JP2019050186A - 自立電極及びその製造方法 - Google Patents

自立電極及びその製造方法 Download PDF

Info

Publication number
JP2019050186A
JP2019050186A JP2018142355A JP2018142355A JP2019050186A JP 2019050186 A JP2019050186 A JP 2019050186A JP 2018142355 A JP2018142355 A JP 2018142355A JP 2018142355 A JP2018142355 A JP 2018142355A JP 2019050186 A JP2019050186 A JP 2019050186A
Authority
JP
Japan
Prior art keywords
electrode
active material
manufacturing
electrode active
production method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018142355A
Other languages
English (en)
Inventor
ピアス ニール
Pierce Neal
ピアス ニール
アルチュニアン アヴェチク
Harutyunyan Avetik
アルチュニアン アヴェチク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Publication of JP2019050186A publication Critical patent/JP2019050186A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0095Preparation of aerosols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0046Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0419Methods of deposition of the material involving spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00306Reactor vessels in a multiple arrangement
    • B01J2219/00322Reactor vessels in a multiple arrangement the individual reactor vessels being arranged serially in stacks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00479Means for mixing reactants or products in the reaction vessels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

【課題】フレキシブル電極として使用可能な複合材製品を製造する方法の提供。【解決手段】ナノチューブと電極活物質の混合物のエアロゾルを、所望の厚さに達するまで、フィルター等の多孔質基板上に集める。このようにして得られた自立電極は多孔質基板から分離され、電池電極として機能する。【選択図】図1

