periphery of the CNT wire 10 over the entire circumferential direction to suppress impregnation of the coating material constituting the insulating coating layer 21 covering the CNT wire 10 into the CNT wire 10. It is provided with suppressing parts 31, 31, .
In FIG. 1 , the CNT wire 10 includes three impregnation suppressing parts 31 , 31 , 31 , but is not limited thereto, and may include one impregnating suppressing part 31 . In this embodiment, the impregnation suppressing part 31 is annularly provided at the outer periphery of the CNT wire 10 so as to cover the entire outer periphery of the CNT wire 10 .

含浸抑制部31は、図1に示すように、少なくともCNT線材10の長手方向端部に形成されているのが好ましい。また、含浸抑制部31は、CNT線材10の長手方向一端部から他端部に亘って、CNT線材10の全体に形成されてもよい。これにより、CNT線材10の長手方向端部に設けられた絶縁被覆層21を容易に除去することができる。また、含浸抑制部31がCNT線材10の全体に形成されている場合には、絶縁被覆層21を容易に除去することができると共に、絶縁被覆層21を除去する部位の制約がなくなり、外部との電気的接続の自由度を向上することができる。また、含浸抑制部31がCNT線材10の端末処理を行う箇所にのみ形成されている場合には、CNT線材10の絶縁被覆層21を容易に除去することができると共に、絶縁被覆層21の除去を予定していない箇所での絶縁被覆層21の剥離を抑制することができ、外部との電気的接続の安全性を向上することができる。 As shown in FIG. 1, the impregnation suppressing portion 31 is preferably formed at least at the longitudinal end portion of the CNT wire 10. Further, the impregnation suppressing portion 31 may be formed over the entire CNT wire 10 from one end in the longitudinal direction to the other end. Thereby, the insulating coating layer 21 provided at the longitudinal end of the CNT wire 10 can be easily removed. Furthermore, when the impregnation suppressing portion 31 is formed over the entire CNT wire 10, the insulation coating layer 21 can be easily removed, and there is no restriction on the part from which the insulation coating layer 21 is removed. The flexibility of electrical connection can be improved. In addition, when the impregnation suppressing portion 31 is formed only at a location where the end treatment of the CNT wire 10 is performed, the insulation coating layer 21 of the CNT wire 10 can be easily removed, and the insulation coating layer 21 can be removed. It is possible to suppress peeling of the insulating coating layer 21 at locations not planned for, and it is possible to improve the safety of electrical connection with the outside.

また、複数の含浸抑制部31,31,・・・は、CNT線材10の長手方向に間欠的に配置されてもよい。このとき、複数の含浸抑制部31,31,・・・は、CNT線材10の長手方向端部に形成されていてもよいし(図1)、CNT線材10の長手方向一端部から他端部に亘って、CNT線材10の全体に形成されてもよい。また、複数の含浸抑制部31,31,・・・が長手方向に等間隔で配置されてもよく、複数の含浸抑制部31,31,・・・の配置ピッチは、例えば0.5m以上100m以下である。これにより、含浸抑制部31を構成する材料をできるだけ少なくしつつ、絶縁被覆層21を容易に除去することができると共に、絶縁被覆層21を除去する部位の制約が少なくなり、外部との電気的接続の自由度を向上することができる。 Moreover, the plurality of impregnation suppressing parts 31, 31, . . . may be arranged intermittently in the longitudinal direction of the CNT wire 10. At this time, the plurality of impregnation suppressing parts 31, 31,... may be formed at the ends in the longitudinal direction of the CNT wire 10 (FIG. 1), or from one end in the longitudinal direction to the other end of the CNT wire 10. It may be formed over the entire CNT wire 10. Further, the plurality of impregnation suppressing parts 31, 31, . . . may be arranged at regular intervals in the longitudinal direction, and the arrangement pitch of the plurality of impregnating suppressing parts 31, 31, . It is as follows. This makes it possible to easily remove the insulating coating layer 21 while minimizing the amount of material constituting the impregnation suppressing portion 31, and there are fewer restrictions on where the insulating coating layer 21 is to be removed, and electrical connection with the outside is reduced. The degree of freedom in connection can be improved.

含浸抑制部31は、より具体的には、CNT線材10の最表層に位置するCNT11a同士を連結する連結構造を有している。この連結構造は、CNT線材10の最表層において互いに隣接配置された2つのCNT11a,11aのうちの一方の外周面と接合されると共に、他方の外周面と接合されている。すなわち、隣接配置された2つのCNT11a,11a間の隙間が当該連結構造によって埋められていることで、絶縁被覆層21を構成する被覆材が2つのCNT11a,11a間を通過し難くなり、被覆材がCNT線材10の内部に入り込むのを防止することができる。 More specifically, the impregnation suppressing portion 31 has a connection structure that connects the CNTs 11a located at the outermost layer of the CNT wire 10. This connection structure is joined to the outer peripheral surface of one of the two CNTs 11a, 11a arranged adjacent to each other in the outermost layer of the CNT wire 10, and is also joined to the outer peripheral surface of the other one. That is, since the gap between the two adjacently arranged CNTs 11a, 11a is filled by the connection structure, it becomes difficult for the coating material constituting the insulating coating layer 21 to pass between the two CNTs 11a, 11a, and the coating material can be prevented from entering the inside of the CNT wire 10.

含浸抑制部31は、導電性ペースト、めっき及びはんだから選択された1又は複数の材料で構成することができる。導電性ペーストとしては、例えば金属ペースト、導電性樹脂、カーボンペーストを挙げることができる。めっきとしては、例えば電界めっき、無電解めっき、溶融めっき、気相めっきを挙げることができる。はんだとしては、例えば共晶はんだ、鉛フリーはんだを挙げることができる。 The impregnation suppressing portion 31 can be made of one or more materials selected from conductive paste, plating, and solder. Examples of the conductive paste include metal paste, conductive resin, and carbon paste. Examples of plating include electric field plating, electroless plating, hot-dip plating, and vapor phase plating. Examples of the solder include eutectic solder and lead-free solder.

導電性ペーストは、比較的低温で処理ができ、熱によって損傷を受けやすい部分に適用でき、熱応力や機械適応力が高いことで耐久性が発揮される観点から好適に用いられる。めっきは、はんだと比較して薄層を形成でき、含浸抑制部と他の部分の径の差が小さくできる観点で好適に用いられる。はんだは、CNT線材10の局所的な位置に含浸抑制部31を容易に形成させることができる観点で好適に用いられる。 Conductive pastes are preferably used because they can be processed at relatively low temperatures, can be applied to parts that are easily damaged by heat, and exhibit durability due to their high thermal stress and mechanical adaptability. Plating is preferably used because it can form a thinner layer than solder and can reduce the difference in diameter between the impregnation suppressing part and other parts. Solder is preferably used from the viewpoint of easily forming the impregnation suppressing portion 31 at a local position of the CNT wire 10.

