JP2017224600A - Silicon oxide based negative electrode material - Google Patents

Silicon oxide based negative electrode material Download PDF

Info

Publication number
JP2017224600A
JP2017224600A JP2017113290A JP2017113290A JP2017224600A JP 2017224600 A JP2017224600 A JP 2017224600A JP 2017113290 A JP2017113290 A JP 2017113290A JP 2017113290 A JP2017113290 A JP 2017113290A JP 2017224600 A JP2017224600 A JP 2017224600A
Authority
JP
Japan
Prior art keywords
sio
negative electrode
silicon oxide
electrode material
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017113290A
Other languages
Japanese (ja)
Other versions
JP6573646B2 (en
Inventor
悠介 柏谷
Yusuke Kashitani
悠介 柏谷
木崎 信吾
Shingo Kizaki
信吾 木崎
浩樹 竹下
Hiroki Takeshita
浩樹 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Titanium Technologies Co Ltd
Original Assignee
Osaka Titanium Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=60688515&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2017224600(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Osaka Titanium Technologies Co Ltd filed Critical Osaka Titanium Technologies Co Ltd
Publication of JP2017224600A publication Critical patent/JP2017224600A/en
Application granted granted Critical
Publication of JP6573646B2 publication Critical patent/JP6573646B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a silicon oxide based negative electrode material used for forming a negative electrode of a lithium ion secondary battery, containing Mg for irreversible capacity cancellation, and capable of avoiding as much as possible reduction in battery performance caused by nonuniformity of Mg concentration distribution.SOLUTION: The silicon oxide based negative electrode material is made of a ternary material of Si-Mg-O. It further contains a Si phase, contains as a Mg containing compounds any one of five of MgSiO, MgSiO, MgO, MgSiO3+MgSiOor MgSiO+MgO, and contains none of SiO, metal Mg, and MgSi alloy. The composition is represented by SiMgO, satisfying 3y>z>y and 2x+y>z.SELECTED DRAWING: Figure 1

Description

本発明は、Liイオン二次電池の負極形成に使用される酸化珪素系負極材及びその製造方法に関し、より詳しくは、不可逆容量キャンセルのためにMgをドープされた酸化珪素系負極材及びその製造方法に関する。   The present invention relates to a silicon oxide-based negative electrode material used for forming a negative electrode of a Li-ion secondary battery and a manufacturing method thereof, and more particularly, a silicon oxide-based negative electrode material doped with Mg for irreversible capacity cancellation and the manufacture thereof. Regarding the method.

酸化珪素(SiOX)は電気容量が大きく、寿命特性に優れたLiイオン二次電池用負極材であることが知られている。この酸化珪素系負極材は、酸化珪素粉末、導電助剤及びバインダーを混合してスラリー化したものを、銅箔等からなる集電体上に塗工して薄膜状の負極とされる。ここにおける酸化珪素粉末は、例えば二酸化珪素と珪素との混合物を加熱して生成した一酸化珪素ガスを冷却し、析出させた後、細かく破砕することにより得られる。このような析出法で製造される酸化珪素粉末は、アモルファスの部分を多く含み、充放電時の膨張収縮・微粉化を抑制し、サイクル特性を向上させることが知られている。 Silicon oxide (SiO x ) is known to be a negative electrode material for Li ion secondary batteries having a large electric capacity and excellent life characteristics. This silicon oxide-based negative electrode material is formed by mixing a silicon oxide powder, a conductive additive and a binder into a slurry and coating it on a current collector made of copper foil or the like to form a thin-film negative electrode. The silicon oxide powder here is obtained, for example, by cooling and precipitating silicon monoxide gas generated by heating a mixture of silicon dioxide and silicon, and then finely crushing. It is known that the silicon oxide powder produced by such a precipitation method includes many amorphous portions, suppresses expansion / contraction and pulverization during charge / discharge, and improves cycle characteristics.

このような酸化珪素系負極材に特徴的な問題点として初期効率の低さがある。これは充放電に寄与しない不可逆容量となるLi化合物が初回充電時に生成されることにより、初回放電容量が顕著に減少する現象であり、これを解消する手法として、酸化珪素粉末に他種元素を添加する他元素ドープが知られている。   A characteristic characteristic of such a silicon oxide negative electrode material is low initial efficiency. This is a phenomenon in which the initial discharge capacity is remarkably reduced due to the generation of Li compounds that become irreversible capacity that does not contribute to charge and discharge during the first charge. Other element doping to be added is known.

例えば、特許文献1では、他元素としてのAl、Ca、Mg、Tiを酸化珪素であるSiOと、ボールミルにより機械的に混合し合金化して、Si相、SiO2 及び他元素化合物を含むナノ複合体を作製することにより、初期効率を高める固相法が提案されている。また、特許文献2では、SiOガスと他元素蒸気ガスとを別々に発生させた後、両ガスを混合し、冷却して回収する気相法が提案されている。 For example, in Patent Document 1, Al, Ca, Mg, and Ti as other elements are mechanically mixed with SiO, which is silicon oxide, and alloyed by a ball mill to form a nanocomposite containing Si phase, SiO 2 and other element compounds. Solid phase methods have been proposed that increase the initial efficiency by creating a body. Patent Document 2 proposes a gas phase method in which SiO gas and other element vapor gas are separately generated, and then both gases are mixed, cooled and recovered.

