JP2019022061A - 光送信器、変調方法、及び光伝送装置 - Google Patents

光送信器、変調方法、及び光伝送装置 Download PDF

Info

Publication number
JP2019022061A
JP2019022061A JP2017138365A JP2017138365A JP2019022061A JP 2019022061 A JP2019022061 A JP 2019022061A JP 2017138365 A JP2017138365 A JP 2017138365A JP 2017138365 A JP2017138365 A JP 2017138365A JP 2019022061 A JP2019022061 A JP 2019022061A
Authority
JP
Japan
Prior art keywords
optical
modulator
phase
drive voltage
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017138365A
Other languages
English (en)
Other versions
JP6863147B2 (ja
Inventor
智裕 山内
Tomohiro Yamauchi
智裕 山内
智史 小山
Satoshi Koyama
智史 小山
崇仁 谷村
Takahito Tanimura
崇仁 谷村
国秀 黄
Guoxiu Huang
国秀 黄
剛司 星田
Goji Hoshida
剛司 星田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2017138365A priority Critical patent/JP6863147B2/ja
Priority to US16/030,312 priority patent/US10425166B2/en
Publication of JP2019022061A publication Critical patent/JP2019022061A/ja
Application granted granted Critical
Publication of JP6863147B2 publication Critical patent/JP6863147B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/54Intensity modulation
    • H04B10/541Digital intensity or amplitude modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/5161Combination of different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation
    • H04B10/556Digital modulation, e.g. differential phase shift keying [DPSK] or frequency shift keying [FSK]
    • H04B10/5561Digital phase modulation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/212Mach-Zehnder type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

【課題】簡単な構成でクラマース・クローニッヒ検波方式の光伝送を実現する。【解決手段】光送信器は、光源から出力される光を多値変調する光変調器と、送信データがシンボルマッピングされた場合の振幅成分に応じて前記光変調器を駆動する第1駆動電圧と、前記送信データがシンボルマッピングされた場合の位相成分に応じて前記光変調器を駆動する第2駆動電圧を出力するデジタル信号プロセッサと、を有し、前記デジタル信号プロセッサが出力する第2駆動電圧による位相変調の位相偏移は0より大きくπ/2未満となる。【選択図】図4

