JP2019207889A - Conductive particles and use thereof - Google Patents

Conductive particles and use thereof Download PDF

Info

Publication number
JP2019207889A
JP2019207889A JP2019156792A JP2019156792A JP2019207889A JP 2019207889 A JP2019207889 A JP 2019207889A JP 2019156792 A JP2019156792 A JP 2019156792A JP 2019156792 A JP2019156792 A JP 2019156792A JP 2019207889 A JP2019207889 A JP 2019207889A
Authority
JP
Japan
Prior art keywords
conductive particles
conductive
deformation
particles
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019156792A
Other languages
Japanese (ja)
Inventor
龍▲チョル▼ 秋
Yong Cheol Chu
龍▲チョル▼ 秋
敬欽 金
Kyung Heum Kim
敬欽 金
舜浩 鄭
Soon Ho Jeong
舜浩 鄭
京用 朴
Kung Yong Park
京用 朴
玄宗 孫
Hyun Jong Son
玄宗 孫
珍鎬 李
Jin Ho Lee
珍鎬 李
鍾兌 金
Jong Tae Kim
鍾兌 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DOKUSAN HIGH METAL CO Ltd
Original Assignee
DOKUSAN HIGH METAL CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=52671558&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2019207889(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from KR1020120158348A external-priority patent/KR101284027B1/en
Application filed by DOKUSAN HIGH METAL CO Ltd filed Critical DOKUSAN HIGH METAL CO Ltd
Publication of JP2019207889A publication Critical patent/JP2019207889A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a conductive particle for a touch screen panel with low connection resistance and reduced malfunctions.SOLUTION: A conductive particle has a resin fine particle, and a coating layer formed on the outer surface of the resin fine particle. The conductive particle has a specific value that can reduce electric resistance due to a compression deformation at a point when an increase in a deformation increase rate of the conductive particle occurs when increasing load on the conductive particle.SELECTED DRAWING: Figure 1

Description

本発明は、導電粒子に係り、より詳しくはタッチスクリーンパネル用導電粒子に関する。   The present invention relates to conductive particles, and more particularly to conductive particles for touch screen panels.

導電粒子は、硬化剤、接着剤、樹脂バインダーと混合して分散した形で使用されるもので、異方性導電材料、例えば異方性導電フィルム(Anisotropic Conductive Film)、異方性導電ペースト(Anisotropic Conductive Paste)、異方性導電インク(Anisotropic Conductive Ink)、異方性導電シート(Anisotropic Conductive Sheet)などとして幅広く用いられている。   The conductive particles are used in a form dispersed and mixed with a curing agent, an adhesive, and a resin binder. An anisotropic conductive material, such as an anisotropic conductive film, an anisotropic conductive paste ( It is widely used as Anisotropic Conductive Paste, Anisotropic Conductive Ink, Anisotropic Conductive Sheet, and the like.

例えば、異方性導電材料は、LCD(Liquid Crystal Display)、AMOLED(Active Matrix Organic Light Emitting Diode)、PDP(Plasma Display Panel)などの平板ディスプレイパネルの組立に際して、基板上のTFT(Thin Film Transistor)とこれを駆動するためのドライバーIC(Integrated Circuit)との電気的接続や、TSP(Touch Screen Panel)の駆動モジュールと電極との接続などに用いられる。   For example, an anisotropic conductive material may be a TFT (Thin) on a substrate when a flat panel display panel such as an LCD (Liquid Crystal Display), an AMOLED (Active Matrix Organic Emitting Diode), or a PDP (Plasma Display Panel) is assembled. And a driver IC (Integrated Circuit) for driving it, and a connection between a TSP (Touch Screen Panel) drive module and an electrode.

このような異方性導電材料として用いられる導電粒子は、ニッケル、銅、銀、金などの金属系;カーボン粉末、カーボン繊維、カーボンフレーク(flake)などのカーボン系;樹脂粒子に金属物質をコートまたはメッキして使用する複合系の粒子などが例示される。   Conductive particles used as such anisotropic conductive materials include nickel, copper, silver, gold, and other metal systems; carbon powder, carbon fiber, carbon flake, and other carbon systems; resin particles are coated with a metal substance Alternatively, composite particles used by plating are exemplified.

金属系粒子は、粒子全体が導電性を有し且つ粒度の分布が広いため、回路の微細ピッチや高精密を要求する分野よりは、回路のピッチが大きく高電流を要求するPDPに主に用いられている。   Metal-based particles are mainly used for PDPs that require a large circuit pitch and a high current, rather than fields that require fine circuit pitch and high precision, because the entire particle is conductive and has a wide particle size distribution. It has been.

カーボン系粒子は、金属系粒子より電気伝導度が低いため、高い電気伝導度を要求する分野には使用が制限される。   Since carbon-based particles have a lower electrical conductivity than metal-based particles, their use is limited in fields requiring high electrical conductivity.

一方、複合系粒子は、電気伝導度が前記金属系粒子とカーボン系粒子との中間程度であって、微粒子の分布を非常に狭くすることができるため、現在最も多く使われている導電粒子である。   On the other hand, composite particles are the most commonly used conductive particles because the electrical conductivity is about the middle between the metal particles and the carbon particles and the distribution of fine particles can be made very narrow. is there.

複合系導電粒子は、球状の樹脂上に無電解メッキ方法でニッケル−リンまたはニッケル−ホウ素またはニッケル−リン−タングステンまたはニッケル−ホウ素−タングステンなどの合金メッキ層を形成してそのまま使用し、或いは腐食防止および電気伝導度向上の目的で金または銀などの貴金属を最外殻に構成して使用することもある。   Composite conductive particles can be used as they are by forming an alloy plating layer such as nickel-phosphorus, nickel-boron, nickel-phosphorus-tungsten, nickel-boron-tungsten or the like on a spherical resin by electroless plating. A precious metal such as gold or silver may be used in the outermost shell for the purpose of prevention and improvement of electrical conductivity.

最近、モバイル機器、特にスマートフォンの普及拡大により、導電粒子はTSP(Touch Screen Panel)分野で使用量が急激に増加しつつある。TSPは、ディスプレイ(display)面には互いに接触しない直角の透明電極を被せ、ディスプレイの縁部にはAg粉末またはCu粉末などの金属粉末、バインダーおよび溶媒を混合して製造されたペースト(paste)を用いて、駆動モジュールと連結することが可能な電極を形成する。   Recently, with the spread of mobile devices, particularly smartphones, the amount of conductive particles is rapidly increasing in the TSP (Touch Screen Panel) field. TSP is a paste made by mixing display electrodes with right-angled transparent electrodes that do not contact each other, and mixing the metal powder such as Ag powder or Cu powder, binder and solvent on the edge of the display. Is used to form an electrode that can be connected to the drive module.

形成された電極は、ディスプレイ(display)の特性上、高温で熱処理が不可能であるため、一般に揮発成分のみ無くす方法を使用する。よって、電極は非常に弱く形成されている。このため、TSPと駆動モジュールとを連結するための導電粒子は、非常に柔らかくて変形し易いことが求められた。なぜなら、一般な導電粒子は、TSPに接合ボンディングを行う場合、ペーストから形成された電極が簡単に破損して短絡となり、或いは抵抗が急激に増加するという問題点があるためである。   Since the formed electrode cannot be heat-treated at a high temperature due to the characteristics of the display, a method of removing only volatile components is generally used. Therefore, the electrode is formed very weakly. For this reason, the conductive particles for connecting the TSP and the drive module are required to be very soft and easily deformed. This is because, when general conductive particles are bonded to TSP, there is a problem that the electrode formed from the paste is easily broken and short-circuited, or the resistance is rapidly increased.

韓国特許出願第10−2010−0140039号明細書Korean Patent Application No. 10-2010-0140039 韓国特許出願第10−2011−0140147号明細書Korean Patent Application No. 10-2011-014147 特開平7−282116号公報JP 7-282116 A 特願2005−221026号Japanese Patent Application No. 2005-221026 特願2005−221027号Japanese Patent Application No. 2005-221027

本発明は、前述した問題点を解決するために導出されたもので、その目的は、接続抵抗が低くかつ誤作動が少ない、タッチスクリーンパネル用導電粒子を提供することにある。本発明の他の目的は、前述した導電粒子を用いた異方性導電材料を提供することにある。   The present invention has been derived to solve the above-described problems, and an object thereof is to provide conductive particles for a touch screen panel having low connection resistance and few malfunctions. Another object of the present invention is to provide an anisotropic conductive material using the above-described conductive particles.

上記目的を達成するために、本発明のある観点によれば、樹脂微粒子、および前記樹脂微粒子の外面に形成される被覆層を有する導電粒子であって、下記式1によるV値が6≦V≦25であり、変曲点発生力が1.0〜15mNである、タッチスクリーンパネル用導電粒子を提供する。   In order to achieve the above object, according to an aspect of the present invention, there is provided conductive particles having resin fine particles and a coating layer formed on an outer surface of the resin fine particles, wherein a V value according to the following formula 1 is 6 ≦ V Provided is a conductive particle for a touch screen panel in which ≦ 25 and the inflection point generation force is 1.0 to 15 mN.

