JP2018070951A - Powder for conductive paste and production method of conductive layer - Google Patents

Powder for conductive paste and production method of conductive layer Download PDF

Info

Publication number
JP2018070951A
JP2018070951A JP2016212267A JP2016212267A JP2018070951A JP 2018070951 A JP2018070951 A JP 2018070951A JP 2016212267 A JP2016212267 A JP 2016212267A JP 2016212267 A JP2016212267 A JP 2016212267A JP 2018070951 A JP2018070951 A JP 2018070951A
Authority
JP
Japan
Prior art keywords
powder
nickel
conductive paste
nickel oxide
oxide powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016212267A
Other languages
Japanese (ja)
Other versions
JP6798251B2 (en
Inventor
貴広 植田
Takahiro Ueda
貴広 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2016212267A priority Critical patent/JP6798251B2/en
Publication of JP2018070951A publication Critical patent/JP2018070951A/en
Application granted granted Critical
Publication of JP6798251B2 publication Critical patent/JP6798251B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a powder for a conductive paste, which can improve conductivity and thermal shrinkage characteristics after heat treatment.SOLUTION: The powder for a conductive paste comprises a metal nickel powder and a nickel oxide powder mixed with the metal nickel powder, in which the average particle diameter of the nickel oxide powder is 0.0166 times or more and 0.085 times or less of the average particle diameter of the metal nickel powder, and the total oxygen amount of the metal nickel powder and the nickel oxide powder is 1.3 mass% or more and 1.9 mass% or less.SELECTED DRAWING: None

Description

本発明は、導電ペースト用粉末、および導電層の製造方法に関する。   The present invention relates to a conductive paste powder and a method for producing a conductive layer.

金属ニッケル粉末は、導電ペースト用粉末として使用されている。導電ペーストは、金属ニッケル粉末の他に、バインダーや有機溶剤を含む。導電ペーストは、分散剤をさらに含んでもよい。導電ペーストは、バインダーや有機溶剤、分散剤を分解、揮発させる脱バインダー処理の後、還元雰囲気下で熱処理され、内部電極層や外部電極層、電気回路層などの導電層を形成する。導電ペーストは、多層セラミック回路基板や積層セラミックコンデンサなどの製造に用いられる。   Metallic nickel powder is used as a conductive paste powder. The conductive paste contains a binder and an organic solvent in addition to the metallic nickel powder. The conductive paste may further contain a dispersant. The conductive paste is heat-treated in a reducing atmosphere after debinding to decompose and volatilize the binder, organic solvent, and dispersant, and forms conductive layers such as internal electrode layers, external electrode layers, and electric circuit layers. The conductive paste is used for manufacturing a multilayer ceramic circuit board, a multilayer ceramic capacitor, and the like.

例えば、積層セラミックコンデンサは、誘電体グリーンシート上に導電ペーストをスクリーン印刷したものを複数枚重ねて熱圧着し、脱バインダー処理の後、還元雰囲気下で熱処理して製造される。積層セラミックコンデンサは、誘電体グリーンシートを焼成してなる誘電体層と、導電ペーストの塗布層を焼成してなる内部電極層とを交互に重ねた構造を有する。   For example, a multilayer ceramic capacitor is manufactured by stacking a plurality of screen-printed conductive pastes on a dielectric green sheet, thermocompression bonding, debinding, and then heat-treating in a reducing atmosphere. The multilayer ceramic capacitor has a structure in which dielectric layers formed by firing a dielectric green sheet and internal electrode layers formed by firing a coating layer of a conductive paste are alternately stacked.

内部電極層などの導電層の導電率を高めるため、導電ペーストに含まれる金属ニッケル粉末が熱処理によって連続的につながることが求められる。   In order to increase the conductivity of the conductive layer such as the internal electrode layer, it is required that the metallic nickel powder contained in the conductive paste is continuously connected by heat treatment.

しかしながら、金属ニッケル粉末が熱処理によって連続的につながるとき、熱収縮が生じる。熱収縮が大き過ぎると、クラックや変形などが生じ、導電層の性能が劣化する。   However, thermal shrinkage occurs when the metallic nickel powder is continuously connected by heat treatment. If the thermal shrinkage is too large, cracks and deformations occur, and the performance of the conductive layer deteriorates.

そこで、特許文献1の実施例では、導電性や熱収縮特性を改善するため、金属ニッケル微粒子表面に酸化ジルコニウムまたはチタン酸ストロンチウムが固着しており、さらにその表面に不飽和脂肪酸が担持されている複合ニッケル微粉末が提案されている。   Therefore, in the example of Patent Document 1, zirconium oxide or strontium titanate is fixed to the surface of the metal nickel fine particles in order to improve conductivity and heat shrinkage characteristics, and an unsaturated fatty acid is supported on the surface. Composite nickel fine powder has been proposed.

特許3203238号公報Japanese Patent No. 3203238

従来から、熱処理後の導電性や熱収縮特性を改善するための技術が提案されているが、より熱処理後の導電性や熱収縮特性を改善できる技術が望まれていた。   Conventionally, techniques for improving the conductivity and heat shrinkage characteristics after heat treatment have been proposed, but a technique that can further improve the conductivity and heat shrinkage characteristics after heat treatment has been desired.

本発明は、上記課題に鑑みてなされたものであって、熱処理後の導電性、および熱収縮特性を改善できる、導電ペースト用粉末の提供を主な目的とする。   This invention is made | formed in view of the said subject, Comprising: It aims at provision of the powder for electrically conductive pastes which can improve the electroconductivity after heat processing and a heat contraction characteristic.

上記課題を解決するため、本発明の一態様によれば、
金属ニッケル粉末と、
前記金属ニッケル粉末と混在する酸化ニッケル粉末とを含み、
前記酸化ニッケル粉末の平均粒径が前記金属ニッケル粉末の平均粒径の0.0166倍以上0.085倍以下であり、
前記金属ニッケル粉末および前記酸化ニッケル粉末の総酸素量が1.3質量%以上1.9質量%以下である、導電ペースト用粉末が提供される。
In order to solve the above problems, according to one aspect of the present invention,
Metallic nickel powder,
Including nickel oxide powder mixed with the metal nickel powder,
The average particle diameter of the nickel oxide powder is 0.0166 times or more and 0.085 times or less of the average particle diameter of the metal nickel powder,
A conductive paste powder is provided in which the total oxygen content of the metal nickel powder and the nickel oxide powder is 1.3% by mass or more and 1.9% by mass or less.

本発明の一態様によれば、熱処理後の導電性、および熱収縮特性を改善できる、導電ペースト用粉末が提供される。   According to one embodiment of the present invention, there is provided a conductive paste powder capable of improving the conductivity after heat treatment and the heat shrinkage characteristics.