本実施形態では、含浸抑制部31の外周面における凹凸の度合いを以下のように定義することができる。含浸抑制部31が環状に形成されている部分のCNT線材10の径方向断面における当該含浸抑制部31の外周長さをLa、上記Laで囲まれた部分の面積をSとし、Sと面積が同一になる円の円周長さをLbとしたとき、任意の複数箇所(例えば、任意の5箇所)で測定したLa/Lbの平均値は3.5以下であり、好ましくは1.3以下である。La/Lbの平均値が小さければ、含浸抑制部31の外周面における凹凸の度合いが小さく、絶縁被覆層21を除去し易くなり、外部との電気的な接続信頼性が向上すると推察される。含浸抑制部31の外周面における凹凸の度合いを小さくするためには、含浸抑制部31の平均厚さを3μm以上にすることが好ましく10μm以上にすることがより好ましい。含浸抑制部の平均厚さが3μm未満の場合、CNT線材の凹凸形状が含浸抑制部31の外周面の凹凸に反映され、凹凸の度合いが大きくなる。
ここで含浸抑制部の平均厚さは以下の方法で求められる。上記の含浸抑制部31の外周で囲まれた領域の面積Sと面積が同一になる円の半径をRとし、同じ断面における、CNT線材10の断面積S’と面積が同一になる円の半径をR’とし、任意の5箇所の断面でR-R’を求め、それを平均した値が平均厚さである。
In this embodiment, the degree of unevenness on the outer circumferential surface of the impregnation suppressing portion 31 can be defined as follows. Let La be the outer circumferential length of the impregnation suppressing part 31 in the radial cross section of the CNT wire 10 of the part where the impregnation suppressing part 31 is formed in an annular shape, S be the area of the part surrounded by La, and S and the area. When the circumferential length of the same circle is Lb, the average value of La/Lb measured at multiple arbitrary locations (for example, arbitrary 5 locations) is 3.5 or less, preferably 1.3 or less It is. It is presumed that if the average value of La/Lb is small, the degree of unevenness on the outer circumferential surface of the impregnation suppressing portion 31 is small, the insulating coating layer 21 is easier to remove, and the reliability of electrical connection with the outside is improved. In order to reduce the degree of unevenness on the outer peripheral surface of the impregnation suppressing part 31, the average thickness of the impregnating suppressing part 31 is preferably 3 μm or more, and more preferably 10 μm or more. When the average thickness of the impregnation suppressing portion is less than 3 μm, the uneven shape of the CNT wire is reflected in the unevenness of the outer peripheral surface of the impregnation suppressing portion 31, and the degree of the unevenness becomes large.
Here, the average thickness of the impregnation suppressed portion is determined by the following method. Let R be the radius of a circle whose area is the same as the area S of the region surrounded by the outer periphery of the impregnation suppressing part 31, and the radius of the circle whose area is the same as the cross-sectional area S' of the CNT wire 10 in the same cross section. is R', RR' is determined at five arbitrary cross sections, and the average value is the average thickness.

次に、CNT線材10の外周部を被覆する絶縁被覆層21について説明する。 Next, the insulating coating layer 21 that covers the outer periphery of the CNT wire 10 will be explained.

絶縁被覆層21の材料としては、芯線として金属を用いた被覆電線の絶縁被覆層に用いる材料を使用することができ、例えば、熱可塑性樹脂、熱硬化性樹脂を挙げることができる。熱可塑性樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリプロピレン、ポリアセタール、ポリスチレン、ポリカーボネート、ポリアミド、ポリ塩化ビニル、ポリメチルメタクリレート、ポリウレタン等を挙げることができる。また、熱硬化性樹脂としては、例えばポリイミド、フェノール樹脂等を挙げることができる。これらは、単独で使用してもよく、2種以上を適宜混合して使用してもよい。 As the material of the insulating coating layer 21, a material used for an insulating coating layer of a covered electric wire using a metal as a core wire can be used, and examples thereof include thermoplastic resin and thermosetting resin. Examples of the thermoplastic resin include polytetrafluoroethylene (PTFE), polyethylene, polypropylene, polyacetal, polystyrene, polycarbonate, polyamide, polyvinyl chloride, polymethyl methacrylate, polyurethane, and the like. Furthermore, examples of the thermosetting resin include polyimide, phenol resin, and the like. These may be used alone or in an appropriate mixture of two or more.

CNT被覆電線1が高圧電線の場合、熱可塑性樹脂としては、ポリエチレン、ポリ塩化ビニルが好ましく、特に、架橋ポリエチレン、軟質ポリ塩化ビニルが好ましい。 When the CNT-covered wire 1 is a high-voltage wire, the thermoplastic resin is preferably polyethylene or polyvinyl chloride, and particularly preferably crosslinked polyethylene or soft polyvinyl chloride.

絶縁被覆層21は、図1に示すように、一層としてもよく、これに代えて、二層以上としてもよい。また、必要に応じて、絶縁被覆層21上に、さらに、熱硬化性樹脂の層が設けられていてもよい。また、上記熱硬化性樹脂が、繊維形状或いは粒子形状を有する充填材を含有していてもよい。 As shown in FIG. 1, the insulating coating layer 21 may be a single layer, or alternatively may be two or more layers. Furthermore, a layer of thermosetting resin may be further provided on the insulating coating layer 21, if necessary. Moreover, the thermosetting resin may contain a filler having a fiber shape or a particle shape.

また、CNT線材10は、図3に示すように、該CNT線材10の外周部に設けられ、且つ含浸抑制部31以外の部分に配置される複数のエナメル系樹脂被覆部41,41,・・・を更に備えてもよい。図3では、CNT線材10は、4つのエナメル系樹脂被覆部41,41,41,41を備えているが、これに限らず、1つのエナメル系樹脂被覆部41を備えていてもよい。本実施形態では、エナメル系樹脂被覆部41は、CNT線材10の外周部全体を覆うように、CNT線材10の外周部に環状に設けられている。 Further, as shown in FIG. 3, the CNT wire 10 includes a plurality of enamel-based resin coating parts 41, 41, .・You may further include. In FIG. 3 , the CNT wire 10 includes four enamel-based resin coating portions 41 , 41 , 41 , 41 , but is not limited thereto, and may include one enamel-based resin coating portion 41 . In this embodiment, the enamel-based resin coating portion 41 is annularly provided on the outer periphery of the CNT wire 10 so as to cover the entire outer periphery of the CNT wire 10 .

エナメル系樹脂被覆部41は、図3に示すように、少なくともCNT線材10の長手方向端部に形成されているのが好ましい。また、エナメル系樹脂被覆部41は、CNT線材10の長手方向一端部から他端部に亘って、CNT線材10の全体に形成されてもよい。 As shown in FIG. 3, the enamel resin coating portion 41 is preferably formed at least at the longitudinal ends of the CNT wire 10. Furthermore, the enamel-based resin coating portion 41 may be formed over the entire CNT wire 10 from one end in the longitudinal direction to the other end.