(式1)
V(%)=Sv/D*100
(Formula 1)
V (%) = Sv / D * 100

(式中、Svは導電粒子に外力(load)を増加させるときに導電粒子の変形増加率(=△圧縮変形量/△外力)の増加が発生する時点の圧縮変形量を示し、Dは導電粒子の平均直径(μm)を示す。)   (In the formula, Sv indicates the amount of compressive deformation at the time when an increase in the deformation rate of the conductive particles (= Δcompression deformation / Δexternal force) occurs when the external force (load) is increased on the conductive particles, and D indicates the conductivity. (The average diameter (μm) of the particles is shown.)

この際、前記導電粒子の平均直径は4〜16μmであることが好ましい。   At this time, the average diameter of the conductive particles is preferably 4 to 16 μm.

また、前記被覆層は30〜400nmの厚さを有することが好ましい。   The covering layer preferably has a thickness of 30 to 400 nm.

また、前記被覆層は表面に高さ50nm〜500nmの突起を備えることが好ましい。   The covering layer preferably has a protrusion having a height of 50 nm to 500 nm on the surface.

また、前記突起は前記被覆層と同一の物質からなることが好ましい。   The protrusions are preferably made of the same material as the coating layer.

この際、前記被覆層は、Ni、Sn、Ag、Cu、Pd、Zn、W、P、BおよびAuよりなる群から選ばれる1種または2種以上の合金からなることが好ましい。   At this time, the coating layer is preferably made of one or more alloys selected from the group consisting of Ni, Sn, Ag, Cu, Pd, Zn, W, P, B, and Au.

また、前記被覆層の外面には、Au、Pt、AgおよびPdよりなる群から選ばれる1種または2種以上の合金からなる追加の被覆層をさらに含むことができる。   The outer surface of the coating layer may further include an additional coating layer made of one or more alloys selected from the group consisting of Au, Pt, Ag, and Pd.

また、前記導電粒子はTSP(Touch Screening Panel)用異方性導電フィルム(ACF)に含まれ得る。   The conductive particles may be included in an anisotropic conductive film (ACF) for TSP (Touch Screening Panel).

本発明の他の観点によれば、前述した導電粒子を含む異方性導電材料を提供する。   According to another aspect of the present invention, an anisotropic conductive material including the above-described conductive particles is provided.

本発明の別の観点によれば、前述した導電粒子または異方性導電材料を含む電子装置を提供する。   According to another aspect of the present invention, an electronic device including the above-described conductive particles or anisotropic conductive material is provided.

本発明のある観点による導電粒子は、外力が加えられたときに圧縮変形が調節されるため、回路の接続不良または抵抗の急激な増加による回路の誤作動を起こさない。また、本発明の他の観点による異方性導電材料は、電気抵抗が低くかつ導電信頼性に優れる導電粒子を用いることにより、優れた電気抵抗及び導電信頼性を有する。   In the conductive particles according to an aspect of the present invention, the compression deformation is adjusted when an external force is applied, so that the circuit does not malfunction due to poor connection of the circuit or a sudden increase in resistance. In addition, the anisotropic conductive material according to another aspect of the present invention has excellent electrical resistance and conductive reliability by using conductive particles having low electrical resistance and excellent conductive reliability.

本発明の実施例に係る導電粒子の力による圧縮変形状態を示すグラフである。It is a graph which shows the compression deformation state by the force of the electrically-conductive particle which concerns on the Example of this invention. 本発明の実施例において変形量を説明するための説明図である。It is explanatory drawing for demonstrating the deformation amount in the Example of this invention. 本発明の実施例に係る導電粒子の作用メカニズムを説明するための説明図である。It is explanatory drawing for demonstrating the effect | action mechanism of the electrically-conductive particle which concerns on the Example of this invention. 本発明の実施例に係る導電粒子の作用メカニズムを説明するための説明図である。It is explanatory drawing for demonstrating the effect | action mechanism of the electrically-conductive particle which concerns on the Example of this invention. 本発明の実施例に係る導電粒子の作用メカニズムを説明するための説明図である。It is explanatory drawing for demonstrating the effect | action mechanism of the electrically-conductive particle which concerns on the Example of this invention. 本発明の実施例に係る導電粒子の作用メカニズムを説明するための説明図である。It is explanatory drawing for demonstrating the effect | action mechanism of the electrically-conductive particle which concerns on the Example of this invention. 本発明の実施例に係る導電粒子の作用メカニズムを説明するための説明図である。It is explanatory drawing for demonstrating the effect | action mechanism of the electrically-conductive particle which concerns on the Example of this invention. 本発明の実施例に係る導電粒子の作用メカニズムを説明するための説明図である。It is explanatory drawing for demonstrating the effect | action mechanism of the electrically-conductive particle which concerns on the Example of this invention.

本発明をさらに具体的に説明する前に、本明細書に使用された用語は、特定の実施例を記述するためのものに過ぎず、特許請求の範囲によって定められる本発明の範囲を限定するものではないことを理解すべきである。本明細書に使用されるすべての技術用語および科学用語は、特に言及がない限りは、当該技術分野における通常の技術を有する者に一般に理解されることと同一の意味を有する。   Before further describing the present invention, the terminology used herein is for the purpose of describing particular embodiments only and limits the scope of the invention as defined by the claims. It should be understood that it is not a thing. All technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art unless otherwise specified.

本明細書および請求の範囲の全般にわたって、特に言及がない限り、「含む(comprise、comprises、comprising)」という用語は、言及された物、段階または一群の物、および段階を含むことを意味し、任意のある他の物、段階または一群の物または一群の段階を排除する意味で使用されたものではない。   Throughout this specification and the claims, unless otherwise stated, the term “comprise”, “comprises”, “comprising” is meant to include the stated thing, step or group of things, and steps. It is not intended to exclude any certain other thing, step or group of things or group of steps.

一方、本発明の様々な実施例は、明確な反対の指摘がない限り、いかなる他の実施例と組み合わせてもよい。特に、好適または有利であることを示すいかなる特徴も、好適または有利であることを示す他のいかなる特徴と組み合わせてもよい。   On the other hand, the various embodiments of the present invention may be combined with any other embodiment, unless expressly indicated to the contrary. In particular, any feature that indicates suitability or advantage may be combined with any other feature that indicates suitability or advantage.

本発明の一実施例に係る導電粒子は樹脂微粒子と被覆層を含む。樹脂微粒子は単量体の重合体からなる。その材料は、非制限的に、スチレン系、アクリル系、ジビニルベンゼン系などの単量体またはそれらの変形した単量体または前記単量体の混合された単量体を用いて、重合して得られる重合体を使用することが好ましい。例えば、エチルアクリレート、メチルアクリレート、ブチルアクリレート、グリシジルメタクリレート、エチレングリコールジメタクリレート、プロピレングリコールジアクリレート、イソオクチルアクリレート、メチルメタクリレート、ヘキサンジオールジアクリレート、スチレン、メチルスチレン、エチルスチレン、ジビニルベンゼンなどの単量体を単独で使用し或いは2種以上組み合わせて使用することができる。   The conductive particles according to an embodiment of the present invention include resin fine particles and a coating layer. The resin fine particles are made of a monomer polymer. The material can be polymerized using, without limitation, monomers such as styrene, acrylic, divinylbenzene, or modified monomers thereof or a mixture of the above monomers. It is preferred to use the resulting polymer. For example, ethyl acrylate, methyl acrylate, butyl acrylate, glycidyl methacrylate, ethylene glycol dimethacrylate, propylene glycol diacrylate, isooctyl acrylate, methyl methacrylate, hexanediol diacrylate, styrene, methylstyrene, ethylstyrene, divinylbenzene, etc. The body can be used alone or in combination of two or more.

被覆層は、Ni、Sn、Ag、Cu、Pd、Zn、W、P、BおよびAuよりなる群から選ばれる1種または2種以上の合金からなる。すなわち、被覆層は、金属、例えば金、銀、ニッケル、銅、錫、亜鉛、チタンなどの単一金属からなってもよく、錫−鉛、錫−銅、錫−亜鉛、ニッケル−リン、ニッケル−ホウ素、ニッケル−タングステンなどの合金からなってもよい。   The coating layer is made of one or more alloys selected from the group consisting of Ni, Sn, Ag, Cu, Pd, Zn, W, P, B, and Au. That is, the coating layer may be made of a metal, for example, a single metal such as gold, silver, nickel, copper, tin, zinc, titanium, tin-lead, tin-copper, tin-zinc, nickel-phosphorus, nickel. -You may consist of alloys, such as boron and nickel-tungsten.

被覆層の厚さは30〜400nm程度であることが好ましい。被覆層の厚さが30nm未満の場合は、抵抗値が増加し、被覆層の厚さが400nmを超える場合は、被覆層の剥離が起こるため、製品の信頼性が低下する。特に好ましい厚さは100〜250nmである。   The thickness of the coating layer is preferably about 30 to 400 nm. When the thickness of the coating layer is less than 30 nm, the resistance value increases. When the thickness of the coating layer exceeds 400 nm, peeling of the coating layer occurs, so that the reliability of the product is lowered. A particularly preferred thickness is 100 to 250 nm.