例1、例2および例5のペレットの収縮曲線を示す図である。It is a figure which shows the shrinkage | contraction curve of the pellet of Example 1, Example 2, and Example 5. FIG. 例3、例4、例6および例7のペレットの収縮曲線を示す図である。It is a figure which shows the shrinkage | contraction curve of the pellet of Example 3, Example 4, Example 6, and Example 7. FIG.

以下、本発明を実施するための形態について説明する。   Hereinafter, modes for carrying out the present invention will be described.

(導電ペースト)
導電ペーストは、金属ニッケル粉末と、エチルセルロース等のバインダーと、ターピネオール等の有機溶剤とを含む。導電ペーストは、分散剤をさらに含んでもよい。導電ペーストは、バインダーや有機溶剤、分散剤を分解、揮発させる脱バインダー処理の後、還元雰囲気下で熱処理され、内部電極層や外部電極層、電気回路層などの導電層を形成する。導電ペーストは、多層セラミック回路基板や積層セラミックコンデンサなどの製造に用いられる。
(Conductive paste)
The conductive paste includes metallic nickel powder, a binder such as ethyl cellulose, and an organic solvent such as terpineol. The conductive paste may further contain a dispersant. The conductive paste is heat-treated in a reducing atmosphere after debinding to decompose and volatilize the binder, organic solvent, and dispersant, and forms conductive layers such as internal electrode layers, external electrode layers, and electric circuit layers. The conductive paste is used for manufacturing a multilayer ceramic circuit board, a multilayer ceramic capacitor, and the like.

例えば、積層セラミックコンデンサは、誘電体グリーンシート上に導電ペーストをスクリーン印刷したものを複数枚重ねて熱圧着し、脱バインダー処理の後、還元雰囲気下で熱処理して製造される。積層セラミックコンデンサは、誘電体グリーンシートを焼成してなる誘電体層と、導電ペーストの塗布層を焼成してなる内部電極層とを交互に重ねた構造を有する。   For example, a multilayer ceramic capacitor is manufactured by stacking a plurality of screen-printed conductive pastes on a dielectric green sheet, thermocompression bonding, debinding, and then heat-treating in a reducing atmosphere. The multilayer ceramic capacitor has a structure in which dielectric layers formed by firing a dielectric green sheet and internal electrode layers formed by firing a coating layer of a conductive paste are alternately stacked.

導電ペーストは、誘電体グリーンシート上に塗布され誘電体グリーンシートと共に焼成される場合、チタン酸バリウム粉末等の誘電体粉末をさらに含んでもよい。これにより、導電ペーストの塗布層と誘電体グリーンシートとの熱収縮差を小さくでき、クラックの発生を抑制できる。また、焼成後の誘電体層と導電層との密着性を高めることができる。   When the conductive paste is applied onto the dielectric green sheet and fired together with the dielectric green sheet, the conductive paste may further include a dielectric powder such as barium titanate powder. Thereby, the thermal contraction difference between the coating layer of the conductive paste and the dielectric green sheet can be reduced, and the occurrence of cracks can be suppressed. In addition, the adhesion between the fired dielectric layer and the conductive layer can be improved.

本実施形態の導電ペーストは、金属ニッケル粉末が熱処理によって連続的につながるときに生じる熱収縮を低減するため、金属ニッケル粉末の他に、金属ニッケル粉末と混在する酸化ニッケル粉末をさらに含む。酸化ニッケル粉末は、金属ニッケル粉末の隙間を埋め、金属ニッケル粉末の熱収縮を低減する。   The conductive paste of the present embodiment further includes nickel oxide powder mixed with the metal nickel powder in addition to the metal nickel powder in order to reduce thermal shrinkage that occurs when the metal nickel powder is continuously connected by heat treatment. The nickel oxide powder fills the gap between the metallic nickel powders and reduces the thermal shrinkage of the metallic nickel powder.

金属ニッケル粉末の隙間を埋める材料として、金属粉末ではなく酸化物粉末を用いる理由は、酸化物粉末は微粉であっても凝集しにくく、金属ニッケル粉末の隙間に入り込みやすいからである。また、酸化物粉末として、酸化ニッケル粉末を用いる理由は、還元雰囲気下での熱処理によって酸化ニッケルの少なくとも一部が金属ニッケルに還元され、導電層の導電率が高くなるからである。   The reason why the oxide powder is used instead of the metal powder as a material for filling the gap between the metal nickel powders is that the oxide powder is not easily agglomerated even if it is a fine powder, and easily enters the gaps between the metal nickel powders. The reason why nickel oxide powder is used as the oxide powder is that at least part of nickel oxide is reduced to metallic nickel by heat treatment in a reducing atmosphere, and the conductivity of the conductive layer is increased.

金属ニッケル粉末と酸化ニッケル粉末とは、別々に製造され、混合して用いられてよい。金属ニッケル粉末と酸化ニッケル粉末とで導電ペースト用粉末が構成される。導電ペースト用粉末は、以下の説明では、金属ニッケル粉末と酸化ニッケル粉末のみを含み、誘電体粉末などを含まないが、誘電体粉末などを含んでもよい。以下、導電ペースト用粉末について説明する。   The metallic nickel powder and the nickel oxide powder may be manufactured separately and used in combination. The metal paste powder and the nickel oxide powder constitute a conductive paste powder. In the following description, the conductive paste powder includes only metallic nickel powder and nickel oxide powder and does not include dielectric powder, but may include dielectric powder. Hereinafter, the powder for conductive paste will be described.

(金属ニッケル粉末)
金属ニッケル粉末は、平均粒径が0.3μm以上であることが望ましい。金属ニッケル粉末の平均粒径は、詳しくは後述するが、SEM像上での各粒子の面積円相当径を平均化して求める。金属ニッケル粉末の平均粒径が0.3μm以上であると、焼成時にクラックの発生を抑制できる。導電層の薄型化の観点から、金属ニッケル粉末の平均粒径は0.6μm以下であることが望ましい。金属ニッケル粉末の平均粒径が0.6μm以下であると、積層セラミックコンデンサの内部電極層を薄型化でき、積層セラミックコンデンサの小型化や高容量化を達成できる。
(Metallic nickel powder)
The metallic nickel powder desirably has an average particle size of 0.3 μm or more. Although the average particle diameter of the nickel metal powder will be described in detail later, it is obtained by averaging the area equivalent circle diameter of each particle on the SEM image. Generation | occurrence | production of a crack can be suppressed at the time of baking as the average particle diameter of metallic nickel powder is 0.3 micrometer or more. From the viewpoint of reducing the thickness of the conductive layer, the average particle size of the metallic nickel powder is desirably 0.6 μm or less. When the average particle diameter of the metallic nickel powder is 0.6 μm or less, the internal electrode layer of the multilayer ceramic capacitor can be thinned, and the multilayer ceramic capacitor can be reduced in size and increased in capacity.