Description

本発明は、光送信器、変調方法、及び光伝送装置に関する。
デジタルコヒーレント光伝送は、デジタル信号処理により光の強度と位相(さらには偏波)を利用して伝送効率を高め、大容量の長距離伝送を実現する。図1に示すように、デジタル変調では、デジタルデータをI軸(搬送波と同相(In-phase)の軸)とQ軸(搬送波と直交する位相(Quadrature phase)の軸)の直交座標上のシンボル点として表すIQ変調が行われる((C)図参照)。レーザダイオード(LD)から出力される光を、IQ変調器で、アナログ電気信号により同相の光信号と直交位相の光信号に変調する((A)図参照)。アナログ電気信号は、シンボル点の電界情報を表わしている。受信側では、信号光と局発光を干渉させてビート信号を取り出し、受信光の位相と強度の情報を検出する。ビート信号に分散補償等のデジタル信号処理を行って送信信号の波形を識別し再生するので、受信感度が向上する。
一方、最近では、クラマース・クローニッヒ(Kramers-Kronig:以下「KK」と略称する)検波方式が注目されている(たとえば、非特許文献1及び非特許文献2参照)。KK検波方式では、信号光は、一定の帯域幅の変調光スペクトルと、変調光スペクトルの片方のエッジで突出する連続光(キャリア)スペクトルを含む信号波形で送信される。受信側では、受信信号が最小位相系を満たすかぎり、フォトダイオード(PD)の出力強度から位相を復元することができる。KK検波方式は、直接検波を行いながらも分散補償を可能とし、一般的な直接検波と比較して伝送距離を伸ばすことができる。KK検波方式を短距離光ネットワークやメトロネットワークに適用することが期待されている。
KK検波方式の光伝送で、IQ変調器を用いる送信器構成が報告されている(上記の非特許文献2参照)。図1の(B)図に示すように、IQ変調器では、一般的に、I軸とQ軸のそれぞれでマッハ・ツェンダ(MZ)干渉計型の光変調器が用いられる。MZ干渉計型光変調器では、干渉計を形成する一対の光導波路の近傍に位相変化を加える電極が配置される。IQ変調器は、電極が設けられたMZ型変調器を並列で2つ配置し、I軸とQ軸の間に90°の位相差が与えられる。このため、変調部の構成が複雑になる、サイズが大きくなる等の課題がある。
本発明は、簡単な構成でKK検波方式の光伝送を実現する光伝送装置、光送信器及び変調方法を提供することを目的とする。
一つの側面において、光送信器は、
光源から出力される光を多値変調する光変調器と、
送信データがシンボルマッピングされた場合の振幅成分に応じて前記光変調器を駆動する第1駆動電圧と、前記送信データがシンボルマッピングされた場合の位相成分に応じて前記光変調器を駆動する第2駆動電圧を出力するデジタル信号プロセッサと、
を有し、
前記デジタル信号プロセッサが出力する第2駆動電圧による位相変調の位相偏移が0より大きくπ/2未満となる。
簡単な構成でKK方式の光伝送が実現する。
IQ変調器を用いた従来の送信器構成を示す図である。 実施形態の光送信器の基本構成を示す図である。 I−Q平面へのシンボルマッピングを示す図である。 DSPの構成例を示す図である。 DSPの別の構成例を示す図である。 DSPの別の構成例を示す図である。 DSPの別の構成例を示す図である。 ダンデム型の光変調器の構成例である。 ダンデム型の光変調器の別の例である。 ダンデム型の光変調器のさらに別の例である。 ひとつのマッハ・ツェンダ型光変調器を用いる例である。 ダンデム型の光変調器にバイアスを付加する構成例である。 最小位相回転量φminと最大位相回転量φmaxを説明する図である ダンデム型の光変調器にバイアスを付加する別の構成例である。 ダンデム型の光変調器にバイアスを付加するさらに別の構成例である。 ダンデム型の光変調器にバイアスを印加するさらに別の構成例である。 実施形態の変調方法のフローチャートである。 実施形態の変調方法のフローチャートである。 実施形態の光送信器が用いられる光伝送装置の模式図である。
図2は、実施形態の光送信器10の基本構成を示す図である。光送信器10は、KK検波方式に対応する変調方式で信号光を変調し、かつ変調部の構成を簡単にする。光送信器10は、デジタル信号プロセッサ(Digital Signal Processor:DSP)11、デジタル/アナログ変換器(Digital-to-Analog Convertor:DAC)12、光源であるLD13、及び光変調器15を有する。
デジタル信号プロセッサ11は、入力される送信データに応じて、振幅変調するための駆動電圧と、位相変調するための駆動電圧を出力する。このとき、振幅変調及び位相変調の順序、駆動箇所の位置関係は問わない。
MZ干渉計型の変調器は、光変調器15の一箇所以下で用いられる。KK検波方式の場合、後述するようにシンボルが消光点を遷移しないので、消光比が多少劣る変調デバイスを用いても、受信信号の強度から位相情報を精度良く復調、再生することができる。したがって、変調部の構成をできるだけ簡単にすることができる。
KK検波を可能にするために、送信される光信号として、一定の帯域幅を有する変調光スペクトルSと、変調光スペクトルのエッジで突出するキャリア(搬送波)スペクトルSを含む波形の光信号を生成する。この例では、データ情報を載せた変調光スペクトルSの左側(低周波側)のエッジにキャリアスペクトルSを有する。キャリアスペクトルSの周波数は、変調光スペクトルSMの低周波側エッジの周波数と一致している。この信号スペクトルで、最小位相(minimum phase)が満たされる限り、受信側でKK検波が可能になる。
最小位相とは、応答と逆応答がどちらも因果的、または伝達関数の零点と極がすべて安定であることを意味する。最小位相条件が満たされると、信号エネルギーが時刻0の付近に集まり、群遅延特性が最小になる。受信信号が最小位相を満たすとき、振幅と位相の間にクラマース・クローニッヒの関係が成り立つ。安定な最小位相系では、ヒルベルト変換によって位相特性と振幅特性の一方から、もう一方を得ることができる。
クラマース・クローニッヒの関係は、
i(ω)=−(1/πω)Hr(ω)
r(ω)=−(1/πω)Hi(ω)
で表され、複素関数の実部と虚部は相互に関係付けられる。ここで、iは虚部を表わし、rは実部を表わす。この関係式はヒルベルト変換対とも呼ばれる。Hr(ω)の周波数依存性が分かれば、Hi(ω)は自動的に決まる。したがって、受信側でPD出力の強度から位相を一意に取り出すことができ、受信信号を復調することができる。この位相と振幅の相関性により、KK検波方式の場合、I−Q平面(または複素平面)上にマッピングされるシンボル点は、振幅方向の変調と、位相方向の変調で定義される。
図3は、I−Q平面へのシンボルマッピングを示す図である。図3(A)は所定の帯域幅を有する変調信号の時間軌跡を示す。灰色のドットは、送信される信号のシンボル点を示す。ここでは、16QAM変調信号を例にとる。シンボルは4つの象限にまたがり、最小位相系を満たさない(零点を遷移し非安定な系となる)。
図3(B)は、単側波帯信号の時間軌跡(破線)と、その復元信号(実線)を示す。黒色のドットは復元されたシンボルを示す。この信号の中心はπ/4の位置にあるが、信号は何度も原点の周りを回って(破線)、送信信号のシンボルと復元後のシンボルは、ともに単一象限からはみ出している。信号エネルギーが信号中心から拡散して最小位相系が満たされず、復元信号の品質は不十分である。