複数のエナメル系樹脂被覆部41,41,・・・は、CNT線材10の長手方向に間欠的に配置されてもよい。この場合、複数のエナメル系樹脂被覆部41,41,・・・は、例えばCNT線材10の長手方向に複数の含浸抑制部31,31,・・・と交互に配置される。また、複数のエナメル系樹脂被覆部41,41,・・・は、CNT線材10の長手方向端部に形成されていてもよいし(図3)、CNT線材10の長手方向一端部から他端部に亘って、CNT線材10の全体に形成されてもよい。 The plurality of enamel-based resin coating parts 41, 41, . . . may be arranged intermittently in the longitudinal direction of the CNT wire 10. In this case, the plurality of enamel resin coating parts 41, 41, . . . are arranged alternately with the plurality of impregnation suppressing parts 31, 31, . . . in the longitudinal direction of the CNT wire 10, for example. Moreover, the plurality of enamel-based resin coating parts 41, 41,... may be formed at the ends in the longitudinal direction of the CNT wire 10 (FIG. 3), or from one end in the longitudinal direction of the CNT wire 10 to the other end. It may be formed on the entire CNT wire 10 over a portion.

エナメル系樹脂被覆部41は、例えばポリウレタンワニス、ポリエステルワニス、耐熱ソルダブルワニス、アミドイミドワニス、ポリエステルイミドワニス、自己滑性ワニス、自己融着ワニスから選択された1又は複数の材料で構成することができる。 The enamel resin coating portion 41 may be made of one or more materials selected from, for example, polyurethane varnish, polyester varnish, heat-resistant solderable varnish, amide-imide varnish, polyester-imide varnish, self-lubricating varnish, and self-fusion varnish. Can be done.

図3では、CNT線材10がエナメル系樹脂被覆部41及び絶縁被覆層21でこの順に被覆されているが、エナメル系樹脂被覆部41のみで被覆されていてもよい。すなわち、CNT被覆電線1が、CNT線材1と、1又は複数の含浸抑制部31と、1又は複数のエナメル系樹脂被覆部41とを備えていてもよい。 In FIG. 3, the CNT wire 10 is coated with the enamel resin coating part 41 and the insulating coating layer 21 in this order, but it may be coated with only the enamel resin coating part 41. That is, the CNT-covered electric wire 1 may include the CNT wire 1, one or more impregnation suppressing portions 31, and one or more enamel-based resin coating portions 41.

[カーボンナノチューブ被覆電線の製造方法]
次に、本実施形態に係るCNT被覆電線1の製造方法例について、図4を参照しながら説明する。まず、CNT11aを製造し、複数のCNT11a,11a,・・・で構成されるCNT集合体11の単数から、又は複数のCNT集合体11,11,・・・が束ねられて形成されるCNT線材10を作製する(ステップS1)。
[Method for manufacturing carbon nanotube coated wire]
Next, an example of a method for manufacturing the CNT-coated wire 1 according to the present embodiment will be described with reference to FIG. 4. First, CNTs 11a are manufactured, and a CNT wire is formed from a single CNT aggregate 11 composed of a plurality of CNTs 11a, 11a, . . . or by bundling a plurality of CNT aggregates 11, 11, . 10 is produced (step S1).

CNT11aは、浮遊触媒法(特許第5819888号)や、基板法(特許第5590603号)などの手法で作製することができる。CNT線材10の素線は、例えば、乾式紡糸(特許第5819888号、特許第5990202号、特許第5350635号)、湿式紡糸(特許第5135620号、特許第5131571号、特許第5288359号)、液晶紡糸(特表2014-530964)等で作製することができる。 The CNTs 11a can be produced by a method such as a floating catalyst method (Patent No. 5819888) or a substrate method (Patent No. 5590603). The strands of the CNT wire 10 are, for example, dry spinning (Patent No. 5819888, Patent No. 5990202, Patent No. 5350635), wet spinning (Patent No. 5135620, Patent No. 5131571, Patent No. 5288359), liquid crystal spinning. (Special table 2014-530964) etc.

このとき、CNT線材10を構成するCNTの配向性、或いはCNT集合体を構成するCNTの配向性、又は、CNT集合体11やCNT11aの密度は、例えば乾式紡糸、湿式紡糸、液晶紡糸等の紡糸方法と該紡糸方法の紡糸条件とを適宜選択することで調節することができる。 At this time, the orientation of the CNTs constituting the CNT wire 10, the orientation of the CNTs constituting the CNT aggregate, or the density of the CNT aggregates 11 and CNTs 11a are determined by, for example, spinning such as dry spinning, wet spinning, liquid crystal spinning, etc. It can be adjusted by appropriately selecting the method and spinning conditions of the spinning method.

次に、CNT線材10の外周部に、その周方向全体に亘って、CNT線材10の絶縁被覆層21を構成する被覆材のCNT線材10への含浸を抑制する含浸抑制部31を形成する(ステップS2)。含浸抑制部31を導電性樹脂で形成する方法としては、例えば、CNT線材10の長手方向に関して所定長さ当たり所定質量となるように、導電性ペーストをCNT線材10の外周部に載置或いは塗布する方法を挙げることができる。含浸抑制部31をめっきで形成する方法としては、例えば、電界めっきによって所定厚さの銅めっきをCNT線材10の外周部に形成する方法を挙げることができる。含浸抑制部31をはんだで形成する場合、例えば、CNT線材10の長手方向に関して所定長さ当たり所定質量となるように、はんだをCNT線材10の外周部に載置或いは塗布する方法を挙げることができる。 Next, an impregnation suppressing part 31 is formed on the outer circumference of the CNT wire 10 over the entire circumferential direction to suppress impregnation of the coating material constituting the insulation coating layer 21 of the CNT wire 10 into the CNT wire 10 ( Step S2). As a method for forming the impregnation suppressing portion 31 with a conductive resin, for example, a conductive paste is placed or applied on the outer periphery of the CNT wire 10 so as to have a predetermined mass per predetermined length in the longitudinal direction of the CNT wire 10. Here are some ways to do it. As a method of forming the impregnation suppressing portion 31 by plating, for example, a method of forming copper plating of a predetermined thickness on the outer peripheral portion of the CNT wire 10 by electroplating can be mentioned. When forming the impregnation suppressing portion 31 with solder, for example, a method may be used in which solder is placed or applied on the outer circumference of the CNT wire 10 so as to have a predetermined mass per predetermined length in the longitudinal direction of the CNT wire 10. can.