Description

共同研究契約
本願の特許請求の範囲に係る発明は、共同研究契約の下記の当事者によって、又は当該当事者のために、なされたものである。共同研究契約は本発明がなされた日以前に有効であり、本発明は共同研究契約の範囲内で行われた業務の結果としてなされたものである。共同研究契約の当事者は1)Honda Research Institute USA,Inc.及び2)NanoSynthesis Plus,Ltd.である。
単層カーボンナノチューブ(SWNT)は優れた電気的特性及び機械的特性、並びに複合材料に不可欠な高いアスペクト比を有する。そのため、様々なマトリックスの添加剤としてSWNTを利用することが、最も重点的に研究される応用分野の1つとなっている。様々な応用のうち、電池電極の性能を改善するためのSWNT添加剤が有望視されている。SWNTの混合は主に液体プロセスによって行われ、a)ナノチューブの合成、b)適当な溶媒中でのナノチューブの分散(脱凝集)、c)ナノチューブ表面の機能化(凝集からの保護)、d)バインダーとの混合、及びe)活物質との混合(スラリー調製)という5つの工程を含む。
このようなプロセスは高コストであり、加えてナノチューブの特性の低下につながる。例えば、ボールミルや超音波によって分散を行うと、アスペクト比低下と欠陥発生が避けられず、そのため性能を改善するためにはより多くのナノチューブ添加量(重量%)が必要となる。
幾つかの実施形態において、本開示は自立電極の製造方法に関する。当該製造方法では、ナノチューブと電極活物質粉末の混合物のエアロゾルを調製し、この混合物を多孔質基板上に集め、自立電極を形成する。
幾つかの実施形態において、本開示は自立電極の製造方法に関する。当該製造方法は、ナノチューブと電極活物質粉末との混合物のエアロゾルを調製する工程;少なくとも第1の多孔質基板を用意する工程;該混合物のエアロゾルを第1の多孔質基板に向かって移動させる工程;及び第1の多孔質基板上に混合物を集め、自立電極を形成する工程を含み、この自立電極はバインダー及び金属系集電体を含まない。
幾つかの実施形態において、本開示は自立電極の製造方法に関する。当該製造方法は、電極活物質をエアロゾル化してエアロゾル状電極活物質粉末を調製する工程;キャリアガス中でエアロゾル状電極活物質粉末を単層カーボンナノチューブに接触させ、単層カーボンナノチューブとエアロゾル状電極活物質粉末の混合物を調製する工程;表面上に該混合物を集める工程;及びキャリアガスを除去し、単層カーボンナノチューブと電極活物質の複合材である自立電極材料を形成する工程を含み、この自立電極はバインダー及び金属系集電体を含まない。
幾つかの実施形態において、本開示は自立電極を製造するための装置に関する。当該装置は、単層カーボンナノチューブを製造するための単層カーボンナノチューブ合成反応器;電極活物質をエアロゾル化してエアロゾル状電極活物質粉末を調製するための反応器であって、キャリアガス中でエアロゾル状電極活物質粉末を単層カーボンナノチューブに接触させて単層カーボンナノチューブとエアロゾル状電極活物質粉末の混合物を調製するために、カーボンナノチューブ合成反応器に連結されているエアロゾル化反応器;及び混合物を集め、キャリアガスを除去して、単層カーボンナノチューブと電極活物質の複合材である自立電極材料を形成するための表面を有する収集チャンバを有する。
幾つかの実施形態において、本開示は自立電極に関する。当該自立電極は、電極活物質と単層カーボンナノチューブの複合材を含み、バインダー材料も金属系集電体材料も含まない。
図1は本開示の一実施形態による自立電極の製造方法の一例を示す概略ブロック図である。 図2は本開示の一実施形態による自立電極の製造装置の一例を示すフロー図である。 図3は本開示の一実施形態による容器を示す概略図である。 図4は本開示の一実施形態による自立電極の製造装置の一例を示すフロー図である。 図5は本開示の一実施形態による装置の一例を示す概略図である。 図6は本開示の一実施形態による合成カーボンナノチューブの微分熱重量分析(DTG)を示す。 図7は多孔質表面から集められた自立電極を示す。 図8は密度増加処理後の自立電極を示す。 図9は処理後の自立電極を示す拡大側面図である。 図10は処理後の自立電極を示す拡大上面図である。
本開示は自立電極を製造するための方法及び装置を提供する。また、ナノチューブと電極活物質の混合物を含む自立電極を提供する。
一実施形態においては、ナノチューブと電極活物質の混合物のエアロゾルを調製し、この混合物のエアロゾルを多孔質基板に移し、当該基板上にカーボンナノチューブと電極活物質の混合物を含む自立電極を形成する。
幾つかの実施形態においては、本開示は自立電極の製造方法に関する。当該製造方法は、電極活物質をエアロゾル化してエアロゾル状電極活物質粉末を調製する工程と、キャリアガス中でエアロゾル状電極活物質粉末を単層カーボンナノチューブに接触させ、単層カーボンナノチューブとエアロゾル状電極活物質粉末の混合物を調製する工程と、表面上に混合物を集める(collecting)工程と、キャリアガスを除去し、単層カーボンナノチューブと電極活物質の複合材からなる自立電極材料を形成する工程と、を含む。
本明細書において、「電極活物質」は電極に含まれる導電性物質を表す。「電極」は電解質及び外部回路との間でイオン及び電子を交換する導電体を表す。「正極」及び「カソード」は本明細書において同義であり、電気化学電池中で電極電位が高いほうの電極(即ち、負極よりも高い電極電位を示す電極)を表す。「負極」及び「アノード」は本明細書において同義であり、電気化学電池中で電極電位が低いほうの電極(即ち、正極よりも低い電極電位を示す電極)を表す。カソード還元はある化学種が電子を獲得することを表し、アノード酸化はある化学種が電子を放出することを表す。
図1に示すように、非限定的な一例においては、工程S100でカーボンナノチューブと電極活物質の混合物のエアロゾルを調製し、工程S101で混合物のエアロゾルを多孔質基板に移動させ、当該カーボンナノチューブと電極活物質との混合物を含む複合材自立電極を所望の厚さで形成することによって、Liイオン電池用自立電極を製造する。例えば自立電極の密度を増加させるために、工程S102で自立電極を任意に処理してもよい。自立電極は自立型で、フレキシブルであり、且つ任意に所望の電池電極寸法に切断できる。自立電極はバインダーを含まないものであってよく、また金属系集電体(電極の種類に応じ、典型的にはアルミナ又は銅)を使用せずに利用可能である。
カーボンナノチューブと電極活物質の混合物のエアロゾルを調製する装置は限定されない。図2に示す説明用の例では、自立電極を製造する装置5が示されている。カーボンナノチューブと電極活物質を容器10に入れる。カーボンナノチューブと電極活物質は、各製造プロセスから別々に集められ(collected)、自立電極のために所望の比率になるように該製造プロセスから直接的又は間接的に容器10に投入されてよい。次に、ナノチューブと電極活物質の混合物をエアロゾル化するために、1種以上のキャリアガス20を容器10に導入してよい。キャリアガス中に取り込まれたナノチューブと電極活物質を含む混合エアロゾル流30を多孔質基板40(フィルター等)に向けて移動させる。キャリアガスはガス流50として多孔質基板40を通過する。その間、ナノチューブと電極活物質の混合物は多孔質基板40の表面上に捕獲され、自立電極60を形成する。自立電極60が所望の厚さになると、該自立電極60を多孔質基板40から分離できる。
自立電極60、61を連続的に製造するために、装置5は複数の多孔質基板40、41を有していてもよい。2つの多孔質基板のみを図示するが、装置5は任意の数の多孔質基板を有していてもよいと解されるべきである。非限定的な一例においては、混合エアロゾル流30を多孔質基板40に流通させて所望の厚さの自立電極60を製造する際、混合エアロゾル流30の流れが第2の多孔質基板41に向かうように、バルブ33を調節してよい。自立電極61を多孔質基板41上に形成する間、自立電極60を第1の多孔質基板40から取り外してよい。混合エアロゾル流30を第2の多孔質基板41に流通させて所望の厚さの自立電極61を製造する際、混合エアロゾル流30の流れが第1の多孔質基板40に戻るように、バルブ33を調節してよい。自立電極61の厚さ及び/又は断面積は自立電極60と同じであっても異なっていてもよい。例えば、自立電極61は自立電極60よりも大きな厚さ及び/又は断面積を有してよい。
バルブ33を自動的に切り替え、混合エアロゾル流30の流れ方向を一方の多孔質基板から他方のそれに変えるために、様々な異なる方法を用いてよいと理解されるべきである。バルブ33を調節して混合エアロゾル流30の流れ方向を変えるために使用できるシステムの実例としては、自立電極60及び61の厚さを検出するための1つ以上のセンサー、多孔質基板40、41通過前後における圧力低下(自立電極60及び61の厚さに対応)を検知するための1つ以上の圧力センサー、混合エアロゾル流30の所定の流量において、設定時間(自立電極60及び61の厚さに対応)が経過した後にバルブ33を切り替えるタイマー、及びこれらの組み合わせ等が挙げられる。1つ以上の圧力センサーによって多孔質基板40又は41上の自立電極60又は61の所望の厚さに対応する圧力低下を測定した後、或いは1つ以上の厚さセンサーによって多孔質基板40又は41上の自立電極60又は61の所望の厚さを検出した後、或いはタイマーによって多孔質基板40又は41上の自立電極60又は61の所望の厚さに対応する設定時間を観測した後に、混合物の方向を一方の多孔質基板から他方のそれに変える。多孔質基板40及び/又は41は、自立電極60及び/又は61で製造される電池の使用において必要とされる断面積を有すると理解されるべきである。従って、最終製品の電池内で組み立てる前に、自立電極60及び/又は61の更なる断面積加工(切断等)は必要ではない。
容器10の構造は限定されない。図3に示す説明用の例では、容器10は、ナノチューブと電極活物質を受領するホッパー11を有する、ベンチュリフィーダー等の空気圧式粉末供給装置であってよい。容器10は、ナノチューブ及び電極活物質を供給し、容器10に導入されたキャリアガス20と接触させ、混合エアロゾル流30を形成するための、回転弁12も有してよい。
図4に示すように、ナノチューブと電極活物質を混合する前に、これらを個別にエアロゾル化してよい。例えば、ナノチューブを容器10Aに供給し、電極活物質を容器10Bに供給する。1種以上のキャリアガス20Aを容器10Aに導入してナノチューブをエアロゾル化し、1種以上のキャリアガス20Bを容器10Bに導入して電極活物質をエアロゾル化する。エアロゾル流25Aでは容器10Aに導入されたキャリアガス20A中に取り込まれたナノチューブが含まれており、エアロゾル流25Bでは容器10Bに導入されたキャリアガス20B中に取り込まれた電極活物質が含まれている。合流部27で、エアロゾル流25Aはエアロゾル流25Bと混合される。エアロゾル流25Aとエアロゾル流25Bを組み合わせて、キャリアガス中に取り込まれたナノチューブと電極活物質の混合物を含む混合エアロゾル流30を調製することが可能であれば、合流部27はいかなる構造を有していてもよい。混合エアロゾル流30は多孔質基板40に向けられる。キャリアガスはガス流50として多孔質基板40を通る。その間、ナノチューブと電極活物質の混合物は多孔質基板40の表面上に捕獲され、自立電極60を形成する。自立電極60が所望の厚さになると、該自立電極60は多孔質基板40から取り外される。キャリアガス20Aとキャリアガス20Bは同じであっても異なっていてもよく、またこれらを投入する際の流量も同じであっても異なっていてもよい。例えば、自立電極60中の電極活物質に対するナノチューブの比率を所望の値にするのに必要となるそれぞれの流量でナノチューブと電極活物質が合流部27に供給されるように、キャリアガス20Aの流量とキャリアガス20Bの流量をそれぞれ調整してよい。図示しないが、図2に関して説明したように、複数の多孔質基板40を使用してもよい。
図5に示すように、ナノチューブ合成反応器として構成した容器10Aからナノチューブをエアロゾル流25Aに直接供給してもよく、これを供給源106から供給される電極活物質のエアロゾル流25Bと混合してよい。即ち、エアロゾル流25Aはナノチューブ合成反応器から流れ出た生成物流であってよい。例えば、1種以上のキャリアガス20Aの存在下、炭素源又は炭素前駆体130を容器10Aに投入して、カーボンナノチューブを形成してよい。カーボンナノチューブのエアロゾル流25Aは反応器出口175から出て、パイプ又はチューブ412を下って合流部27に達し、エアロゾル状カーボンナノチューブが電極活物質のエアロゾル流25Bと混合される。合流部27を形成するパイプは、90°の角度αで交差するように図示したが、他の角度αで交差してもよい。非限定的な一例においては、交差角度αは、混合エアロゾル流30の合流部27から多孔質基板40への流通が容易になるような鋭角であってもよい。図示しないが、図2に関して説明したように、複数の多孔質基板40(及び回収容器170)を使用してもよい。
上記の具体的な装置ではナノチューブを調製した後に電極活物質と混合するが、これとは異なり、流動化床反応器又はチャンバ内でナノチューブを調製しながら、その場で(in situ)ナノチューブと電極活物質とを混合することもできる。
本開示での使用に適したキャリアガス及び流動化ガスとしては、アルゴン、水素、窒素、これらの組み合わせ等が挙げられるが、これらに限定されない。ナノチューブと電極活物質をエアロゾル化し、ナノチューブと電極活物質の混合物のエアロゾルを多孔質基板へと十分な速度で輸送し、該基板の表面上に自立電極を形成するために、キャリアガスは任意の好適な圧力及び任意の好適な流量で使用される。幾つかの実施形態においては、キャリアガスはアルゴン、水素、ヘリウム、又はこれらの混合物であってよい。幾つかの実施形態においては、キャリアガスは、毎分850立方センチメートル(850sccm)の流量のアルゴン及び300sccmの流量で水素を含む。
本開示で使用するナノチューブの種類は限定されない。ナノチューブは炭素のみからなるものであってよく、置換され炭素以外の格子原子を含んでいてもよい。カーボンナノチューブを外的に誘導体化し、側鎖及び/又は末端部に1つ以上の官能部分を導入してもよい。幾つかの実施形態においては、カーボンナノチューブ及び無機ナノチューブが金属や半金属のような更なる成分を含み、このような成分がナノチューブ構造に組み込まれている。ある実施形態においては、このような更なる成分はドーパント、表面被覆物、又はこれらの組み合わせである。
ナノチューブは、そのカイラリティーによって、金属性、半金属性、又は半導電性になり得る。カーボンナノチューブのカイラリティーは2つの指標(n,m)によって表される。本技術分野で広く知られているように、n及びmはチューブ構造の六角形状グラファイトの切断及び巻き方を示す整数である。(m,n)配置のナノチューブは絶縁性である。(n,n)配置、即ち「アームチェア」配置のナノチューブは金属性であり、そのため電気伝導性及び熱伝導性が高い。カーボンナノチューブの直径は約0.6nm(単層カーボンナノチューブ)から最大で500nm以上(単層又は複層ナノチューブ)までの範囲であってよい。ナノチューブの長さは約50nmから約10cm以上の範囲であってよい。
非限定的な一例においては、反応器又は加熱炉中で、触媒の存在下、約1000℃〜約1500℃の温度(例えば約1300℃)で、炭素源からカーボンナノチューブを合成してよい。
本開示は特定のカーボンナノチューブ製造用触媒の種類又は形態に限定されない。様々な実施形態において、触媒粒子はエアロゾル状で存在する。幾つかの実施形態においては、触媒材料は遷移金属、ランタニド金属、又はアクチニド金属を含むナノ粒子として供給される。例えば、触媒はクロム(Cr)、モリブデン(Mo)、タングステン(W)等の第VI族遷移金属、又は鉄(Fe)、コバルト(Co)、ニッケル(Ni)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、オスミウム(Os)、イリジウム(Ir)、白金(Pt)等の第VIII族遷移金属を含んでいてもよい。幾つかの実施形態においては、2種以上の金属の組み合わせを使用する。このような組み合わせとしては、例えば、鉄、ニッケル、及びコバルトの混合物が挙げられ、より具体的にはニッケルとコバルトの50:50混合物(重量比)が挙げられる。触媒は純金属、金属酸化物、金属炭化物、金属硝酸塩、及び/又は1種以上の金属を含む他の化合物を含んでよい。約0.1〜10原子%の触媒を反応器に添加してよい。ここで、原子%は反応器中の原子の総数(触媒及び炭素前駆体の原子)に対する触媒原子の数の百分率を示す。
上記触媒の替わりに、或いは上記触媒と組み合わせて、触媒前駆体を投入してもよい。触媒前駆体は反応器中の条件下で活性触媒へと変換され得る。触媒前駆体は、遷移金属硝酸塩、遷移金属酢酸塩、遷移金属クエン酸塩、遷移金属塩化物、遷移金属フッ化物、遷移金属臭化物、遷移金属ヨウ化物、これらの水和物等の、1種以上の遷移金属塩を含んでよい。触媒前駆体はメタロセン、金属アセチルアセトナート、金属フタロシアニン、金属ポルフィリン、金属塩、有機金属化合物、又はこれらの組み合わせ等であってよい。例えば、触媒前駆体はフェロセン、ニッケロセン、コバルトセン、モリブデノセン、ルテノセン、鉄アセチルアセトナート、ニッケルアセチルアセトナート、コバルトアセチルアセトナート、モリブデンアセチルアセトナート、ルテニウムアセチルアセトナート、鉄フタロシアニン、ニッケルフタロシアニン、コバルトフタロシアニン、鉄ポルフィリン、ニッケルポルフィリン、コバルトポルフィリン、鉄塩、ニッケル塩、コバルト塩、モリブデン塩、ルテニウム塩、又はこれらの組み合わせであってよい。触媒前駆体は可溶性塩を含んでよく、例えばFe(NO33、Ni(NO32、又はCo(NO32等を水等の液体に溶解させて使用してよい。触媒前駆体は、反応器の触媒粒子成長領域で中間触媒状態となり、その後、反応器のナノ構造成長領域でナノ構造成長条件下において活性触媒へと変換されるものであってよい。例えば、触媒前駆体は、触媒粒子成長領域で遷移金属酸化物へと変換され、その後、ナノ構造成長領域で活性触媒ナノ粒子に変換される遷移金属塩であってよい。
触媒粒子は、dブロック遷移金属、fブロック遷移金属、これらの組み合わせ等の遷移金属を含んでよい。例えば、触媒粒子は鉄、ニッケル、コバルト、金、銀、これらの組み合わせ等のdブロック遷移金属を含んでよい。触媒粒子は触媒支持体上に支持されていてよい。触媒支持体上に触媒粒子を配置するために、触媒を反応器に投入する前に、触媒支持体材料を触媒材料に添加してよい。
本開示では、カーボンナノチューブの形成に使用される炭素前駆体又は炭素源は、特定の種類(例えば、1種以上の炭素含有ガス、1種以上の炭化水素溶媒、これらの混合物等)に限定されない。炭素前駆体の例としては、炭化水素ガス(メタン、アセチレン、エチレン等)、アルコール(エタノール、メタノール等)、ベンゼン、トルエン、CO、CO2等が挙げられるが、炭素前駆体はこれらに限定されない。カーボンナノチューブの合成及び成長に用いる燃料は、1種以上の炭素前駆体又は炭素源と1種以上の触媒又は触媒前駆体との混合物を含む。
燃料又は前駆体は、一注入器あたり約0.05〜1ml/分の範囲(例えば約0.1ml/分又は約0.3ml/分)で投入してよい。幾つかの実施形態においては、例えば大規模製造で、複数の注入器を使用してよい。ガス流量は、水素が約0.1〜5L/分及び/又はヘリウム又はアルゴンが約0.2〜2L/分であり、例えば、水素を約5L/分或いは約0.3L/分で投入し且つアルゴンを約1L/分で投入してよい。特定の理論に束縛されるものではないが、水素濃度を希釈するために(例えば水素濃度を爆発限界未満に保つために)、ヘリウム又はアルゴンをキャリアガスに添加してもよい。当業者に明らかなように、燃料投入流量及び/又はガス流量は、例えば反応器の容積に応じて選択してよい。幾つかの実施形態においては、複数の反応器を連結して使用してよい。幾つかの実施形態においては、開始温度が低く、これをピーク温度又は最高温度まで昇温し、その後降温(好ましくは開始温度まで降温)するという反応器温度プロファイルを用いる。特定の理論に束縛されるものではないが、所与の反応器温度プロファイルにおいて、反応器の内側の注入器の位置を前駆体温度との関係で決定するべきである。例えば、当業者は、沸点及び分解等を考慮して、液滴形成や分解が起こることなく投入位置から前駆体が蒸発するように注入器の位置を決定できる。幾つかの実施形態においては、注入器の先端を例えば約8インチほど反応器内に挿入してよい。注入器の先端での投入温度は、反応器又は加熱炉の温度、及び注入器を反応器又は加熱炉に挿入する深さに応じて決定され得る。幾つかの実施形態においては、注入器先端の投入温度は約750℃である。幾つかの実施形態においては、注入器先端を反応器の内側に約8インチ挿入する。所望の組成及び厚さを得るために、出発物質が存在する限りにおいて、カーボンナノチューブ反応器を任意の適当な時間だけ駆動させてもよい。当業者はこのような時間を決定できる。