いずれの手法でも、充放電に寄与しない不可逆容量となる他元素化合物が事前に生成されることにより、初回充放電時に不可逆容量となるLi化合物が生成されるのが抑制されて、初期効率の向上が図られる。これが不可逆容量キャンセル処理である。   In any method, by generating other elemental compounds with irreversible capacity that do not contribute to charging / discharging in advance, the generation of Li compounds that become irreversible capacity at the first charging / discharging is suppressed, and the initial efficiency is improved. Is planned. This is irreversible capacity cancellation processing.

他元素ドープにおけるドープ元素としては、Liが比較的多く採用されているが、Li、Li化合物は反応性、水溶性が高く、取り扱いが簡単でない上に、電極塗工のためのスラリー化の工程で不具合を生じ、電池性能を低下させる原因になる。これ対し、Mgはこれらの問題がない上に、不可逆容量キャンセル効果についてはLiと大差ないとされている。   Li is used as a doping element in doping with other elements, but Li and Li compounds are highly reactive and water-soluble, are not easy to handle, and are a slurry process for electrode coating. This can cause problems and reduce battery performance. On the other hand, Mg does not have these problems, and the irreversible capacity canceling effect is not much different from Li.

しかしながら、他元素ドープによる不可逆容量キャンセル処理を受けた酸化珪素系負極材では、他元素が不均一にドープされることに起因して電池性能の低下を招くことが問題視されており、Mgドープも例外ではない。   However, the silicon oxide negative electrode material that has been subjected to irreversible capacity cancellation treatment by doping with other elements has been regarded as a problem that it causes deterioration in battery performance due to non-uniform doping of other elements. Is no exception.

すなわち、Mgドープにおいて、例えばSiOとMgを1:1で反応させた場合、元素が均一に分布していれば、熱力学上はSiとMgOのみが存在することになるが、元素濃度分布が不均一な場合は、SiとMgOのみならず、未反応のSiO、金属Mgといった別の物質も存在することになる。そして、Liイオン電池の充放電では、化合物の種類によってLiの脱挿方法、電圧等が異なるので、一部だけ別の物質が混じっていると、そこが起点として粒子が割れたり、別の物質の反応性が高い場合は、バインダーや電解液がダメージを受けたりする。また、金属Mgが存在する場合は、充放電時にMgが溶けだし、別の場所で析出することで電池内部の部材を破壊するなどの影響も考えられる。これらは何れも電池性能、特に初期効率を低下させる原因になる。   That is, in Mg doping, for example, when SiO and Mg are reacted at a ratio of 1: 1, if the elements are uniformly distributed, only Si and MgO exist in terms of thermodynamics, but the element concentration distribution is In the case of non-uniformity, not only Si and MgO but also other substances such as unreacted SiO and metal Mg are present. In Li-ion battery charging / discharging, the Li insertion and removal method, voltage, etc. differ depending on the type of compound. Therefore, if only a part of another substance is mixed, the particle may be cracked as a starting point. When the reactivity of is high, the binder and the electrolytic solution may be damaged. Further, when metal Mg is present, Mg starts to melt at the time of charging / discharging, and the effect of destroying members inside the battery due to precipitation at another place is also considered. Any of these causes a decrease in battery performance, particularly initial efficiency.

特許第5352169号公報Japanese Patent No. 5352169 特許第3852579号公報Japanese Patent No. 3852579

本発明の目的は、Mgがドープされているにもかかわらず、Mg濃度分布の不均一に起因する電池性能の低下を可及的に回避できる酸化珪素系負極材及びその製造方法を提供することにある。   An object of the present invention is to provide a silicon oxide-based negative electrode material and a method for producing the same that can avoid as much as possible a decrease in battery performance due to non-uniform Mg concentration distribution despite being doped with Mg. It is in.

酸化珪素に対するMgドープを、前述したSiOとMgとの反応を例にとって説明するならば、その反応はMgドープ量が増えるにつれて、化学式1中の(1)式、(2)式、(3)式の順に進行する。   If Mg doping with respect to silicon oxide is explained by taking the reaction of SiO and Mg as an example, the reaction is expressed by the following formulas (1), (2), and (3) as the Mg doping amount increases. Proceeds in the order of the formula.

(化学式1)
SiO+1/3Mg→2/3Si+1/3MgSiO3 ・・・(1)
SiO+1/2Mg→3/4Si+1/4Mg2SiO4 ・・・(2)
SiO+Mg→Si+MgO・・・(3)
(Chemical formula 1)
SiO + 1 / 3Mg → 2 / 3Si + 1 / 3MgSiO 3 (1)
SiO + 1 / 2Mg → 3 / 4Si + 1 / 4Mg 2 SiO 4 (2)
SiO + Mg → Si + MgO (3)

すなわち、SiOに対するMg量が〜1/3であれば、(1)式の反応が起こり、1/3に至るまではSi相とMgSiO3と未反応のSiOが生じるが、1/3だとSi相とMgSiO3が生じる。SiOに対するMg量が1/3〜1/2であれば、(1)式の反応が終わった後に(2)式の反応が始まり、MgSiO3の一部がMg2SiO4に変化するので、1/2に至るまではSi相とMgSiO3とMg2SiO4が生じるが、1/2だとSi相とMg2SiO4 が生じる。 That is, if the amount of Mg with respect to SiO is ˜1 / 3, the reaction of the formula (1) occurs, and until it reaches Si, Si phase, MgSiO 3 and unreacted SiO are generated. Si phase and MgSiO 3 are generated. If the amount of Mg with respect to SiO is 1/3 to 1/2, the reaction of formula (2) starts after the reaction of formula (1) ends, and a part of MgSiO 3 changes to Mg 2 SiO 4 . up to 1/2 Si phase and MgSiO 3 and Mg 2 SiO 4 occurs, but 1/2 but the Si phase and the Mg 2 SiO 4 is generated.