図3(C)は、KK検波方式に対応して変調された信号光の時間軌跡である。図3(B)と同様に、信号中心はπ/4の位置にあるが、図3(B)と比較して、より原点から離れている。信号エネルギーが信号中心の周りに集まり、原点を遷移していない。信号中心は、キャリアスペクトルSのパワーによって決まる。キャリアスペクトルSのパワーが小さいと、信号中心が原点に近くなり、シンボルは離散して配置される。信号エネルギーは消光点をまたいで拡散し、受信品質が悪くなる。キャリアスペクトルSのパワーが強いと、シンボルは原点から離れたところに集まりシンボル間の間隔が近くなる。実施形態のKK変調方式では、すべてのシンボルが単一象限内に収まり(最小位相系)、かつシンボル間の識別が正しくできるように、キャリアのパワーと変調光のパワーが配分される。図2の送信波に含まれるキャリアスペクトルSのパワーは、最小位相が満たされるように十分に大きいパワーに設定されている。最小位相系では、シンボルが消光点(または零点)を遷移しないため、消光比がそれほど高くない変調デバイスを用いても、受信側でヒルベルト変換により信号強度から位相情報が復元される。
<DSPの構成例>
図4は、DSP11の一例として、DSP11Aの構成を示す。DSP11は、光変調器15を駆動して最小位相条件を満たす変調光信号を生成するための駆動電圧(電界信号)を生成する。DSP11Aは、複素平面上に外部からDSP11Aに入力された送信データをマッピングするシンボルマッピング部51と、位相変調用の駆動電圧及び振幅変調用の駆動電圧を決定する駆動電圧決定部52を有する。このとき、振幅変調及び位相変調の順序、駆動箇所の位置関係は逆でも良い。駆動電圧決定部52は、位相変調量を表わす電圧値と振幅変調量を表わする電圧値を出力する。出力された電圧はDAC12でアナログ駆動信号(変調信号)に変換されて光変調器15に入力される。
図5は、DSP11の別の構成例としてDSP11Bを示す。図4のDSP11Aと同じ構成要素には同じ符号を付けて、重複する説明を省略する。DSP11Bは、シンボルマッピング部51とキャリア成分設定部53の出力を加算器54で合成する構成になっているところが、図4のDPS11Aと異なる。
図4のシンボルマッピング部51では、入力された送信データに基づいて、単一象限内の対応するシンボル点を直接算出した。図5のシンボルマッピング部51により、例えば信号中心をゼロ(原点)とみなしてシンボル点を計算した後で、キャリア成分設定部53で設定されるキャリア成分を加算して単一の象限内のシンボル点に変換する。
この構成によっても、送信データは最小位相条件を満たすように単一象限内のシンボル点にマッピングされ、受信側でのKK検波が可能になる。
図6は、DSP11の別の例として、DSP11Cの構成を示す。図4と図5では、いったんIQ平面上にシンボルマッピングしてから駆動電圧を設定していたが、DSP11Cは、直接IQ平面上のシンボル点を表わす振幅電圧と位相電圧を生成する。駆動電圧と位相電圧は、光変調器15を駆動して最小位相条件を満たす変調光信号を生成するための駆動電圧である。光変調器15は、この例では振幅変調器16と位相変調器17が直列接続されたダンデム型の変調器であるが、これに限定されず、後述するように単一のマッハ・ツェンダ(MZ)型の光変調器であってもよい。
DSP11Cは、キャリア光と変調信号光のパワー比を設定するキャリア対信号比(CSPR:Carrier to Signal Power Ratio)設定部55と、駆動電圧決定部52を有する。駆動電圧決定部52には、位相変調用の駆動電圧決定部62Aと、振幅変調用の駆動電圧決定部56が含まれる。外部からDSP11Aに入力された送信データと変調方式のそれぞれは、位相変調用の駆動電圧決定部62Aと、振幅変調用の駆動電圧決定部56に入力される。
CSPR設定部55は、受信側で最小位相が担保されるパワー比率を設定する。一例として、運用前に受信側で光信号を測定した結果に基づいてパワー比が決定されてもよい。設定されたパワー比に基づいて、LD13の出力光パワーは、キャリアスペクトルSのためのパワーと、変調光スペクトルSのためのパワーに振り分けられる。CSPR設定部55に設定されているCSPR値は、位相変調用の駆動電圧決定部62Aと、振幅変調用の駆動電圧決定部56に入力される。
位相変調用の駆動電圧決定部62Aは、位相変調量算出部64を有する。位相変調量算出部64は、CSPR値と、変調方式と、送信データとに基づいて、データ値に対応するシンボルの位相変調量を算出する。16QAMの場合、16個のシンボルのすべてがI−Q平面の単一の象限に含まれるように各シンボルの位相変調量が計算される。第1象限の場合は、すべてのシンボルの位相回転量は、0ラジアンより大きく、π/2ラジアンより小さい範囲にある。各シンボルの位相回転量は、信号中心(シンボル群の中心)が原点からどれだけ離れた位置に設定されるかによって変わってくる。信号中心はCSPR値、より具体的にはキャリアのパワーによって決まる。計算された位相変調量は、送信データに対応するシンボル点の位相回転を得るための電圧として出力される。
振幅変調用の駆動電圧決定部56は、キャリア・信号強度算出部57と、振幅変調量算出部58と、加算器59を有する。キャリア・信号強度算出部57は、CSPR設定部55から入力されるCSPR値に基づいて、キャリアスペクトルSの強度と、変調光スペクトルSの強度を計算する。便宜上、キャリアスペクトルSの強度を「キャリア強度」と呼び、変調光スペクトルSの強度を「信号強度」と呼ぶ。信号強度は、振幅変調量算出部58に入力される。振幅変調量算出部58には変調方式と送信データも入力される。振幅変調量算出部58は、信号強度と、変調方式と、送信データとに基づいて、単一象限内で送信データに対応するシンボル点の振幅変調量を計算する。算出された振幅変調量は加算器59にて、キャリア強度と加算される。加算結果は、キャリアスペクトルSと送信データを載せた変調光スペクトルSの振幅を得るための電圧として出力される。
位相変調用の駆動電圧決定部62Aの出力と振幅変調用の駆動電圧決定部56の出力は、それぞれDAC12により高周波のアナログ電気信号に変換される。振幅変調用のアナログ電気信号は、振幅変調器16に入力される。位相変調用のアナログ電気信号は、位相変調器17に入力される。振幅変調用のアナログ電気信号と、位相変調用のアナログ電気信号は、必要に応じて増幅された後に各変調器に入力されてもよい。
KK検波方式では、送信データは最小位相条件を満たすように単一象限内のシンボル点にマップされ、送信データに対応するシンボル点が位相と振幅によって規定される。振幅変調器16は、LD13から出力される連続光を、DAC12から出力される振幅変調用の駆動電圧で振幅変調する。振幅変調された光は位相変調器17に入射する。位相変調器17は、入力光をDAC12から出力される位相変調用の駆動電圧で位相変調する。これにより、図2に示す波形スペクトラムで送信データに対応する光信号が出力される。
図7は、DSP11の別の構成例としてDSP11Dを示す。図6のDSP11Cと同じ構成要素には同じ符号を付けて、重複する説明を省略する。DSP11Dは、位相変調用の駆動電圧決定部62Bの構成が、図6のDPS11Cと異なる。
位相変調用の駆動電圧決定部62Bは、最大位相変調量算出部63と、位相変調量算出部64と加算器65を有する。図6の位相変調用の駆動電圧決定部62Aでは、入力された送信データに基づいて、単一象限内の対応するシンボル点の位相変調量を直接算出した。図7の位相変調用の駆動電圧決定部62Bは、信号中心をゼロ(原点)とみなして位相変調量を計算した後で、固定値を加算して単一の象限内のシンボル点の位相変調量に変換する。たとえば単一の象限を第1象限とする場合は、原点を信号中心して決定されたシンボル点の位相変調量を、信号中心をπ/4とするシンボル点の位相変調量に変換する。