本開示で合成したカーボンナノチューブの特性評価は、本技術分野において公知の手段を用いて行ってよい。この手段としては、微分熱重量分析(DTG)やラマン分光法が挙げられるが、これらに限定されない。例えば、米国特許出願公開第2009/0274609号明細書に開示されているG/D比の計算を利用してよく、該文献はこの参照により本開示に含まれる。SWNTのラマンスペクトルは、Gバンド(約1590cm-1)、Dバンド(約1350cm-1)、及びラジアルブリージングモード(RBM)(約100〜300cm-1)に、3つの主要なピークを示す。RBM周波数はSWNTの直径の逆数に比例し、そのためSWNTの直径の計算に使用できる。通常、RBMピークの赤色側へのシフトはSWNTの平均直径の増加に対応する。ラマン許容フォノンモードE2gに関連する接線モードGバンドでは、2つのピークが重なっていてもよい。約1593cm-1と1568cm-1の2本のピークは半導体性SWNTに帰属され、一方、約1550cm-1の広いブライト−ウィグナー−ファノ線(Breit−Wigner−Fano line)は金属性SWNTに帰属される。従って、Gバンドによって金属性SWNTと半導体性SWNTとを区別できる。Dバンド構造は不規則炭素、アモルファス炭素の存在、及びsp2炭素網によるその他の欠陥に関連している。SWNTのラマンスペクトル中のDバンドに対するGバンドの比(IG:ID又はG/D比)は、SWNT製品の純度及び品質を決定する指標として使用できる。好ましくは、IG:IDは約1〜500であり、好ましくは約5〜400であり、より好ましくは約7を超える値である。本開示において合成したカーボンナノチューブのDTGの非限定的な典型例を図6に示す。
単層カーボンナノチューブとエアロゾル状電極活物質粉末の混合物をある表面上に集めて回収すること、並びにキャリアガスを除去することは、任意の好適な手段を用いて行える。多孔質基板40、41の収集面は多孔質表面であってよい。このような多孔質基板40、41としては、キャリアガスと流動化ガスを通過させながらカーボンナノチューブと電極活物質の混合物を保持して自立電極を形成できるように適当な大きさに調整された孔を有するフィルター、フリット等が挙げられるが、これらに限定されない。キャリアガス及び流動化ガスは、該表面を通過した後、出口を経由して、除去することができる。幾つかの実施形態においては、真空源によって容易にキャリアガスを除去できる。フィルターはシート状であってよく、織布や不織布等の様々な異なる材料を含んでいてもよい。フィルター材料の例としては、綿、ポリオレフィン、ナイロン、アクリル、ポリエステル、繊維ガラス、ポリテトラフルオロエチレン(PTFE)等が挙げられるが、これらに限定されない。多孔質基材が高温に敏感である限りにおいて、流れ25A、25B、30のうちの1又は複数の流れは、多孔質基板に接触する前に、より低い温度を含む希釈ガスによって、或いは該流れを熱交換機に通すことによって、予冷却されてもよい。
幾つかの実施形態においては、電極活物質をエアロゾル化する工程は、エアロゾル化チャンバ中の第1の多孔質フリット及び電極活物質床にエアロゾル化ガスを流通させ、エアロゾル状電極活物質粉末を調製するステップを含む。エアロゾル化チャンバは、ガスが通過することでエアロゾル化が可能であるが活物質が落下しないような、適切な大きさの孔を有する多孔質材料で構成される。エアロゾル化チャンバは特定の構造に限定されない。好適なエアロゾル化ガスとしてはアルゴン、ヘリウム、窒素等が挙げられるが、これらに限定されない。幾つかの実施形態においては、エアロゾル化ガスはキャリアガスと同じであってよい。
幾つかの実施形態においては、電極活物質は、グラファイト、硬質炭素、金属酸化物、リチウム金属酸化物、及びリン酸鉄リチウムから選択される。幾つかの実施形態においては、アノード用の電極活物質はグラファイト又は硬質炭素であってよい。幾つかの実施形態においては、カソード用の電極活物質はリチウム金属酸化物又はリン酸鉄リチウムであってよい。
非限定的な一例において、電極活物質はエアロゾル化が可能な任意の固体金属酸化物粉末であってもよい。例えば、金属酸化物は電池のカソード用の材料である。金属酸化物の非限定的な例としては、Ni、Mn、Co、Al、Mg、Ti、及びこれらの混合物の酸化物等が挙げられる。金属酸化物をリチオ化してもよい。ある例において、金属酸化物はリチウム−ニッケル−マンガン−コバルト酸化物(LiNiMnCoO2)である。金属酸化物粉末は約1ナノメートルから約100ミクロンの間の範囲の粒子サイズを有してよい。非限定的な一例において、金属酸化物粒子は約1〜10ナノメートルの平均粒子サイズを有する。
本開示で用いるリチウム金属酸化物中の金属は、アルカリ金属、アルカリ土類金属、遷移金属、アルミニウム、ポスト遷移金属、及びこれらの水和物の1種以上であってよいが、これらに限定されない。幾つかの実施形態においては、電極活物質はリチウム−ニッケル−マンガン−コバルト酸化物(LiNiMnCoO2)である。
「アルカリ金属」は元素周期表の第I族の金属(リチウム、ナトリウム、カリウム、ルビジウム、セシウム、フランシウム等)である。
「アルカリ土類金属」は元素周期表の第II族の金属(ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、ラジウム等)である。
「遷移金属」は元素周期表のdブロックの金属(ランタニド類及びアクチニド類を含む)である。遷移金属としてはスカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、イットリウム、ジルコニウム、ニオブ、モリブデン、テクネチウム、ルテニウム、ロジウム、パラジウム、銀、カドミウム、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウム、ハフニウム、タンタル、タングステン、レニウム、オスミウム、イリジウム、白金、金、水銀、アクチニウム、トリウム、プロトアクチニウム、ウラン、ネプツニウム、プルトニウム、アメリシウム、キュリウム、バークリウム、カリホルニウム、アインスタイニウム、フェルミウム、メンデレビウム、ノーベリウム、ローレンシウム等が挙げられ、これらに限定されない。
「ポスト遷移金属」としてはガリウム、インジウム、スズ、タリウム、鉛、ビスマス、ポロニウム等が挙げられるが、これらに限定されない。
幾つかの実施形態においては、本方法はキャリアガス中の単層カーボンナノチューブと電極活物質の混合物を、エアロゾル化反応器、カーボンナノチューブ合成反応器、及び収集チャンバを連結する1又は複数のチューブ内に流す工程をさらに含む。幾つかの実施形態においては、この1つ以上のチューブは少なくとも外径約0.5インチ以上のステンレスチューブである。
複合材自立電極品中のカーボンナノチューブの含有量又は重量%は、ナノチューブ(又は該ナノチューブの形成に用いる炭素源)と電極活物質との相対量に基づいて決定される。複合材自立電極品中のカーボンナノチューブの含有量又は重量%が所定の値となるように開始時の炭素源、触媒/触媒前駆体、及び電極活物質の相対量を決定することは、当業者レベルの範囲内である。非限定的な一例において、自立電極は0.1〜4重量%のカーボンナノチューブを含んでよく、残りは、電極活物質と、任意に1種以上の添加剤とを含んでよい。自立電極は0.2〜3重量%のカーボンナノチューブを含んでよく、残りは、電極活物質と、任意に1種以上の添加剤とを含んでよい。自立電極は0.75〜2重量%のカーボンナノチューブを含んでよく、残りは、電極活物質と、任意に1種以上の添加剤とを含んでよい。添加剤及び/又はドーパントをそれぞれ0〜5重量%の範囲で添加される。非限定的な一例において、自立電極は実質的にカーボンナノチューブ及び電極活物質粉末からなる。非限定的な一例において、自立電極はカーボンナノチューブ及び電極活物質粉末のみからなる。上記範囲において、自立電極はバインダーを含まないものであってよい。バインダーを含まないことにより、自立電極の柔軟性(flexibility)が改善される。また、カーボンナノチューブ含量が高いと自立電極の柔軟性が改善されることが見出されている。特定の理論に束縛されるものではないが、この改善は自立電極のウェブ状構造による結果であると考えられる。当該ウェブ状構造において、カーボンナノチューブはウェブ状に配置され、電極活物質はウェブ内に含まれているか、或いは埋め込まれている。
非限定的な一例において、自立電極は0.9〜1.75g/ccの密度を有してよい。自立電極は0.95〜1.25g/ccの密度を有してもよい。自立電極は0.75〜2.0g/ccの密度を有してもよい。自立電極は0.95〜1.60g/ccの密度を有してもよい。
非限定的な一例においては、多孔質基板上に集められた自立電極は750μm以下の厚さを有してよい。多孔質基板上に集められた自立電極は50〜500μmの厚さを有してもよい。多孔質基板上に集められた自立電極は100〜450μmの厚さを有してもよい。多孔質基板上に集められた自立電極は175〜250μmの厚さを有してもよい。
幾つかの実施形態においては、本開示の方法は複合材又は自立電極を処理する工程をさらに含んでよい。このような工程としては、複合材又は自立電極をプレス処理する工程が挙げられるが、これに限定されない。特定の理論に束縛されるものではないが、プレス処理によって密度が増加し、且つ/或いは自立電極の厚さが減少し得る。これによってレート特性(rate performance)、エネルギー密度、電池寿命等の特性が改善され得る。自立電極のプレス処理では、例えば当業者に公知のロールプレス機、カレンダー機、プラテンプレス機、又は他の好適な手段を用いて力を加え、所望の厚さ及び/又は密度を達成できる。所望の厚さ、密度、及び/又はインピーダンスを得るために好適な力を加えてよい。当該力は、約1トン、約2トン、約3トン、約4トン、約5トン、約6トン、約7トン、約8トン、約9トン、約10トン、約15トンといった特定の整数値の力、或いは約7〜10トンのような範囲内の力であってよいが、これらに限定されない。幾つかの実施形態においては、プレス処理工程では、約20ミクロン、約30ミクロン、約40ミクロン、約50ミクロン、約60ミクロン、約70ミクロン、約80ミクロン、約90ミクロン、約100ミクロン、約150ミクロン、約200ミクロン、約250ミクロン、約300ミクロン、約350ミクロン、約400ミクロン等といった整数値又は特定の範囲内の厚さまでプレスしてよい。特定の理論に束縛されるものではないが、電極が厚すぎると、エネルギー生成が遅くなるか、或いは好適な柔軟性が得られないおそれがある。幾つかの実施形態においては、酸化物や割れの形成が無いフレキシブルな電極薄片を製造することが望ましい場合がある。電極が薄すぎると、エネルギー生成は速いが、十分なエネルギーが生成されないおそれがある。加えて、当業者に公知の好適な手段によって、ロールプレス機又はカレンダー機のロール又はローラー間の距離、或いはプラテンプレス機のプレート間の距離を調整することが望ましい場合がある。
好適なプレス量の決定は当業者のレベルの範囲内である。過度のプレスによって電極内に電解質が侵入しすぎる場合があることは当業者に知られている。このことはインピーダンス及び/又は拡散抵抗を測定することによって判定される。当業者には明らかなように、インピーダンスによって測定される、所与の電解質の拡散抵抗又は拡散係数を最小化することは興味深い。非限定的な一例において、プレス処理後の自立電極の厚さは、未処理の自立電極又は多孔質基板上に収集した後の自立電極の厚さの40%〜75%であってよい。プレス処理後の自立電極の厚さは、未処理の自立電極又は多孔質基板上に収集した後の自立電極の厚さの45%〜60%であってよい。
非限定的な一例において、プレス処理後の自立電極の密度は、未処理の自立電極又は多孔質基板上に集められた後の自立電極の密度よりも、40%〜125%だけ高い。プレス処理後の自立電極の密度は、未処理の自立電極又は多孔質基板上に集められた後の自立電極の密度よりも、45%〜90%だけ高くてもよい。
幾つかの実施形態においては、本開示は自立電極を製造するための装置に関する。当該装置は、単層カーボンナノチューブを調製するための単層カーボンナノチューブ合成反応器;電極活物質をエアロゾル化してエアロゾル状電極活物質粉末を調製するための反応器であって、キャリアガス中でエアロゾル状電極活物質粉末を単層カーボンナノチューブに接触させて単層カーボンナノチューブとエアロゾル状電極活物質粉末の混合物を調製するために、カーボンナノチューブ合成反応器に連結されているエアロゾル化反応器;及びこの混合物を集め回収し、キャリアガスを除去して、単層カーボンナノチューブと電極活物質の複合材からなる自立電極材料を形成するための表面を有する収集チャンバを有する。本開示の方法について上述した全ての実施形態は、同等の力が装置にも適用される。
上記表面は、適当な手段によって、混合物を集め、キャリアガスを除去できるように構成されていてよい。収集表面は多孔質表面であってよい。このような多孔質表面を有するものとしてはフィルター、フリット等が挙げられるが、これらに限定されない。多孔質表面は、キャリアガスの通過を許容するが、カーボンナノチューブと電極活物質の混合物の通過を許容しないように、適当な大きさに調整された孔を有してよい。キャリアガスは、表面を通過した後、出口を経由して、除去される。幾つかの実施形態においては、真空源によって容易にキャリアガスを分離できる。
幾つかの実施形態においては、エアロゾル化反応器は垂直振とう機、1種以上のガス入口、1種以上の出口、及び第1の多孔質フリットを有する。
幾つかの実施形態においては、エアロゾル化反応器はカーボンナノチューブ合成反応器の下流側、且つ収集チャンバの上流側に配置されている。
幾つかの実施形態においては、エアロゾル化反応器はカーボンナノチューブ合成反応器の上流側、且つ収集チャンバの上流側に配置されている。
幾つかの実施形態においては、エアロゾル化反応器はカーボンナノチューブ合成反応器と同じ位置であり、収集チャンバの上流側に配置される。
幾つかの実施形態においては、本開示は自立電極に関する。該自立電極は電極活物質と単層カーボンナノチューブの複合材を含み、バインダー材料や金属系集電体材料を含まない。
幾つかの実施形態においては、自立電極はウェブ状又は網状の構造を有する。幾つかの実施形態においては、当該構造においてカーボンナノチューブがウェブ状に配置されており、電極活物質がカーボンナノチューブのウェブ又は網に含まれているか或いは包埋されている。
本明細書では上述の例を用いて実施形態を記載したが、様々な代替、修飾、変更、又は改善を行った物、及び/又は実質的に等価な物も、それが公知か、現在予期できないか、或いは予期できない可能性があるかにかかわらず、当業者には明らかになり得る。上記実施形態例は例示を意図したものであって、本発明を限定するものではない。本開示の趣旨及び範囲から逸脱しない範囲で種々の変更が可能である。即ち、本開示は、公知の又は後に開発される、様々な代替、修飾、変更、又は改善を行った物、及び/又は実質的に均等な物を、全て包含することを意図している。
特許請求の範囲は本明細書に記載した実施形態に限定されるものではなく、請求項に記載の文言に適合する全ての範囲が許容されるべきである。単数形で記載した構成要素は、特に説明が無い限り、「唯一」であることを意味するわけではなく、「1つ以上」であることを意味する。本開示の様々な実施形態による構成要素の構造的及び機能的均等物は全て、当業者に既に公知であっても後に公知になるものであっても、参照により本開示に明確に含まれ、特許請求の範囲に包含されるべきである。さらに、本明細書の開示は、特許請求の範囲に明示されているか否かにかかわらず、公共利用を意図したものではない。特許請求の範囲に記載の構成は、「means for」という表現で明記されていない限り、ミーンズプラスファンクション形式として解釈されるべきではない。
さらに、本明細書において、「例(example)」という語は、単なる例示(example、instance、又はillustration)に用いられるものを意味する。本明細書で「例」として記載した実施形態は、必ずしも他の形態よりも好ましい又は有利であるわけではない。特に明記しない限り、「幾つかの(some)」という語は、1つ以上であることを意味する。「A、B、又はCの少なくとも1つ」、「A、B、及びCの少なくとも1つ」、「A、B、C、又はこれらの組み合わせ」等のコンビネーションは、A、B、及び/又はCのいかなる組み合わせも包含し、複数のA、複数のB、又は複数のCも包含し得る。具体的には、「A、B、又はCの少なくとも1つ」、「A、B、及びCの少なくとも1つ」、「A、B、C、又はこれらの組み合わせ」等のコンビネーションは、Aのみ、Bのみ、Cのみ、AとB、AとC、BとC、又はAとBとCであってよく、各組み合わせは1種以上の部材A、B、又はCを含み得る。特許請求の範囲に明示されているか否かにかかわらず、本明細書の開示は公益を意図したものではない。
さらに、本願明細書に記載の全ての参照文献(例えば、発行特許、登録特許、又は均等物等の特許文献、特許出願公開公報、非特許文献、他の情報源等)は、個々に開示されているのと同様に、参照により本開示に含まれる。
本発明の構成及び実施についての完全な開示と記述を当業者に提供するために、以下に実施例を示す。これら実施例は発明者が発明と認識する範囲を限定するものではない。また、以下の記述は実際に行った全ての実験を示しているわけではなく、下記の実験しか行っていないことを意味するわけでもない。各数値(例えば量、寸法等の数値)の正確性を確保するよう努めたが、ある程度の実験誤差や偏差は含まれ得る。
実施例
フレキシブル自立電極の製造
図7、図8、図9、図10、及び表1に示す自立電極を本開示の方法により製造した。これらの例は本開示を説明するためのものであり、本開示を限定するものではない。
装置5(図5)のカーボンナノチューブ反応器10Aとして、外径25mm×内径22mm×760mm長の石英管を準備した。反応器10Aを水平に配置し、バリア402で左端を閉塞する。反応器10Aは垂直に配置してもよく、或いは水平と垂直との間の任意の角度で配置してもよい。バリア402の中央部には、キャリアガス20Aを供給するキャリアガス入口128と、触媒/触媒前駆体130を供給する触媒/触媒前駆体入口132とが設けられた。入口128、132は共に、反応器10Aのうち、熱源119によって加熱される部分の左側に配置した。
反応器10Aを1300℃の温度まで加熱した。850sccmのArと300sccmのH2の混合物を含むキャリアガス20Aを入口128から反応器10Aに供給した。触媒前駆体130の組成は、80%のエタノール、20%のメタノール、0.18%のフェロセン、及び0.375%のチオフェンからなる組成とした。エタノールはフェロセン用の溶媒及びナノチューブ成長用の炭素源の両方として使用した。触媒前駆体130の溶液を、入口132から反応器のカーボンナノチューブ成長領域内に、0.3ml/分の速度で注入した。カーボンナノチューブ成長領域では、フェロセンが鉄触媒粒子へと分解され、エタノールが鉄触媒上で単層ナノチューブを成長させるための炭素源へと変換された。キャリアガス20Aによって、単層ナノチューブは、第1のエアロゾル流25Aの形態で反応器出口175からチューブ412へと輸送された。
リチウム−ニッケル−マンガン−コバルト酸化物(LiNiMnCoO2)の粒子を電極活物質106として使用した。この電極活物質106をエアロゾル化チャンバ10B内のフリット407上に投入した。電極活物質106の高さを約5mmとし、添加量を約50gとした。キャリアガス/エアロゾル化ガス20Bとしてアルゴンを約2L/分の流量で供給した。このとき、入口408から多孔質フリット407へ(下から上へ)1L/分の流量で供給し、且つ入口409、410から接線流として1L/分の流量で供給した。懸濁エアロゾル状LiNiMnCoO2が第2のエアロゾル流25Bの形態でエアロゾル化チャンバ10Bからチューブ413を介して流出した。合流部27において、第2のエアロゾル流25Bが、チューブ412内を移動した合成カーボンナノチューブを含む第1のエアロゾル流25Aと合流し、キャリアガス中で懸濁エアロゾル状LiNiMnCoO2とカーボンナノチューブの混合物30が形成された。混合物30はチューブ416内を移動し、入口418から収集チャンバ170へと輸送された。キャリアガス50はフリット40を通過して排出口420を通って排出され、LiNiMnCoO2とカーボンナノチューブの混合物30は多孔質基板40(本例では多孔質フリット)上に複合材自立電極60として沈着(堆積)した。
図7に示すように、多孔質基板から2つの複合材自立電極60を回収した。自立電極60は約0.8重量%の単層カーボンナノチューブと残部LiNiMnCoO2粒子とを含んでいた。次に、自立電極60をプレス処理(7トン)して密度を増加させ、図8に示すプレス処理済自立電極を得た。図9の拡大図に示すように、プレス処理済自立電極60は約60μmの厚さを有する。また、図9に示すプレス処理済自立電極60はフレキシブルであり、図示した角部において上方に曲がっている。これは、図10に示すように、プレス処理後にカーボンナノチューブによって形成されたウェブ様構造又は不織繊維シート構造による結果であると考えられる。カーボンナノチューブのウェブ構造がLiNiMnCoO2粒子を囲んでおり、バインダーを用いることなく、自立電極の曲げが可能なフレキシブルな状態で、LiNiMnCoO2粒子がウェブ構造内に保持される。
下記表1に示すように、単層ナノチューブの量(自立電極の残部はLiNiMnCoO2粒子)と厚さ(多孔質基板から回収した時点の厚さ)とが異なること以外は同じ方法によって、さらに幾つかの自立電極を製造した。試料7〜12の自立電極については、多孔質基板から回収した後、プレス処理して密度を増加させた。自立電極のプレス処理によって、厚さは減少する。
Figure 2019050186