同様に、SiOに対するMg量が1/2〜1であれば、(2)式の反応が終わった後に(3)式の反応が始まり、Mg2SiO4の一部がMgOに変化するので、1に至るまではSi相とMg2SiO4とMgOが生じるが、1だとSi相とMgOが生じる。SiOに対するMg量が1〜であれば、Si相とMgOと余剰Mgとしての金属Mg、MgSi合金が生じる。 Similarly, if the amount of Mg with respect to SiO is 1/2 to 1, the reaction of formula (3) starts after the reaction of formula (2) ends, and a part of Mg 2 SiO 4 changes to MgO. Up to 1, Si phase, Mg 2 SiO 4 and MgO are generated, but when 1, Si phase and MgO are generated. If the amount of Mg with respect to SiO is 1 to, a metal phase Mg, MgSi alloy as Si phase, MgO, and excess Mg is generated.

なお、SiOはSiとSiO2の混合物(1/2Si+1/2SiO2)であるので、実際の反応ではSiO2を生じる。 Since SiO is a mixture of Si and SiO 2 (1 / 2Si + 1 / 2SiO 2 ), SiO 2 is generated in the actual reaction.

ここで、SiO2はLiと反応した際に珪酸リチウムが生成する不可逆反応を生じ、初期効率を低下させる原因になる。また、金属Mg及びMgSi合金は活性で反応性が高く、電池作製時に部材と反応するなど、取り扱いを困難にする。このため、Mgドープ酸化珪素系負極材では、SiO2や金属Mg、MgSi合金が生じないように組成を厳密に管理しているが、実際は元素濃度分布の不均一に起因してSiO2や金属Mg、MgSi合金が生じる危険性がある。 Here, SiO 2 causes an irreversible reaction in which lithium silicate is generated when it reacts with Li, which causes a decrease in initial efficiency. In addition, metallic Mg and MgSi alloy are active and highly reactive, making them difficult to handle, such as reacting with members during battery fabrication. For this reason, in the Mg-doped silicon oxide negative electrode material, the composition is strictly controlled so as not to generate SiO 2 , metal Mg, and MgSi alloy, but in reality, SiO 2 and metal are caused by non-uniform element concentration distribution. There is a risk that Mg and MgSi alloys are formed.

すなわち、SiO2も金属Mg、MgSi合金も生じないように組成管理が行われていても、その組成管理が功を奏するのは元素濃度分布が均一な場合だけであり、局所的なMg過少部が発生するとSiO2が生成し、局所的なMg過多部が発生すると金属Mg、MgSi合金が生じるのである。 That is, even if the composition management is performed so that neither SiO 2 nor metallic Mg, MgSi alloy is generated, the composition management is effective only when the element concentration distribution is uniform, and the local Mg low portion When SiO 2 is generated, SiO 2 is generated, and when an excessive Mg portion is generated, metallic Mg and MgSi alloy are generated.

これから分かるように、Mgドープを受けた酸化珪素系負極材では、Mgドープでの生成物の違いが、元素濃度分布の均一、不均一の指標となり得る。本発明者らはこの点に着目し、生成物のなかの特にMg含有化合物の種類と、元素濃度分布の均一、不均一との関係について、実験を交えて詳細に調査した。その結果、以下のことが判明した。   As can be seen from this, in a silicon oxide negative electrode material that has undergone Mg doping, the difference in the product of Mg doping can be an indicator of uniform and non-uniform element concentration distribution. The present inventors paid attention to this point, and investigated in detail the relationship between the kind of the Mg-containing compound in the product and the uniformity and nonuniformity of the element concentration distribution through experiments. As a result, the following was found.

SiOに対しMgを0.4添加すると、そのMg量は1/3〜0.5の範囲内であるので、元素濃度分布が均一でMg量どおりの反応が起これば、前述したとおり、Si相が生成すると共に、Mg含有化合物としてMgSiO3及びMg2SiO4が生成する。 When 0.4 Mg is added to SiO, the amount of Mg is in the range of 1 to 3 to 0.5. Therefore, if the element concentration distribution is uniform and the reaction occurs according to the amount of Mg, as described above, A phase is formed, and MgSiO 3 and Mg 2 SiO 4 are formed as Mg-containing compounds.

しかし、Mg量が同じ0.4でも、Siに対しMgが0.2しか存在しない部分と、Siに対しMgが0.6存在する部分が混在し、全体としてMg量が0.4となる場合は、Mg量が0.2の部分ではSiO2とSi相とMgとMg含有化合物としてのMgSiO3が生じ、Mg量が0.6の部分ではSi相とMg含有化合物としてのMg2SiO4及びMgOが生じる。その結果、全体ではSiO2、Si相、並びにMg含有化合物としてのMgSiO3、Mg2SiO4及びMgOが生じる。この組合せは、前述したとおり、元素濃度分布が均一の場合は生じることがないので、生成するMg含有化合物の種類が、元素濃度分布が均一、不均一であることの指標となる。 However, even if the Mg amount is the same 0.4, a portion where only 0.2 Mg exists with respect to Si and a portion where 0.6 Mg exists relative to Si are mixed, resulting in an overall Mg amount of 0.4. In the case where Mg content is 0.2, SiO 2 and Si phase and MgSiO 3 as Mg and Mg-containing compound are produced, and Mg content is 0.6 and Mg 2 SiO as Si phase and Mg-containing compound are produced. 4 and MgO are produced. As a result, SiO 2 , Si phase, and MgSiO 3 , Mg 2 SiO 4 and MgO as Mg-containing compounds are generated as a whole. As described above, this combination does not occur when the element concentration distribution is uniform. Therefore, the type of the Mg-containing compound to be generated is an indicator that the element concentration distribution is uniform or non-uniform.