最大位相変調量算出部63は、CSPR設定部55から供給されるCSPR値に基づいて、最大位相変調量を計算し、計算結果を位相変調量算出部64に出力する。最大位相変調量は、変調光スペクトルSに割り振られるパワーによって決まる。位相変調量算出部64は、最大位相変調量の範囲内で、外部から入力される変調方式と送信データから対応するシンボル点の位相変調量を計算する。計算された位相変調量は加算器65に入力されて、信号中心を単一の象限内に設定したときの位相変調量に変換するための固定値が加算される。加算器65の出力値は、位相変調器17を駆動する電圧値としてDAC12に入力される。この構成によっても、送信データは最小位相条件を満たすように単一象限内のシンボル点にマップされ、受信側でのKK検波が可能になる。
<ダンデム型光変調器による実施例>
図8は、光送信器10Aで用いられるダンデム型の光変調器15Aの構成例を示す。光変調器15Aは、振幅変調器としてMZ干渉計型変調器16Aを用いる。MZ干渉計型変調器16Aは、たとえばLiNbOなどの電気光学材料を用いた変調器である。MZ干渉計の一対の光導波路に電圧を加えて屈折率を変化させることで、2つの光導波路を伝搬する光の干渉状態を変化させて、所望の振幅変調をかける。
位相変調器17は、MZ干渉計型ではない位相器であり、たとえば電気光学結晶を用いる。電気光学結晶に電圧をかけることで屈折率を変化させて、所望の位相回転を生じさせる。振幅変調器としてのMZ干渉計型変調器16Aと、位相変調器17を同じ電気光学材料でモノリシックに形成してもよい。また、MZ干渉計型変調器16Aと位相変調器17の配置を逆にしてもよい。光変調器15Aの出力は光送信器10Aから送信される光信号であり、最小位相系を満たす。
図9は、光送信器10Bで用いられるダンデム型の光変調器15Bの構成例を示す。光変調器15Bは、振幅変調器として電界吸収型(EA:Electroabsorption)変調器16Bと、位相変調器17を有する。EA変調器16は、半導体の電界吸収効果を利用したもので、量子井戸に電圧を印加することでバンドギャップが変化し光の吸収量が変化する。EA変調器はLiNbOの変調器と比較して小型で駆動電圧が小さい。また、LD13との集積化が可能であり、光送信器10Bの小型化に有利である。
図10は、ダンデム型の光変調器の別の例として、光変調器19を示す。光変調器19は、直接変調レーザ(DML:Directly Modulated Laser)18と位相変調器17を有する。DML18は、半導体レーザへ注入する電流をDAC12から出力される振幅変調用の駆動電圧で直接変調することで、出力強度(振幅)を変調する。DML18は、構成と作製が簡単である。電流値の変動にともなう半導体の屈折率変化(チャーピング)により大きな消光比は期待できないが、KK検波方式と組み合わせることで消光比の問題は解消される。そのため、消光比が高くない変調デバイスでも、小型化、コスト低減、光損失の低減に資する場合は、好適に使用できる。受信側では、PD出力から直接強度を検出し、振幅から位相情報を正しく取り出すことができる。
<単一のMZ干渉計型変調器による実施例>
図11は、光送信器10Dで用いられる単一のMZ干渉計型光変調器15Dによる実施例を示す。MZ干渉計型光変調器15Dでは、一対の光導波路の近傍に電極151が配置されて光導波路に屈折率変化を与える電圧が印加される(図11(A))。一対の光導波路に電圧Vaを加えて屈折率を変化させることで、2つの光導波路を伝搬する光の干渉状態を変化させて(差動モード)、所望の振幅変調をかける(図11(B))。破線の矢印は、逆相の電圧印加を示す。これに対し、一対の光導波路に加わる電圧Vpと変化する屈折率が等しいコモン・モードで動作する場合、所望の位相変調がかかる(図11(C))。
振幅変調の駆動電圧Vaを差動モード、位相変調の駆動電圧Vpをコモン・モードで変調器に加えることによって、最小位相条件を満たす信号を生成することが可能になる(図11(D))。この場合、一方の光導波路には、電圧Vp+Vaが印加され、他方の光導波路には、電圧Vp−Vaが印加される。
振幅変調の駆動電圧VaをMZ干渉計型光変調器15DのRF端子152に印加し、位相変調の駆動電圧VpをMZ干渉計型光変調器15DのDC端子153に印加することによっても、最小位相条件を満たす信号を生成することが可能になる(図11(E))。このように、振幅変調及び位相変調を同時に発生させる駆動電圧によって、最小位相条件を満たす信号を生成することが可能である。
<バイアスを付加する構成例1>
図12は、ダンデム型の光変調器にバイアスを付加する構成例を示す。光送信器20は図2(A)の装置構成に加えて、直流(DC)電源21と、加算器22を有する。DAC12から位相変調器17に供給される駆動電圧は、シンボル点の位相変調量を実現する電圧である。この駆動電圧にバイアス電圧を印加することで、DAC12の出力電圧を抑えることができる。
バイアス電圧を付加しないときの位相変調器17の光入出力特性は、
Eout(t)=Ein(t)exp(jδ(t)Δφ)
で表される。ここで、Ein(t)は位相変調器17への入力光信号、Eout(t)は位相変調器17からの出力光信号、δ(t)は位相変調器17に入力される正規化された入力電圧(すなわち正規化された位相変調用のDAC出力電圧)、Δφは位相変調器17自体の可変位相幅である。
位相変調器17に入力される正規化入力電圧δ(t)は、
(φmin/Δφ)<δ(t)<(φmax/Δφ)
の範囲にある。ここで、φminとφmaxは、変調方式とCSPR値によって決まる最小の位相回転量と、最大の位相回転量である。
図13は、最小位相回転量φminと最大位相回転量φmaxを説明する図である。上述のように、CSPR値によって単一象限内での信号中心が決まり、変調方式によってシンボル点の数が決まる。CSPRと変調方式により、最小位相回転量φminと、最大位相回転量φmaxが決まる。
図12に戻って、バイアス電圧を付加したときの位相変調器17の光入出力特性は、
Eout(t)=Ein(t)exp[(j(δ(t)+δbias)Δφ]
で表される。ここで、δbiasは付加されるバイアス電圧である。位相変調器17に入力される正規化入力電圧δ(t)は、
(φmin/Δφ)−δbias <δ(t)<(φmax/Δφ)−δbias
となり、DAC12の位相変調器17への出力電圧δ(t)を低減することができる。
<バイアスを付加する構成例2>
図14は、ダンデム型の光変調器にバイアスを付加する別の構成例を示す。この構成例では、振幅変調器16に印加される駆動電圧に、バイアス電圧を付加する。光送信器20は、図2(A)の装置構成に加えて、DC電源23と加算器24を有する。DAC12から振幅変調器16に供給される駆動電圧は、シンボル点の振幅変調量を実現する電圧である。この駆動電圧にバイアス電圧を印加することで、DAD12の出力電圧を抑えることができる。
バイアス電圧を付加しないときの振幅変調器16の光入出力特性は、
Pout(t)=Pin(t)cos2[(π/2)(1/2-k(δ(t)-1/2))]
で表される。ここで、Pin(t)は振幅変調器16への入力光パワー、Pout(t)は振幅変調器16からの出力光パワー信号、δ(t)は振幅変調器16に入力される正規化された入力電圧(すなわち正規化された振幅変調用のDAC出力電圧)、kは振幅変調器16の消光比によって一意に決まる係数である。