Claims (43)

  1. 自立電極の製造方法であって、該製造方法は、
    電極活物質をエアロゾル化してエアロゾル状電極活物質粉末を調製する工程と、
    キャリアガス中で前記エアロゾル状電極活物質粉末を単層カーボンナノチューブに接触させ、前記単層カーボンナノチューブと前記エアロゾル状電極活物質粉末の混合物を調製する工程と、
    表面上に前記混合物を集める工程と、
    前記キャリアガスを除去し、前記単層カーボンナノチューブと前記電極活物質の複合材である自立電極材料を形成する工程と、
    を有し、
    前記自立電極はバインダー及び金属系集電体を含まない、
    製造方法。
  2. 請求項1記載の製造方法において、
    前記電極活物質をエアロゾル化する前記工程は、エアロゾル化反応器中で、第1の多孔質フリット及び前記電極活物質の床にエアロゾル化ガスを流通させて、前記エアロゾル状電極活物質粉末を調製する、
    製造方法。
  3. 請求項1記載の製造方法において、該方法はさらに、
    カーボンナノチューブ合成反応器から前記単層カーボンナノチューブを供給する工程を含む、
    製造方法。
  4. 請求項1記載の製造方法において、
    前記混合物は、収集チャンバ内で多孔質フリット上に集められる、
    製造方法。
  5. 請求項1記載の製造方法において、
    前記電極活物質は、グラファイト、硬質炭素、リチウム金属酸化物、及びリン酸鉄リチウムから選択される、
    製造方法。
  6. 請求項1記載の製造方法において、該方法はさらに
    カーボンナノチューブ合成反応器中で前記単層カーボンナノチューブを合成する工程を含む、
    製造方法。
  7. 請求項6記載の製造方法において、
    前記エアロゾル状電極活物質粉末を前記単層カーボンナノチューブに接触させることは、前記カーボンナノチューブ合成反応器の下流側且つ前記表面の上流側で行われる、
    製造方法。
  8. 自立電極を製造する装置であって、
    単層カーボンナノチューブを製造するための単層カーボンナノチューブ合成反応器と、
    電極活物質をエアロゾル化してエアロゾル状電極活物質粉末を調製するためのエアロゾル化反応器であって、キャリアガス中で前記エアロゾル状電極活物質粉末を前記単層カーボンナノチューブに接触させて前記単層カーボンナノチューブと前記エアロゾル状電極活物質粉末の混合物が調製されるように、前記単層カーボンナノチューブ合成反応器に連結されているエアロゾル化反応器と、
    前記混合物を集め、前記キャリアガスを除去して、前記単層カーボンナノチューブと前記電極活物質の複合材である自立電極材料を形成するための表面を有する収集チャンバと、
    を有する、
    装置。
  9. 請求項8記載の装置において、
    前記エアロゾル化反応器は、垂直振とう機、1又は複数のガス入口、1又は複数の出口、及び第1の多孔質フリットを有する、
    装置。
  10. 請求項9記載の装置において、
    前記エアロゾル化反応器は、前記カーボンナノチューブ合成反応器の下流側、且つ前記収集チャンバの上流側に配置されている、
    装置。
  11. 請求項9記載の装置において、
    前記エアロゾル化反応器は、前記カーボンナノチューブ合成反応器の上流側、且つ前記収集チャンバの上流側に配置されている、
    装置。
  12. 電極活物質と単層カーボンナノチューブの複合材を含み、
    バインダー材料も金属系集電体材料も含まない、
    自立電極。
  13. 請求項12記載の自立電極において、
    前記複合材はウェブ状構造を有する、
    自立電極。
  14. 請求項12記載の自立電極において、
    前記複合材は、0.2〜1重量%の前記単層カーボンナノチューブを含む、
    自立電極。
  15. 請求項12記載の自立電極において、
    前記複合材は、約50〜200ミクロンの厚さを有する、
    自立電極。
  16. 請求項12記載の自立電極において、
    前記電極活物質は、グラファイト、硬質炭素、リチウム金属酸化物、及びリン酸鉄リチウムから選択される、
    自立電極。
  17. 自立電極の製造方法であって、
    ナノチューブと電極活物質粉末との混合物のエアロゾルを調製する工程と、
    少なくとも第1の多孔質基板を用意する工程と、
    前記混合物のエアロゾルを前記第1の多孔質基板に向かって移動させる工程と、
    前記第1の多孔質基板上に前記混合物を集めて、自立電極を形成する工程と、
    を含み、
    前記自立電極はバインダー及び金属系集電体を含まない、
    製造方法。
  18. 請求項17記載の製造方法において、
    前記混合物のエアロゾルは、少なくとも1種のキャリアガスを含み、
    前記多孔質基板上に前記混合物を集める際に、前記キャリアガスは前記多孔質基板を通過する、
    製造方法。
  19. 請求項18記載の製造方法において、
    前記自立電極の厚さが最大750μmとなるまで、前記多孔質基板上に前記混合物を集める、
    製造方法。
  20. 請求項19記載の製造方法において、
    前記自立電極の厚さが100〜450μmとなるまで、前記多孔質基板上に前記混合物を集める、
    製造方法。
  21. 請求項19記載の製造方法において、
    前記自立電極の密度は0.75〜2.0g/ccである、
    製造方法。
  22. 請求項21記載の製造方法において、
    前記自立電極の密度は0.95〜1.60g/ccである、
    製造方法。
  23. 請求項17記載の製造方法において、該方法はさらに、
    前記自立電極の密度を増加させる処理を行う工程を含み、
    前記処理を施した前記自立電極の密度は、未処理の自立電極の密度よりも、40%〜125%だけ大きい、
    製造方法。
  24. 請求項23記載の製造方法において、
    前記処理を施した前記自立電極の密度は、前記未処理の自立電極の密度よりも、45%〜90%だけ大きい、
    製造方法。
  25. 請求項23記載の製造方法において、
    前記処理を施した前記自立電極の厚さは、前記未処理の自立電極の厚さの40%〜75%である、
    製造方法。
  26. 請求項17記載の製造方法において、
    カーボンナノチューブと電極活物質粉末との混合物のエアロゾルを調製する前記工程は、前記カーボンナノチューブと少なくとも1種のキャリアガスを含む第1のエアロゾル流を供給する工程と、
    前記電極活物質粉末と少なくとも1種のキャリアガスを含む第2のエアロゾル流を供給する工程と、
    前記第1のエアロゾル流と前記第2のエアロゾル流とを混合して前記混合物のエアロゾルを調製する工程を含む、
    製造方法。
  27. 請求項26記載の製造方法において、
    前記第1のエアロゾル流は、ナノチューブ合成反応器から出た生成物流を含む、
    製造方法。
  28. 請求項27記載の製造方法において、該方法はさらに、
    前記ナノチューブ合成反応器中に炭素源を供給する工程と、
    キャリアガスの存在下でカーボンナノチューブを成長させる工程と、
    前記カーボンナノチューブと前記キャリアガスを含む前記生成物流を前記第1のエアロゾル流として前記ナノチューブ合成反応器の外部に移動させる工程と、
    を含む、
    製造方法。
  29. 請求項17記載の製造方法において、該方法はさらに、
    第2の多孔質基板を設ける工程と、
    前記第1の多孔質基板上に前記混合物を集める工程と、
    前記第1の多孔質基板上に所望の厚さの前記自立電極が形成された後、前記混合物の移動方向を前記第2の多孔質基板へ向かうように変える工程と、
    所望の厚さを有する第2の自立電極が形成されるまで、前記第2の多孔質基板上に前記混合物を集める工程と、
    を含む、
    製造方法。
  30. 請求項29記載の製造方法において、
    前記混合物の移動方向を変える前記工程は、
    前記第1の多孔質基板の表面通過前後の圧力の低下を測定する工程と、
    前記第1の多孔質基板の表面上の前記自立電極の所望の厚さに対応する圧力低下が測定された後、前記混合物が向かう方向を前記第2の多孔質基板の表面に移す工程と、
    を含む、
    製造方法。
  31. 請求項17記載の製造方法において、
    前記ナノチューブは、カーボンナノチューブである、
    製造方法。
  32. 請求項31記載の製造方法において、
    前記自立電極は、0.1〜4重量%の前記カーボンナノチューブを含み、その残部は、前記電極活物質粉末と、任意に1又は複数の添加剤を含む、
    製造方法。
  33. 請求項32記載の製造方法において、
    前記自立電極は、0.2〜3重量%の前記カーボンナノチューブを含み、その残部は、前記電極活物質粉末と、任意に1又は複数の添加剤を含む、
    製造方法。
  34. 請求項33記載の製造方法において、
    前記自立電極は、0.75〜2重量%の前記カーボンナノチューブを含み、その残部は、前記電極活物質粉末と、任意に1又は複数の添加剤を含む、
    製造方法。
  35. 請求項31記載の製造方法において、
    前記自立電極は、前記カーボンナノチューブと、前記電極活物質粉末と、0〜5重量%の添加剤と、を含む、
    製造方法。
  36. 請求項31記載の製造方法において、
    前記自立電極は、実質的に前記カーボンナノチューブと前記電極活物質粉末のみから構成される、
    製造方法。
  37. 請求項31記載の製造方法において、
    前記自立電極は、前記カーボンナノチューブと前記電極活物質粉末のみから構成される、
    製造方法。
  38. 請求項31記載の製造方法において、
    前記ナノチューブは、単層カーボンナノチューブを含む、
    製造方法。
  39. 請求項38記載の製造方法において、
    前記電極活物質粉末は、グラファイトを含む、
    製造方法。
  40. 請求項38記載の製造方法において、
    前記電極活物質粉末は、金属酸化物を含む、
    製造方法。
  41. 請求項40記載の製造方法において、
    前記電極活物質粉末は、LiNiMnCoO2を含む、
    製造方法。
  42. 請求項38記載の製造方法において、
    前記自立電極は、前記カーボンナノチューブのウェブ状の配置構成を有し、該配置構成において、前記電極活物質は前記カーボンナノチューブのウェブに埋め込まれている、
    製造方法。
  43. 請求項42記載の製造方法において、
    前記自立電極は、フレキシブルである、
    製造方法。
JP2018142355A 2017-07-31 2018-07-30 自立電極及びその製造方法 Pending JP2019050186A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/665,171 US10658651B2 (en) 2017-07-31 2017-07-31 Self standing electrodes and methods for making thereof
US15/665,171 2017-07-31