含浸抑制部31を形成した後、後述の絶縁被覆層21を形成する前に、必要に応じて、CNT線材10の外周部に、含浸抑制部31以外の部分に配置される1又は複数のエナメル系樹脂被覆部41を形成してもよい。エナメル系樹脂被覆部41を形成する方法としては、例えば、エナメル樹脂を塗布して焼付を行う方法を挙げることができる。CNT線材10の外周部に含浸抑制部31が形成されていると、エナメル系樹脂被覆部41を形成する本工程において、エナメル系樹脂被覆部41を構成する被覆材の含浸が含浸抑制部31によって抑制される。 After forming the impregnation suppressing part 31 and before forming the insulating coating layer 21 described below, one or more enamels are placed on the outer circumferential part of the CNT wire 10 in a part other than the impregnating suppressing part 31, if necessary. A resin coating portion 41 may also be formed. As a method for forming the enamel resin coating portion 41, for example, a method of applying an enamel resin and baking it can be mentioned. When the impregnation suppressing part 31 is formed on the outer circumference of the CNT wire 10 , in this step of forming the enamel resin coating part 41 , the impregnation of the coating material constituting the enamel resin coating part 41 is prevented by the impregnation suppressing part 31 . suppressed.

次いで、含浸抑制部31に対してCNT線材10とは反対側に絶縁被覆層21を形成する(ステップS3)。このとき、絶縁被覆層21は、含浸抑制部31の外周面を含み且つCNT線材10の外周部全体を覆うように、CNT線材10の長手方向の全体に亘って形成される。絶縁被覆層21を形成する方法としては、アルミニウムや銅の芯線に絶縁被覆層を被覆する方法を使用でき、例えば、絶縁被覆層21の原料である熱可塑性樹脂を溶融させ、CNT線材10の周りに押し出して被覆する方法や、或いはCNT線材10の周りに塗布する方法を挙げることができる。上述のように、CNT線材10の外周部に含浸抑制部31が形成されていると、本工程において、絶縁被覆層21を構成する被覆材の含浸が含浸抑制部31によって抑制される。上記工程を経ることにより、本実施形態に係るCNT被覆電線1が製造される。 Next, an insulating coating layer 21 is formed on the opposite side of the CNT wire 10 to the impregnation suppressing portion 31 (step S3). At this time, the insulating coating layer 21 is formed over the entire length of the CNT wire 10 so as to include the outer peripheral surface of the impregnation suppressing portion 31 and to cover the entire outer peripheral portion of the CNT wire 10 . As a method for forming the insulating coating layer 21, a method of coating an aluminum or copper core wire with an insulating coating layer can be used. For example, a thermoplastic resin that is a raw material for the insulating coating layer 21 is melted and Examples include a method of extruding and coating the CNT wire, and a method of coating around the CNT wire 10. As described above, when the impregnation suppressing part 31 is formed on the outer circumference of the CNT wire 10, the impregnation suppressing part 31 suppresses impregnation of the coating material constituting the insulating coating layer 21 in this step. By going through the above steps, the CNT-covered electric wire 1 according to the present embodiment is manufactured.

本実施形態に係るCNT被覆電線1は、ワイヤハーネス等の一般電線として使用することができ、また、CNT被覆電線1を使用した一般電線からケーブルを作製してもよい。 The CNT-covered electric wire 1 according to the present embodiment can be used as a general electric wire such as a wire harness, and a cable may be made from a general electric wire using the CNT-covered electric wire 1.

[カーボンナノチューブ被覆電線の加工方法]
上記の製法により製造されたCNT被覆電線1を加工する場合、含浸抑制部31に対してCNT線材10とは反対側に形成された絶縁被覆層21を除去する。例えば、CNT線材10の外周部に、含浸抑制部31、絶縁被覆層21がこの順に設けられている構成において、含浸抑制部31の径方向外側に配置された絶縁被覆層21を、物理的或いは化学的に剥離する。化学的に剥離する方法としては、例えばCNT被覆電線1に浸漬或いは塗布して絶縁被覆を剥離する剥離剤が挙げられる。絶縁被覆層21を形成する上記工程において、上記のように絶縁被覆層21を構成する被覆材が含浸抑制部31によって抑制されているので、CNT線材10から絶縁被覆層21を容易に除去することができる。
[Processing method of carbon nanotube coated electric wire]
When processing the CNT-covered electric wire 1 manufactured by the above manufacturing method, the insulating coating layer 21 formed on the side opposite to the CNT wire 10 with respect to the impregnation suppressing portion 31 is removed. For example, in a configuration in which the impregnation suppressing section 31 and the insulating coating layer 21 are provided in this order on the outer circumference of the CNT wire 10, the insulating coating layer 21 disposed on the radially outer side of the impregnating suppressing section 31 may be physically or Chemically exfoliate. As a method for chemically peeling, for example, a peeling agent may be used in which the CNT-covered electric wire 1 is dipped or coated to peel the insulation coating. In the above step of forming the insulation coating layer 21, since the coating material constituting the insulation coating layer 21 is suppressed by the impregnation suppressing part 31 as described above, the insulation coating layer 21 can be easily removed from the CNT wire 10. I can do it.

上述したように、本実施形態によれば、1又は複数の含浸抑制部31が、CNT線材10の外周部にその周方向全体に亘って設けられており、上記CNT線材10を被覆する絶縁被覆層21を構成する被覆材の当該CNT線材10への含浸を抑制するので、含浸抑制部31のCNT線材10とは反対側に絶縁被覆層21を形成した際に、絶縁被覆層21の被覆材がCNT間或いはCNT集合体間に侵入し難くなり、被覆材の取り残しが生じ難くなる。よって、絶縁被覆層21を容易に且つ十分に除去することができ、外部との電気的な接続信頼性を向上することができる。 As described above, according to the present embodiment, one or more impregnation suppressing parts 31 are provided at the outer peripheral part of the CNT wire 10 over the entire circumferential direction, and the insulation coating covering the CNT wire 10 is Since impregnation of the coating material constituting the layer 21 into the CNT wire rod 10 is suppressed, when the insulation coating layer 21 is formed on the opposite side of the CNT wire rod 10 of the impregnation suppressing portion 31, the coating material of the insulation coating layer 21 is It becomes difficult for the particles to enter between CNTs or between CNT aggregates, and it becomes difficult for the coating material to be left behind. Therefore, the insulating coating layer 21 can be easily and sufficiently removed, and the reliability of electrical connection with the outside can be improved.

次に、本発明の実施例を説明するが、本発明の趣旨を超えない限り、下記実施例に限定されるものではない。 Next, examples of the present invention will be described, but the present invention is not limited to the following examples unless it exceeds the spirit of the present invention.

(実施例1)
先ず、浮遊触媒法で作製したCNTを直接紡糸する乾式紡糸方法(特許第5819888号)または湿式紡糸する方法(特許第5135620号、特許第5131571号、特許第5288359号)で円相当直径0.02mmのCNT集合体を得た。これを76本より合わせることで、円相当直径0.2mmのCNT線材を得た。
(Example 1)
First, CNTs produced by the floating catalyst method were directly spun using a dry spinning method (Patent No. 5819888) or a wet spinning method (Patent No. 5135620, Patent No. 5131571, and Patent No. 5288359) to obtain a circular equivalent diameter of 0.02 mm. CNT aggregates were obtained. By twisting 76 of these, a CNT wire with an equivalent circle diameter of 0.2 mm was obtained.