金属ニッケル粉末は、充填性を高めるため、凝結粒子の少ないものが望ましく、さらに、粒度分布を有しているものが望ましい。金属ニッケル粉末の粒度分布は、好ましくは、D10/D50が0.2以上0.7以下であって、且つD90/D50が1.4以上5.0以下である。ここで、D10とは、各粒径における粒子数を粒径の小さい側から累積し、その累積体積が全粒子の合計体積の10%となる粒径を意味する。D50とは、同様に粒子数を累積し、その累積体積が全粒子の合計体積の50%となる粒径を意味する。D90とは、同様に粒子数を累積し、その累積体積が全粒子の合計体積の90%となる粒径を意味する。各粒子の粒径は、SEM像上での面積円相当径として求める。   In order to improve the filling property, the metal nickel powder preferably has few condensed particles, and more preferably has a particle size distribution. The particle size distribution of the metallic nickel powder is preferably such that D10 / D50 is 0.2 or more and 0.7 or less, and D90 / D50 is 1.4 or more and 5.0 or less. Here, D10 means a particle size in which the number of particles in each particle size is accumulated from the smaller particle size side and the accumulated volume becomes 10% of the total volume of all particles. D50 means a particle size in which the number of particles is similarly accumulated and the accumulated volume is 50% of the total volume of all particles. Similarly, D90 means a particle size in which the number of particles is accumulated and the accumulated volume is 90% of the total volume of all particles. The particle diameter of each particle is determined as the area circle equivalent diameter on the SEM image.

金属ニッケル粉末は、大気中で放置すると、大気中に含まれる酸素などによって形成される酸化膜で覆われる。金属ニッケル粉末の酸素量は、後述の金属ニッケル粉末および酸化ニッケル粉末の総酸素量との関係から、好ましくは1.2質量%以下、より好ましくは1.0質量%以下である。また、金属ニッケル粉末の酸素量は、取扱い性の観点から、好ましくは0.5質量%以上である。   When the metallic nickel powder is left in the atmosphere, it is covered with an oxide film formed by oxygen contained in the atmosphere. The amount of oxygen in the metal nickel powder is preferably 1.2% by mass or less, more preferably 1.0% by mass or less, in relation to the total oxygen amount of the metal nickel powder and nickel oxide powder described later. The oxygen content of the metallic nickel powder is preferably 0.5% by mass or more from the viewpoint of handleability.

金属ニッケル粉末の製造方法としては、特に限定されないが、例えば、ニッケル塩ガスを還元ガスで還元する化学気相法、ニッケル塩水溶液を還元水溶液で還元する湿式還元法、固体のニッケル化合物を還元ガスで還元する固相法などが用いられる。これらの中でも、コストの観点から、固相法が特に好ましい。   The method for producing the metallic nickel powder is not particularly limited. For example, a chemical vapor phase method in which nickel salt gas is reduced with a reducing gas, a wet reduction method in which an aqueous nickel salt solution is reduced with a reducing aqueous solution, and a solid nickel compound is reduced into a reducing gas. For example, a solid phase method in which the reduction is performed is used. Among these, the solid phase method is particularly preferable from the viewpoint of cost.

湿式還元法では、ニッケル塩水溶液中でヒドラジン等の還元剤を用いて金属ニッケル粉末を晶析させる。ニッケル塩としては、特に限定されないが、例えば、塩化ニッケル、硝酸ニッケルおよび硫酸ニッケル等から選ばれる少なくとも1種類が用いられる。例えば60g/lの塩化ニッケル水溶液300mlを80℃に保持した状態で攪拌しつつ60%ヒドラジン水和物(ニッケル1モルに対して1.8モル)を添加し、次いで得られるスラリーに水酸化ナトリウム溶液を添加してpH12以上とする。これを攪拌しながら液温度を80℃で1時間保持し、金属ニッケル粉末を晶析させ、ろ過乾燥させる。   In the wet reduction method, metallic nickel powder is crystallized using a reducing agent such as hydrazine in an aqueous nickel salt solution. Although it does not specifically limit as nickel salt, For example, at least 1 sort (s) chosen from nickel chloride, nickel nitrate, nickel sulfate, etc. is used. For example, 60% hydrazine hydrate (1.8 mol with respect to 1 mol of nickel) is added with stirring while maintaining 300 ml of a 60 g / l nickel chloride aqueous solution at 80 ° C., and then sodium hydroxide is added to the resulting slurry. Add the solution to pH 12 or higher. While stirring this, the liquid temperature is maintained at 80 ° C. for 1 hour to crystallize the metallic nickel powder, and then filter dry.

固相法では、例えば、塩化ニッケル溶液を水酸化ナトリウム溶液で中和して水酸化ニッケル粉末を析出し、析出した水酸化ニッケル粉末をろ過等で固液分離し、洗浄後に乾燥したうえで、還元ガスで還元することにより金属ニッケル粉末を得る。還元ガスは水素ガスと窒素ガスの混合ガス、混合ガスに占める水素ガスの割合は80体積%以上90体積%以下、還元温度は450℃以上650℃以下、還元時間は1.5時間以上4時間以下である。   In the solid phase method, for example, a nickel chloride solution is neutralized with a sodium hydroxide solution to precipitate a nickel hydroxide powder, and the precipitated nickel hydroxide powder is separated into solid and liquid by filtration or the like, dried after washing, Metal nickel powder is obtained by reducing with a reducing gas. The reducing gas is a mixed gas of hydrogen gas and nitrogen gas, the proportion of hydrogen gas in the mixed gas is 80 volume% to 90 volume%, the reduction temperature is 450 ° C. to 650 ° C., the reduction time is 1.5 hours to 4 hours It is as follows.

(酸化ニッケル粉末)
酸化ニッケル粉末は、金属ニッケル粉末と混在する。酸化ニッケル粉末は、金属ニッケル粉末の隙間に充填されるように、金属ニッケル粉末よりも小さい平均粒径を有する。酸化ニッケル粉末の平均粒径は、例えば金属ニッケル粉末の平均粒径の0.0166倍以上0.085倍以下である。酸化ニッケル粉末の平均粒径は、多検体比表面積測定装置を用いてBET法で比表面積を測定し、その比表面積から換算し求める。
(Nickel oxide powder)
Nickel oxide powder is mixed with metallic nickel powder. The nickel oxide powder has an average particle size smaller than that of the metal nickel powder so as to fill a gap between the metal nickel powders. The average particle diameter of the nickel oxide powder is, for example, 0.0166 times or more and 0.085 times or less of the average particle diameter of the metallic nickel powder. The average particle diameter of the nickel oxide powder is determined by measuring the specific surface area by a BET method using a multi-specimen specific surface area measuring device and converting from the specific surface area.