被覆層の表面には突起が突設されてもよい。突起の高さは、特に限定されないが、好ましい突起の高さは50nm〜500nmである。これは、突起の高さが前述の範囲を外れると、金属酸化層とバインダー樹脂を壊すことが可能な効果が弱くなるためである。一方、さらに好ましい突起の高さは100〜300nmである。被覆層の厚さは、例えば以下のように測定される。すなわち、Particle Size Analyzer(BECKMAN MULTISIZER TM3)を用いてメッキ前の微粒子の直径mode値とメッキ後の導電粒子の直径mode値とを測定し、これらの差の1/2を被覆層の厚さとする。なお、測定の対象となる粒子の数は例えば150,000個である。以下の実施例及び比較例では、この方法により被覆層の厚さを測定した。実施例及び比較例では、測定対象となる粒子の数を150,000個とした。   A protrusion may be provided on the surface of the coating layer. The height of the protrusion is not particularly limited, but the preferable height of the protrusion is 50 nm to 500 nm. This is because if the height of the protrusion is out of the above range, the effect of breaking the metal oxide layer and the binder resin is weakened. On the other hand, the height of the protrusion is more preferably 100 to 300 nm. The thickness of the coating layer is measured as follows, for example. That is, using a Particle Size Analyzer (BECKMAN MULTISIZER TM3), the diameter mode value of fine particles before plating and the diameter mode value of conductive particles after plating are measured, and ½ of these differences is taken as the thickness of the coating layer. . Note that the number of particles to be measured is 150,000, for example. In the following examples and comparative examples, the thickness of the coating layer was measured by this method. In the examples and comparative examples, the number of particles to be measured was 150,000.

突起の高さは、例えば以下の方法により測定される。すなわち、走査電子顕微鏡(SEM:Scanning Electron Microscope)を用いて導電粒子の球状の仮想地平線から10個の突起の高さを測定し、その平均値(算術平均値)を突起の高さとする。実施例及び比較例では、この方法により突起の高さを測定した。   The height of the protrusion is measured by the following method, for example. That is, the height of 10 protrusions is measured from the spherical virtual horizon of the conductive particles using a scanning electron microscope (SEM), and the average value (arithmetic average value) is defined as the protrusion height. In Examples and Comparative Examples, the height of the protrusion was measured by this method.

突起の形状は、特に限定されないが、凸形状であることが好ましい。このような硬度を備える材料としては、被覆層と同一の物質が挙げられる。具体的には、Ni、Sn、Ag、Cu、Pd、Zn、W、P、BおよびAuよりなる群から選ばれる1種または2種以上の合金が挙げられる。突起は被覆層と異なる材料で構成されていてもよい。すなわち、突起は、主に金属であって、例えば金、銀、銅、ニッケル、チタン、ビスマス、アンチモンなどの単一金属からなってもよく、または銅−亜鉛、銅−錫、ニッケル−リン、ニッケル−タングステン、ニッケル−ホウ素などの合金からなってもよい。好ましい金属はニッケル、金、銀、パラジウム、タングステンなどである。   The shape of the protrusion is not particularly limited, but is preferably a convex shape. Examples of the material having such hardness include the same substance as the coating layer. Specific examples include one or more alloys selected from the group consisting of Ni, Sn, Ag, Cu, Pd, Zn, W, P, B, and Au. The protrusion may be made of a material different from that of the coating layer. That is, the protrusion is mainly a metal and may be made of a single metal such as gold, silver, copper, nickel, titanium, bismuth, antimony, or copper-zinc, copper-tin, nickel-phosphorus, It may be made of an alloy such as nickel-tungsten or nickel-boron. Preferred metals are nickel, gold, silver, palladium, tungsten and the like.

前述した導電粒子の表層に、金、銀、白金、パラジウムなどの貴金属を含む追加の被覆層を備えてもよい。これは導電粒子の伝導度を高め、酸化防止の効果も得ることができるためである。前記層の形成方法は、特に限定されるものではなく、一般なスパッタリング、メッキ、蒸着の技術を使用することができる。   You may provide the additional coating layer containing noble metals, such as gold | metal | money, silver, platinum, palladium, on the surface layer of the electrically-conductive particle mentioned above. This is because the conductivity of the conductive particles can be increased and an antioxidant effect can be obtained. The method for forming the layer is not particularly limited, and general sputtering, plating, and vapor deposition techniques can be used.

本発明の実施例に係る導電粒子は、外力が加えられると、外力が益々強くなることにより、初期には外力が増加するにつれて変形増加率が一定に増加し、ある時点には小さい外力でも変形増加率が急激に増加する変曲点が発生する。この際、変曲点以前までは弾性変形が行われ、変曲点より後は塑性変形が主に行われる。   In the conductive particles according to the embodiment of the present invention, when an external force is applied, the external force becomes stronger and stronger, so that the rate of increase in deformation increases at an initial stage as the external force increases. An inflection point where the rate of increase rapidly increases occurs. At this time, elastic deformation is performed before the inflection point, and plastic deformation is mainly performed after the inflection point.

この際、本発明の実施例に係る導電粒子は、下記式1による変曲開始変形率(V)値が6≦V≦25であることを満足する。Vが6未満の場合、外力によって持続的に変形が行われて第1電極と第2電極間の距離が非常に近くなるため、小さい外力が加わっても、第1電極が第2電極を破壊する問題点が発生し、導電粒子の耐久性が非常に脆弱であるため、異方性導電材料の製造過程または接合ボンディングの際に容易に溶解または変形が生ずる可能性がある。   At this time, the conductive particles according to the example of the present invention satisfy that the inflection start deformation rate (V) value according to the following formula 1 is 6 ≦ V ≦ 25. When V is less than 6, the external electrode is continuously deformed and the distance between the first electrode and the second electrode becomes very close, so even if a small external force is applied, the first electrode destroys the second electrode. And the durability of the conductive particles is very fragile. Therefore, the anisotropic conductive material may be easily dissolved or deformed during the manufacturing process or bonding bonding.

また、Vが25を超過する場合は、導電粒子の変形に必要な力が大きいため、前述した電極の破壊が起こるため、抵抗が急激に増加し或いは短絡が起こるという問題点がある。また、弾性変形による回復力が強いため、ACF接合ボンディングの際に外力が除去された後にも、電極を押し上げる効果が起こり、これは短絡或いは抵抗増加をもたらす。   In addition, when V exceeds 25, the force necessary for deformation of the conductive particles is large, so that the electrode is destroyed as described above, so that there is a problem that the resistance increases rapidly or a short circuit occurs. Further, since the recovery force due to elastic deformation is strong, the effect of pushing up the electrode occurs even after the external force is removed during ACF bonding, which causes a short circuit or an increase in resistance.

(式1)
V(%)=Sv/D*100
(Formula 1)
V (%) = Sv / D * 100

ここで、Svは25℃に加熱した導電粒子に加える外力を増加させるときに導電粒子の変形増加率(△圧縮変形量/△外力)の増加が発生する時点の圧縮変形量を示し、Dは導電粒子の平均直径(μm)を示す。導電粒子の加熱は例えばホットプレートによって行われる。   Here, Sv indicates the amount of compressive deformation at the time when an increase in the deformation increase rate of the conductive particles (Δcompression deformation / Δexternal force) occurs when the external force applied to the conductive particles heated to 25 ° C. is increased. The average diameter (μm) of the conductive particles is shown. The conductive particles are heated by, for example, a hot plate.

さらに、導電粒子の変曲点発生力は、1.0〜15mNである。ここで、変曲点発生力は、上記の変曲点が得られた際の外力を意味する。このように、本実施形態の導電粒子は、変曲点発生力が非常に小さい。したがって、本実施形態の導電粒子は、タッチパネル用の導電粒子として特に好適である。タッチパネルに与えられる外力は小さいことが多いからである。本実施形態の導電粒子をタッチパネル用の導電粒子に適用することで、タッチパネルの電極の破壊を防ぎつつ、電極同士の短絡を防止することができる。変曲開始変形率(V)値に必要なデータ及び変曲点発生力は微小圧縮試験機(MCT、Micro Compress Tester)を用いて得ることができる。これを図1及び図2を参照して説明する。図1は微小圧縮試験機によって0.33mN/secの速度で力を増加させて最大50mNまで加えたときの変形量を示すグラフであり、図2は図1の変形量を説明するための説明図である。この際、圧縮変形量(S)とは、力(F)を加えるときに力の印加方向に導電粒子の高さが減少した分のことをいう。   Furthermore, the inflection point generating force of the conductive particles is 1.0 to 15 mN. Here, the inflection point generating force means an external force when the above inflection point is obtained. Thus, the conductive particles of this embodiment have a very small inflection point generating force. Therefore, the conductive particles of the present embodiment are particularly suitable as conductive particles for touch panels. This is because the external force applied to the touch panel is often small. By applying the conductive particles of the present embodiment to the conductive particles for a touch panel, it is possible to prevent a short circuit between the electrodes while preventing the electrodes of the touch panel from being destroyed. Data necessary for the inflection starting deformation rate (V) value and the inflection point generating force can be obtained using a micro compression tester (MCT). This will be described with reference to FIGS. FIG. 1 is a graph showing a deformation amount when a force is increased at a speed of 0.33 mN / sec by a micro compression tester and applied up to a maximum of 50 mN, and FIG. 2 is an explanation for explaining the deformation amount of FIG. FIG. At this time, the amount of compressive deformation (S) means that the height of the conductive particles is reduced in the direction of application of force (F).