次に、得られたCNT線材の長手方向端部において、CNT線材の外周部全体を導電性ペースト(東洋紡社製、製品名「DW-250H-5」、銀フィラー含有熱硬化型ペースト)でコーティングして含浸抑制部を形成した。このとき、導電性ペーストを、CNT線材の長手方向に関して1cm当たり0.69mgとなるように、CNT線材の外周部に載置した。 Next, at the longitudinal ends of the obtained CNT wire, the entire outer circumference of the CNT wire is coated with a conductive paste (manufactured by Toyobo Co., Ltd., product name "DW-250H-5", thermosetting paste containing silver filler). Then, an impregnation suppressing part was formed. At this time, the conductive paste was placed on the outer periphery of the CNT wire in an amount of 0.69 mg per 1 cm in the longitudinal direction of the CNT wire.

(実施例2)
導電性ペーストを、CNT線材の長手方向に関して1cm当たり0.33mgとしたこと以外は、実施例1と同様にしてCNT線材を作製した。
(Example 2)
A CNT wire was produced in the same manner as in Example 1, except that the conductive paste was 0.33 mg per cm in the longitudinal direction of the CNT wire.

(実施例3)
導電性ペーストを、CNT線材の長手方向に関して1cm当たり0.16mgとしたこと以外は、実施例1と同様にしてCNT線材を作製した。
(Example 3)
A CNT wire was produced in the same manner as in Example 1, except that the conductive paste was 0.16 mg per cm in the longitudinal direction of the CNT wire.

(実施例4)
導電性ペーストに代えてめっき(銅めっき)を用い、CNT線材の外周部全体を銅めっきでコーティングして含浸抑制部を形成した。
めっきは以下の手順で実施した。CNT線材本体を硫酸銅、ホルマリン、ロシェル塩からなるめっき液に浸漬し、無電解銅めっきした。その後、硫酸銅と硫酸の水溶液からなるめっき液にCNT線材を浸漬し、1A(アンペア)で電解めっきすることで、当該CNT線材本体に電界めっき処理が施されたCNT線材を作製した。このとき、電界めっきにより厚さ20μmのめっき厚となるように、電解時間を調整し、CNT線材の外周部に銅めっきを形成した。それ以外は、実施例1と同様にしてCNT線材を作製した。
(Example 4)
Plating (copper plating) was used instead of the conductive paste, and the entire outer periphery of the CNT wire was coated with copper plating to form an impregnation suppressing portion.
Plating was performed using the following procedure. The CNT wire main body was immersed in a plating solution consisting of copper sulfate, formalin, and Rochelle salt to perform electroless copper plating. Thereafter, the CNT wire was immersed in a plating solution consisting of an aqueous solution of copper sulfate and sulfuric acid, and electrolytically plated at 1 A (ampere) to produce a CNT wire in which the CNT wire main body was subjected to electroplating. At this time, the electrolysis time was adjusted so that the electrolytic field plating resulted in a plating thickness of 20 μm, and copper plating was formed on the outer periphery of the CNT wire. Other than that, a CNT wire was produced in the same manner as in Example 1.

(実施例5)
厚さ10μmのめっき厚となるようにしたこと以外は、実施例4と同様にしてCNT線材を作製した。
(Example 5)
A CNT wire was produced in the same manner as in Example 4, except that the plating thickness was 10 μm.

(実施例6)
厚さ5μmのめっき厚となるようにしたこと以外は、実施例4と同様にしてCNT線材を作製した。
(Example 6)
A CNT wire was produced in the same manner as in Example 4, except that the plating thickness was 5 μm.

(実施例7)
導電性ペーストに代えてはんだ(Cametics社製、商品名「C-Solder」、すずベースのはんだ合金)を用い、CNT線材の外周部全体をはんだでコーティングして含浸抑制部を形成した。このとき、はんだを、CNT線材の長手方向に関して1cm当たり1.0mgとなるように、CNT線材の外周部に載置した。それ以外は、実施例1と同様にしてCNT線材を作製した。
(Example 7)
Solder (manufactured by Cametics, trade name "C-Solder", tin-based solder alloy) was used instead of the conductive paste, and the entire outer periphery of the CNT wire was coated with solder to form an impregnation suppressing part. At this time, solder was placed on the outer periphery of the CNT wire in an amount of 1.0 mg per 1 cm in the longitudinal direction of the CNT wire. Other than that, a CNT wire was produced in the same manner as in Example 1.

(実施例8)
はんだを、CNT線材の長手方向に関して1cm当たり0.48mgとなるようにしたこと以外は、実施例7と同様にしてCNT線材を作製した。
(Example 8)
A CNT wire was produced in the same manner as in Example 7, except that the amount of solder was 0.48 mg per cm in the longitudinal direction of the CNT wire.

(実施例9)
はんだを、CNT線材の長手方向に関して1cm当たり0.16mgとなるようにしたこと以外は、実施例7と同様にしてCNT線材を作製した。
(Example 9)
A CNT wire was produced in the same manner as in Example 7, except that the amount of solder was 0.16 mg per 1 cm in the longitudinal direction of the CNT wire.

(比較例1)
CNT線材に含浸抑制部を全く形成しなかったこと以外は、実施例1と同様にしてCNT線材を作製した。
(Comparative example 1)
A CNT wire was produced in the same manner as in Example 1 except that no impregnation suppressing portion was formed on the CNT wire.

(比較例2)
CNT線材の全周に亘って含浸抑制部を形成した場合を最大(100%)としてその80%程度となるように、CNT線材の外周部を導電性ペーストでコーティングした。すなわち、導電性ペーストを、CNT線材の外周部に環状に形成せず、CNT線材の周方向に関して隙間を設けて載置した。それ以外は、実施例1と同様にしてCNT線材を作製した。
(Comparative example 2)
The outer periphery of the CNT wire was coated with a conductive paste so that the impregnation suppressing portion was formed around the entire circumference of the CNT wire to a maximum of about 80% (100%). That is, the conductive paste was not formed in a ring shape around the outer circumference of the CNT wire, but was placed with a gap provided in the circumferential direction of the CNT wire. Other than that, a CNT wire was produced in the same manner as in Example 1.

(比較例3)
CNT線材の外周部をめっきでコーティングした。このとき、YAGレーザ(波長:1064nm)、出力100W、周波数200Hz、デューティー比10%のレーザ条件にて、CNT線材の長手方向端部に、CNT線材の軸方向からレーザを照射し、30~150秒間で粗化処理し、CNT線材の粗化処理した部分にめっきを含浸させた。その結果、CNT線材の外周部においてめっきでコーティングされていないCNT(あるいはCNT集合体)が存在していた。それ以外は、実施例1と同様にしてCNT線材を作製した。
(Comparative example 3)
The outer periphery of the CNT wire was coated with plating. At this time, the longitudinal end of the CNT wire was irradiated with laser from the axial direction of the CNT wire under the laser conditions of a YAG laser (wavelength: 1064 nm), output of 100 W, frequency of 200 Hz, and duty ratio of 10%. The roughening treatment was performed for seconds, and the roughened portion of the CNT wire was impregnated with plating. As a result, there were CNTs (or CNT aggregates) that were not coated with plating at the outer periphery of the CNT wire. Other than that, a CNT wire was produced in the same manner as in Example 1.