振幅変調器16に入力される正規化入力電圧δ(t)は、
の範囲にある。ここで、AminとAmaxは、変調方式とCSPR値によって決まるPout/Pinの最小値と最大値である。Pout/Pinの値は、単一象限内でのシンボル点の原点からの距離、すなわち振幅と相関する。
バイアス電圧を付加したときの位相変調器17の光入出力特性は、
Pout(t)=Pin(t)cos2[(π/2)(1/2-k(δ(t)+δbias-1/2))]
で表される。ここで、δbiasは付加されるバイアス電圧である。振幅変調器16に入力される正規化入力電圧δ(t)は、
となり、DAC12の振幅変調器16への出力電圧δ(t)を低減することができる。
<バイアスを付加する構成例3>
図15は、ダンデム型の光変調器にバイアスを付加する別の構成例を示す。この構成例では、振幅変調器16に印加される駆動電圧と、位相変調器17に印加される駆動電圧にバイアス電圧を付加する。光送信器20は、図2(A)の装置構成に加えて、振幅変調器16のためのDC電源23と加算器24、及び位相変調器17のためのDC電源21と加算器22を有する。振幅変調器16へのDAC出力と位相変調器17へのDAC出力の双方で出力電圧を低減することができる。
<バイアスを付加する構成例4>
図16は、ダンデム型の光変調器にバイアスを印加する構成例4を示す。構成例4は構成例2と比べてバイアス電圧を直接供給している点で異なる。例えば、マッハ・ツェンダ(MZ)干渉計型の光変調器を振幅変調器16として用いた場合、通常のMZ干渉計型変調器には端子が2つ(RF端子、DC端子)あるので、駆動電圧の他にバイアス電圧を直接印加することが出来る。このような構成にすることによって部品を追加することなく、バイアスの印加を実現することが出来る。
また、位相変調器17もマッハ・ツェンダ(MZ)干渉計型の光変調器を適用し、直接バイアス電圧を印加することは可能であるが、バイアスを印加するための部品のコストをカットすることのメリットより、位相変調器自体のコストが高くなってしまうデメリットが上回ってしまう。よって、将来、安価で2つ以上の端子をもつ位相変調器が開発されればそのDC端子に駆動電圧及びバイアス電圧を印加することで上述したようなメリットを得ることができる。
<動作フロー1>
図17は、光送信器10(または20)が行う変調方法のフローチャートである。この動作フローは、図4及び図5に示したIQでシンボルマッピングしてから振幅と位相に分ける構成に適用される。
DSP11は、送信データが入力されると(S11でYES)、送信データに基づいて、最小位相条件を満たすシンボル点にマッピングする(S12)。マッピングされた各シンボルの振幅変調量を表す駆動電圧と位相変調量を表す駆動電圧を算出する(S13)。振幅変調量を表わす駆動電圧と位相変調量を表わす駆動電圧で光変調器15を駆動してKK変調光信号を出力する(S14)。光変調器15から出力される光信号は、図2に示す信号波形を有し、十分に高いパワーのキャリアスペクトルSと、データを載せた変調光スペクトルSを含む。光送信器10の運用中(S15でNO)、ステップS12〜S15を繰り返す。
<動作フロー2>
図18は、光送信器10(または20)が行う変調方法の別の動作フローを示すフローチャートである。この動作フローは、入力データと変調方式とCSPRに基づいて直接シンボル点に相当する振幅変調量と位相変調量を決める図6及び図7の構成に適用される。DSP11にCSPRを設定する(S21)。CSPRは、一例として運用前にテスト信号を用いた受光結果に基づいて決定される。運用中は、DSP11は、送信データが入力されると(S22でYES)、用いられる変調方式と、送信データと、設定されているCSPR値とに基づいて、最小位相条件を満たすシンボル点に相当する振幅変調量と位相変調量を算出する(S23)。振幅変調量を表わす駆動電圧で振幅変調器16を駆動し、位相変調量を表わす駆動電圧で位相変調器17を駆動してKK変調光信号を出力する(S24)。光変調器15から出力される光信号は、図2に示す信号波形を有し、十分に高いパワーのキャリアスペクトルSと、データを載せた変調光スペクトルSを含む。光送信器10の運用中(S25でNO)、ステップS12〜S15を繰り返す。
受信側では、図2の信号波形の光信号がPDで受光される。PDから出力される光電流Iは、受光された信号の電界強度の二乗に比例する。光電流を、たとえば2倍のサンプリングレート(変調光スペクトルSの帯域幅の2倍の帯域幅)でデジタルサンプリングする。DSPで電界強度(振幅)を求め、ヒルベルト変換により位相情報を取得する。
この方法により、光変調器15を簡単な構成とし、光送信器のサイズ、コスト、光損失等を低減することができる。また、シンボルが消光点を遷移しない変調方式なので、消光比がそれほど高くない光デバイスを使用することが可能になり、コスト低減に資する。
上述した例では16QAMの変調方式を用いたが、この例に限定されず、本発明は8QAM、32QAM、64QAM、DP−QPSKなど、その他の多値変調にも適用可能である。いずれの場合もすべてのシンボル点が単一の象限内に収まるように(最小位相条件を満たすように)振幅と位相が変調される。シンボル点が配置される象限は第1象限に限定されず、たとえば、すべてのシンボル点が第3象限に配置されてもよい。この場合も、最小位相から最大位相までの位相偏移の範囲は0〜π/2の間である。
DP−QPSKの場合は、X偏波とY偏波のそれぞれにダンデム型の光変調器15を配置することで、MZ干渉計型の光変調器で構成する場合と比較して、サイズ、構成の複雑さを大幅に低減することができる。ダンデム型の光変調器を用いる場合、位相と振幅の配置順序に限定はない。
<光伝送装置への適用>
図19は、実施形態の光送信器10(または20)が適用される光伝送装置1の構成例を示すブロック図である。光伝送装置1は、例示的に、光分岐挿入装置(reconfigurable optical add-drop multiplexer,ROADM)を示す。図示を省略しているが、ROADM全体の動作を制御する装置制御部がROADMに備えられていてよい。なお、光伝送装置1は、光ネットワーク(光伝送システム)のエレメント(NE)の一例である。
受信側の光増幅器(「AMP」と標記)101は入力光伝送路を伝送されてくる光(WDM光)を受信して増幅し、増幅された光信号を波長選択スイッチ(「WSS」と標記)102に出力する。送信側の光増幅器107は、WSS105から入力される送信光(WDM光)を増幅して出力光伝送路へ送信する。光増幅器101、105は、例えば、エルビウム添加光ファイバ増幅器(EDFA)等の希土類添加光ファイバ増幅器である。
光伝送装置1は、WDM光に含まれる、いずれかの波長の光をドロップ、アド及びスルーする機能を有する。例えば、光増幅器101から入力された受信WDM光を、当該WDM光に含まれる光の波長単位で、他の方路(Degree)の光伝送路へ送信したり、光受信器(Rx)宛てに分岐(ドロップ)したり、光増幅器107の方向へスルーしたりすることができる。「他の方路の光伝送路」とは、例示する光伝送路とは異なる方路に対応する光伝送路である。また、光増幅器101の方向から入力された受信WDM光に、他の方路の光伝送路から受信したWDM光や光送信器からの送信光を波長単位で挿入(アド)することができる。
光伝送装置1は、図19に例示するように、WSS102、WSS105、デマルチプレクサ(DMUX)103、及びマルチプレクサ(MUX)106を備える。WSS102は、入力されたWDM光を分岐し、分岐光をデマルチプレクサ103とWSS105に出力する。分岐光の出力先には、他の方路の光伝送路が含まれることもある。デマルチプレクサ103に出力される分岐光は、「ドロップ光」と称し、WSS105に出力される分岐光は、「スルー光」と称する。