Publications (1)

Publication Number Publication Date
JP2019050186A true JP2019050186A (ja) 2019-03-28

Family

ID=63103851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018142355A Pending JP2019050186A (ja) 2017-07-31 2018-07-30 自立電極及びその製造方法

Country Status (5)

Country Link
US (2) US10658651B2 (ja)
EP (1) EP3439075A1 (ja)
JP (1) JP2019050186A (ja)
KR (1) KR20190013664A (ja)
CN (2) CN109326765B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11408084B2 (en) 2020-01-09 2022-08-09 King Fahd University Of Petroleum And Minerals Thin film electrode containing nanostructured cobalt oxide for water splitting

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11171324B2 (en) 2016-03-15 2021-11-09 Honda Motor Co., Ltd. System and method of producing a composite product
US11383213B2 (en) 2016-03-15 2022-07-12 Honda Motor Co., Ltd. System and method of producing a composite product
US11081684B2 (en) 2017-05-24 2021-08-03 Honda Motor Co., Ltd. Production of carbon nanotube modified battery electrode powders via single step dispersion
US10658651B2 (en) 2017-07-31 2020-05-19 Honda Motor Co., Ltd. Self standing electrodes and methods for making thereof
US20190036102A1 (en) 2017-07-31 2019-01-31 Honda Motor Co., Ltd. Continuous production of binder and collector-less self-standing electrodes for li-ion batteries by using carbon nanotubes as an additive
US11121358B2 (en) 2017-09-15 2021-09-14 Honda Motor Co., Ltd. Method for embedding a battery tab attachment in a self-standing electrode without current collector or binder
US11201318B2 (en) 2017-09-15 2021-12-14 Honda Motor Co., Ltd. Method for battery tab attachment to a self-standing electrode
DE102018221017A1 (de) * 2018-12-05 2020-06-10 Robert Bosch Gmbh Verfahren zum Herstellen eines Präkursormaterials für eine elektrochemische Zelle
US11535517B2 (en) 2019-01-24 2022-12-27 Honda Motor Co., Ltd. Method of making self-standing electrodes supported by carbon nanostructured filaments
US11352258B2 (en) 2019-03-04 2022-06-07 Honda Motor Co., Ltd. Multifunctional conductive wire and method of making
US11325833B2 (en) 2019-03-04 2022-05-10 Honda Motor Co., Ltd. Composite yarn and method of making a carbon nanotube composite yarn
US11539042B2 (en) * 2019-07-19 2022-12-27 Honda Motor Co., Ltd. Flexible packaging with embedded electrode and method of making
CN114175331A (zh) * 2019-07-22 2022-03-11 本田技研工业株式会社 可拉伸的柔性锂离子电池
CN112691620A (zh) * 2020-12-16 2021-04-23 重庆金辉旅业有限公司 一种氯化钠气溶胶发生装置及发生方法
US20230090400A1 (en) 2021-09-20 2023-03-23 Honda Motor Co., Ltd. Energy storage device with operando monitoring
US20230088932A1 (en) 2021-09-20 2023-03-23 Honda Motor Co., Ltd. Energy storage device with wireless operando monitoring
US20240047684A1 (en) * 2022-08-05 2024-02-08 Honda Motor Co., Ltd. Additives for self-standing electrodes
CN115036449A (zh) * 2022-08-12 2022-09-09 清华大学 干法复合电极的制备方法、干法复合电极及电池
CN115036515A (zh) * 2022-08-12 2022-09-09 清华大学 碳纳米材料复合集流体及其制备方法、电极和电池

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008305608A (ja) * 2007-06-06 2008-12-18 Honjiyou Kinzoku Kk リチウム二次電池用電極及びその製造方法
US20110111279A1 (en) * 2009-11-09 2011-05-12 Florida State University Research Foundation Inc. Binder-free nanocomposite material and method of manufacture
JP2012512956A (ja) * 2008-12-08 2012-06-07 チソル,エル・エル・シー 多成分ナノ粒子材料、プロセス及びその装置
US20140326181A1 (en) * 2013-05-02 2014-11-06 Samsung Display Co., Ltd. Deposition apparatus
WO2016031335A1 (ja) * 2014-08-29 2016-03-03 日東電工株式会社 リチウム金属二次電池
JP2016031922A (ja) * 2014-07-30 2016-03-07 本田技研工業株式会社 電池用電極兼集電体およびそれを備えた電池
JP2016054113A (ja) * 2014-09-04 2016-04-14 日本ゼオン株式会社 二次電池電極用複合体の製造方法、二次電池電極用複合体、二次電池用電極および二次電池
WO2016178210A1 (en) * 2015-05-07 2016-11-10 Phosfan Ltd Method for applying ultrafine phosphate conversion crystal coatings