このことから、導電粒子に対して50mNの力で圧縮試験を行う場合、導電粒子は、初期に変形し始めて変形増加率が一定に維持され、ある時点には変形増加率(△圧縮変形量/△外力)の増加が発生するが、この時点の一定の力(F1)に該当する圧縮変形量(Sv)を求めることができる。   Therefore, when a compression test is performed on the conductive particles with a force of 50 mN, the conductive particles start to be deformed at an initial stage and the deformation increase rate is maintained constant. At a certain point in time, the deformation increase rate (Δcompression deformation amount / (External force) increases, but the amount of compression deformation (Sv) corresponding to the constant force (F1) at this time can be obtained.

例えば、平均直径(D)8μmの導電粒子に対して最大50mNの荷重で圧縮試験を行うとき、導電粒子の変形増加率の増加が発生する時点である、グラフ上の変曲点が生ずる地点における圧縮変形量を求めることができる。さらに、この地点における外力、すなわち変曲点発生力を測定することができる。   For example, when a compression test is performed on a conductive particle having an average diameter (D) of 8 μm with a load of 50 mN at the maximum, at a point where an inflection point on the graph is generated, which is the point at which the increase rate of deformation of the conductive particle occurs The amount of compressive deformation can be determined. Furthermore, the external force at this point, that is, the inflection point generating force can be measured.

一方、導電粒子は、サイズは非制限的であるが、4〜16μmの平均直径を有するように製造されることが好ましい。導電粒子のサイズが4μm未満の場合は、TSPの電極材料として用いられる金属粉末のサイズと類似し或いはそれよりやや大きいため、TSP用電極の破壊を起こして接続信頼性を低下させ、導電粒子のサイズが16μmを超える場合は、一定の電極面積に存在する導電粒子の数が少なくて抵抗が増加する現象を示すおそれがある。   On the other hand, the conductive particles are not limited in size, but are preferably manufactured to have an average diameter of 4 to 16 μm. When the size of the conductive particles is less than 4 μm, it is similar to or slightly larger than the size of the metal powder used as the electrode material of TSP, so that the TSP electrode is destroyed and connection reliability is lowered. When the size exceeds 16 μm, there is a possibility that the resistance increases due to the small number of conductive particles existing in a certain electrode area.

前述した導電粒子の平均直径は、例えば粒子サイズ分析器(Particle Size Analyzer)(BECKMAN MULTISIZER TM3)を用いて測定されたモード値である。この際、測定された導電粒子の数は150,000個が好ましい。   The above-mentioned average diameter of the conductive particles is a mode value measured using, for example, a particle size analyzer (BECKMAN MULTISIZER TM3). At this time, the number of measured conductive particles is preferably 150,000.

以下に図3〜図8を参照しながら、本発明に係る導電粒子が作用する段階別メカニズムについて説明する。各図面は第1電極と第2電極との間にACFが位置した状態を示す。第1電極はFPCB(フレキシブルプリント基板)に位置し、第2電極はTSP基板上に位置する。TSP基板の第2電極はペーストを用いて形成された電極であって、非常に小さい力でも電極が破壊される傾向がある。   The mechanism according to the stage at which the conductive particles according to the present invention act will be described below with reference to FIGS. Each drawing shows a state in which the ACF is located between the first electrode and the second electrode. The first electrode is located on the FPCB (flexible printed circuit board) and the second electrode is located on the TSP substrate. The second electrode of the TSP substrate is an electrode formed using a paste, and the electrode tends to be destroyed even with a very small force.

図3は電極の間における電極間の接合のための予備接合段階であって、この段階は作業の便利性と電極の正確な位置決めを図るためである。この際、第1電極と第2電極との間に力が加えられず、導電粒子と電極とは未だ接触していない。   FIG. 3 shows a pre-joining stage for joining the electrodes between the electrodes, and this stage is for convenience of operation and accurate positioning of the electrodes. At this time, no force is applied between the first electrode and the second electrode, and the conductive particles and the electrode are not yet in contact with each other.

図4は電極の間に力が加わり始める段階であって、第1電極に力を加えることにより、第1電極と第2電極との間にある導電粒子が各電極に接触する状態である。電極の間への力の印加は治具(Jig)などを介して行われる。   FIG. 4 is a stage in which a force starts to be applied between the electrodes, and is a state where the conductive particles between the first electrode and the second electrode come into contact with each electrode by applying a force to the first electrode. Application of force between the electrodes is performed through a jig (Jig) or the like.

図5は電極の間に力がさらに加わる段階であって、第1電極に力がさらに加わることにより導電粒子の変形が発生する段階である。この際、導電粒子が変形しなければ、図6に示すように、導電粒子が電極を入り込む現象が発生し、これにより第2電極に亀裂が発生して不良の原因となる。よって、本発明で提示した圧縮変形量(Sv)が重要な意味を持つ。   FIG. 5 is a stage where a force is further applied between the electrodes, and the conductive particles are deformed when a force is further applied to the first electrode. At this time, if the conductive particles are not deformed, a phenomenon that the conductive particles enter the electrode occurs as shown in FIG. Therefore, the amount of compression deformation (Sv) presented in the present invention is important.

図7は電極の間に加わる力が除去される段階であって、異方性導電フィルム用樹脂は硬化が進み、導電粒子は変形した状態をそのまま維持する。   FIG. 7 is a stage in which the force applied between the electrodes is removed. The anisotropic conductive film resin is cured and the conductive particles are maintained in a deformed state.

図8はACF用樹脂が完全に硬化した段階であって、電極の間の導電粒子が第1電極と第2電極との間を電気的に安全に接続する。   FIG. 8 is a stage where the ACF resin is completely cured, and the conductive particles between the electrodes electrically connect the first electrode and the second electrode safely.

本実施形態の導電粒子は、TSP用異方性導電フィルム(ACF)に含まれてもよく、他の異方性導電材料に含めてもよい。また、導電粒子を含む異方性導電材料(ACF含む)は、各種の電子装置(例えばタッチスクリーンパネル)等に適用出来る。ここで、導電粒子を異方性導電材料に含める方法、及び異方性導電材料を電子装置に適用する方法は特に制限されず、従来の方法が任意に適用される。   The conductive particles of the present embodiment may be included in an anisotropic conductive film (ACF) for TSP, or may be included in another anisotropic conductive material. An anisotropic conductive material (including ACF) containing conductive particles can be applied to various electronic devices (for example, touch screen panels). Here, the method of including the conductive particles in the anisotropic conductive material and the method of applying the anisotropic conductive material to the electronic device are not particularly limited, and a conventional method is arbitrarily applied.

(実施例1)
(前処理)
脱イオン水1600gに分散安定剤「PVP−30K」15gを溶かした。該溶液にポリスチレンモノマー85gとメチルメタクリレートモノマー85gを入れて攪拌しながら懸濁液を作った。該懸濁液に重合剤としての過酸化ベンゾイル(Benzoyl peroxide)を1.5g添加し、攪拌してよく混合させた。モノマー懸濁液を85℃で加熱して重合反応を行い、反応が完結するまで12時間を維持した。合成が完了した後、懸濁液中の微粒子に対して濾過、洗浄、分級、乾燥工程を行って平均直径7.7μmのコア樹脂微粒子を得た。
Example 1
(Preprocessing)
15 g of a dispersion stabilizer “PVP-30K” was dissolved in 1600 g of deionized water. To this solution, 85 g of polystyrene monomer and 85 g of methyl methacrylate monomer were added and a suspension was prepared while stirring. 1.5 g of benzoyl peroxide as a polymerization agent was added to the suspension, and the mixture was stirred and mixed well. The monomer suspension was heated at 85 ° C. to conduct the polymerization reaction, and maintained for 12 hours until the reaction was completed. After the synthesis was completed, the fine particles in the suspension were filtered, washed, classified, and dried to obtain core resin fine particles having an average diameter of 7.7 μm.