酸化ニッケル粉末の平均粒径は、製造コストの観点から、好ましくは0.01μm以上0.05μm以下である。平均粒径が0.01μm以上0.05μm以下である酸化ニッケル粉末は、水酸化ニッケルや硫酸ニッケルなどの固体のニッケル化合物の粉末を焙焼することで容易に得られる。   The average particle diameter of the nickel oxide powder is preferably 0.01 μm or more and 0.05 μm or less from the viewpoint of manufacturing cost. A nickel oxide powder having an average particle size of 0.01 μm or more and 0.05 μm or less can be easily obtained by baking a powder of a solid nickel compound such as nickel hydroxide or nickel sulfate.

酸化ニッケル粉末は、金属ニッケル粉末の隙間に充填されやすいように、流動性を高めるため、凝結粒子の少ないものが望ましい。   The nickel oxide powder preferably has a small amount of condensed particles in order to enhance fluidity so that the gap between the metal nickel powders can be easily filled.

また、酸化ニッケル粉末は、金属ニッケル粉末の隙間に充填されやすいように、流動性を高めるため、金属ニッケル粉末に固着していないことが望ましい。従って、酸化ニッケル粉末は、金属ニッケル粉末とは別に製造され、混合されることが望ましい。   Further, it is desirable that the nickel oxide powder is not fixed to the metal nickel powder in order to enhance fluidity so that the gap between the metal nickel powders can be easily filled. Therefore, it is desirable that the nickel oxide powder is manufactured and mixed separately from the nickel metal powder.

尚、本実施形態の酸化ニッケル粉末は、金属ニッケル粉末とは別に製造され、混合されるが、本発明はこれに限定されない。つまり、酸化ニッケル粉末は、金属ニッケル粉末と同時に製造されてもよい。例えば金属ニッケル粉末の製造方法として固相法が用いられる場合、還元時間が1.5時間未満であると、金属ニッケル粉末中に酸化ニッケル粉末を残留させることができる。   In addition, although the nickel oxide powder of this embodiment is manufactured and mixed separately from metallic nickel powder, this invention is not limited to this. That is, the nickel oxide powder may be manufactured simultaneously with the metallic nickel powder. For example, when a solid phase method is used as a method for producing metallic nickel powder, the nickel oxide powder can remain in the metallic nickel powder when the reduction time is less than 1.5 hours.

酸化ニッケル粉末の残留量が多い場合、洗浄工程で酸化ニッケル粉末の量を調整することもできる。酸化ニッケル粉末は、金属ニッケル粉末よりも小さいので、洗浄液中で金属ニッケル粉末よりも沈降しにくい。沈降速度の差を利用して、洗浄工程で酸化ニッケル粉末の量を調整可能である。   When there is much residual amount of nickel oxide powder, the quantity of nickel oxide powder can also be adjusted at a washing | cleaning process. Since the nickel oxide powder is smaller than the metal nickel powder, it is less likely to settle in the cleaning liquid than the metal nickel powder. The amount of nickel oxide powder can be adjusted in the washing step by using the difference in settling speed.

(金属ニッケル粉末と酸化ニッケル粉末の総特性)
金属ニッケル粉末と酸化ニッケル粉末の総酸素量が大きいほど、金属ニッケル粉末に対する酸化ニッケル粉末の割合が多くなる。金属ニッケル粉末に対する酸化ニッケル粉末の割合が多過ぎても少な過ぎても、導電ペーストの塗布層における金属ニッケル粉末と酸化ニッケル粉末の充填性が悪くなり、導電層の導電性が悪くなる。
(Total characteristics of nickel metal powder and nickel oxide powder)
The ratio of the nickel oxide powder to the metal nickel powder increases as the total oxygen amount of the metal nickel powder and the nickel oxide powder increases. When the ratio of the nickel oxide powder to the metal nickel powder is too large or too small, the filling property of the metal nickel powder and the nickel oxide powder in the coating layer of the conductive paste is deteriorated, and the conductivity of the conductive layer is deteriorated.

金属ニッケル粉末に対する酸化ニッケル粉末の割合は、酸化ニッケル粉末が金属ニッケル粉末の隙間を埋める程度であることが望ましい。そのため、金属ニッケル粉末と酸化ニッケル粉末の総酸素量は、1.3質量%以上1.9質量%以下であることが望ましい。   The ratio of the nickel oxide powder to the metal nickel powder is desirably such that the nickel oxide powder fills the gap between the metal nickel powder. For this reason, the total oxygen content of the metal nickel powder and the nickel oxide powder is desirably 1.3% by mass or more and 1.9% by mass or less.

金属ニッケル粉末と酸化ニッケル粉末の総比表面積が小さいほど、金属ニッケル粉末と酸化ニッケル粉末の平均粒径が大きくなり、導電層の空隙率が少なくなる反面、導電層の厚さが厚くなる。そこで、導電層の空隙率の低下と導電層の薄型化とを両立するため、金属ニッケル粉末と酸化ニッケル粉末の総比表面積は2.5m/g以上4.6m/g以下であることが望ましい。 The smaller the total specific surface area of the metallic nickel powder and the nickel oxide powder is, the larger the average particle diameter of the metallic nickel powder and the nickel oxide powder is, and the lower the porosity of the conductive layer is, but the thicker the conductive layer is. Therefore, in order to achieve both reduction of the porosity of the conductive layer and thinning of the conductive layer, the total specific surface area of the metallic nickel powder and the nickel oxide powder is 2.5 m 2 / g or more and 4.6 m 2 / g or less. Is desirable.

金属ニッケル粉末と酸化ニッケル粉末の熱収縮挙動は、金属ニッケル粉末と酸化ニッケル粉末を金型に充填し、200kgf/cmで加圧成形したペレットを用いて調べる。ペレットは、直径が5mmの円柱状に成形される。ペレットには、バインダーや有機溶剤などは含まれない。尚、上述の如く、室温(例えば25℃)下の導電ペーストには、バインダーや有機溶剤などが含まれる。しかし、導電ペーストを焼成して電極層を形成する場合、特に、本発明では重要とする900℃から1300℃の間の温度域では、該導電ペースト中のバインダーや有機溶剤は、分解等により除去されているので、本発明に係る金属ニッケル粉末と酸化ニッケル粉末のペレットの熱収縮挙動が、本発明に係る金属ニッケル粉末と酸化ニッケル粉末を用いた導電ペーストの900℃から1300の間の温度域の熱収縮挙動を表せるのである。 The thermal shrinkage behavior of the metallic nickel powder and the nickel oxide powder is examined using pellets that are filled with a metallic nickel powder and a nickel oxide powder and press-molded at 200 kgf / cm 2 . The pellet is formed into a cylindrical shape having a diameter of 5 mm. The pellet does not contain binders or organic solvents. As described above, the conductive paste at room temperature (for example, 25 ° C.) includes a binder, an organic solvent, and the like. However, when the electrode layer is formed by baking the conductive paste, particularly in the temperature range between 900 ° C. and 1300 ° C., which is important in the present invention, the binder and the organic solvent in the conductive paste are removed by decomposition or the like. Therefore, the thermal shrinkage behavior of the metal nickel powder and nickel oxide powder pellets according to the present invention is in the temperature range between 900 ° C. and 1300 of the conductive paste using the metal nickel powder and nickel oxide powder according to the present invention. The heat shrinkage behavior can be expressed.