Family Cites Families (248)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3513034A (en) 1956-04-06 1970-05-19 Us Army Terminal for thermal cells
US3772084A (en) 1972-02-11 1973-11-13 Scholle Corp Method of making negative battery plates
JPH06267515A (ja) 1993-03-15 1994-09-22 Ricoh Co Ltd シート状二次電池および該電池を利用した電子素子
JP4083260B2 (ja) 1997-07-09 2008-04-30 松下電器産業株式会社 非水電解液二次電池の電極板の製造方法
JPH1187875A (ja) 1997-09-12 1999-03-30 Seiko Epson Corp シート状電子機器の製造方法
US5985175A (en) * 1998-08-19 1999-11-16 Osram Sylvania Inc. Boron oxide coated phosphor and method of making same
EP1194960B1 (en) 1999-07-02 2010-09-15 President and Fellows of Harvard College Nanoscopic wire-based devices, arrays, and methods of their manufacture
US6919064B2 (en) 2000-06-02 2005-07-19 The Board Of Regents Of The University Of Oklahoma Process and apparatus for producing single-walled carbon nanotubes
US20090286675A1 (en) 2001-05-25 2009-11-19 Tsinghua University Continuous mass production of carbon nanotubes in a nano-agglomerate fluidized-bed and the reactor
FR2826646B1 (fr) 2001-06-28 2004-05-21 Toulouse Inst Nat Polytech Procede de fabrication selective de nanotubes de carbone ordonne en lit fluidise
US20030099883A1 (en) * 2001-10-10 2003-05-29 Rosibel Ochoa Lithium-ion battery with electrodes including single wall carbon nanotubes
US6623562B2 (en) 2001-11-07 2003-09-23 Ovonic Battery Company, Inc. Apparatus for fabricating pasted electrodes
JP4336869B2 (ja) 2001-11-27 2009-09-30 日本電気株式会社 真空成膜装置、真空成膜方法および電池用電極の製造方法
US6673489B2 (en) 2001-12-28 2004-01-06 Quallion Llc Electric battery assembly and method of manufacture
CA2374848A1 (en) 2002-03-06 2003-09-06 Centre National De La Recherche Scientifique A process for the mass production of multiwalled carbon nanotubes
EP1492443A2 (en) 2002-03-29 2005-01-05 Koninklijke Philips Electronics N.V. A detection and alarm system
KR100759547B1 (ko) 2002-07-29 2007-09-18 삼성에스디아이 주식회사 연료전지용 탄소나노튜브, 그 제조방법 및 이를 채용한연료전지
DE10253399A1 (de) 2002-11-15 2004-05-27 Eramet & Comilog Chemicals S.A. Carbon-Black-Zusammensetzungen und ihre Anwendungen
JP4062171B2 (ja) 2003-05-28 2008-03-19 ソニー株式会社 積層構造の製造方法
GB0312871D0 (en) 2003-06-05 2003-07-09 Rolls Royce Plc A stator core
US20050063891A1 (en) 2003-09-02 2005-03-24 Cambridge University Technical Services Limited Method of producing carbon nanoparticles
WO2005052053A1 (ja) 2003-11-27 2005-06-09 National Institute Of Advanced Industrial Science And Technology カーボンナノチューブ分散極性有機溶媒及びその製造方法
US20050209392A1 (en) 2003-12-17 2005-09-22 Jiazhong Luo Polymer binders for flexible and transparent conductive coatings containing carbon nanotubes
JP2005290292A (ja) 2004-04-02 2005-10-20 National Institute Of Advanced Industrial & Technology カーボンナノチューブ分散ポリイミド可飽和吸収体
JP5460948B2 (ja) 2004-02-06 2014-04-02 エー123 システムズ, インコーポレイテッド 高速充放電性能を備えたリチウム二次電池
FI121334B (fi) 2004-03-09 2010-10-15 Canatu Oy Menetelmä ja laitteisto hiilinanoputkien valmistamiseksi
JP4410010B2 (ja) 2004-03-26 2010-02-03 東邦瓦斯株式会社 ナノカーボン材料の製造方法
JP4625296B2 (ja) * 2004-03-31 2011-02-02 日立マクセル株式会社 非水二次電池およびこれを用いた電子機器
DE102004036170B4 (de) 2004-07-26 2007-10-11 Schott Ag Vakuumbeschichtungsanlage und Verfahren zur Vakuumbeschichtung und deren Verwendung
US20060078489A1 (en) 2004-09-09 2006-04-13 Avetik Harutyunyan Synthesis of small and narrow diameter distributed carbon single walled nanotubes
KR100666778B1 (ko) * 2004-12-02 2007-01-09 현대자동차주식회사 Esd법에 의한 수퍼캐패시터용 산화망간/탄소 나노튜브복합체 전극의 제조 방법
KR100682862B1 (ko) * 2005-01-11 2007-02-15 삼성에스디아이 주식회사 전기 화학 전지용 전극, 그 제조 방법 및 이를 채용한전기 화학 전지
US20060245996A1 (en) 2005-04-27 2006-11-02 Peking University Method of synthesizing single walled carbon nanotubes
TW200700312A (en) 2005-06-23 2007-01-01 Univ Nat Chunghsing Method for dispersing carbon nanotube in water and detection agent thereof
WO2008054349A2 (en) 2005-07-07 2008-05-08 The University Of Maryland Carbon nanotube structures formed on large free floating substrates
JP2007049789A (ja) 2005-08-08 2007-02-22 Nec Corp 情報処理装置
US8084158B2 (en) 2005-09-02 2011-12-27 A123 Systems, Inc. Battery tab location design and method of construction
WO2008057070A2 (en) 2005-09-15 2008-05-15 University Of Florida Research Foundation, Inc. Type separation of single-walled carbon nanotubes via phase transfer
FI120195B (fi) 2005-11-16 2009-07-31 Canatu Oy Hiilinanoputket, jotka on funktionalisoitu kovalenttisesti sidotuilla fullereeneilla, menetelmä ja laitteisto niiden tuottamiseksi ja niiden komposiitit
US20120105370A1 (en) 2005-12-12 2012-05-03 Nupix, LLC Electroded Sheet for a Multitude of Products
FR2895393B1 (fr) 2005-12-23 2008-03-07 Arkema Sa Procede de synthese de nanotubes de carbone
DE102006024550A1 (de) 2006-05-23 2007-11-29 Bayer Materialscience Ag Temperaturstabiler Katalysator für die Gasphasenoxidation
TW200801223A (en) 2006-06-01 2008-01-01 Ritek Corp Method of preparing single wall carbon nanotubes
US20080233402A1 (en) 2006-06-08 2008-09-25 Sid Richardson Carbon & Gasoline Co. Carbon black with attached carbon nanotubes and method of manufacture
WO2008028169A2 (en) 2006-08-31 2008-03-06 Nano-C, Inc. Direct liquid-phase collection and processing of fullerenic materials
CN100450922C (zh) 2006-11-10 2009-01-14 清华大学 一种超长定向的碳纳米管丝/薄膜及其制备方法
JP5475457B2 (ja) 2006-11-24 2014-04-16 本田技研工業株式会社 カーボンナノチューブ合成用大量エアロゾル粉末噴射装置
FR2909989A1 (fr) 2006-12-18 2008-06-20 Arkema France Procede de preparation de nanotubes de carbone a partir d'une source de carbone integree au catalyseur
FR2914634B1 (fr) 2007-04-06 2011-08-05 Arkema France Procede de fabrication de nanotubes de carbone a partir de matieres premieres renouvelables
WO2008124167A1 (en) 2007-04-10 2008-10-16 The Regents Of The University Of California Charge storage devices containing carbon nanotube films as electrodes and charge collectors
US20090117026A1 (en) 2007-10-01 2009-05-07 Denso Corporation Method for manufacturing carbon nano-tube
KR101213787B1 (ko) 2007-11-14 2012-12-18 성균관대학교산학협력단 전도성이 개선된 투명 전도성 필름 및 그 제조방법
CN201122624Y (zh) 2007-11-30 2008-09-24 比亚迪股份有限公司 一种电极引出结构及包含该电极引出结构的电池
DE102007062421A1 (de) 2007-12-20 2009-06-25 Bayer Technology Services Gmbh Verfahren zur Herstellung von Stickstoff-dotierten Kohlenstoffnanoröhrchen
JP5619622B2 (ja) 2008-01-08 2014-11-05 シオン・パワー・コーポレーション 多孔性電極および関連方法
US8435676B2 (en) 2008-01-09 2013-05-07 Nanotek Instruments, Inc. Mixed nano-filament electrode materials for lithium ion batteries
WO2009111744A2 (en) 2008-03-07 2009-09-11 Mobius Power, Inc. Electrochemical cells with tabs
US9174847B2 (en) 2008-05-01 2015-11-03 Honda Motor Co., Ltd. Synthesis of high quality carbon single-walled nanotubes
US20110171398A1 (en) 2010-01-12 2011-07-14 Oladeji Isaiah O Apparatus and method for depositing alkali metals
EP2279512B1 (en) 2008-05-07 2019-10-23 Nanocomp Technologies, Inc. Carbon nanotube-based coaxial electrical cables and wiring harness
US20120315539A1 (en) 2008-05-07 2012-12-13 Nanocomp Technologies, Inc. Nanostructure composite batteries and methods of making same from nanostructure composite sheets
US20130189565A1 (en) 2008-05-07 2013-07-25 Nanocomp Technologies, Inc. Batteries Having Nanostructured Composite Cathode
JP5291707B2 (ja) 2008-05-30 2013-09-18 三菱重工業株式会社 ナノカーボン材料製造装置及び方法
US20110158892A1 (en) 2008-06-30 2011-06-30 Showa Denko K.K. Process for producing carbon nanomaterial and system for producing carbon nanomaterial
US20100000441A1 (en) 2008-07-01 2010-01-07 Jang Bor Z Nano graphene platelet-based conductive inks
US9099738B2 (en) * 2008-11-03 2015-08-04 Basvah Llc Lithium secondary batteries with positive electrode compositions and their methods of manufacturing
US9406985B2 (en) 2009-01-13 2016-08-02 Nokia Technologies Oy High efficiency energy conversion and storage systems using carbon nanostructured materials
EP2213369B1 (en) 2009-01-15 2015-07-01 Carlo Vittorio Mazzocchia A process for the preparation of a catalyst, a catalyst obtained thereby, and its use in the production of nanotubes
US20100221606A1 (en) 2009-03-02 2010-09-02 Omkaram Nalamasu Energy storage device with porous electrode
JP2010212309A (ja) 2009-03-06 2010-09-24 Nippon Chemicon Corp 電極材料及びこの電極材料を含有する電極
CN102459727B (zh) 2009-04-17 2015-04-15 赛尔斯通股份有限公司 还原碳氧化合物生成固态碳的方法
US20100285358A1 (en) 2009-05-07 2010-11-11 Amprius, Inc. Electrode Including Nanostructures for Rechargeable Cells
JP2010277925A (ja) 2009-05-29 2010-12-09 Sanyo Electric Co Ltd ペーパー電池及びその製造方法
EP2445041B1 (en) 2009-06-17 2016-04-13 Sony Corporation Nonaqueous electrolyte battery, positive electrode for nonaqueous electrolyte battery, negative electrode for nonaqueous electrolyte battery, separator for nonaqueous electrolyte battery, electrolyte for nonaqueous electrolyte battery, and method for producing separator for nonaqueous electrolyte battery
EP2284933A1 (de) 2009-07-22 2011-02-16 Bayer MaterialScience AG Verfahren zur Herstellung von dehnbaren Elektroden
DE102009038464A1 (de) 2009-08-21 2011-02-24 Bayer Materialscience Ag Kohlenstoffnanoröhrchen-Agglomerat
EP2476648B1 (en) 2009-09-10 2018-07-25 The University of Tokyo Method for simultaneously producing carbon nanotubes and hydrogen
US20110070495A1 (en) 2009-09-23 2011-03-24 Alliance For Sustainable Energy, Llc Method of fabricating electrodes including high-capacity, binder-free anodes for lithium-ion batteries
WO2011068391A2 (ko) * 2009-12-04 2011-06-09 주식회사 루트제이제이 나노 중공 섬유형 탄소를 포함하는 리튬 이차전지용 양극 활물질 전구체, 활물질 및 그 제조방법
US8293204B2 (en) 2009-12-19 2012-10-23 Abbas Ali Khodadadi Carbon nanotubes continuous synthesis process using iron floating catalysts and MgO particles for CVD of methane in a fluidized bed reactor
US9167736B2 (en) 2010-01-15 2015-10-20 Applied Nanostructured Solutions, Llc CNT-infused fiber as a self shielding wire for enhanced power transmission line
PL2526581T3 (pl) 2010-01-18 2019-05-31 Enevate Corp Materiały kompozytowe do magazynowania elektrochemicznego
KR20120123108A (ko) 2010-01-25 2012-11-07 카네카 노스 아메리카, 엘엘씨 디번들링된 나노튜브들의 분산 및 회수
BR112012021634A2 (pt) 2010-03-02 2019-09-24 Applied Nanostructured Sols dispositivos elétricos contendo fibras de nanotubo de carbono infundidas e métodos para reprodução das mesmas.
US20110311874A1 (en) 2010-04-30 2011-12-22 University Of Southern California Silicon-Carbon Nanostructured Electrodes
WO2011146445A2 (en) 2010-05-17 2011-11-24 Arthur Boren Carbon nanotube augmented electrodes with silicon
CN102884668B (zh) 2010-05-19 2015-05-13 日产自动车株式会社 双极型二次电池
KR101834587B1 (ko) * 2010-09-01 2018-03-05 다우 글로벌 테크놀로지스 엘엘씨 가스-매개성 조립식 다공성 조립체를 통해 다공성 세라믹 필터 상에 차등층을 적용하는 방법
KR101113976B1 (ko) * 2010-10-27 2012-03-13 한국과학기술연구원 자기조립된 전극 활물질-탄소 나노튜브 복합체와 그 제조 방법 및 이를 포함하는 이차전지
US9001495B2 (en) 2011-02-23 2015-04-07 Fastcap Systems Corporation High power and high energy electrodes using carbon nanotubes
TW201311545A (zh) * 2011-05-02 2013-03-16 Univ Washington 用於高能量鋰離子電池之介孔性正電極材料的噴霧熱製解合成法
EP2706864B1 (en) 2011-05-12 2018-02-21 Arcaqua (pty) Ltd Ozone-based disinfecting device and mixer therefor
ITPD20110153A1 (it) 2011-05-13 2012-11-14 Univ Padova Metodo di sintesi di nanotubi di carbonio funzionalizzati per cicloaddizione in flusso continuo ed apparato per lo stesso
CN102790201B (zh) 2011-05-20 2016-11-23 清华大学 锂离子电池正极及锂离子电池
US9136536B2 (en) 2011-08-12 2015-09-15 Yazaki Corporation Method of making cohesive carbon assembly and its applications
FR2981206B1 (fr) 2011-10-06 2013-11-29 Inst Polytechnique Grenoble Procede de preparation d'electrodes flexibles auto-supportees.
JP2014534626A (ja) 2011-10-07 2014-12-18 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニーApplied Nanostructuredsolutions, Llc 2機能活性電解質を有するハイブリッド・キャパシタバッテリ及びスーパーキャパシタ
CN103094526B (zh) * 2011-10-28 2015-07-29 清华大学 锂离子电池正极的制备方法
CN103093857B (zh) 2011-10-28 2016-04-13 清华大学 电极线及应用该电极线的起搏器
US8758931B2 (en) 2011-12-02 2014-06-24 Lenovo (Singapore) Pte. Ltd. Electrochemical cell package
US8974960B2 (en) 2011-12-22 2015-03-10 Board Of Regents, The University Of Texas System Binder-free sulfur—carbon nanotube composite cathodes for rechargeable lithium—sulfur batteries and methods of making the same
CN103187575B (zh) 2011-12-28 2015-11-25 清华大学 薄膜锂离子电池的制备方法
JP5514230B2 (ja) 2012-01-04 2014-06-04 株式会社日立製作所 電池モジュール及びその製造方法
US8986872B2 (en) 2012-02-15 2015-03-24 GM Global Technology Operations LLC Battery design
CN102593436A (zh) 2012-02-27 2012-07-18 清华大学 一种锂离子电池用自支撑柔性碳纳米管纸复合电极材料
US20130224551A1 (en) 2012-02-29 2013-08-29 Nokia Corporation Apparatus and Associated Methods
FR2988225B1 (fr) 2012-03-13 2014-03-28 Hutchinson Anode pour cellule de batterie lithium-ion, son procede de fabrication et cette batterie l'incorporant.
US9692056B1 (en) 2012-04-13 2017-06-27 Amprius, Inc. Dual current collectors for battery electrodes
JP5591280B2 (ja) 2012-04-13 2014-09-17 トヨタ自動車株式会社 電池、組電池
CN102674316B (zh) 2012-05-09 2014-05-07 清华大学 一种基于片层材料制备碳纳米管和石墨烯复合物的方法
DE102012207999A1 (de) 2012-05-14 2013-11-14 Robert Bosch Gmbh Hüllfolie für ein galvanisches Element, elektrochemischer Speicher, elektrochemisches Speichersystem, flexible Folie für eine Hülle eines galvanischen Elements und Verfahren zum Bestimmen einer Zustandsgröße eines elektrochemischen Speichers
GB2502305B (en) 2012-05-22 2015-07-29 Plastic Logic Ltd Electronic reading devices
CN108321353B (zh) 2012-05-31 2021-03-09 龙腾能源公司 用于制造锂离子电池的导电粒子薄膜的过程