(活性化核形成処理)
一方、樹脂粒子に突起があるように無電解メッキを施す場合は、メッキの際に還元された金属粒子がくっ付く活性化核を樹脂コアの表面に処理する追加の工程が必要である。例えば、アルカリ溶液または酸溶液でエッチングした樹脂コア粒子に対して、脱イオン水に塩酸(HCl)と塩化錫(SnCl)を溶かした溶液でセンシタイジング(sensitizing)を行い、脱イオン水に塩酸と塩化パラジウム(PdCl)を溶かした溶液でアクセレレイション(acceleration)を行う。前記センシタイジングは絶縁物質の表面にSn2+イオンを吸着させる工程であり、アクセレレイションはSn2++Pd2+→Sn4++Pdで表示される反応によって無電解メッキの触媒核(活性化核)を形成するための触媒処理工程である。本実施例1では、この方法により活性化核を形成した。
(Activated nucleation treatment)
On the other hand, when electroless plating is performed so that the resin particles have protrusions, an additional step of treating the surface of the resin core with activated nuclei to which the reduced metal particles adhere during plating is necessary. For example, resin core particles etched with an alkali solution or an acid solution are sensitized with a solution of hydrochloric acid (HCl) and tin chloride (SnCl 2 ) in deionized water, Acceleration is performed with a solution of hydrochloric acid and palladium chloride (PdCl 2 ). The sensitizing is a step of adsorbing Sn 2+ ions on the surface of the insulating material, and the acceleration is a catalyst nucleus (activated nucleus) of electroless plating by a reaction represented by Sn 2+ + Pd 2+ → Sn 4+ + Pd 0. It is a catalyst processing process for forming. In Example 1, activated nuclei were formed by this method.

(メッキ処理)
次に、3Lの反応器に脱イオン水2200mLを投入し、Ni塩として硫酸ニッケル240g、錯化剤として酢酸ナトリウム5g、安定剤としてPb−酢酸塩0.002g、および界面活性剤として3gのPEG−400を順次脱イオン水に溶解させてメッキ液(a)を製造した。前述した活性化核形成処理を済ませた、平均直径7.7μmのコア樹脂粒子50gをメッキ液(a)に入れ、ホモジナイザー(homogenizer)を用いて5分間分散処理を行った。分散処理の後、アンモニア水を用いてpHを6.5にした。
(Plating treatment)
Next, 2200 mL of deionized water was charged into a 3 L reactor, 240 g of nickel sulfate as the Ni salt, 5 g of sodium acetate as the complexing agent, 0.002 g of Pb-acetate as the stabilizer, and 3 g of PEG as the surfactant. -400 was sequentially dissolved in deionized water to produce a plating solution (a). 50 g of core resin particles having an average diameter of 7.7 μm, which had been subjected to the above-described activation nucleation treatment, were placed in the plating solution (a) and subjected to a dispersion treatment for 5 minutes using a homogenizer. After the dispersion treatment, the pH was adjusted to 6.5 using aqueous ammonia.

1Lのビーカーに脱イオン水300mL、還元剤として次亜リン酸ナトリウム260g、安定剤としてPb−酢酸塩0.001gを順次溶解させて溶液(b)を得た。   In a 1 L beaker, 300 mL of deionized water, 260 g of sodium hypophosphite as a reducing agent, and 0.001 g of Pb-acetate as a stabilizer were sequentially dissolved to obtain a solution (b).

前記3Lの反応器の温度を65℃に維持し、250rpmで攪拌しながら前記溶液(b)を定量ポンプで初期5分間20mL/minの速度で添加した後、残りは8mL/minで投入した。(b)溶液が全て投入されると、20分間反応を維持させて平均直径8.01μm、Sv1.51μm、V18.9%の導電粒子を製造した。Ni被覆層の層厚は155nm、突起の高さは356nmであった。   The temperature of the 3 L reactor was maintained at 65 ° C., and the solution (b) was added at a rate of 20 mL / min for 5 minutes with a metering pump while stirring at 250 rpm, and the rest was charged at 8 mL / min. (B) When all the solutions were added, the reaction was maintained for 20 minutes to produce conductive particles having an average diameter of 8.01 μm, Sv 1.51 μm, and V18.9%. The thickness of the Ni coating layer was 155 nm, and the height of the protrusion was 356 nm.

この際、コア樹脂微粒子及び導電粒子の平均直径は、Particle Size Analyzer(BECKMAN MULTISIZER TM3)を用いて測定されたモード値を用いた。測定されたコア樹脂微粒子及び導電粒子の数は150,000個であった。また、導電粒子の平均直径は、突起を除いた部分の平均直径である。   At this time, the average values of the core resin fine particles and the conductive particles used were mode values measured using a Particle Size Analyzer (BECKMAN MULTISIZER TM3). The number of measured core resin fine particles and conductive particles was 150,000. The average diameter of the conductive particles is the average diameter of the portion excluding the protrusions.

また、圧縮変形量は、1辺の長さが50μmの平面圧子(Indenter)を用いて、微小圧縮試験機(FISHERSCOPE HM2000)で測定した。圧縮変形量は、5個の導電粒子を測定し、その平均値(算術平均値)とした。具体的に、25℃でホットプレートを加熱し、その上に導電粒子をのせ、圧子(Indenter)の下降速度を0.33mN/secにしてMAX 50mNの力で測定し、導電粒子の変形した圧縮変形量を測定した。また、変曲点が発生した際の外力を変曲点発生力として測定した。変曲点発生力については表1に他の実施例及び比較例とまとめて示す。   The amount of compressive deformation was measured with a micro compression tester (FISHERSCOPE HM2000) using a flat indenter (Indenter) having a side length of 50 μm. The amount of compressive deformation was determined by measuring five conductive particles and averaging them (arithmetic average value). Specifically, a hot plate is heated at 25 ° C., conductive particles are placed thereon, the indenter descending speed is set to 0.33 mN / sec, and measured with a force of MAX 50 mN. The amount of deformation was measured. The external force when the inflection point was generated was measured as the inflection point generation force. The inflection point generation force is shown in Table 1 together with other examples and comparative examples.

(実施例2)
実施例1の前処理においてメチルメタクリレートモノマー140gとジビニルベンゼンモノマー10gを用いた他は、実施例1の前処理と同様の処理を行うことで、平均直径7.6μmのコア樹脂微粒子を作製した。その後、実施例1と同様の処理を行ったが、メッキ処理においては、溶液(b)を5分間20mL/minの速度で投入した後、残りは10mL/minの速度で投入した。これにより、平均直径8.05μm、Sv1.32μm、V16.4%、被覆層の層厚225nm、突起の高さ275nmの導電粒子を製造した。
(Example 2)
Core resin fine particles having an average diameter of 7.6 μm were prepared by performing the same treatment as that of Example 1 except that 140 g of methyl methacrylate monomer and 10 g of divinylbenzene monomer were used in the pretreatment of Example 1. Thereafter, the same treatment as in Example 1 was performed. In the plating treatment, the solution (b) was charged at a rate of 20 mL / min for 5 minutes, and the rest was charged at a rate of 10 mL / min. As a result, conductive particles having an average diameter of 8.05 μm, Sv of 1.32 μm, V16.4%, a coating layer thickness of 225 nm, and a protrusion height of 275 nm were produced.

(実施例3)
実施例1の前処理においてヘキサンジオールジアクリレートモノマー85gとジビニルベンゼンモノマー85gを用いた他は実施例1の前処理と同様の処理を行うことで、平均直径10μmのコア樹脂微粒子を作製した。その後、実施例1と同様の処理を行ったが、メッキ処理においては、コア樹脂微粒子の使用量を30g、硫酸ニッケルの使用量を120g、次亜リン酸ナトリウムの使用量を140gに変更した。また、溶液(b)を5分間20mL/minの速度で投入した後、残りは12mL/minの速度で投入した。これにより、平均直径10.3μm、Sv1.61μm、V15.6%、被覆層の層厚150nmおよび突起の高さ72nmの導電粒子を製造した。
(Example 3)
Core resin fine particles having an average diameter of 10 μm were prepared by performing the same treatment as that of Example 1 except that 85 g of hexanediol diacrylate monomer and 85 g of divinylbenzene monomer were used in the pretreatment of Example 1. Thereafter, the same treatment as in Example 1 was performed, but in the plating treatment, the amount of core resin fine particles used was changed to 30 g, the amount of nickel sulfate used was 120 g, and the amount of sodium hypophosphite used was changed to 140 g. Moreover, after charging the solution (b) at a rate of 20 mL / min for 5 minutes, the rest was charged at a rate of 12 mL / min. As a result, conductive particles having an average diameter of 10.3 μm, Sv of 1.61 μm, V of 15.6%, a coating layer thickness of 150 nm and a protrusion height of 72 nm were produced.

(実施例4)
実施例1の前処理においてポリエチレングリコールジメタクリレート#400モノマー85gとエチルアクリレートモノマー85gとを用いた他は、実施例1の前処理と同様の処理を行うことで、平均直径9.66μmのコア樹脂微粒子を作製した。その後、実施例1と同様の処理を行ったが、メッキ処理においては、コア樹脂微粒子の使用量を30g、硫酸ニッケルの使用量を120g、次亜リン酸ナトリウムの使用量を140gに変更した。また、溶液(b)を5分間20mL/minの速度で投入した後、残りは9mL/minの速度で投入した。これにより、平均直径10.1μm、Sv0.62μm、V6.1%、被覆層の層厚220nmおよび突起の高さ157nmの導電粒子を製造した。
Example 4
A core resin having an average diameter of 9.66 μm is obtained by performing the same treatment as that of Example 1 except that 85 g of polyethylene glycol dimethacrylate # 400 monomer and 85 g of ethyl acrylate monomer are used in the pretreatment of Example 1. Fine particles were prepared. Thereafter, the same treatment as in Example 1 was performed, but in the plating treatment, the amount of core resin fine particles used was changed to 30 g, the amount of nickel sulfate used was 120 g, and the amount of sodium hypophosphite used was changed to 140 g. Further, the solution (b) was charged at a rate of 20 mL / min for 5 minutes, and the rest was charged at a rate of 9 mL / min. As a result, conductive particles having an average diameter of 10.1 μm, Sv of 0.62 μm, V6.1%, a layer thickness of the coating layer of 220 nm, and a protrusion height of 157 nm were produced.