ペレットの熱収縮挙動は、還元雰囲気下で、ペレットを室温から1300℃まで5℃/minの昇温速度で加熱して調べる。還元雰囲気は水素と窒素の混合ガスで形成され、水素の含有量は2体積%である。   The thermal shrinkage behavior of the pellet is examined by heating the pellet from room temperature to 1300 ° C. at a rate of 5 ° C./min in a reducing atmosphere. The reducing atmosphere is formed of a mixed gas of hydrogen and nitrogen, and the hydrogen content is 2% by volume.

還元雰囲気下でペレットを焼成すると、金属ニッケル粉末同士が連続的につながるため、また、酸化ニッケル粉末の少なくとも一部が還元されるため、ペレットが収縮する。   When the pellets are fired in a reducing atmosphere, the metal nickel powders are continuously connected to each other, and at least a part of the nickel oxide powders are reduced, so that the pellets shrink.

900℃から1300℃までの間のペレットの熱収縮挙動が重要である。900℃未満の温度では、ペレットには含まれないが導電ペーストには含まれる、バインダーや有機溶剤などの分解、揮発による収縮が支配的になるためである。バインダーなどは導電ペーストの塗布層および誘電体シートの両方に含まれるため、900℃未満の温度では、導電ペーストの塗布層の熱収縮挙動と、誘電体シートの熱収縮挙動とが一致する。   The heat shrink behavior of the pellets between 900 ° C. and 1300 ° C. is important. This is because at temperatures below 900 ° C., shrinkage due to decomposition and volatilization of the binder and organic solvent, which are not included in the pellets but are included in the conductive paste, becomes dominant. Since the binder and the like are included in both the conductive paste coating layer and the dielectric sheet, the thermal shrinkage behavior of the conductive paste coating layer and the thermal shrinkage behavior of the dielectric sheet match at temperatures below 900 ° C.

各温度でのペレットの体積(V)は、室温(例えば25℃)でのペレットの体積(V0)に対する比率[単位:%]で表す。室温でのペレットの体積(V0)が100%である。V0からVを引いた値(V0−V)は、収縮率を表す。   The pellet volume (V) at each temperature is expressed as a ratio [unit:%] to the pellet volume (V0) at room temperature (for example, 25 ° C.). The volume of the pellet at room temperature (V0) is 100%. A value obtained by subtracting V from V0 (V0-V) represents a contraction rate.

900℃でのペレットの体積(V1)と1300℃でのペレットの体積(V2)との差(V2−V1)が−0.4%以上0%以下であることが望ましい。差(V2−V1)が−0.4%以上0%以下であると、900℃以上での、導電ペーストの塗布層の熱収縮挙動と、誘電体シートの熱収縮挙動とが一致するため、歪の発生を抑制でき、クラックの発生を抑制できる。   The difference (V2−V1) between the pellet volume (V1) at 900 ° C. and the pellet volume (V2) at 1300 ° C. is preferably −0.4% or more and 0% or less. When the difference (V2−V1) is −0.4% or more and 0% or less, the heat shrinkage behavior of the coating layer of the conductive paste and the heat shrinkage behavior of the dielectric sheet at 900 ° C. or more match. Generation | occurrence | production of distortion can be suppressed and generation | occurrence | production of a crack can be suppressed.

(導電層の製造方法)
導電層の製造方法は、上記導電ペースト用粉末を含む導電ペーストの塗布層を焼成して、導電層を形成する焼成工程を有する。本実施形態の導電ペーストは、金属ニッケル粉末の他に、酸化ニッケル粉末をさらに含む。酸化ニッケル粉末は、金属ニッケル粉末の隙間を埋め、金属ニッケル粉末の熱収縮を低減する。
(Method for producing conductive layer)
The manufacturing method of a conductive layer has a baking process of baking the application layer of the conductive paste containing the said powder for conductive pastes, and forming a conductive layer. The conductive paste of the present embodiment further includes nickel oxide powder in addition to the metallic nickel powder. The nickel oxide powder fills the gap between the metallic nickel powders and reduces the thermal shrinkage of the metallic nickel powder.

焼成工程は、還元雰囲気下で上記導電ペーストを焼成して、導電ペーストに含まれる酸化ニッケルの少なくとも一部を金属ニッケルに還元する還元工程を含む。還元雰囲気下での熱処理によって酸化ニッケルの少なくとも一部が金属ニッケルに還元され、導電層の導電率を向上できる。   The firing step includes a reduction step of firing the conductive paste in a reducing atmosphere to reduce at least part of the nickel oxide contained in the conductive paste to metallic nickel. By heat treatment in a reducing atmosphere, at least a part of nickel oxide is reduced to metallic nickel, and the conductivity of the conductive layer can be improved.

還元工程での還元雰囲気は例えば水素と窒素の混合ガスで形成され、水素の含有量は特に限定されないが例えば2体積%である。還元工程での焼成温度は、特に限定されないが、例えば900℃以上1300℃以下である。   The reducing atmosphere in the reduction step is formed of, for example, a mixed gas of hydrogen and nitrogen, and the hydrogen content is not particularly limited, but is, for example, 2% by volume. Although the calcination temperature in a reduction process is not specifically limited, For example, they are 900 degreeC or more and 1300 degrees C or less.

上記製造方法で得られる導電層は、例えば積層セラミックコンデンサの内部電極層として用いられる。尚、導電層は、外部電極層や電気回路層として用いられてもよい。   The conductive layer obtained by the above manufacturing method is used, for example, as an internal electrode layer of a multilayer ceramic capacitor. The conductive layer may be used as an external electrode layer or an electric circuit layer.

以下、具体的な実施例や比較例などについて説明する。以下で説明する例1〜例7のうち、例1〜例4が実施例、例5〜例7が比較例である。例1〜例7では、金属ニッケル粉末と酸化ニッケル粉末とを混合した導電ペースト用粉末、または金属ニッケル粉末を加圧成形して円柱状のペレットを作成し、そのペレットの熱収縮挙動などを調べた。例1〜例6において、導電ペースト用粉末は、金属ニッケル粉末と酸化ニッケル粉末のみを含み、誘電体粉末などを含まない。   Hereinafter, specific examples and comparative examples will be described. Of Examples 1 to 7 described below, Examples 1 to 4 are Examples, and Examples 5 to 7 are Comparative Examples. In Examples 1 to 7, a powder for a conductive paste in which metallic nickel powder and nickel oxide powder are mixed, or pressure-molding metallic nickel powder to form a cylindrical pellet, and the heat shrinkage behavior of the pellet is examined. It was. In Examples 1 to 6, the conductive paste powder includes only metallic nickel powder and nickel oxide powder, and does not include dielectric powder.