同様に、Siに対しMgが1/3存在する部分と、Siに対しMgが1存在する部分が混在し、全体としてMg量が2/3となる場合は、Mg量が1/3の部分ではSi相とMg含有化合物としてのMgSiO3が生じ、Mg量が1の部分ではSi相とMg含有化合物としてのびMgOが生じ、その結果、全体ではSi相、並びにMg含有化合物としてのMgSiO3及びMgOが生じるが、この組合せも又、元素濃度分布が均一の場合は生じることがない。ちなみに、元素濃度分布が均一の場合、Mg量が2/3だとSi相、並びにMg含有化合物としてのMg2SiO4及びMgOが生じる。 Similarly, when a portion where 1/3 of Mg is present with respect to Si and a portion where 1 Mg is present with respect to Si are mixed and the amount of Mg is 2/3 as a whole, the portion where the amount of Mg is 1/3 Produces MgSiO 3 as the Si phase and Mg-containing compound, and produces MgO as the Si phase and Mg-containing compound in the portion where the amount of Mg is 1, resulting in the overall Si phase and MgSiO 3 as the Mg-containing compound and Although MgO is generated, this combination also does not occur when the element concentration distribution is uniform. Incidentally, when the element concentration distribution is uniform, if the amount of Mg is 2/3, the Si phase and Mg 2 SiO 4 and MgO as Mg-containing compounds are generated.

本発明の酸化珪素系負極材は、かかる知見を基礎として開発されたものであり、Liイオン二次電池の負極形成に使用される酸化珪素系負極材であって、Si−Mg−Oの3元系材料からなり、Si相を含むと共に、Mg含有化合物としてMgSiO3、Mg2SiO4 、MgO、MgSiO3+Mg2SiO4又はMg2SiO4+MgOの5種のうちの何れか1種を含む一方、SiO2、金属Mg及びMgSi合金の何れも含まないことを構成上の特徴点としている。 The silicon oxide negative electrode material of the present invention was developed on the basis of such knowledge, and is a silicon oxide negative electrode material used for forming a negative electrode of a Li ion secondary battery, which is made of Si—Mg—O 3. It is made of a base material and contains an Si phase and includes any one of five kinds of MgSiO 3 , Mg 2 SiO 4 , MgO, MgSiO 3 + Mg 2 SiO 4 or Mg 2 SiO 4 + MgO as an Mg-containing compound. On the other hand, the feature of the constitution is that none of SiO 2 , metal Mg and MgSi alloy is contained.

また、本発明の酸化珪素系負極材の製造方法は、SiOガスとMgガスを同一の容器内で同時に発生させ、それらのガスを蒸着面上で冷却して回収するものである。   Moreover, the manufacturing method of the silicon oxide type negative electrode material of the present invention generates SiO gas and Mg gas at the same time in the same container and cools and recovers these gases on the vapor deposition surface.

本発明の酸化珪素系負極材において、Mg含有化合物の種類をMgSiO、Mg2SiO4、MgO、MgSiO3+Mg2SiO4又はMg2SiO4+MgOの何れか一種に限定したのは、これが元素濃度分布が均一であることの証左であるからである。ここに規定していないMgSiO3及びMgOの組合せ、並びにMgSiO3、Mg2SiO4及びMgOの組合せが、元素濃度分布の不均一を意味することと合わせ、(1)式〜(3)式により説明したとおりである。 In the silicon oxide negative electrode material of the present invention, the kind of Mg-containing compound is limited to any one of MgSiO 3 , Mg 2 SiO 4 , MgO, MgSiO 3 + Mg 2 SiO 4 or Mg 2 SiO 4 + MgO. This is because it is evidence that the concentration distribution is uniform. The combination of MgSiO 3 and MgO not specified here, and the combination of MgSiO 3 , Mg 2 SiO 4 and MgO mean that the element concentration distribution is non-uniform, and is explained by the formulas (1) to (3). Just as you did.

また、SiO2、金属Mg及びMgSi合金も、前述したとおり、局所的なMg過少部及び局所的なMg過多部において生じるので、これらを含まないことも又、元素濃度分布が均一であることの証左である。 Further, as described above, SiO 2 , metal Mg and MgSi alloy are also generated in the local Mg excess portion and the local Mg excess portion, so that these elements are not included or the element concentration distribution is uniform. This is evidence.

また、Si相が必須であるのは、SiがLiを充放電するので、Si相が存在しないと電池容量が発現しないからである。Si相は結晶質でもアモルファスでもよいが、充放電時の膨張収縮が小さく、電池性能が高くなることから、アモルファス若しくはこれに近い相が望ましく、CuKα線を用いたXRD測定を行った際に、2θ=28.4±0.3°付近に表れるSiに由来のピークの半値幅から算出するSi結晶粒子径で表して40nm以下であることが必要である。   In addition, the Si phase is essential because Si charges and discharges Li, so that the battery capacity does not develop unless the Si phase exists. The Si phase may be crystalline or amorphous. However, since the expansion and contraction during charging and discharging are small and the battery performance is high, the amorphous phase or a phase close to this is desirable. When XRD measurement using CuKα rays is performed, It must be 40 nm or less in terms of the Si crystal particle diameter calculated from the half width of the peak derived from Si appearing in the vicinity of 2θ = 28.4 ± 0.3 °.