(実施例5)
実施例1の前処理においてスチレンモノマー150gとジビニルベンゼンモノマー10gを用いた他は、実施例1の前処理と同様の処理を行うことで、平均直径14.9μmのコア樹脂微粒子を作製した。その後、実施例1と同様の処理を行ったが、メッキ処理においては、コア樹脂微粒子の使用量を30g、硫酸ニッケルの使用量を120g、次亜リン酸ナトリウムの使用量を140gに変更した。また、溶液(b)を5分間20mL/minの速度で投入した後、残りは8mL/minの速度で投入した。これにより、平均直径15.4μm、Sv3.4μm、V22.1%、被覆層の層厚250nmおよび突起の高さ184nmの導電粒子を製造した。
(Example 5)
Core resin fine particles having an average diameter of 14.9 μm were prepared by carrying out the same treatment as that of Example 1 except that 150 g of styrene monomer and 10 g of divinylbenzene monomer were used in the pretreatment of Example 1. Thereafter, the same treatment as in Example 1 was performed, but in the plating treatment, the amount of core resin fine particles used was changed to 30 g, the amount of nickel sulfate used was 120 g, and the amount of sodium hypophosphite used was changed to 140 g. Further, the solution (b) was charged at a rate of 20 mL / min for 5 minutes, and the rest was charged at a rate of 8 mL / min. As a result, conductive particles having an average diameter of 15.4 μm, Sv of 3.4 μm, V22.1%, a coating layer thickness of 250 nm, and a protrusion height of 184 nm were produced.

(実施例6)
実施例1の前処理においてスチレンモノマー80gとメチルメタクリレートモノマー80gとを用いた他は実施例1と同様の処理を行うことで平均直径3.90μmのコア樹脂微粒子を作製した。その後、実施例1と同様の処理を行ったが、メッキ処理においては、コア樹脂微粒子の使用量を25g、硫酸ニッケルの使用量を120g、次亜リン酸ナトリウムの使用量を140gに変更した。また、溶液(b)を5分間20mL/minの速度で投入した後、残りは12mL/minの速度で投入した。これにより、平均直径4.08μm、Sv0.78μm、V19.5%、被覆層の層厚90nmおよび突起の高さ101nmの導電粒子を製造した。
(Example 6)
Core resin fine particles having an average diameter of 3.90 μm were prepared by carrying out the same treatment as in Example 1 except that 80 g of styrene monomer and 80 g of methyl methacrylate monomer were used in the pretreatment of Example 1. Thereafter, the same treatment as in Example 1 was performed, but in the plating treatment, the amount of core resin fine particles used was changed to 25 g, the amount of nickel sulfate used was 120 g, and the amount of sodium hypophosphite used was changed to 140 g. Moreover, after charging the solution (b) at a rate of 20 mL / min for 5 minutes, the rest was charged at a rate of 12 mL / min. Thus, conductive particles having an average diameter of 4.08 μm, Sv of 0.78 μm, V of 19.5%, a coating layer thickness of 90 nm, and a protrusion height of 101 nm were produced.

(実施例7)
実施例1で製造された導電粒子にAuメッキを施すことで、平均粒径8.0μm、Sv1.5μm、V18.8%、Ni/Au被覆層の層厚150nmおよび突起の高さ340nmのNi/Au導電粒子を製造した。なお、Auメッキは、Ni金属との置換反応により行われた。このため、Ni/Au被覆層の厚さは、実施例1のNi被覆層の厚さと略同一となる。
(Example 7)
By subjecting the conductive particles produced in Example 1 to Au plating, Ni having an average particle size of 8.0 μm, Sv of 1.5 μm, V18.8%, a Ni / Au coating layer thickness of 150 nm, and a protrusion height of 340 nm. / Au conductive particles were produced. In addition, Au plating was performed by substitution reaction with Ni metal. For this reason, the thickness of the Ni / Au coating layer is substantially the same as the thickness of the Ni coating layer of Example 1.

(実施例8)
活性化核形成処理を行わなかったこと、及びメッキ処理において溶液(b)を定量ポンプで20mL/minの速度で添加し、しかる後に、20分間反応を維持させたこと以外は実施例1と同様の処理を行った。これにより、平均直径8.2μm、Sv1.52μm、V18.5%および被覆層の層厚250nmを有する、突起のない導電粒子を製造した。
(Example 8)
The same as in Example 1 except that the activated nucleation treatment was not performed and the solution (b) was added at a rate of 20 mL / min with a metering pump in the plating treatment, and then the reaction was maintained for 20 minutes. Was processed. As a result, conductive particles without protrusions having an average diameter of 8.2 μm, Sv of 1.52 μm, V of 18.5% and a coating layer thickness of 250 nm were produced.

(実施例9)
実施例8で製造された導電粒子にAuメッキを施すことで、平均直径8.2μm、Sv1.50μm、V18.3%およびNi/Au被覆層の層厚250nmを有する、突起のないNi/Au導電粒子を製造した。なお、Auめっきは、Ni金属との置換反応により行われた。このため、Ni/Au被覆層の厚さは、実施例8のNi被覆層の厚さと略同一になる。
Example 9
By applying Au plating to the conductive particles produced in Example 8, Ni / Au without protrusions having an average diameter of 8.2 μm, Sv of 1.50 μm, V18.3% and a Ni / Au coating layer thickness of 250 nm. Conductive particles were produced. In addition, Au plating was performed by substitution reaction with Ni metal. For this reason, the thickness of the Ni / Au coating layer is substantially the same as the thickness of the Ni coating layer of Example 8.

(実施例10)
実施例1の前処理で製造されたコア樹脂微粒子にCuメッキを施した。CuメッキはCuめっき液MS−KAPA(MSC社製)製品を使用した。これにより、平均直径7.9μm、Sv1.30μm、V16.5%および被覆層の層厚100nmを有する、突起のない導電粒子を製造した。
(Example 10)
The core resin fine particles produced by the pretreatment of Example 1 were subjected to Cu plating. For Cu plating, a Cu plating solution MS-KAPA (manufactured by MSC) was used. As a result, conductive particles without protrusions having an average diameter of 7.9 μm, Sv 1.30 μm, V 16.5% and a coating layer thickness of 100 nm were produced.

(実施例11)
2Lの反応器にDIW(脱イオン水)500gおよびEtOH500gを仕込み、アクリルアミド2gと少量の界面活性剤を添加し、120mLのAg2gを溶液に添加した後、溶液を65℃に2時間維持した。その後、実施例8で製造された導電粒子20gを上記溶液に入れて250rpmで12時間維持することで、平均直径8.2μm、Sv1.43μm、V17.4%、被覆層の層厚250nmおよび突起の高さ120nmのNi/Ag突起付き導電粒子を製造した。
(Example 11)
A 2 L reactor was charged with 500 g DIW (deionized water) and 500 g EtOH, 2 g acrylamide and a small amount of surfactant were added, 120 mL Ag 2 g was added to the solution, and then the solution was maintained at 65 ° C. for 2 hours. Thereafter, 20 g of the conductive particles produced in Example 8 were placed in the above solution and maintained at 250 rpm for 12 hours, whereby an average diameter of 8.2 μm, Sv of 1.43 μm, V of 17.4%, a coating layer thickness of 250 nm and protrusions The conductive particles with Ni / Ag protrusions having a height of 120 nm were produced.

(比較例1)
実施例1の前処理においてモノマーエチレングリコールジメタクリレート85gとジビニルベンゼンモノマー85gを用いた他は実施例1と同様の処理を行うことで平均直径8.8μmのコア樹脂微粒子を作製した。その後、実施例1と同様の処理を行ったが、メッキ処理においては、コア樹脂微粒子55gを用いた。これにより、平均直径9.1μm、Sv4.25μmおよびV46.7%の導電粒子を製造した。Ni被覆層の層厚は150nm、突起の高さは154nmであった。
(Comparative Example 1)
Core resin fine particles having an average diameter of 8.8 μm were prepared by performing the same treatment as in Example 1 except that 85 g of monomer ethylene glycol dimethacrylate and 85 g of divinylbenzene monomer were used in the pretreatment of Example 1. Thereafter, the same treatment as in Example 1 was performed, but 55 g of core resin fine particles were used in the plating treatment. As a result, conductive particles having an average diameter of 9.1 μm, Sv 4.25 μm, and V46.7% were manufactured. The thickness of the Ni coating layer was 150 nm, and the height of the protrusion was 154 nm.