[評価方法]
先ず、評価方法について説明する。
[Evaluation method]
First, the evaluation method will be described.

(1)導電ペースト用粉末の総酸素量、および金属ニッケル粉末の酸素量は、酸素・窒素・アルゴン分析装置(LECO社製、TC-436AR)を用いて、不活性ガスインパルス加熱融解赤外吸収法により測定した。   (1) The total amount of oxygen in the conductive paste powder and the amount of oxygen in the metallic nickel powder were measured using an oxygen / nitrogen / argon analyzer (LECO, TC-436AR) and inert gas impulse heating and melting infrared absorption. Measured by the method.

(2)導電ペースト用粉末の総比表面積、および金属ニッケル粉末の比表面積は、多検体比表面積測定装置(ユアサアイオミクス株式会社製、マルチソーブ)を用いて、BET法で求めた。   (2) The total specific surface area of the conductive paste powder and the specific surface area of the metallic nickel powder were determined by the BET method using a multi-specimen specific surface area measuring device (manufactured by Yuasa Iomics Co., Ltd., Multisorb).

(3)金属ニッケル粉末の平均粒径は、走査型電子顕微鏡(SEM:Scanning Electron Microscope、日本電子社製、JSM−5510)を用いて撮像したSEM像上での各粒子の面積円相当径を平均化して求めた。SEM像の倍率は2000倍、SEM像の撮像範囲は縦19.2μm、横25.6μmであった。   (3) The average particle diameter of the metallic nickel powder is the area equivalent circle diameter of each particle on the SEM image picked up using a scanning electron microscope (SEM: Scanning Electron Microscope, JEOL Ltd., JSM-5510). Obtained by averaging. The magnification of the SEM image was 2000 times, and the imaging range of the SEM image was 19.2 μm in length and 25.6 μm in width.

(4)酸化ニッケル粉末の平均粒径は、多検体比表面積測定装置(ユアサアイオミクス株式会社マルチソーブ)を用いてBET法で比表面積を測定し、その比表面積から換算して求めた。   (4) The average particle diameter of the nickel oxide powder was determined by measuring the specific surface area by the BET method using a multi-specimen specific surface area measuring device (Yuasa Iomics Co., Ltd. Multisorb) and converting from the specific surface area.

(5)ペレットの熱収縮挙動は、熱機械的分析装置(TMA:Thermo Mechanical Analyzer、マックサイエンス社製、TMA4000S)を用いて測定した。この測定では、ペレットを還元雰囲気中で室温から1300℃まで5℃/minの昇温速度で加熱した。還元雰囲気は水素と窒素の混合ガスで形成し、水素の含有量は2体積%であった。測定したペレットの収縮曲線から、900℃でのペレットの体積(V1)と1300℃でのペレットの体積(V2)との差(V2−V1)を求めた。   (5) The thermal contraction behavior of the pellet was measured using a thermomechanical analyzer (TMA: Thermo Mechanical Analyzer, manufactured by Mac Science, TMA4000S). In this measurement, the pellet was heated in a reducing atmosphere from room temperature to 1300 ° C. at a rate of 5 ° C./min. The reducing atmosphere was formed of a mixed gas of hydrogen and nitrogen, and the hydrogen content was 2% by volume. From the measured shrinkage curve of the pellet, the difference (V2−V1) between the pellet volume (V1) at 900 ° C. and the pellet volume (V2) at 1300 ° C. was determined.

[例1]
例1のペレット材料としては、金属ニッケル粉末と酸化ニッケル粉末とを混合した導電ペースト用粉末を用いた。金属ニッケル粉末と酸化ニッケル粉末とは、別々に製造したうえで、混合した。
[Example 1]
As the pellet material of Example 1, a conductive paste powder in which metallic nickel powder and nickel oxide powder were mixed was used. The metallic nickel powder and the nickel oxide powder were mixed and manufactured separately.

金属ニッケル粉末は、空気中で水酸化ニッケル粉末を480℃で2時間焙焼して得た酸化ニッケルを、還元雰囲気中で480℃で2時間焼成して得た。還元雰囲気は水素ガスと窒素ガスの混合ガスで構成し、混合ガスに占める水素ガスの割合は80体積%とした。金属ニッケル粉末は、平均粒径が0.5μm、酸素量が1.1質量%であった。   The nickel metal powder was obtained by calcining nickel oxide powder in air at 480 ° C. for 2 hours and firing it in a reducing atmosphere at 480 ° C. for 2 hours. The reducing atmosphere was composed of a mixed gas of hydrogen gas and nitrogen gas, and the proportion of hydrogen gas in the mixed gas was 80% by volume. The metal nickel powder had an average particle size of 0.5 μm and an oxygen content of 1.1% by mass.

一方、酸化ニッケル粉末は、空気中で水酸化ニッケル粉末を480℃で2時間焙焼して得た。酸化ニッケル粉末の平均粒径は0.01μmであった。   On the other hand, nickel oxide powder was obtained by roasting nickel hydroxide powder in air at 480 ° C. for 2 hours. The average particle diameter of the nickel oxide powder was 0.01 μm.

例1で作製した導電ペースト用粉末は、総酸素量が1.8質量%、総比表面積が2.9m/gであった。 The conductive paste powder produced in Example 1 had a total oxygen content of 1.8% by mass and a total specific surface area of 2.9 m 2 / g.

[例2]
例2のペレット材料としては、例1と同一条件で作製した金属ニッケル粉末と、例1と同一条件で作製した酸化ニッケル粉末とを、例1とは異なる割合で混合した導電ペースト用粉末を用いた。
[Example 2]
As the pellet material of Example 2, a conductive paste powder in which metallic nickel powder produced under the same conditions as in Example 1 and nickel oxide powder produced under the same conditions as in Example 1 were mixed at a different ratio from Example 1 was used. It was.

例2で作製した導電ペースト用粉末は、総酸素量が1.3質量%、総比表面積が2.5m/gであった。 The conductive paste powder produced in Example 2 had a total oxygen content of 1.3% by mass and a total specific surface area of 2.5 m 2 / g.

[例3]
例3のペレット材料としては、例1とは水酸化ニッケル粉末の平均粒径が異なる以外、例1と同一条件で作製した金属ニッケル粉末と、例1と同一条件で作製した酸化ニッケル粉末とを混合した導電ペースト用粉末を用いた。
[Example 3]
As the pellet material of Example 3, a nickel metal powder produced under the same conditions as in Example 1 and a nickel oxide powder produced under the same conditions as in Example 1 except that the average particle diameter of the nickel hydroxide powder is different from that in Example 1. The mixed conductive paste powder was used.