本発明の酸化珪素系負極材は、組成管理が行われていることを前提とする。組成管理が行われていなければ、SiO2や金属Mg、MgSi合金の生成が避けられない。組成管理が行われているにもかかわらず、元素濃度分布の不均一に起因して不可避的に生じる物質の生成を阻止することにより、その不均一を安定的に解消して電池性能の向上を図るのが、本発明の酸化珪素系負極材である。 The silicon oxide negative electrode material of the present invention is premised on the composition management being performed. If the composition management has not been performed, SiO 2 and metals Mg, generation of MgSi alloy inevitable. Despite the composition management, by preventing the generation of substances inevitably caused by the nonuniform element concentration distribution, the nonuniformity is stably eliminated and the battery performance is improved. The aim is the silicon oxide negative electrode material of the present invention.

参考までにその組成管理について簡単に説明すれば、その組成をSixMgyzで表して、3y>z>y、且つ2x+y>zであることが必要である。その理由は以下のとおりである。 To briefly explain the composition management for reference, it is necessary that the composition is expressed by Si x Mg y O z and 3y>z> y and 2x + y> z. The reason is as follows.

本発明の酸化珪素系負極材においては、Si相を珪酸Mg、若しくはMg酸化物が取り囲むことにより、Si相の膨張収縮を抑え、高い電池性能を得ることができる。SiO2を含まないことにより、Si挿入時の珪酸Li生成が抑制され、初期効率が改善する。SiO2を含む場合、Liと反応して際に珪酸Liを生じる不可逆反応が起こり、初期効率が低下する。3y<zの場合は、酸素に対してMgが不足し、SiO2が含有される。z<yの場合は、酸素が不足することで活性な金属Mg、MgSi合金が生じ、電池作製時に取り扱いが困難となる。したがって、3y>z>yであることが必要となる。また、2x+y>zであるならば、反応が平衡どおりに進むことにより、酸素が全てSi、Mgの酸化物として存在するので、Si相(酸化していないSi)が含有される。 In the silicon oxide-based negative electrode material of the present invention, when the Si phase is surrounded by Mg silicate or Mg oxide, expansion and contraction of the Si phase can be suppressed, and high battery performance can be obtained. By not containing SiO 2 , the production of Li silicate at the time of Si insertion is suppressed, and the initial efficiency is improved. When SiO 2 is contained, an irreversible reaction occurs in which Li silicate reacts with Li, and the initial efficiency is lowered. In the case of 3y <z, Mg is insufficient with respect to oxygen and SiO 2 is contained. In the case of z <y, active metal Mg and MgSi alloy are generated due to lack of oxygen, and handling becomes difficult during battery production. Therefore, 3y>z> y is required. Further, if 2x + y> z, the reaction proceeds in accordance with the equilibrium, so that all the oxygen exists as oxides of Si and Mg, so that the Si phase (non-oxidized Si) is contained.

SiO2を含有しないことは、CuKα線を用いたXRD測定において22°付近のアモルファスSiO2ピーク、及び26.6°付近の結晶SiO2ピークの両方が存在しないことで確認できる。 Contains no SiO 2 can be confirmed by amorphous SiO 2 peak near 22 ° in the XRD measurement using a CuKα line, and both the crystalline SiO 2 peak near 26.6 ° absent.

すなわち、22°付近のアモルファスSiO2ピークについては、14°と34°のXRD強度を直線で結んでその直線をベース強度とした際に、22°での回折強度P1と、22°でのベース強度B1との比が、P1/B1<1.25を満たす場合にアモルファスSiO2ピークがないと判断する。 That is, for the amorphous SiO 2 peak near 22 °, when the XRD intensities at 14 ° and 34 ° are connected by a straight line and the straight line is used as the base intensity, the diffraction intensity P1 at 22 ° and the base at 22 ° When the ratio to the intensity B1 satisfies P1 / B1 <1.25, it is determined that there is no amorphous SiO 2 peak.

26.6°付近の結晶SiO2ピークについては、2θ=26.1°における回折強度と、2θ=27.1°における回折強度とを直線で結んでその直線をベース強度とした際に、2θ=26.6±0.3°における最大強度P2と、最大強度角度におけるベース強度B2との比が、P2/B2<1.1を満たす場合に結晶SiO2ピークがないと判断する。 Regarding the crystalline SiO 2 peak near 26.6 °, when the diffraction intensity at 2θ = 26.1 ° and the diffraction intensity at 2θ = 27.1 ° are connected by a straight line and the line is used as the base intensity, 2θ When the ratio between the maximum intensity P2 at 26.6 ± 0.3 ° and the base intensity B2 at the maximum intensity angle satisfies P2 / B2 <1.1, it is determined that there is no crystalline SiO 2 peak.

金属Mg、MgSi合金を含有しないことも同様に確認できる。すなわち、金属Mg を含有しないことは、CuKα線を用いたXRD測定において34.4°付近の金属Mgピークが存在しないことで、MgSi合金を含有しないことは、CuKα線を用いたXRD測定において24.2°付近のMg2Siピークが存在しないことで、それぞれ確認できる。 It can be confirmed in the same manner that no metal Mg or MgSi alloy is contained. That is, the absence of metal Mg 2 means that there is no metal Mg peak around 34.4 ° in the XRD measurement using CuKα rays, and that no MgSi alloy is contained in the XRD measurement using CuKα rays. Each can be confirmed by the absence of the Mg 2 Si peak around 2 °.