WSS105は、WSS102から入力されるスルー光、及び、マルチプレクサ106から入力されるアド光を、波長単位で選択し出力する。WSS105での波長選択対象には、他の方路の光伝送路から入力されるWDM光に含まれるいずれかの波長が含まれてよい。
WSS102とWSS105の各々は、入力ポートに入力されたWDM光を、波長単位でいずれかの出力ポートに接続する機能と、波長単位で透過光パワーを調整できる機能とを有する。「透過光パワーの調整」は、光の減衰量(あるいは損失量)を調整することで実施される。
透過光パワーの調整機能(アッテネーション機能)に着目すれば、WSSは、可変光減衰器(VOA)の一例である。WSS102及びWSS105の光スイッチ機能とアッテネーション機能とは、入力された光(ビーム)の反射方向を空間的に可変して内部的な光経路を変えることのできる素子を用いて実現される。当該素子は、「空間光変調素子」と称する。空間光変調素子の一例としては、LCOS(Liquid Crystal on Silicon)技術やMEMS(Micro Electro Mechanical System)技術を用いた素子が挙げられる。空間光変調素子は、入力された光ビームの空間的な反射方向を調整することで、出力ポートに結合する光ビームの波長や光パワーを調整できる。したがって、空間光変調素子は、出力ポートへの光の透過帯域を可変にでき、また、出力ポートから出力される光のパワーを可変にできる。このような空間光変調素子をWSS102及びWSS105に用いることで、光伝送装置1において、フレキシブルグリッドやカラーレスをサポートすることができる。
デマルチプレクサ103は、WSSから入力されるドロップ光を波長分離して光受信器(Rx)へ出力する。光受信器(Rx)がコヒーレント受信可能であれば、光受信器(Rx)は、異なる複数波長の光が入力されても目的の受信波長の光を選択受信できる。したがって、デマルチプレクサ103は、入力ドロップ光を光受信器(Rx)に分岐する光カプラに代替されてもよい。
マルチプレクサ106は、光送信器(Tx)10から入力されるアド光を波長多重してWSSへ出力する。なお、デマルチプレクサ及びマルチプレクサの一方又は双方は、WSS等の透過帯域可変のフィルタや、光カプラ等を用いて構成してよい。マルチプレクサ106は、光送信器(Tx)10から入力されるアド光を波長多重してWSS105へ出力する。
なお、デマルチプレクサ103とマルチプレクサ106の一方又は双方は、WSS等の透過帯域可変のフィルタや、光カプラ等を用いて構成してよい。光送信器10は、例えば、デジタル信号プロセッサ11(図2参照)と、コヒーレント信号光送信部を備え、コヒーレント信号光送信部に含まれる光変調器15に本発明は適用可能である。
以上の説明に対し、以下の付記を提示する。
(付記1)
光源から出力される光を多値変調する光変調器と、
送信データがシンボルマッピングされた場合の振幅成分に応じて前記光変調器を駆動する第1駆動電圧と、前記送信データがシンボルマッピングされた場合の位相成分に応じて前記光変調器を駆動する第2駆動電圧を出力するデジタル信号プロセッサと、
を有し、
前記デジタル信号プロセッサが出力する第2駆動電圧による位相変調の位相偏移が0より大きくπ/2未満となることを特徴とする光送信器。
(付記2)
前記光変調器は、前記送信データを載せた変調光スペクトルと、前記変調光スペクトルのエッジに突出するキャリアスペクトルとを含む波形の光信号を出力することを特徴とする付記1に記載の光送信器。
(付記3)
前記デジタル信号プロセッサは、
前記キャリアスペクトルの強度と前記振幅成分に基づき前記第1駆動電圧を出力する
ことを特徴とする付記1又は2に記載の光送信器。
(付記4)
前記光変調器は、
直列接続された振幅変調器と位相変調器を有することを特徴とする付記1乃至3の何れかに記載の光送信器。
(付記5)
前記光変調器は1つのマッハ・ツェンダ型光変調器であることを特徴とする付記1乃至3の何れかに記載の光送信器。
(付記6)
前記デジタル信号プロセッサは、
差動モードで第1駆動電圧を出力し、コモン・モードで第2駆動電圧を出力することを特徴とする付記5に記載の光送信器。
(付記7)
前記デジタル信号プロセッサは、
前記第1駆動電圧をRF端子に出力し、前記第2駆動電圧をDC端子に出力することを特徴とする付記5又は6に記載の光送信器。
(付記8)
前記デジタル信号プロセッサは、
キャリア対信号パワー比を設定する設定部と、
前記キャリア対信号パワー比と、前記送信データと、変調方式とに基づいて、前記第1駆動電圧を決定する第1の駆動電圧決定部と、
前記キャリア対信号パワー比と、前記送信データと、前記変調方式に基づいて、前記第2駆動電圧を決定する第2の駆動電圧決定部と、
を有することを特徴とする付記1又は2に記載の光伝送装置。
(付記9)
前記デジタル信号プロセッサは、
キャリア対信号パワー比を設定する設定部と、
前記キャリア対信号パワー比に基づいて、前記キャリアスペクトルの強度と前記変調光スペクトルの強度を計算し、前記キャリアスペクトルの強度と前記変調光スペクトルの強度から前記第1駆動電圧を決定する第1の駆動電圧決定部と、
を有することを特徴とする付記2に記載の光伝送装置。
(付記10)
前記第1の駆動電圧決定部は、前記変調光スペクトルの強度と、前記送信データと、変調方式とに基づいて、前記送信データの振幅変調量を計算)することを特徴とする付記9に記載の光伝送装置。
(付記11)
前記振幅変調器は直接変調レーザであることを特徴とする付記4に記載の光伝送装置。
(付記12)
送信データがシンボルマッピングされた場合の振幅成分に応じた第1駆動電圧と、前記送信データがシンボルマッピングされた場合の位相成分に応じた第2駆動電圧とに基づいて、前記第2駆動電圧による位相変調の位相偏移が0より大きくπ/2未満となる光信号を生成する光変調方法。
(付記13)
前記生成された光信号のスペクトルは、前記送信データを載せた変調光スペクトルと、前記変調光スペクトルのエッジに突出するキャリアスペクトルとを含む波形であることを特徴とする付記12に記載の変調方法。
(付記14)
設定された変調方式と、キャリア対信号パワー比と、前記送信データとに基づいて、振幅変調量と位相変調量を算出し、
前記振幅変調量から前記第1駆動電圧を決定し、前記位相変調量から前記第2駆動電圧を決定することを特徴とする付記12または13に記載の変調方法。
(付記15)
第1駆動電圧が印加される振幅変調器と、前記振幅変調器と直列接続され第2駆動電圧が印加される位相変調器とを有する送信器を有し、
前記送信器から出力される送信データが変調された変調光スペクトルと、前記変調光スペクトルのエッジに突出するキャリアスペクトルとを含む波形の光信号を出力することを特徴とする光伝送装置。
1 光伝送装置
10、20 光送信器
11、11A、11B、11C、11D DSP(デジタル信号プロセッサ)
12 DAC
13 LD(光源)
15、19 光変調器
16 振幅変調器
17 位相変調器
18 直接変調レーザ
51 シンボルマッピング部
52 駆動電圧決定部
53 キャリア成分設定部
54 加算器
55 CSPR設定部
56 振幅変調用の駆動電圧決定部
57 キャリア・信号強度算出部
58 振幅変調量算出部
62A、62B 位相変調用の駆動電圧決定部
64 位相変調量算出部