JP5906261B2 (ja) 2012-06-13 2016-04-20 株式会社三五 リチウム二次電池用負極の製造方法
CN103545556B (zh) 2012-07-13 2016-01-20 清华大学 薄膜锂离子电池的制备方法
KR20140011683A (ko) 2012-07-18 2014-01-29 삼성전자주식회사 탄소 나노튜브 복합 소재 및 그 제조 방법
CN103633292B (zh) 2012-08-22 2016-06-15 清华大学 锂离子电池负极
DE13852079T1 (de) 2012-11-01 2015-11-19 Blue Spark Technologies, Inc. Pflaster zur Protokollierung der Körpertemperatur
KR101336286B1 (ko) 2012-11-13 2013-12-03 재단법인대구경북과학기술원 탄소나노섬유 복합체의 제조방법 및 이를 통해 제조된 탄소나노섬유 복합체
US20150349325A1 (en) 2012-12-20 2015-12-03 Zhongwei Chen Bi-functional electrode for metal-air batteries and method for producing same
DE102012224377A1 (de) 2012-12-27 2014-07-03 Robert Bosch Gmbh Verfahren zum Herstellen eines galvanischen Elements und galvanisches Element
CA2895651A1 (en) 2013-01-17 2014-07-24 Saudi Basic Industries Corporation Carbon nano-tube production from carbon dioxide
WO2014141279A1 (en) * 2013-03-14 2014-09-18 Vulcan Automotive Industries Ltd Process for obtaining mixtures of carbon nanotubes in solid or viscous matrices
WO2014153465A1 (en) 2013-03-20 2014-09-25 Kansas State University Research Foundation Flexible composite electrode high-rate performance lithium-ion batteries
CN103280846B (zh) 2013-03-27 2016-08-03 上海空间电源研究所 一种柔性光伏一体化电源***
CN103219467B (zh) 2013-03-27 2015-11-11 北京大学 起皱结构的柔性聚合物太阳能电池及其制备方法
JP6098878B2 (ja) * 2013-04-17 2017-03-22 トヨタ自動車株式会社 非水電解液二次電池
US20140370347A1 (en) 2013-06-14 2014-12-18 Samsung Sdi Co., Ltd. Flexible battery
FR3007582B1 (fr) 2013-06-24 2015-06-26 Inst Polytechnique Grenoble Procede d'impression ou de depot par atomisation pour la preparation d'une electrode flexible supportee et la fabrication d'une batterie lithium-ion
MX2015017285A (es) 2013-07-03 2016-04-13 California Inst Of Techn Estructura híbridas de grafeno-nanotubos de carbono para baterías de azufre-silicio sin separadores.
CN105531842A (zh) 2013-07-11 2016-04-27 纽佩斯公司 柔性可植入式医疗装置中的电池和电子集成件
EP2988362B1 (en) 2013-07-31 2020-04-01 LG Chem, Ltd. Curved electrode stack and battery pack comprising same
EP2835177A1 (en) 2013-08-06 2015-02-11 Bayer Technology Services GmbH Method for preparing Co-Mn on carbon catalysts and their use in carbon nanotube synthesis
US8940446B1 (en) 2013-08-06 2015-01-27 Quantumscape Corporation Solid state lithium-air based battery cell
KR102189784B1 (ko) 2013-08-30 2020-12-11 삼성전자주식회사 휘어지는 전자 장치
US20150087858A1 (en) 2013-09-25 2015-03-26 Samsung Sdi Co., Ltd. Carbon nanotube suspensions and methods of making the same
US20150133569A1 (en) 2013-11-08 2015-05-14 Samsung Sdi Co., Ltd. Carbon nanotube suspensions and methods of making the same
JP2015105208A (ja) 2013-11-29 2015-06-08 日本ゼオン株式会社 カーボンナノチューブ及びその分散液、並びに自立膜及び複合材料
KR102161290B1 (ko) 2013-12-03 2020-09-29 삼성에스디아이 주식회사 가요성 이차 전지
KR102306495B1 (ko) 2013-12-04 2021-09-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 축전체 및 전자 기기
KR102152887B1 (ko) 2013-12-16 2020-09-07 삼성에스디아이 주식회사 가요성 이차 전지
CN103715394B (zh) 2013-12-17 2016-01-13 江西理工大学 一种锂离子电池正极及其制备方法
US9343722B2 (en) 2013-12-27 2016-05-17 Intel Corporation Battery pack having a spring to connect at least two battery cells
US10476291B2 (en) 2013-12-27 2019-11-12 Amogreentech Co., Ltd. Wearable device having flexible battery
CN103715380B (zh) 2013-12-30 2017-05-17 深圳市格瑞普电池有限公司 一种柔性穿戴式锂电池
CN104752651A (zh) 2014-01-01 2015-07-01 许振宇 一种可以弯曲和折叠的电池结构
KR20150084242A (ko) 2014-01-13 2015-07-22 삼성에스디아이 주식회사 가요성 이차 전지 및 그 제조방법
KR20150086730A (ko) 2014-01-20 2015-07-29 삼성전자주식회사 가요성 이차 전지
CN104810524B (zh) 2014-01-23 2018-04-03 清华大学 锂离子电池
US20150233010A1 (en) 2014-02-14 2015-08-20 The Board Of Trustees Of The University Of Alabama Nanostructured electrodes and methods for the fabrication and use
KR20150096219A (ko) 2014-02-14 2015-08-24 서울대학교산학협력단 플렉서블 연료전지 및 그 제조방법
KR101632109B1 (ko) 2014-02-24 2016-06-20 한국과학기술원 플렉서블 섬유 전지
US20150255828A1 (en) 2014-03-07 2015-09-10 Semiconductor Energy Laboratory Co., Ltd. Secondary battery
US9502734B1 (en) 2014-03-24 2016-11-22 Amazon Technologies, Inc. Flexible battery
CN204072059U (zh) 2014-03-24 2015-01-07 上海电机学院 一种智能型人体温湿度测量仪
KR101676641B1 (ko) 2014-03-31 2016-11-17 한국과학기술원 블록공중합체 나노템플레이트를 이용한 탄소섬유직물/탄소나노튜브 구조전지 전극의 제조 방법
KR101606898B1 (ko) 2014-04-03 2016-03-28 숭실대학교산학협력단 유연한 리튬 이차전지 및 제조방법
KR102211368B1 (ko) 2014-05-09 2021-02-03 삼성에스디아이 주식회사 가요성 이차 전지
JP6269310B2 (ja) 2014-05-15 2018-01-31 株式会社村田製作所 電池、および電子機器
WO2015175927A1 (en) 2014-05-15 2015-11-19 Pebble Technology Corp. Flexible band with integrated battery
KR101558775B1 (ko) 2014-05-26 2015-10-07 현대자동차주식회사 고체전해질의 농도 구배를 가지는 전고체 전극 제조방법
US10003075B2 (en) 2014-06-12 2018-06-19 Council Of Scientific And Industrial Research Carbon nanotube-metal nanocomposites as flexible, free standing, binder free high performance anode for Li-ion battery
WO2016003532A1 (en) 2014-06-30 2016-01-07 University Of Southern California Free-standing active material/carbon nanomaterial network
KR102221804B1 (ko) 2014-07-02 2021-03-02 삼성에스디아이 주식회사 가요성 이차 전지
US10122010B2 (en) 2014-07-11 2018-11-06 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and electronic device including the same
KR102256294B1 (ko) 2014-07-14 2021-05-26 삼성에스디아이 주식회사 가요성 이차 전지
KR102222113B1 (ko) 2014-07-14 2021-03-03 삼성에스디아이 주식회사 가요성 이차 전지
KR102222118B1 (ko) 2014-07-14 2021-03-03 삼성에스디아이 주식회사 가요성 이차 전지
KR102222112B1 (ko) 2014-07-16 2021-03-03 삼성에스디아이 주식회사 가요성 이차 전지
KR102305509B1 (ko) 2014-07-22 2021-09-28 씨-나노 테크놀로지 리미티드 배터리용 전극 조성물
US9979225B2 (en) 2014-07-28 2018-05-22 Christophe & Albrecht, Inc. Energy generation system for wearable communication device
US9887644B2 (en) 2014-07-30 2018-02-06 Seoul National University R&Db Foundation Stretchable triboelectric generator, stretchable electricity storage device, and wearable electronic device
US20160040780A1 (en) 2014-08-05 2016-02-11 General Electric Company Piston assembly for a reciprocating engine
US20160049569A1 (en) 2014-08-13 2016-02-18 Barry E. Negrin Thermoelectric power source for personal electronics and wearable electronic devices having same
KR101548465B1 (ko) 2014-08-29 2015-08-28 김성준 스마트 워치용 배터리 장치
KR101666714B1 (ko) 2014-08-30 2016-10-14 주식회사 제낙스 플렉시블 이차 전지 및 그 제조 방법
JP6667508B2 (ja) 2014-09-04 2020-03-18 アモグリーンテック カンパニー リミテッド フレキシブルバッテリー、その製造方法、及び、フレキシブルバッテリーを含む補助バッテリー
KR101680592B1 (ko) 2014-09-05 2016-11-29 주식회사 아모그린텍 플렉서블 배터리 및 그 제조방법과 플렉서블 배터리를 포함하는 보조배터리
WO2016044749A1 (en) * 2014-09-19 2016-03-24 Nanosynthesis Plus. Ltd. Methods and apparatuses for producing dispersed nanostructures
JP2016073196A (ja) 2014-09-26 2016-05-09 株式会社半導体エネルギー研究所 二次電池モジュールおよび給電システム
CN104392845B (zh) 2014-10-17 2017-03-29 复旦大学 一种可拉伸的线状超级电容器和锂离子电池制备方法
KR101650782B1 (ko) 2014-10-22 2016-08-26 인하대학교 산학협력단 리튬-공기전지 양극용 자립형 탄소메쉬 지지체
CN104362326B (zh) 2014-10-29 2017-08-29 华南师范大学 一种柔性电极材料的制备方法
KR101795541B1 (ko) 2014-11-17 2017-11-08 주식회사 아모그린텍 플렉서블 배터리 및 이를 포함하는 보조배터리
KR102394689B1 (ko) 2014-11-24 2022-05-06 삼성에스디아이 주식회사 가요성 이차 전지
KR102314081B1 (ko) 2014-11-26 2021-10-15 삼성에스디아이 주식회사 탭을 갖는 이차 전지
JP6484800B2 (ja) 2015-02-24 2019-03-20 パナソニックIpマネジメント株式会社 フレキシブル電池
CN115956747A (zh) 2015-03-03 2023-04-14 阿莫绿色技术有限公司 内置有电池的便携式终端用外壳
KR102320437B1 (ko) 2015-03-03 2021-11-01 삼성에스디아이 주식회사 플렉서블 이차 전지
KR101765459B1 (ko) 2015-03-10 2017-08-07 주식회사 아모그린텍 플렉서블 배터리가 내장된 지갑
KR101795544B1 (ko) 2015-03-10 2017-11-08 주식회사 아모그린텍 배터리가 내장된 가방
KR102350516B1 (ko) 2015-03-24 2022-01-12 주식회사 아모그린텍 팔찌형 보조배터리
KR101848417B1 (ko) 2015-04-27 2018-04-12 주식회사 아모그린텍 웨어러블 장치
KR102376184B1 (ko) 2015-04-30 2022-03-18 주식회사 아모그린텍 플렉서블 배터리가 내장된 성형품 및 이의 제조방법
KR102348407B1 (ko) 2015-04-30 2022-01-10 주식회사 아모그린텍 플렉서블 배터리가 내장된 다이어리
WO2016178117A1 (en) 2015-05-06 2016-11-10 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and electronic device
KR20160146304A (ko) 2015-06-12 2016-12-21 삼성에스디아이 주식회사 이차 전지
CN107925016B (zh) 2015-06-16 2021-03-16 株式会社半导体能源研究所 蓄电装置及电子设备
US10686167B2 (en) 2015-07-31 2020-06-16 Semiconductor Energy Laboratory Co., Ltd. Power storage device, battery management unit, and electronic device
KR102415749B1 (ko) 2015-08-05 2022-07-01 삼성에스디아이 주식회사 플렉시블 전지
KR102422935B1 (ko) 2015-09-24 2022-07-20 주식회사 아모그린텍 헬멧
WO2017052248A1 (ko) 2015-09-24 2017-03-30 코오롱인더스트리 주식회사 연료 전지용 막-전극 어셈블리, 이의 제조 방법, 그리고 이를 포함하는 연료 전지 시스템
CN108370037B (zh) 2015-09-25 2021-02-23 Lg化学株式会社 碳纳米管分散液及其制造方法
KR20180071147A (ko) 2015-11-12 2018-06-27 주식회사 동진쎄미켐 고성능 전극
CN106024969A (zh) 2015-11-27 2016-10-12 上海空间电源研究所 柔性衬底硅基薄膜太阳能电池周边激光绝缘制备方法
KR20170063241A (ko) 2015-11-30 2017-06-08 삼성에스디아이 주식회사 가요성 이차 전지
KR102555973B1 (ko) 2015-11-30 2023-07-13 삼성에스디아이 주식회사 가요성 이차 전지
KR102593581B1 (ko) 2015-11-30 2023-10-23 삼성에스디아이 주식회사 가요성 이차 전지
KR101703516B1 (ko) 2015-12-29 2017-02-07 국방과학연구소 탄소 섬유 직물/탄소 나노 튜브 전극의 제조 방법
CN205375473U (zh) 2015-12-30 2016-07-06 苏州博众精工科技有限公司 一种基于led点阵的电子名片
US10950886B2 (en) 2016-01-08 2021-03-16 The Texas A&M University System Large energy density batteries and methods of manufacture
JP6692436B2 (ja) 2016-01-12 2020-05-13 アモグリーンテック カンパニー リミテッド ウェアラブルデバイス
JP2017130274A (ja) 2016-01-18 2017-07-27 東ソー株式会社 リチウム二次電池用負極材およびその製造方法、リチウム二次電池
US20170214052A1 (en) 2016-01-25 2017-07-27 Ford Cheer International Limited Electrode having nanocrystal assembled active clusters embodied in conductive network structures, and battery having same, and fabrication method of same
WO2017131451A1 (ko) 2016-01-26 2017-08-03 주식회사 아모그린텍 무인 비행 장치
JP6978207B2 (ja) 2016-02-12 2021-12-08 三洋化成工業株式会社 リチウムイオン電池
CN205697720U (zh) 2016-02-18 2016-11-23 武汉伟龙思博特工程信息技术有限公司 一种穿戴式体温监测内衣
JP2017162637A (ja) 2016-03-09 2017-09-14 パナソニックIpマネジメント株式会社 フレキシブル電池
US10680242B2 (en) 2016-05-18 2020-06-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing positive electrode active material, and lithium ion battery
KR102245618B1 (ko) 2016-07-20 2021-04-27 삼성에스디아이 주식회사 가요성 이차 전지
KR102582688B1 (ko) 2016-08-09 2023-09-26 삼성전자주식회사 압력 센서를 구비한 전자 장치
KR101729702B1 (ko) 2016-08-10 2017-04-24 한국기계연구원 입체 배열구조를 갖는 신축성 에너지 저장소자 및 신축성 전자 디바이스
CN106129536B (zh) 2016-08-12 2019-07-05 复旦大学 一种可拉伸锂空气电池及其制备方法
CN106299237B (zh) 2016-09-27 2019-06-28 武汉艾特米克超能新材料科技有限公司 自支撑极片及其制备方法、电池及其电芯
US20180115026A1 (en) 2016-10-25 2018-04-26 Arubixs, Inc. Flexible impregnated battery array
KR101926626B1 (ko) 2016-12-16 2018-12-11 주식회사 아모그린텍 플렉서블 배터리가 내장된 무선 헤드폰
US20180240609A1 (en) 2017-02-17 2018-08-23 Aict High performance nano/micro composite fiber capable of storing electrical energy and method for fabricating thereof
US20180241081A1 (en) 2017-02-21 2018-08-23 National Synchrotron Radiation Research Center Electrolyte, flexible electrode and flexible electronic device
KR102122296B1 (ko) 2017-04-20 2020-06-12 주식회사 아모그린텍 배터리 및 이를 포함하는 모바일 전자기기
CN110537394B (zh) 2017-04-21 2023-01-31 阿莫绿色技术有限公司 印刷电路纳米纤维网制造方法及印刷电路纳米纤维网
CN108735969B (zh) 2017-04-24 2020-09-29 清华大学 锂离子电池负极及柔性锂离子电池
CN107086306A (zh) 2017-05-08 2017-08-22 厦门大学 一种采用石墨烯薄膜作为负极的微型薄膜锂电池
JP6652111B2 (ja) 2017-07-18 2020-02-19 トヨタ自動車株式会社 太陽電池の製造方法
US10658651B2 (en) 2017-07-31 2020-05-19 Honda Motor Co., Ltd. Self standing electrodes and methods for making thereof
KR102364159B1 (ko) 2017-08-01 2022-02-18 주식회사 엘지에너지솔루션 전극 탭 절단 장치를 포함하는 파우치형 이차전지
CN107611340B (zh) 2017-08-23 2020-06-12 柔电(武汉)科技有限公司 柔性全固态电池及其制备方法
US20200264663A1 (en) 2017-09-15 2020-08-20 University Of Pittsburgh - Of The Commonwealth System Of Higher Education An all-in-one integrated, inter-convertible fold-able cell phone, tablet and personal computer
US11201318B2 (en) 2017-09-15 2021-12-14 Honda Motor Co., Ltd. Method for battery tab attachment to a self-standing electrode
US20190099129A1 (en) 2017-10-04 2019-04-04 Align Technology, Inc. Intraoral appliances for sampling soft-tissue
KR102508466B1 (ko) 2017-10-11 2023-03-08 한양대학교 산학협력단 은-아연 전지 및 그 제조 방법
DE102017123752B3 (de) 2017-10-12 2019-03-07 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Kraftfahrzeug-Karosseriebauteil
JP2019075306A (ja) 2017-10-17 2019-05-16 トヨタ自動車株式会社 リチウムイオン二次電池の充電装置、及び、リチウムイオン二次電池の充放電方法
US10475267B2 (en) 2017-10-24 2019-11-12 Ford Global Technologies, Llc Vehicle finder card with a thin film battery
US10446840B2 (en) 2017-11-07 2019-10-15 City University Of Hong Kong Rechargeable zinc-ion batteries having flexible shape memory
US10957939B2 (en) 2017-11-07 2021-03-23 City University Of Hong Kong Rechargeable polyacrylamide based polymer electrolyte zinc-ion batteries
CN108878717A (zh) 2018-06-29 2018-11-23 歌尔科技有限公司 可穿戴设备及其绑带式电池
CN208690415U (zh) 2018-07-24 2019-04-02 安普瑞斯(无锡)有限公司 一种柔性锂离子电池
CN109088071B (zh) 2018-08-17 2020-07-28 深圳新源柔性科技有限公司 一种复合层及其应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008305608A (ja) * 2007-06-06 2008-12-18 Honjiyou Kinzoku Kk リチウム二次電池用電極及びその製造方法
JP2012512956A (ja) * 2008-12-08 2012-06-07 チソル,エル・エル・シー 多成分ナノ粒子材料、プロセス及びその装置
US20110111279A1 (en) * 2009-11-09 2011-05-12 Florida State University Research Foundation Inc. Binder-free nanocomposite material and method of manufacture
US20140326181A1 (en) * 2013-05-02 2014-11-06 Samsung Display Co., Ltd. Deposition apparatus
JP2016031922A (ja) * 2014-07-30 2016-03-07 本田技研工業株式会社 電池用電極兼集電体およびそれを備えた電池
WO2016031335A1 (ja) * 2014-08-29 2016-03-03 日東電工株式会社 リチウム金属二次電池
JP2016054113A (ja) * 2014-09-04 2016-04-14 日本ゼオン株式会社 二次電池電極用複合体の製造方法、二次電池電極用複合体、二次電池用電極および二次電池
WO2016178210A1 (en) * 2015-05-07 2016-11-10 Phosfan Ltd Method for applying ultrafine phosphate conversion crystal coatings