34.4°付近の金属Mgピークについては、2θ=34.0°における回折強度と、2θ=34.8°における回折強度とを直線で結んでその直線をベース強度とした際に、2θ=34.4±0.1°における最大強度P3と、最大強度角度におけるベース強度B3との比が、P3/B3<1.1を満たす場合に金属Mgピークがないと判断する。   For the metal Mg peak near 34.4 °, when the diffraction intensity at 2θ = 34.0 ° and the diffraction intensity at 2θ = 34.8 ° are connected by a straight line and the line is used as the base intensity, 2θ = When the ratio of the maximum intensity P3 at 34.4 ± 0.1 ° and the base intensity B3 at the maximum intensity angle satisfies P3 / B3 <1.1, it is determined that there is no metal Mg peak.

24.2°付近のMg2Siピークについては、2θ=23.5°における回折強度と、2θ=24.9°における回折強度とを直線で結んでその直線をベース強度とした際に、2θ=24.2±0.1°における最大強度P4と、最大強度角度におけるベース強度B4との比が、P4/B4<1.1を満たす場合にMgSi合金ピークがないと判断する。 For the Mg 2 Si peak near 24.2 °, when the diffraction intensity at 2θ = 23.5 ° and the diffraction intensity at 2θ = 24.9 ° are connected by a straight line and the line is used as the base intensity, 2θ When the ratio of the maximum intensity P4 at = 24.2 ± 0.1 ° and the base intensity B4 at the maximum intensity angle satisfies P4 / B4 <1.1, it is determined that there is no MgSi alloy peak.

一方、Mg含有化合物としてMgSiO3、Mg2SiO4、MgO、MgSiO3+Mg2SiO4又はMg2SiO4+MgOの5種のうちの何れか1種を含むことも、同様にMgO、Mg2SiO4、MgSiO3の3種類についてのXRDピークの有無から確認できる。 On the other hand, MgSiO 3, Mg 2 SiO 4 , MgO as Mg-containing compound, also comprise MgSiO 3 + Mg 2 SiO 4 or Mg 2 SiO 4 + any one of five MgO, similarly MgO, Mg 2 SiO 4 It can be confirmed from the presence or absence of XRD peaks for three types of MgSiO 3 .

すなわち、MgOについては、2θ=41.8°における回折強度と、2θ=43.8°における回折強度とを直線で結んでその直線をベース強度とした際に、2θ=42.8±0.3°における最大強度P5と、最大強度角度におけるベース強度B5との比が、P5/B5>1.1を満たす場合にMgOが存在すると判断する。   That is, for MgO, when the diffraction intensity at 2θ = 41.8 ° and the diffraction intensity at 2θ = 43.8 ° are connected by a straight line and the straight line is used as the base intensity, 2θ = 42.8 ± 0. It is determined that MgO is present when the ratio of the maximum intensity P5 at 3 ° and the base intensity B5 at the maximum intensity angle satisfies P5 / B5> 1.1.

Mg2SiO4については、2θ=31.3°における回折強度と、2θ=33.3°における回折強度とを直線で結んでその直線をベース強度とした際に、2θ=32.3±0.3°における最大強度P6と、最大強度角度におけるベース強度B6との比が、P6/B6>1.1を満たす場合にMg2SiO4が存在すると判断する。 For Mg 2 SiO 4 , 2θ = 32.3 ± 0 when the diffraction intensity at 2θ = 31.3 ° and the diffraction intensity at 2θ = 33.3 ° are connected by a straight line and the straight line is used as the base intensity. It is determined that Mg 2 SiO 4 is present when the ratio of the maximum intensity P6 at 3 ° and the base intensity B6 at the maximum intensity angle satisfies P6 / B6> 1.1.

MgSiO3については、2θ=31.8°における回折強度と、2θ=33.8°における回折強度とを直線で結んでその直線をベース強度とした際に、2θ=32.8±0.2°における最大強度P7と、最大強度角度におけるベース強度B7との比が、P7/B7>1.1を満たす場合にMgSiO3が存在すると判断する。 For MgSiO 3 , 2θ = 32.8 ± 0.2 when the diffraction intensity at 2θ = 31.8 ° and the diffraction intensity at 2θ = 33.8 ° are connected by a straight line and the straight line is used as the base intensity. It is determined that MgSiO 3 is present when the ratio between the maximum intensity P7 at ° and the base intensity B7 at the maximum intensity angle satisfies P7 / B7> 1.1.

また、Si相が存在することは、結晶SiについてはXRDピークの有無から確認できる。すなわち、2θ=46.4°における回折強度と、2θ=48.4°における回折強度とを直線で結んでその直線をベース強度とした際に、2θ=47.4±0.3°における最大強度P8と、最大強度角度におけるベース強度B8との比が、P8/B8>1.1を満たす場合に、結晶Siが存在すると判断する。また、アモルファスSiについては元素分析結果から確認できる。   The presence of the Si phase can be confirmed from the presence or absence of the XRD peak for crystalline Si. That is, when the diffraction intensity at 2θ = 46.4 ° and the diffraction intensity at 2θ = 48.4 ° are connected by a straight line and the straight line is used as the base intensity, the maximum at 2θ = 47.4 ± 0.3 ° When the ratio between the intensity P8 and the base intensity B8 at the maximum intensity angle satisfies P8 / B8> 1.1, it is determined that crystalline Si exists. Moreover, about amorphous Si, it can confirm from an elemental analysis result.