Claims (10)

  1. 光源から出力される光を多値変調する光変調器と、
    送信データがシンボルマッピングされた場合の振幅成分に応じて前記光変調器を駆動する第1駆動電圧と、前記送信データがシンボルマッピングされた場合の位相成分に応じて前記光変調器を駆動する第2駆動電圧を出力するデジタル信号プロセッサと、
    を有し、
    前記デジタル信号プロセッサが出力する第2駆動電圧による位相変調の位相偏移が0より大きくπ/2未満となることを特徴とする光送信器。
  2. 前記光変調器は、前記送信データを載せた変調光スペクトルと、前記変調光スペクトルのエッジに突出するキャリアスペクトルとを含む波形の光信号を出力することを特徴とする請求項1に記載の光送信器。
  3. 前記デジタル信号プロセッサは、
    前記キャリアスペクトルの強度と前記振幅成分に基づき前記第1駆動電圧を出力する
    ことを特徴とする請求項2に記載の光送信器。
  4. 前記光変調器は、
    直列接続された振幅変調器と位相変調器を有することを特徴とする請求項1乃至3の何れかに記載の光送信器。
  5. 前記光変調器は1つのマッハ・ツェンダ型光変調器であることを特徴とする請求項1乃至3の何れかに記載の光送信器。
  6. 前記デジタル信号プロセッサは、
    差動モードで第1駆動電圧を出力し、コモン・モードで第2駆動電圧を出力することを特徴とする請求項5に記載の光送信器。
  7. 前記デジタル信号プロセッサは、
    前記第1駆動電圧をRF端子に出力し、前記第2駆動電圧をDC端子に出力することを特徴とする請求項5又は6に記載の光送信器。
  8. 送信データがシンボルマッピングされた場合の振幅成分に応じた第1駆動電圧と、前記送信データがシンボルマッピングされた場合の位相成分に応じた第2駆動電圧とに基づいて、前記第2駆動電圧による位相変調の位相偏移が0より大きくπ/2未満となる光信号を生成する光変調方法。
  9. 前記生成された光信号のスペクトルは、前記送信データを載せた変調光スペクトルと、前記変調光スペクトルのエッジに突出するキャリアスペクトルとを含む波形であることを特徴とする請求項8に記載の変調方法。
  10. 第1駆動電圧が印加される振幅変調器と、前記振幅変調器と直列接続され第2駆動電圧が印加される位相変調器とを有する送信器を有し、
    前記送信器から出力される送信データが変調された変調光スペクトルと、前記変調光スペクトルのエッジに突出するキャリアスペクトルとを含む波形の光信号を出力することを特徴とする光伝送装置。
JP2017138365A 2017-07-14 2017-07-14 光送信器、変調方法、及び光伝送装置 Active JP6863147B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017138365A JP6863147B2 (ja) 2017-07-14 2017-07-14 光送信器、変調方法、及び光伝送装置
US16/030,312 US10425166B2 (en) 2017-07-14 2018-07-09 Optical transmitter, optical transmission apparatus, and optical modulation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017138365A JP6863147B2 (ja) 2017-07-14 2017-07-14 光送信器、変調方法、及び光伝送装置