(比較例2)
実施例1の前処理においてエチレングリコールジメタクリレートモノマー100gとジビニルベンゼンモノマー60gとを用いた他は、実施例1の前処理と同様の処理を行うことで、平均直径4.0μmのコア樹脂微粒子を作製した。その後、実施例1と同様の処理を行ったが、メッキ処理においては、コア樹脂微粒子の使用量を30gとした。これにより、平均直径4.25μm、Sv2.55μm、V46.7%、被覆層の層厚125nmおよび突起の高さ135nmの導電粒子を製造した。
(Comparative Example 2)
The core resin fine particles having an average diameter of 4.0 μm were obtained by performing the same treatment as that of Example 1 except that 100 g of ethylene glycol dimethacrylate monomer and 60 g of divinylbenzene monomer were used in the pretreatment of Example 1. Produced. Thereafter, the same treatment as in Example 1 was performed, but the amount of the core resin fine particles used was 30 g in the plating treatment. Thus, conductive particles having an average diameter of 4.25 μm, Sv 2.55 μm, V46.7%, a coating layer thickness of 125 nm, and a protrusion height of 135 nm were manufactured.

(実験例)
(実験例1:接続抵抗の測定)
接続抵抗を測定するためにエポキシ樹脂と前記導電粒子を混合し、フィルム状に作って電極と接合させた後、初期抵抗を測定した。
(Experimental example)
(Experimental example 1: measurement of connection resistance)
In order to measure the connection resistance, the epoxy resin and the conductive particles were mixed, formed into a film, joined to the electrode, and then the initial resistance was measured.

Figure 2019207889
Figure 2019207889

これによれば、本発明の実施例に係る6≦V≦25であり、かつ、変曲点発生力が1.0〜15mNであるものの抵抗が低いことが分かる。また、これらの条件が成立し、かつ、平均直径が4〜16μm、被覆層の厚さが30〜400nm、または突起の高さが50nm〜500nmとなる場合には、初期抵抗が特に低くなる。   According to this, it can be seen that the resistance is low although 6 ≦ V ≦ 25 according to the embodiment of the present invention and the inflection point generation force is 1.0 to 15 mN. In addition, when these conditions are satisfied and the average diameter is 4 to 16 μm, the thickness of the coating layer is 30 to 400 nm, or the height of the protrusion is 50 nm to 500 nm, the initial resistance is particularly low.

以上、本発明の実施例について説明したが、本発明は、上述した実施例に限定されず、本発明の属する分野における通常の知識を有する者であれば、本発明の概念を外れることなく変形を加えることが可能である。それらの変形は本発明の範囲に属する。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and any person having ordinary knowledge in the field to which the present invention belongs can be modified without departing from the concept of the present invention. Can be added. These variations belong to the scope of the present invention.

前述した発明に対する権利範囲は、特許請求の範囲によって定められるものであって、明細書本文の記載にはなんら拘束されない。さらに、特許請求の範囲の均等範囲に属する変形や変更はすべて本発明の範囲内のものである。   The scope of the right to the invention described above is defined by the scope of the claims, and is not restricted by the description of the specification. Further, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.

Claims (19)

複数の電極を互いに電気的に接続する導電粒子であって、
当該導電粒子は、樹脂微粒子、および前記樹脂微粒子の外面に形成される被覆層を有し、
前記導電粒子を圧縮変形させる場合、前記導電粒子の変形増加率の増加が発生する時点よりも前では、前記導電粒子は弾性変形をし、当該時点よりも後では、前記導電粒子は、塑性変形(前記導電粒子全体が破壞される場合は除く)することを特徴とする導電粒子。
Conductive particles that electrically connect a plurality of electrodes to each other,
The conductive particles have resin fine particles and a coating layer formed on the outer surface of the resin fine particles,
When the conductive particles are compressively deformed, the conductive particles undergo elastic deformation before the time point at which the deformation increase rate of the conductive particles increases, and after the time point, the conductive particles are plastically deformed. Conductive particles (except when the entire conductive particles are broken).
前記導電微粒子の変形増加率の増加が発生する時点における前記外力は、1.9〜13.5mNであることを特徴とする請求項1記載の導電粒子。   2. The conductive particle according to claim 1, wherein the external force is 1.9 to 13.5 mN when the deformation increase rate of the conductive fine particle is increased. 前記導電粒子の平均直径は、4μm〜16μmである請求項1又は2記載の導電粒子。   The conductive particles according to claim 1, wherein the conductive particles have an average diameter of 4 μm to 16 μm. 前記樹脂微粒子の外面に形成される被覆層の厚さが100nm〜250nmである請求項1ないし3のいずれか1項に記載の導電粒子。   4. The conductive particle according to claim 1, wherein the coating layer formed on the outer surface of the resin fine particles has a thickness of 100 nm to 250 nm. タッチスクリーンパネル用のものである、請求項1ないし4のいずれか1項に記載の導電粒子。   The conductive particle according to claim 1, which is for a touch screen panel. 前記導電粒子の下式1で示される変曲開始変形率(V値)が、V値が6≦V≦25であることを特徴とする、請求項1ないし5のいずれか1項に記載の導電粒子。
(式1)
V(%)=Sv/D*100
(式中、Vは変曲開始変形率を示し、Svは前記導電粒子を前記導電粒子に加える外力(load)を増加させたときに前記導電粒子の前記変形増加率(=△圧縮変形量/△外力)の増加が発生する時点の圧縮変形量を示し、Dは前記導電粒子の平均直径(μm)を示し、前記変形増加率の増加が開始する時点における前記外力は、1.9〜13.5mNである。)
6. The inflection start deformation rate (V value) represented by the following formula 1 of the conductive particles has a V value of 6 ≦ V ≦ 25, according to claim 1, wherein: Conductive particles.
(Formula 1)
V (%) = Sv / D * 100
(Where V represents the inflection start deformation rate, and Sv represents the deformation increase rate of the conductive particles when the external force (load) applied to the conductive particles is increased (= Δ compression deformation amount / [Delta] indicates the amount of compressive deformation at the time when an increase in external force occurs, D indicates the average diameter ([mu] m) of the conductive particles, and the external force at the time when the increase in deformation increases starts is 1.9 to 13 .5mN.)
前記被覆層は、Ni、Pd、Ag、Cu、及びAuよりなる群から選ばれる1種または2種以上の合金からなる、請求項1ないし6のいずれか1項に記載の導電粒子。   The conductive particle according to any one of claims 1 to 6, wherein the coating layer is made of one or more alloys selected from the group consisting of Ni, Pd, Ag, Cu, and Au. 前記被覆層は、Ni、Ag、Cu、及びAuよりなる群から選ばれる1種または2種以上の合金からなる、請求項7に記載の導電粒子。   The conductive particle according to claim 7, wherein the coating layer is made of one or more alloys selected from the group consisting of Ni, Ag, Cu, and Au. 前記樹脂微粒子は、スチレン、メチルメタクリレート、ジビニルベンゼン、ヘキサンジオールジアクリレート、エチルアクリレート、及びエチレングリコールジメタクリレートから選択される1種又は2種以上の重合体からなる、請求項1〜8のいずれか1項に記載の導電粒子。   9. The resin fine particle according to claim 1, wherein the resin fine particles are composed of one or more polymers selected from styrene, methyl methacrylate, divinylbenzene, hexanediol diacrylate, ethyl acrylate, and ethylene glycol dimethacrylate. 2. Conductive particles according to item 1. 前記樹脂微粒子は、スチレン、メチルメタクリレート、ジビニルベンゼン、ヘキサンジオールジアクリレート、エチルアクリレート、及びエチレングリコールジメタクリレートから選択される2種の重合体からなる、請求項9に記載の導電粒子。   The conductive particles according to claim 9, wherein the resin fine particles are made of two polymers selected from styrene, methyl methacrylate, divinylbenzene, hexanediol diacrylate, ethyl acrylate, and ethylene glycol dimethacrylate. 前記導電粒子の平均直径は、7μm〜16μmである、請求項1〜10のいずれか1項に記載の導電粒子。   The conductive particles according to claim 1, wherein the conductive particles have an average diameter of 7 μm to 16 μm. 前記被覆層は表面に高さ50nm〜500nmの突起を備えることを特徴とする、請求項1〜11のいずれか1項に記載の導電粒子。   The conductive particle according to claim 1, wherein the coating layer has a protrusion having a height of 50 nm to 500 nm on a surface thereof. 前記突起が前記被覆層と同一の物質からなることを特徴とする、請求項12に記載の導電粒子。   The conductive particle according to claim 12, wherein the protrusion is made of the same material as the coating layer. 前記被覆層の外面には、Au又はAgからなる追加の被覆層をさらに含むことを特徴とする、請求項1〜7のいずれか1項に記載の導電粒子。   The conductive particles according to claim 1, further comprising an additional coating layer made of Au or Ag on an outer surface of the coating layer. 前記導電粒子はTSP(Touch Screening Panel)用異方性導電フィルム(ACF)に含まれることを特徴とする、請求項1〜14のいずれか1項に記載の導電粒子。   The conductive particles according to claim 1, wherein the conductive particles are included in an anisotropic conductive film (ACF) for TSP (Touch Screening Panel). 請求項1〜15のいずれか1項に記載の導電粒子を含む異方性導電材料。   An anisotropic conductive material comprising the conductive particles according to claim 1. 請求項16に記載の異方性導電材料を含む電子装置。   An electronic device comprising the anisotropic conductive material according to claim 16. タッチパネルの電極の破壊を防ぎつつ、電極同士の短絡を防止する方法であって、
タッチスクリーンパネル用導電粒子として、樹脂微粒子、および前記樹脂微粒子の外面に形成される被覆層を有する導電粒子を用い、
当該導電粒子の平均直径は、4μm〜16μmであり、
前記被覆層の厚さは、100nm〜250nmであり、
下記式1による変曲開始変形率(V値)が6≦V≦25であり、
前記導電粒子を圧縮変形させる場合、前記導電粒子の変形増加率の増加が発生する時点よりも前では、前記導電粒子は弾性変形をし、当該時点よりも後では、前記導電粒子は、塑性変形(前記導電粒子全体が破壞される場合は除く)することを特徴とする方法。
(式1)
V(%)=Sv/D*100
(式中、Vは変曲開始変形率を示し、Svは前記導電粒子を前記導電粒子に加える外力(load)を増加させたときに前記導電粒子の前記変形増加率(=△圧縮変形量/△外力)の増加が発生する時点の圧縮変形量を示し、Dは前記導電粒子の平均直径(μm)を示し、前記変形増加率の増加が開始する時点における前記外力は、1.9〜13.5mNである。)
A method for preventing a short circuit between electrodes while preventing destruction of the electrodes of the touch panel,
As conductive particles for touch screen panel, using conductive particles having resin fine particles and a coating layer formed on the outer surface of the resin fine particles,
The average diameter of the conductive particles is 4 μm to 16 μm,
The coating layer has a thickness of 100 nm to 250 nm,
The inflection start deformation rate (V value) according to the following formula 1 is 6 ≦ V ≦ 25,
When the conductive particles are compressively deformed, the conductive particles undergo elastic deformation before the time point at which the deformation increase rate of the conductive particles increases, and after the time point, the conductive particles are plastically deformed. (Excluding the case where the entire conductive particle is broken).
(Formula 1)
V (%) = Sv / D * 100
(Where V represents the inflection start deformation rate, and Sv represents the deformation increase rate of the conductive particles when the external force (load) applied to the conductive particles is increased (= Δ compression deformation amount / Δ represents the amount of compressive deformation at the time when the increase in external force occurs, D represents the average diameter (μm) of the conductive particles, and the external force at the time when the increase in the deformation increase rate starts is 1.9 to 13 .5mN.)
当該導電粒子の、変曲点発生力が1.0〜15mNであることを特徴とする請求項18記載の方法。