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11408084B2 (en) 2020-01-09 2022-08-09 King Fahd University Of Petroleum And Minerals Thin film electrode containing nanostructured cobalt oxide for water splitting

Also Published As

Publication number Publication date
EP3439075A1 (en) 2019-02-06
CN116565145A (zh) 2023-08-08
US20200259160A1 (en) 2020-08-13
US10658651B2 (en) 2020-05-19
US11374214B2 (en) 2022-06-28
CN109326765B (zh) 2023-05-23
US20190036103A1 (en) 2019-01-31
CN109326765A (zh) 2019-02-12
KR20190013664A (ko) 2019-02-11

Similar Documents

Publication Publication Date Title
JP2019050186A (ja) 自立電極及びその製造方法
Zhang et al. Ni diffusion in vertical growth of MoS2 nanosheets on carbon nanotubes towards highly efficient hydrogen evolution
Liu et al. Electrodeposition of cobalt-sulfide nanosheets film as an efficient electrocatalyst for oxygen evolution reaction
Wu et al. Metal organic framework derived NiFe@ N-doped graphene microtube composites for hydrogen evolution catalyst
Hu et al. Scalable synthesis of Mo2C/CNT networks as highly efficient and stable electrocatalyst for hydrogen evolution reaction
Mo et al. Preparation of nitrogen-doped carbon nanotube arrays and their catalysis towards cathodic oxygen reduction in acidic and alkaline media
Park et al. Simultaneous electrical and defect engineering of nickel iron metal-organic-framework via co-doping of metalloid and non-metal elements for a highly efficient oxygen evolution reaction
US11535517B2 (en) Method of making self-standing electrodes supported by carbon nanostructured filaments
Rodney et al. Lanthanum doped copper oxide nanoparticles enabled proficient bi-functional electrocatalyst for overall water splitting
Xie et al. The construction of Pt-based catalyst based on exquisite Cu-doped CeO2 nanotubes for methanol electrooxidation
US11569490B2 (en) Continuous production of binder and collector-less self-standing electrodes for Li-ion batteries by using carbon nanotubes as an additive
US11539042B2 (en) Flexible packaging with embedded electrode and method of making
Zhang et al. Highly electrocatalytic performance of bimetallic Co–Fe sulfide nanoparticles encapsulated in N-doped carbon nanotubes on reduced graphene oxide for oxygen evolution
Huang et al. Facile synthesis of FeNi alloy-supported N-doped Mo2C hollow nanospheres for the oxygen evolution reaction
Zhou et al. The Rapid Preparation of Efficient MoFeCo-Based Bifunctional Electrocatalysts via Joule Heating for Overall Water Splitting
KR20190031173A (ko) 집전 장치 또는 바인더가 없는 자립형 전극에 배터리 탭 부착물을 매립하는 방법
US20240047684A1 (en) Additives for self-standing electrodes
US11325833B2 (en) Composite yarn and method of making a carbon nanotube composite yarn
Wang et al. One-Step Synthesis of Co3O4 Thin Film by Reactive Spray Deposition Technology for Efficient Electrochemical Water Splitting
Huang et al. Multicomponent nickel-molybdenum-tungsten-based nanorods for stable and efficient alkaline seawater splitting
Ge et al. Rational engineering WO3-X/CNTs@ carbon fiber membrane for the high-efficient produce H2O2 via electrochemical two-electron water oxidation route
Zhuang Defect engineering of nonprecious metal based catalysts for oxygen evolution reaction
Gauquelin et al. Shuhui Sun, Xiangbo Meng, Gaixia Zhang, Dongsheng Geng, Ruying Li, Xueliang Sun* Department of Mechanical and Materials Engineering, University of Western Ontario, London, ON, N6A 5B9 Canada

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220322

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230117

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230117

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230125

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20230131

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20230317

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20230322