例3で作製した金属ニッケル粉末は、平均粒径が0.3μm、酸素量が1.5質量%であった。   The metallic nickel powder produced in Example 3 had an average particle size of 0.3 μm and an oxygen content of 1.5% by mass.

また、例3で作製した導電ペースト用粉末は、総酸素量が1.9質量%、総比表面積が4.6m/gであった。 The conductive paste powder produced in Example 3 had a total oxygen content of 1.9% by mass and a total specific surface area of 4.6 m 2 / g.

[例4]
例4のペレット材料としては、例3と同一条件で作製した金属ニッケル粉末と、例3と同一条件で作製した酸化ニッケル粉末とを、例3とは異なる割合で混合した導電ペースト用粉末を用いた。
[Example 4]
As the pellet material of Example 4, a conductive paste powder in which metallic nickel powder produced under the same conditions as in Example 3 and nickel oxide powder produced under the same conditions as in Example 3 were mixed at a different ratio from Example 3 was used. It was.

例4で作製した導電ペースト用粉末は、総酸素量が1.4質量%、総比表面積が3.7m/gであった。 The conductive paste powder produced in Example 4 had a total oxygen content of 1.4% by mass and a total specific surface area of 3.7 m 2 / g.

[例5]
例5のペレット材料としては、例1と同一条件で作製した金属ニッケル粉末と、例1と同一条件で作製した酸化ニッケル粉末とを、例1とは異なる割合で混合した導電ペースト用粉末を用いた。
[Example 5]
As the pellet material of Example 5, a conductive paste powder in which metallic nickel powder produced under the same conditions as in Example 1 and nickel oxide powder produced under the same conditions as in Example 1 were mixed at a different ratio from Example 1 was used. It was.

例5で作製した導電ペースト用粉末は、総酸素量が2.0質量%、総比表面積が3.0m/gであった。 The conductive paste powder produced in Example 5 had a total oxygen content of 2.0 mass% and a total specific surface area of 3.0 m 2 / g.

[例6]
例6のペレット材料としては、例3と同一条件で作製した金属ニッケル粉末と、例3と同一条件で作製した酸化ニッケル粉末とを、例3とは異なる割合で混合した導電ペースト用粉末を用いた。
[Example 6]
As the pellet material of Example 6, a conductive paste powder prepared by mixing metallic nickel powder produced under the same conditions as in Example 3 and nickel oxide powder produced under the same conditions as in Example 3 at a different ratio from Example 3 was used. It was.

例6で作製した導電ペースト用粉末は、総酸素量が2.1質量%、総比表面積が4.8m/gであった。 The conductive paste powder produced in Example 6 had a total oxygen content of 2.1% by mass and a total specific surface area of 4.8 m 2 / g.

[例7]
例7のペレット材料としては、例3と同一条件で作製した金属ニッケル粉末を用いた。この金属ニッケル粉末は、酸化ニッケル粉末と混合せずに用いた。
[Example 7]
As the pellet material of Example 7, metallic nickel powder produced under the same conditions as in Example 3 was used. This metallic nickel powder was used without being mixed with the nickel oxide powder.

[評価結果]
図1に、例1、例2および例5のペレットの収縮曲線を示す。また、図2に、例3、例4、例6および例7のペレットの収縮曲線を示す。図1および図2において、横軸は温度、縦軸はV−V0である。さらに、表1に、金属ニッケル粉末の平均粒径D1、酸化ニッケル粉末の平均粒径D2、ペレット材料の総酸素量、ペレット材料の総比表面積、D2/D1、V2−V1を示す。
[Evaluation results]
In FIG. 1, the shrinkage | contraction curve of the pellet of Example 1, Example 2, and Example 5 is shown. FIG. 2 shows the shrinkage curves of the pellets of Example 3, Example 4, Example 6, and Example 7. 1 and 2, the horizontal axis represents temperature, and the vertical axis represents V-V0. Further, Table 1 shows the average particle diameter D1 of the nickel metal powder, the average particle diameter D2 of the nickel oxide powder, the total oxygen amount of the pellet material, the total specific surface area of the pellet material, D2 / D1, and V2-V1.

Figure 2018070951
表1および図1から明らかなように、例1〜例4では、導電ペースト用粉末の総酸素量が1.3質量%以上1.9質量%以下であるので、V2−V1が−0.4%以上0%以下であって、900℃から1300℃までの収縮を抑制できることがわかる。一方、例5〜例7では、金属ニッケル粉末に酸化ニッケルが混合されていないか、酸化ニッケルの割合が多過ぎて総酸素量が1.9質量%を超えるため、V2−V1が−0.4%を下回り、900℃から1300℃までの収縮を十分に抑制できないことがわかる。
Figure 2018070951
As apparent from Table 1 and FIG. 1, in Examples 1 to 4, since the total oxygen content of the conductive paste powder is 1.3% by mass or more and 1.9% by mass or less, V2-V1 is −0. It is 4% or more and 0% or less, and it can be seen that shrinkage from 900 ° C. to 1300 ° C. can be suppressed. On the other hand, in Examples 5 to 7, since nickel oxide is not mixed in the metal nickel powder or the ratio of nickel oxide is too large and the total oxygen amount exceeds 1.9% by mass, V2-V1 is −0. It can be seen that the shrinkage from 900 ° C. to 1300 ° C. cannot be sufficiently suppressed below 4%.

以上、導電ペースト用粉末の実施形態等について説明したが、本発明は上記実施形態等に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、改良が可能である。   As mentioned above, although embodiment etc. of the powder for conductive paste were explained, the present invention is not limited to the above-mentioned embodiment etc., and in the range of the gist of the present invention indicated in the claim, various modifications are possible. Improvements are possible.

Claims (5)