The method according to claim 18, wherein the inflection point generation force of the conductive particles is 1.0 to 15 mN.

JP2019156792A 2012-12-31 2019-08-29 Conductive particles and use thereof Pending JP2019207889A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020120158348A KR101284027B1 (en) 2012-12-31 2012-12-31 Conductive particles for touch screen panel, and conductive materials including the same
KR10-2012-0158348 2012-12-31
JP2013160455 2013-08-01
JP2013160455 2013-08-01

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017134014A Division JP2017188482A (en) 2012-12-31 2017-07-07 Conductive particles for touch screen panel, and conductive materials including the same

Publications (1)

Publication Number Publication Date
JP2019207889A true JP2019207889A (en) 2019-12-05

Family

ID=52671558

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2013265643A Active JP6231374B2 (en) 2012-12-31 2013-12-24 Conductive particles for touch screen panel and conductive material containing the same
JP2017134014A Pending JP2017188482A (en) 2012-12-31 2017-07-07 Conductive particles for touch screen panel, and conductive materials including the same
JP2019156792A Pending JP2019207889A (en) 2012-12-31 2019-08-29 Conductive particles and use thereof

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2013265643A Active JP6231374B2 (en) 2012-12-31 2013-12-24 Conductive particles for touch screen panel and conductive material containing the same
JP2017134014A Pending JP2017188482A (en) 2012-12-31 2017-07-07 Conductive particles for touch screen panel, and conductive materials including the same

Country Status (1)

Country Link
JP (3) JP6231374B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6231374B2 (en) * 2012-12-31 2017-11-15 株式会社ドクサンハイメタル Conductive particles for touch screen panel and conductive material containing the same
JP7217642B2 (en) 2019-02-20 2023-02-03 住友重機械工業株式会社 Neutron capture therapy system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1171560A (en) * 1997-08-28 1999-03-16 Ricoh Co Ltd Anisotropically electroconductive adhesive material, and liquid crystal display and its production
JP2011243456A (en) * 2010-05-19 2011-12-01 Sekisui Chem Co Ltd Conductive particles, anisotropic conductive materials, and connection structure

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1173817A (en) * 1997-08-28 1999-03-16 Ricoh Co Ltd Conductive particle, anisotropic conductive adhesive material, and liquid crystal display
JP3696429B2 (en) * 1999-02-22 2005-09-21 日本化学工業株式会社 Conductive electroless plating powder, method for producing the same, and conductive material comprising the plating powder
JP2004296322A (en) * 2003-03-27 2004-10-21 Sekisui Chem Co Ltd Conductive particulate and liquid crystal display element
JP2005327510A (en) * 2004-05-12 2005-11-24 Sekisui Chem Co Ltd Conductive fine particle and anisotropic conductive material
JP4936678B2 (en) * 2005-04-21 2012-05-23 積水化学工業株式会社 Conductive particles and anisotropic conductive materials
JP2007035574A (en) * 2005-07-29 2007-02-08 Sekisui Chem Co Ltd Conductive particulates, anisotropic conductive material, and connection structural body
JP5435465B2 (en) * 2009-10-06 2014-03-05 株式会社ジャパンディスプレイ Mounting structure, electro-optical device, and touch panel
JP5245011B2 (en) * 2010-08-11 2013-07-24 株式会社日本触媒 Polymer fine particles, conductive fine particles, and anisotropic conductive materials
JP2012185751A (en) * 2011-03-07 2012-09-27 Fujitsu Component Ltd Touch panel
KR20140054337A (en) * 2011-09-22 2014-05-08 가부시기가이샤 닛뽕쇼꾸바이 Electroconductive fine particles and anisotropic conductive material containing same
JP6231374B2 (en) * 2012-12-31 2017-11-15 株式会社ドクサンハイメタル Conductive particles for touch screen panel and conductive material containing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1171560A (en) * 1997-08-28 1999-03-16 Ricoh Co Ltd Anisotropically electroconductive adhesive material, and liquid crystal display and its production
JP2011243456A (en) * 2010-05-19 2011-12-01 Sekisui Chem Co Ltd Conductive particles, anisotropic conductive materials, and connection structure

Also Published As

Publication number Publication date
JP2015046144A (en) 2015-03-12
JP2017188482A (en) 2017-10-12
JP6231374B2 (en) 2017-11-15

Similar Documents

Publication Publication Date Title
JP4387175B2 (en) Coated conductive particles, anisotropic conductive material, and conductive connection structure
JP4052832B2 (en) Conductive fine particles, method for producing conductive fine particles, and anisotropic conductive material
JP4638341B2 (en) Conductive fine particles and anisotropic conductive materials
KR20100138868A (en) Polymer particle, conductive particle, anisotropic conductive material, and connection structure
TW201125661A (en) Conductive fine particles and anisotropic conductive material
TW201005760A (en) Conducting particle, anisotropic conductive film, and connected structure, and method of connecting
JPWO2005073985A1 (en) Conductive fine particles and anisotropic conductive materials
JP4936678B2 (en) Conductive particles and anisotropic conductive materials
JP2020095966A (en) Conductive particle, conductive material, and connecting structure
WO2013027575A1 (en) Anisotropic conductive film, process for producing anisotropic conductive film, connecting method, and bonded object
KR101713015B1 (en) Graphene Coated Conductive particles, and conductive materials including the same
JP2019207889A (en) Conductive particles and use thereof
JP4605225B2 (en) Circuit connection material, circuit member connection structure using the same, and manufacturing method thereof
JP2021027027A (en) Electroconductive particle, electroconductive material, and connection structure
JP5973015B2 (en) Conductive particles and conductive materials containing conductive particles
JP4088137B2 (en) Conductive fine particles and anisotropic conductive materials
JP5982217B2 (en) Conductive particles, anisotropic conductive materials, and connection structures
JP2007035574A (en) Conductive particulates, anisotropic conductive material, and connection structural body
JP5010417B2 (en) Conductive particles and anisotropic conductive material using the same
JP5529901B2 (en) Conductive particles and anisotropic conductive materials
KR101284027B1 (en) Conductive particles for touch screen panel, and conductive materials including the same
JP2010027609A (en) Conductive particle, conductive material, and anisotropic conductive film
JP7144472B2 (en) Conductive particles, conductive materials and connecting structures
JP2004362838A (en) Conductive particulate and anisotropic conductive material
JP4714719B2 (en) Method for producing conductive fine particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200728

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210602

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210901

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211208