本発明の酸化珪素系負極材の製造方法においては、SiOガスとMgガスを同一の容器内で同時に発生させることにより、SiOとMgが均一に反応し、その結果、元素濃度分布が均一な酸化珪素系負極材の製造が可能となる。   In the method for producing a silicon oxide-based negative electrode material of the present invention, SiO gas and Mg gas are simultaneously generated in the same container, so that SiO and Mg react uniformly, and as a result, the element concentration distribution is oxidized uniformly. A silicon-based negative electrode material can be manufactured.

従来は気相法においてもSiOガスとMgガスを別々の容器で発生させ、それらのガスを混合後に冷却、回収するため、SiOとMgが不均一に反応し、その結果、製造される酸化珪素系負極材の元素濃度分布が不均一になっていたが、本発明の酸化珪素系負極材の製造方法においては、SiOガスとMgガスを同一容器内で同時に発生させることにより、SiOとMgが均一に反応し、その結果、元素濃度分布が均一な酸化珪素系負極材の製造が可能となるのである。   Conventionally, even in the vapor phase method, SiO gas and Mg gas are generated in separate containers, and these gases are mixed and then cooled and recovered, so that SiO and Mg react non-uniformly, resulting in silicon oxide produced. The element concentration distribution of the negative electrode material was non-uniform. However, in the method for producing a silicon oxide negative electrode material of the present invention, SiO gas and Mg gas were simultaneously generated in the same container, so that SiO and Mg were It reacts uniformly, and as a result, it becomes possible to produce a silicon oxide negative electrode material having a uniform element concentration distribution.

SiOガスとMgガスを同一の容器内で同時に発生させる方法としては、Si、Mg及びOを含有する原料を同一の容器内で減圧加熱する方法があり、Si、Mg及びOを含有する原料としては、Si単体とMg・O含有化合物とを含む原料が望ましく、Mg・O含有化合物としては、例えばMgO、Mg2SiO4、MgSiO、Mg2CO3、Mg(OH)2等が望ましい。原料の酸素量調整のために、原料に更にSi酸化物を含有させることも可能である。 As a method for simultaneously generating SiO gas and Mg gas in the same container, there is a method in which a raw material containing Si, Mg and O is heated under reduced pressure in the same container, and as a raw material containing Si, Mg and O, Is preferably a raw material containing a simple substance of Si and a Mg.O-containing compound. Examples of the Mg.O-containing compound include MgO, Mg 2 SiO 4 , MgSiO 3 , Mg 2 CO 3 , and Mg (OH) 2 . In order to adjust the amount of oxygen in the raw material, it is possible to further contain Si oxide in the raw material.

本発明の酸化珪素系負極材は、Si−Mg−Oの3元系材料からなり、その上でSi相を含むと共に、Mg含有化合物としてMgSiO3、Mg2SiO4、MgO、MgSiO3+Mg2SiO4又はMg2SiO4+MgOの5種のうちの何れか1種を含む一方、SiO2、金属Mg及びMgSi合金の何れも含まないことにより、Mgを含む各元素の濃度分布が均一となり、その元素濃度分布の不均一に起因する電池性能の低下を可及的に回避することができる。 The silicon oxide-based negative electrode material of the present invention is made of a ternary material of Si—Mg—O, contains a Si phase thereon, and includes MgSiO 3 , Mg 2 SiO 4 , MgO, MgSiO 3 + Mg 2 as Mg-containing compounds. While containing any one of five types of SiO 4 or Mg 2 SiO 4 + MgO, and not containing any of SiO 2 , metal Mg and MgSi alloy, the concentration distribution of each element including Mg becomes uniform, It is possible to avoid as much as possible a decrease in battery performance due to the nonuniform element concentration distribution.

また、本発明の酸化珪素系負極材の製造方法は、SiOガスとMgガスを同一の容器内で同時に発生させ、それらのガスを蒸着面上で冷却して回収することにより、SiOとMgを均一に反応させて、元素濃度分布が均一な酸化珪素系負極材の製造を可能とする。   Also, the method for producing a silicon oxide negative electrode material of the present invention generates SiO gas and Mg gas at the same time in the same container, and cools and collects these gases on the vapor deposition surface to recover SiO and Mg. By reacting uniformly, it is possible to produce a silicon oxide negative electrode material having a uniform element concentration distribution.

本発明の酸化珪素系負極材のXRDチャートである。3 is an XRD chart of the silicon oxide negative electrode material of the present invention. 従来の酸化珪素系負極材のXRDチャートである。It is an XRD chart of the conventional silicon oxide type negative electrode material.

以下に本発明の実施形態を説明する。本発明の酸化珪素系負極材は次のような方法により製造可能である。   Embodiments of the present invention will be described below. The silicon oxide negative electrode material of the present invention can be manufactured by the following method.

本発明の酸化珪素系負極材は、SiOガスとMgガスを均一に反応させることで製造することができる。そして、SiOガスとMgガスを均一に反応させるためには、両ガスを同時に発生させることが重要であり、具体的には、SiOガスとMgガスを同一の容器内で同時に発生させ、それらのガスを同じ蒸着面上で冷却、回収する方法により製造可能である。   The silicon oxide negative electrode material of the present invention can be produced by uniformly reacting SiO gas and Mg gas. In order to uniformly react SiO gas and Mg gas, it is important to generate both gases at the same time. Specifically, SiO gas and Mg gas are simultaneously generated in the same container, It can be produced by a method of cooling and collecting the gas on the same vapor deposition surface.