次に、上記のようにして作製したCNT線材について、以下の測定、評価を行った。 Next, the following measurements and evaluations were performed on the CNT wire produced as described above.

(a)CNT線材の外周部の凹凸
CNT線材の長手方向端部を、均等な幅で5箇所、長手方向に垂直な面で切断して断面出しを行い、CNT線材の各断面における含浸抑制部の外周長さLaを求めた。次いで、上記各断面の断面積Sを求め、求めた断面積と同一面積である円の円周長さLbを算出した。各断面の外周長さLaを円周長さLbで除してLa/Lbを算出し、任意の5箇所で測定したLa/Lbの平均値を凹凸指数とした。
(a) Irregularities on the outer periphery of the CNT wire The longitudinal end of the CNT wire is cut at 5 points of equal width on a plane perpendicular to the longitudinal direction to obtain a cross section, and the impregnation suppressed portion in each cross section of the CNT wire is The outer circumference length La was determined. Next, the cross-sectional area S of each cross section was determined, and the circumferential length Lb of a circle having the same area as the determined cross-sectional area was calculated. La/Lb was calculated by dividing the outer circumferential length La of each cross section by the circumferential length Lb, and the average value of La/Lb measured at five arbitrary locations was taken as the unevenness index.

(b)含浸抑制部の平均厚さ
(a)と同じ断面を用いて、含浸抑制部の外周で囲まれた領域の面積Sと同一の面積を有する円の半径Rを求めた。続いて、CNT線材の部分の面積S’と同一の面積を有する円の半径R’を求めた。R-R’を算出し、任意の5箇所で求めたR-R’の平均値を含浸抑制部の平均厚さとした。
(b) Average thickness of impregnation suppressing part Using the same cross section as in (a), the radius R of a circle having the same area as the area S of the region surrounded by the outer periphery of the impregnating suppressing part was determined. Subsequently, the radius R' of a circle having the same area as the area S' of the CNT wire portion was determined. RR' was calculated, and the average value of RR' determined at five arbitrary locations was taken as the average thickness of the impregnation suppressed portion.

(c)被覆除去後の接続信頼性
CNT線材にポリウレタン樹脂(東特塗料株式会社製、商品名「TPU5100」)の含浸と焼付を10回繰り返して実施して、CNT線材に絶縁被覆層を形成した。その後、CNT線材の長手方向端部を剥離剤(明和化学工業社製、商品名「Solcoat(登録商標)」)に含浸させて被覆除去処理を実施した。そして、CNT線材の被覆除去処理した部分と銅端子をはんだで接続し、四端子法でCNT線材と銅端子の接続抵抗を測定した。接続抵抗が5mΩ未満である場合を極めて良好「◎」、5mΩ以上20mΩ以下である場合を「〇」、20mΩよりも大きく100Ω以下である場合を概ね良好「△」、100Ωよりも大きい場合を不良「×」とした。
(c) Connection reliability after coating removal The CNT wire is impregnated with polyurethane resin (manufactured by Totoku Toyo Co., Ltd., product name "TPU5100") and baked 10 times to form an insulating coating layer on the CNT wire. did. Thereafter, the longitudinal ends of the CNT wires were impregnated with a release agent (manufactured by Meiwa Kagaku Kogyo Co., Ltd., trade name "Solcoat (registered trademark)") to perform coating removal treatment. Then, the portion of the CNT wire from which the coating was removed was connected to a copper terminal using solder, and the connection resistance between the CNT wire and the copper terminal was measured using a four-terminal method. If the connection resistance is less than 5 mΩ, it is marked as extremely good. If it is between 5 mΩ and 20 mΩ, it is marked as “○.” If it is greater than 20 mΩ and less than 100 Ω, it is generally good. If it is larger than 100 Ω, it is marked as poor. I marked it with an “×”.

CNT被覆電線の上記各測定及び評価の結果を、下記表1に示す。 The results of each of the above measurements and evaluations of the CNT-coated wire are shown in Table 1 below.

表1に示すように、実施例1では、La/Lbが1.3、接続抵抗が8mΩであり、被覆除去後の接続信頼性が極めて良好であった。また、実施例2では、La/Lbが2.0、接続抵抗が11mΩであり、被覆除去後の接続信頼性が良好であった。実施例3でも、La/Lbが3.5、接続抵抗が16mΩであり、被覆除去後の接続信頼性が良好であった。 As shown in Table 1, in Example 1, La/Lb was 1.3, the connection resistance was 8 mΩ, and the connection reliability after removing the coating was extremely good. Further, in Example 2, La/Lb was 2.0, connection resistance was 11 mΩ, and connection reliability after removing the coating was good. In Example 3 as well, La/Lb was 3.5, the connection resistance was 16 mΩ, and the connection reliability after removing the coating was good.

実施例4では、La/Lbが1.3、接続抵抗が5mΩであり、被覆除去後の接続信頼性が極めて良好であった。また、実施例5では、La/Lbが2.0、接続抵抗が7mΩであり、被覆除去後の接続信頼性が良好であった。実施例6でも、La/Lbが3.5、接続抵抗が10mΩであり、被覆除去後の接続信頼性が良好であった。 In Example 4, La/Lb was 1.3, the connection resistance was 5 mΩ, and the connection reliability after removing the coating was extremely good. Further, in Example 5, La/Lb was 2.0, connection resistance was 7 mΩ, and connection reliability after coating removal was good. In Example 6 as well, La/Lb was 3.5, connection resistance was 10 mΩ, and connection reliability after coating removal was good.

実施例7では、La/Lbが1.3、接続抵抗が6mΩであり、被覆除去後の接続信頼性が極めて良好であった。また、実施例8では、La/Lbが2.0、接続抵抗が8mΩであり、被覆除去後の接続信頼性が良好であった。実施例9でも、La/Lbが3.5、接続抵抗が12mΩであり、被覆除去後の接続信頼性が良好であった。 In Example 7, La/Lb was 1.3, the connection resistance was 6 mΩ, and the connection reliability after removing the coating was extremely good. Further, in Example 8, La/Lb was 2.0, connection resistance was 8 mΩ, and connection reliability after removing the coating was good. In Example 9 as well, La/Lb was 3.5, connection resistance was 12 mΩ, and connection reliability after coating removal was good.