Publications (2)

Publication Number Publication Date
JP2019022061A true JP2019022061A (ja) 2019-02-07
JP6863147B2 JP6863147B2 (ja) 2021-04-21

Family

ID=64999801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017138365A Active JP6863147B2 (ja) 2017-07-14 2017-07-14 光送信器、変調方法、及び光伝送装置

Country Status (2)

Country Link
US (1) US10425166B2 (ja)
JP (1) JP6863147B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102515056B1 (ko) * 2021-10-28 2023-03-27 연세대학교 산학협력단 차원간 간섭을 완화할 수 있는 광 송신 장치 및 방법

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10511388B1 (en) * 2018-08-10 2019-12-17 Fujitsu Limited Reducing variance in reach of WDM channels in an optical network

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050180761A1 (en) * 2004-02-16 2005-08-18 National Institute Of Information & Communications Technology, Incorporated Administrative Agency Optical wavelength multiplexing FSK modulation method
EP1965519A1 (en) * 2007-02-28 2008-09-03 Yokogawa Electric Corporation Optical receiver and optical transmitter
US20100239267A1 (en) * 2007-11-09 2010-09-23 Nobuhiko Kikuchi Photofield transmitter and photofield transmission system
US20140233965A1 (en) * 2013-02-21 2014-08-21 Fujitsu Limited System and Method for Monitoring and Control of an Optical Modulator for an M-QAM Transmitter
EP2933935A1 (en) * 2014-04-14 2015-10-21 Alcatel Lucent A method of modulating light in a telecommunication network
EP2981005A1 (en) * 2014-07-31 2016-02-03 Fujitsu Limited Optical transmitter and method for controlling bias of optical modulator
WO2016152128A1 (ja) * 2015-03-26 2016-09-29 日本電気株式会社 光送信装置とその制御方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6313017A (ja) 1986-07-03 1988-01-20 Nec Corp 光振幅位相変調器
DE4234599A1 (de) * 1992-08-22 1994-02-24 Sel Alcatel Ag Optischer Sender
JP4648093B2 (ja) 2005-05-31 2011-03-09 株式会社日立製作所 光伝送装置および集積回路装置
JP5128332B2 (ja) 2008-03-19 2013-01-23 株式会社日立製作所 光予等化送信器及び光予等化伝送システム
US8155534B2 (en) 2008-06-30 2012-04-10 Alcatel Lucent Optical modulator for higher-order modulation
US8693886B2 (en) * 2010-01-07 2014-04-08 Hitachi, Ltd. Optical transmission system
JP5614126B2 (ja) * 2010-06-28 2014-10-29 富士通株式会社 伝送装置及び伝送システム
JP5874202B2 (ja) * 2011-05-30 2016-03-02 富士通株式会社 光送信装置、その制御方法、及び光伝送システム
JP6453628B2 (ja) * 2014-11-27 2019-01-16 富士通オプティカルコンポーネンツ株式会社 光送信機、及び光変調器のバイアス制御方法
US10075242B2 (en) * 2016-06-15 2018-09-11 Space Systems/Loral, Llc High throughput satellite system with optical feeder uplink beams and RF service downlink beams

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050180761A1 (en) * 2004-02-16 2005-08-18 National Institute Of Information & Communications Technology, Incorporated Administrative Agency Optical wavelength multiplexing FSK modulation method
JP2005229549A (ja) * 2004-02-16 2005-08-25 National Institute Of Information & Communication Technology 光波長多重fsk変調方法
EP1965519A1 (en) * 2007-02-28 2008-09-03 Yokogawa Electric Corporation Optical receiver and optical transmitter
JP2008219069A (ja) * 2007-02-28 2008-09-18 Yokogawa Electric Corp 光受信器及び光送信器
US20100239267A1 (en) * 2007-11-09 2010-09-23 Nobuhiko Kikuchi Photofield transmitter and photofield transmission system
JPWO2009060920A1 (ja) * 2007-11-09 2011-03-24 株式会社日立製作所 光電界送信器及び光電界伝送システム
US20140233965A1 (en) * 2013-02-21 2014-08-21 Fujitsu Limited System and Method for Monitoring and Control of an Optical Modulator for an M-QAM Transmitter
JP2014165913A (ja) * 2013-02-21 2014-09-08 Fujitsu Ltd M−qam送信機のための光変調器を監視及び制御するシステム及び方法
EP2933935A1 (en) * 2014-04-14 2015-10-21 Alcatel Lucent A method of modulating light in a telecommunication network
JP2017514385A (ja) * 2014-04-14 2017-06-01 アルカテル−ルーセント 通信ネットワークにおいて光を変調する方法
EP2981005A1 (en) * 2014-07-31 2016-02-03 Fujitsu Limited Optical transmitter and method for controlling bias of optical modulator
JP2016034078A (ja) * 2014-07-31 2016-03-10 富士通株式会社 光送信器および光変調器のバイアスを制御する方法
WO2016152128A1 (ja) * 2015-03-26 2016-09-29 日本電気株式会社 光送信装置とその制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANTONIO MECOZZI,CRISTIAN ANTONELLI,AND MARK SHTAIF: "Kramers-Kronig coherent receiver", OPTICAL SOCIETY OF AMERICA, vol. 3, no. 11, JPN6021006761, November 2016 (2016-11-01), US, pages 1220 - 1227, XP002773963, ISSN: 0004456414, DOI: 10.1364/OPTICA.3.001220 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102515056B1 (ko) * 2021-10-28 2023-03-27 연세대학교 산학협력단 차원간 간섭을 완화할 수 있는 광 송신 장치 및 방법

Also Published As

Publication number Publication date
US10425166B2 (en) 2019-09-24
US20190020418A1 (en) 2019-01-17
JP6863147B2 (ja) 2021-04-21

Similar Documents

Publication Publication Date Title
JP5253813B2 (ja) 光信号送信器のバイアス及び整合制御のための方法及び装置
US9419720B2 (en) Optical signal transmitter
US8676060B2 (en) Quadrature amplitude modulation signal generating device
JP5721757B2 (ja) 光変調器における無線周波数応答の共振器アシステッド制御
JP5405716B2 (ja) 光送信機
EP2880764B1 (en) Method and system for the monolithic integration of circuits for monitoring and control of rf signals
JP6357742B2 (ja) 相補型電力変調を使用する帯域内管理データ変調
KR100703410B1 (ko) 오프셋 직교위상편이 변조 방법과 이를 이용한 광송신기
US20090214224A1 (en) Method and apparatus for coherent analog rf photonic transmission
JP5724792B2 (ja) 光送信器、光通信システムおよび光送信方法
JP2014060714A (ja) 帯域内管理データ変調
JP5712935B2 (ja) 波長分散を検出する方法及び装置並びに波長分散を補償する方法及び装置
US9337936B2 (en) Optical transmission apparatus, optical transmission method and program for optical transmission
JP5009963B2 (ja) Qpsk変調器
JP2018054907A (ja) 光モジュールおよび光変調器のバイアス制御方法
JP6863147B2 (ja) 光送信器、変調方法、及び光伝送装置
JP5321591B2 (ja) 光送信装置、光受信装置および光通信システム
JP3937237B2 (ja) 光周波数シフトキーイング変調器
JP2013174761A (ja) 光送信器、光通信システムおよび光送信方法
Gui et al. Experimental demonstration of quadrature phase-shift keying silicon ring modulator based on intensity modulation
JP2020088598A (ja) 無線送信装置
JP2018201118A (ja) 光送受信システム
JP2010219779A (ja) 波長分割多重伝送における光信号送信装置
Kodama et al. Mode-division multiplexing LiNbO 3 modulator using directional coupler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210315

R150 Certificate of patent or registration of utility model

Ref document number: 6863147

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150