金属ニッケル粉末と、
前記金属ニッケル粉末と混在する酸化ニッケル粉末とを含み、
前記酸化ニッケル粉末の平均粒径が前記金属ニッケル粉末の平均粒径の0.0166倍以上0.085倍以下であり、
前記金属ニッケル粉末および前記酸化ニッケル粉末の総酸素量が1.3質量%以上1.9質量%以下である、導電ペースト用粉末。
Metallic nickel powder,
Including nickel oxide powder mixed with the metal nickel powder,
The average particle diameter of the nickel oxide powder is 0.0166 times or more and 0.085 times or less of the average particle diameter of the metal nickel powder,
The powder for electrically conductive paste whose total oxygen amount of the said metal nickel powder and the said nickel oxide powder is 1.3 to 1.9 mass%.
前記金属ニッケル粉末および前記酸化ニッケル粉末の総比表面積が2.5m/g以上4.6m/g以下である、請求項1に記載の導電ペースト用粉末。 The metallic nickel powder and the total specific surface area of the nickel oxide powder is less than 2.5 m 2 / g or more 4.6 m 2 / g, a conductive paste for powder according to claim 1. 前記金属ニッケル粉末および前記酸化ニッケル粉末で作製したペレットを室温から1300℃まで5℃/minの昇温速度で加熱する場合、各温度での前記ペレットの体積を室温での前記ペレットの体積に対する比率([単位:%])で表すと、900℃での前記ペレットの体積(V1)と、1300℃での前記ペレットの体積(V2)との差(V2−V1)が−0.4%以上0%以下である、請求項1または2に記載の導電ペースト用粉末。   When heating the pellet made of the metal nickel powder and the nickel oxide powder from room temperature to 1300 ° C. at a rate of temperature increase of 5 ° C./min, the ratio of the pellet volume at each temperature to the volume of the pellet at room temperature In terms of ([unit:%]), the difference (V2−V1) between the volume (V1) of the pellet at 900 ° C. and the volume (V2) of the pellet at 1300 ° C. is −0.4% or more. The powder for electrically conductive pastes of Claim 1 or 2 which is 0% or less. 請求項1〜3のいずれか1項に記載の導電ペースト用粉末を含む導電ペーストの塗布層を焼成して、導電層を形成する焼成工程を有し、
前記焼成工程は、還元雰囲気下で前記導電ペーストの前記塗布層を焼成して、前記導電ペーストに含まれる酸化ニッケルの少なくとも一部を金属ニッケルに還元する還元工程を含む、導電層の製造方法。
A firing step of firing a conductive paste coating layer containing the conductive paste powder according to any one of claims 1 to 3 to form a conductive layer,
The said baking process is a manufacturing method of a conductive layer including the reduction process which bakes the said coating layer of the said conductive paste in a reducing atmosphere, and reduces at least one part of the nickel oxide contained in the said conductive paste to metallic nickel.
前記導電層は、積層セラミックコンデンサの内部電極層として用いられる、請求項4に記載の導電層の製造方法。   The said conductive layer is a manufacturing method of the conductive layer of Claim 4 used as an internal electrode layer of a multilayer ceramic capacitor.
JP2016212267A 2016-10-28 2016-10-28 Method of manufacturing the conductive layer Active JP6798251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016212267A JP6798251B2 (en) 2016-10-28 2016-10-28 Method of manufacturing the conductive layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016212267A JP6798251B2 (en) 2016-10-28 2016-10-28 Method of manufacturing the conductive layer

Publications (2)

Publication Number Publication Date
JP2018070951A true JP2018070951A (en) 2018-05-10
JP6798251B2 JP6798251B2 (en) 2020-12-09

Family

ID=62114719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016212267A Active JP6798251B2 (en) 2016-10-28 2016-10-28 Method of manufacturing the conductive layer

Country Status (1)

Country Link
JP (1) JP6798251B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023002921A1 (en) * 2021-07-21 2023-01-26 京セラ株式会社 Conductive paste for forming electrode

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555077A (en) * 1991-08-29 1993-03-05 Dai Ichi Kogyo Seiyaku Co Ltd Conductor paste for electrode of ceramic capacitor
JPH08246001A (en) * 1995-03-10 1996-09-24 Kawasaki Steel Corp Nickel superfine powder for multilayer ceramic capacitor
JP2014136826A (en) * 2013-01-18 2014-07-28 Nippon Steel & Sumikin Chemical Co Ltd Composite nickel particulate, and method of manufacturing the same
JP2015190043A (en) * 2014-03-28 2015-11-02 住友金属鉱山株式会社 Wet manufacturing process of nickel powder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555077A (en) * 1991-08-29 1993-03-05 Dai Ichi Kogyo Seiyaku Co Ltd Conductor paste for electrode of ceramic capacitor
JPH08246001A (en) * 1995-03-10 1996-09-24 Kawasaki Steel Corp Nickel superfine powder for multilayer ceramic capacitor
JP2014136826A (en) * 2013-01-18 2014-07-28 Nippon Steel & Sumikin Chemical Co Ltd Composite nickel particulate, and method of manufacturing the same
JP2015190043A (en) * 2014-03-28 2015-11-02 住友金属鉱山株式会社 Wet manufacturing process of nickel powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023002921A1 (en) * 2021-07-21 2023-01-26 京セラ株式会社 Conductive paste for forming electrode

Also Published As

Publication number Publication date
JP6798251B2 (en) 2020-12-09

Similar Documents

Publication Publication Date Title
US10090108B2 (en) Conductive paste, electronic component, and method for manufacturing electronic component
JP6645470B2 (en) Conductive paste for external electrode and method of manufacturing electronic component manufactured using conductive paste for external electrode
JP4513981B2 (en) Multilayer ceramic electronic component and manufacturing method thereof
JP2013214714A (en) Multilayer ceramic electronic component and fabrication method thereof
JP2010067418A (en) Conductive paste and method of manufacturing the same
JP3947118B2 (en) Surface-treated metal ultrafine powder, method for producing the same, conductive metal paste, and multilayer ceramic capacitor
JP2012169620A (en) Multilayer ceramic electronic component and method for manufacturing the same
JP2013038377A (en) Conductive paste for internal electrode of multilayer ceramic electronic component and multilayer ceramic electronic component using the same
JP4303715B2 (en) Conductive paste and method for manufacturing multilayer electronic component
JP2012182355A (en) Multilayer ceramic capacitor and manufacturing method of multilayer ceramic capacitor
US9082553B2 (en) Laminated ceramic capacitor and manufacturing method therefor
JP6746321B2 (en) Ni powder, method of manufacturing Ni powder, internal electrode paste, and electronic component
JP2015083714A (en) Method for producing composite powder and conductive thick film paste and multilayer ceramic electronic component using composite powder obtained by the production method
JP6798251B2 (en) Method of manufacturing the conductive layer
JP4147434B2 (en) Ni powder for MLCC internal electrode and Ni paste for MLCC internal electrode
JP4487371B2 (en) Dielectric composition and ceramic capacitor using the same
JP4826881B2 (en) Conductive paste, multilayer ceramic electronic component manufacturing method, and multilayer ceramic electronic component
JP2009024204A (en) Carbide-coated nickel powder and method for producing the same
JP2007039755A (en) Composite metal powder, manufacturing method therefor, electroconductive paste, method for manufacturing electronic parts, and electronic parts
JP2019176026A (en) Multilayer electronic component
JP5986046B2 (en) Surface-treated metal powder and method for producing the same
JP5029717B2 (en) Method for producing ceramic electronic component and ceramic raw material powder
JP2004277263A (en) Method for producing dielectric porcelain composition, and ceramic capacitor using the dielectric porcelain composition produced thereby
JP6065699B2 (en) Method for producing nickel powder
JP6649840B2 (en) Conductor forming paste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201102

R150 Certificate of patent or registration of utility model

Ref document number: 6798251

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150