一方、比較例1では、La/Lbが2.5であるものの、CNT線材の外周部に含浸抑制部が形成されていないため、絶縁被覆層を構成する被覆材がCNT線材に含浸し、被覆材を十分に除去できず、接続抵抗が1700mΩとなり、被覆除去後の接続信頼性が劣った。 On the other hand, in Comparative Example 1, although La/Lb is 2.5, since the impregnation suppressing part is not formed on the outer periphery of the CNT wire, the coating material constituting the insulating coating layer impregnates the CNT wire and the coating The material could not be removed sufficiently, the connection resistance was 1700 mΩ, and the connection reliability after removing the coating was poor.

比較例2では、La/Lbが1.4であるものの、CNT線材の全周に対して80%程度となるように含浸抑制部を形成したため、周方向全体に含浸抑制部が形成されておらず、当該含浸抑制部が形成されていない部分から被覆材がCNT線材に含浸し、被覆除去の際に含浸した被覆材が溶出し、CNT線材表面に再付着が生じ、被覆材を十分に除去できず、接続抵抗が265mΩとなり、被覆除去後の接続信頼性が劣った。 In Comparative Example 2, although La/Lb was 1.4, the impregnation suppressing part was formed to be about 80% of the entire circumference of the CNT wire, so the impregnation suppressing part was not formed in the entire circumferential direction. First, the coating material impregnates the CNT wire from the part where the impregnation suppressing part is not formed, and when the coating is removed, the impregnated coating material is eluted and re-adhered to the CNT wire surface, and the coating material is sufficiently removed. The connection resistance was 265 mΩ, and the connection reliability after removing the coating was poor.

比較例3では、La/Lbが1.6であるものの、粗化処理後のCNT線材の外周部においてめっきの連結構造によって連結されていないCNTが存在していたため、周方向全体に含浸抑制部が形成されておらず、連結構造が形成されていない部分から被覆材にCNT線材が含浸し、被覆除去の際に含浸した被覆材が溶出し、CNT線材表面に再付着が生じ、被覆材を十分に除去できず、接続抵抗が374mΩとなり、被覆除去後の接続信頼性が劣った。 In Comparative Example 3, although La/Lb was 1.6, there were CNTs that were not connected by the plating connection structure at the outer periphery of the CNT wire after the roughening treatment, so there was an impregnation suppressing part in the entire circumferential direction. The CNT wire is impregnated into the coating material from the part where no connection structure is formed, and when the coating is removed, the impregnated coating material is eluted and re-adhered to the surface of the CNT wire, causing the coating material to be removed. It could not be removed sufficiently, and the connection resistance was 374 mΩ, resulting in poor connection reliability after removing the coating.

1 カーボンナノチューブ被覆電線(CNT被覆電線)
10 カーボンナノチューブ線材(CNT線材)
11 カーボンナノチューブ集合体(CNT集合体)
11a カーボンナノチューブ(CNT)
21 絶縁被覆層
31 含浸抑制部
41 エナメル系樹脂被覆部
1 Carbon nanotube coated wire (CNT coated wire)
10 Carbon nanotube wire (CNT wire)
11 Carbon nanotube aggregate (CNT aggregate)
11a Carbon nanotube (CNT)
21 Insulating coating layer 31 Impregnation suppressing section 41 Enamel resin coating section

Claims (7)

複数のカーボンナノチューブで構成されるカーボンナノチューブ集合体の単数から、又は複数の前記カーボンナノチューブ集合体が束ねられて形成されているカーボンナノチューブ線材であって、
前記カーボンナノチューブ線材を被覆する絶縁被覆層を備え、
前記カーボンナノチューブ線材の外周部に、その周方向全体に亘り、前記絶縁被覆層前記カーボンナノチューブ線材との間に含浸抑制部を備え、
数の前記含浸抑制部が、前記カーボンナノチューブ線材の長手方向に間欠的に配置され、
前記含浸抑制部は、導電性ペースト、めっき及びはんだから選択されたいずれかの材料で構成されるものであり、前記絶縁被覆層は、樹脂であることを特徴とする、カーボンナノチューブ線材。
A carbon nanotube wire formed from a single carbon nanotube aggregate composed of a plurality of carbon nanotubes or by bundling a plurality of carbon nanotube aggregates,
comprising an insulating coating layer that covers the carbon nanotube wire,
An impregnation suppressing portion is provided on the outer circumferential portion of the carbon nanotube wire over the entire circumferential direction between the insulating coating layer and the carbon nanotube wire,
a plurality of the impregnation suppressing parts are arranged intermittently in the longitudinal direction of the carbon nanotube wire;
The carbon nanotube wire is characterized in that the impregnation suppressing portion is made of any material selected from conductive paste, plating, and solder, and the insulating coating layer is made of resin.
前記含浸抑制部は、前記カーボンナノチューブ線材の最表層に位置する前記カーボンナノチューブ同士を連結する連結構造を有する、請求項1に記載のカーボンナノチューブ線材。 The carbon nanotube wire according to claim 1 , wherein the impregnation suppressing portion has a connection structure that connects the carbon nanotubes located at the outermost layer of the carbon nanotube wire. 前記含浸抑制部が、少なくとも前記カーボンナノチューブ線材の長手方向端部に形成される、請求項1又は2に記載のカーボンナノチューブ線材。 The carbon nanotube wire according to claim 1 or 2 , wherein the impregnation suppressing portion is formed at least at a longitudinal end portion of the carbon nanotube wire. 前記カーボンナノチューブ線材の外周部に設けられ、且つ前記含浸抑制部以外の部分に配置される1又は複数のエナメル系樹脂被覆部を更に備える、請求項1~のいずれか1項に記載のカーボンナノチューブ線材。 The carbon according to any one of claims 1 to 3 , further comprising one or more enamel resin coating parts provided on the outer periphery of the carbon nanotube wire and arranged in a part other than the impregnation suppressing part. Nanotube wire. カーボンナノチューブ線材と、
前記カーボンナノチューブ線材を被覆する絶縁被覆層と、を備え、
前記カーボンナノチューブ線材と前記絶縁被覆層との間、前記カーボンナノチューブ線材の周方向全体に亘り、含浸抑制部を備え、
数の前記含浸抑制部が、前記カーボンナノチューブ線材の長手方向に間欠的に配置され、
前記含浸抑制部は、導電性ペースト、めっき及びはんだから選択されたいずれかの材料で構成されるものであり、前記絶縁被覆層は、樹脂であることを特徴とする、カーボンナノチューブ被覆電線。
carbon nanotube wire,
an insulating coating layer that covers the carbon nanotube wire ,
An impregnation suppressing portion is provided between the carbon nanotube wire and the insulating coating layer, spanning the entire circumferential direction of the carbon nanotube wire,
a plurality of the impregnation suppressing parts are arranged intermittently in the longitudinal direction of the carbon nanotube wire;
The carbon nanotube-coated electric wire, wherein the impregnation suppressing portion is made of any material selected from conductive paste, plating, and solder, and the insulating coating layer is made of resin.
カーボンナノチューブ線材の外周部に、その周方向全体に亘って、含浸抑制部を形成する工程であって、複数の前記含浸抑制部が、前記カーボンナノチューブ線材の長手方向に間欠的に配置されるようにする工程と、
前記含浸抑制部に対して前記カーボンナノチューブ線材とは反対側に絶縁被覆層を形成する工程と、
を有し、
前記含浸抑制部は、導電性ペースト、めっき及びはんだから選択されたいずれかの材料で構成されるものであり、前記絶縁被覆層は、樹脂であることを特徴とする、カーボンナノチューブ被覆電線の製造方法。
A step of forming an impregnation suppressing part on the outer peripheral part of the carbon nanotube wire over the entire circumferential direction , the plurality of impregnation suppressing parts being arranged intermittently in the longitudinal direction of the carbon nanotube wire. a step of making sure that
forming an insulating coating layer on the opposite side of the carbon nanotube wire with respect to the impregnation suppressing portion;
has
Manufacturing of a carbon nanotube-coated electric wire, wherein the impregnation suppressing part is made of any material selected from conductive paste, plating, and solder, and the insulating coating layer is made of resin. Method.
カーボンナノチューブ線材と、前記カーボンナノチューブ線材を被覆する絶縁被覆層と、を備え、前記カーボンナノチューブ線材と前記絶縁被覆層との間、前記カーボンナノチューブ線材の周方向全体に亘り、含浸抑制部を備え、複数の前記含浸抑制部が、前記カーボンナノチューブ線材の長手方向に間欠的に配置されており、前記含浸抑制部は、導電性ペースト、めっき及びはんだから選択されたいずれかの材料で構成されるものであり、前記絶縁被覆層は、樹脂であるカーボンナノチューブ被覆電線の加工方法であって、前記含浸抑制部に対して前記カーボンナノチューブ線材とは反対側に形成された絶縁被覆層を除去することを特徴とする、カーボンナノチューブ被覆電線の加工方法。 A carbon nanotube wire and an insulating coating layer that covers the carbon nanotube wire, and an impregnation suppressing portion is provided between the carbon nanotube wire and the insulating coating layer over the entire circumferential direction of the carbon nanotube wire. A plurality of the impregnation suppressing parts are arranged intermittently in the longitudinal direction of the carbon nanotube wire, and the impregnating suppressing parts are made of any material selected from conductive paste, plating, and solder. The insulating coating layer is a method for processing a carbon nanotube-coated electric wire made of resin, the insulating coating layer formed on the opposite side of the carbon nanotube wire material to the impregnation suppressing portion is removed. A method for processing a carbon nanotube-coated electric wire.
JP2018069827A 2018-03-30 2018-03-30 Carbon nanotube wire, carbon nanotube-coated electric wire, method for producing carbon nanotube wire, and method for processing carbon nanotube-coated electric wire Active JP7348714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018069827A JP7348714B2 (en) 2018-03-30 2018-03-30 Carbon nanotube wire, carbon nanotube-coated electric wire, method for producing carbon nanotube wire, and method for processing carbon nanotube-coated electric wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018069827A JP7348714B2 (en) 2018-03-30 2018-03-30 Carbon nanotube wire, carbon nanotube-coated electric wire, method for producing carbon nanotube wire, and method for processing carbon nanotube-coated electric wire

Publications (2)

Publication Number Publication Date
JP2019179727A JP2019179727A (en) 2019-10-17
JP7348714B2 true JP7348714B2 (en) 2023-09-21

Family

ID=68278863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018069827A Active JP7348714B2 (en) 2018-03-30 2018-03-30 Carbon nanotube wire, carbon nanotube-coated electric wire, method for producing carbon nanotube wire, and method for processing carbon nanotube-coated electric wire

Country Status (1)

Country Link
JP (1) JP7348714B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114761082A (en) 2019-09-30 2022-07-15 日本化学药品株式会社 Azepane derivatives

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5247784B2 (en) 2010-10-04 2013-07-24 三菱電機株式会社 Air conditioner
JP2014169521A (en) 2013-02-05 2014-09-18 Honda Motor Co Ltd Carbon nanotube fiber and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5247784U (en) * 1975-10-01 1977-04-05

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5247784B2 (en) 2010-10-04 2013-07-24 三菱電機株式会社 Air conditioner
JP2014169521A (en) 2013-02-05 2014-09-18 Honda Motor Co Ltd Carbon nanotube fiber and manufacturing method thereof

Also Published As

Publication number Publication date
JP2019179727A (en) 2019-10-17

Similar Documents

Publication Publication Date Title
US8604340B2 (en) Coaxial cable
JP2018170267A (en) Electrically conductive carbon nanotube wire having metallic coating and methods of forming the same
JP7336435B2 (en) Collective conductors, segmented conductors, segment coils and motors using these
KR20200006975A (en) Assembly lead, manufacturing method of assembly lead and segment coil
JP7306996B2 (en) Carbon nanotube coated wires and coils
JP2012216526A (en) Metal-coated carbon fiber wire
JP7348714B2 (en) Carbon nanotube wire, carbon nanotube-coated electric wire, method for producing carbon nanotube wire, and method for processing carbon nanotube-coated electric wire
US9293233B2 (en) Composite cable
JPWO2019083038A1 (en) Carbon nanotube composite wire, carbon nanotube coated wire and wire harness
JP7393858B2 (en) Carbon nanotube coated wire, coil and coated wire
JP7203748B2 (en) Carbon nanotube coated wire
JP7254708B2 (en) Carbon nanotube composite wire, carbon nanotube coated wire and wire harness
JP7195711B2 (en) Carbon nanotube coated wire
JP7195712B2 (en) Carbon nanotube coated wire
JP7214644B2 (en) Carbon nanotube composite wires, carbon nanotube coated wires, wire harnesses, wiring for robots and overhead wires for trains
JP7097165B2 (en) Method for manufacturing carbon nanotube wire rod, carbon nanotube wire rod connection structure and carbon nanotube wire rod
JP7306995B2 (en) Carbon nanotube coated wire
JP6567628B2 (en) Carbon nanotube coated wire
JP4153933B2 (en) Vacuum-resistant composite cable manufacturing method and vacuum-resistant composite cable
JP7370917B2 (en) connection structure
US20220013253A1 (en) Cable with improved corrosion resistance
WO2019083032A2 (en) Coated carbon nanotube wire
JP2020184422A (en) Carbon nanotube composite wire, carbon nanotube coated electric wire and wire harness
JP2020184421A (en) Carbon nanotube composite wire, carbon nanotube coated electric wire and wire harness
JP2020181686A (en) Carbon nanotube wire material, carbon nanotube wire material connecting structure, and manufacturing method of carbon nanotube wire material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220704

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220704

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220713

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220726

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20220805

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20220816

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20230117

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20230221

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20230314

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230908

R151 Written notification of patent or utility model registration

Ref document number: 7348714

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151