SiOガスとMgガスを同一の容器内で同時に発生させる方法としては、Si、Mg及びOを含有する原料を同一容器内で減圧加熱する方法がある。Si、Mg及びOを含有する原料としては、SiOガス発生原料とMgガス発生原料とを単純に混合したものが考えられるが、この原料だと、SiOガスとMgガスが同時に発生することはない。蒸気厚が高いMgガスのみが優先して発生する。このためにSiOとMgが均一に混合した材料は得られない。別の原料として、MgO、Mg2SiO4などのMg・O含有化合物、すなわち、Oを含有するMg化合物が考えられるが、このような化合物は単体では減圧下での加熱によってもガスを発生しない。しかしながら、このようなMg・O含有化合物であっても、Si、特にSi単体が共存すると、減圧下での加熱によりSiOガスとMgガスとが同時に発生し、SiOとMgが均一に混合した材料が得られる。 As a method for simultaneously generating SiO gas and Mg gas in the same container, there is a method in which a raw material containing Si, Mg and O is heated under reduced pressure in the same container. As a raw material containing Si, Mg and O, a simple mixture of a SiO gas generating raw material and a Mg gas generating raw material can be considered, but with this raw material, SiO gas and Mg gas are not generated simultaneously. . Only Mg gas with a high vapor thickness is preferentially generated. For this reason, a material in which SiO and Mg are uniformly mixed cannot be obtained. As another raw material, Mg.O-containing compounds such as MgO and Mg 2 SiO 4 , that is, Mg compounds containing O, can be considered, but such compounds alone do not generate gas even when heated under reduced pressure. . However, even with such Mg · O-containing compounds, when Si, particularly Si alone, coexists, SiO gas and Mg gas are simultaneously generated by heating under reduced pressure, and SiO and Mg are uniformly mixed. Is obtained.

この観点から、Si、Mg及びOを含有する原料としては、Si単体とMg・O含有化合物とを含む原料が望ましい。この原料は取り扱いが簡単で価格も安い。例えば、Si単体と、Mg・O含有化合物としてのMgOとを混合するならば、化学式2の反応によりSiOガスとMgガスを同時に発生させることができる。ここでは、SiOガスとMgガスを使用しているために、O/Si比は1に近い値をとり、0.8<O/Si<1.2程度となる。   From this viewpoint, the raw material containing Si, Mg and O is preferably a raw material containing Si alone and an Mg · O-containing compound. This material is easy to handle and cheap. For example, if Si is mixed with MgO as the Mg · O-containing compound, SiO gas and Mg gas can be generated simultaneously by the reaction of Chemical Formula 2. Here, since SiO gas and Mg gas are used, the O / Si ratio takes a value close to 1, which is about 0.8 <O / Si <1.2.

(化学式2)
Si(s)+MgO(s)→SiO(g)+Mg(g)
(Chemical formula 2)
Si (s) + MgO (s) → SiO (g) + Mg (g)

Mg単体を原料に使用することも考えられ、例えば固体SiOと単体Mgを原料に用いることが可能であるが、この場合は化学式2の反応を介さずに単体Mgから直接Mgガスが発生する上、そのMgガスはSiOガスと比べ低温で発生するために、反応初期にMgガス、反応後期にSiOガスが生成し、作製された材料の組成が不均一になってしまう。このため、単体Mgを用いることは現実的でない。SiOガスが発生するまでにMgガスを発生せず、気化しないMg・O含有化合物をSi単体で還元することで、SiOガスとMgガスを同時に発生させることができるのである。   It is also conceivable to use Mg alone as a raw material. For example, solid SiO and simple Mg can be used as a raw material, but in this case, Mg gas is directly generated from the single Mg without the reaction of Chemical Formula 2. Since the Mg gas is generated at a lower temperature than the SiO gas, the Mg gas is generated in the early stage of the reaction and the SiO gas is generated in the late stage of the reaction, so that the composition of the produced material becomes non-uniform. For this reason, it is not realistic to use simple Mg. By reducing the Mg.O-containing compound that does not generate Mg gas and does not vaporize until SiO gas is generated with Si alone, SiO gas and Mg gas can be generated simultaneously.

Mg・O含有化合物としては、不要な金属元素の混入を防ぐために、例えばMgO、Mg2SiO4、MgSiO3、MgCO、Mg(OH)2等が望ましい。特に、MgO、Mg2SiO4、MgSiOを使用することで、Si、O、Mg以外の元素の混入を防ぐことができる。MgCO3、Mg(OH)2等は加熱によりCO2等のガスを発生させるが、SiOガス発生反応温度よりも低い温度でガスの発生反応を完了させることで、MgO等と同様に使用することができる。これらの化合物を用いた場合の反応は化学式3のように表される。原料の酸素量調整のために、原料に更にSi酸化物を含有させてもよい。 As the Mg · O-containing compound, for example, MgO, Mg 2 SiO 4 , MgSiO 3 , MgCO 3 , Mg (OH) 2 or the like is desirable in order to prevent mixing of unnecessary metal elements. In particular, by using MgO, Mg 2 SiO 4 , or MgSiO 3 , it is possible to prevent contamination of elements other than Si, O, and Mg. MgCO 3 , Mg (OH) 2, etc. generate gas such as CO 2 by heating, but can be used in the same way as MgO etc. by completing the gas generation reaction at a temperature lower than the SiO gas generation reaction temperature. Can do. The reaction when these compounds are used is represented by Chemical Formula 3. In order to adjust the amount of oxygen in the raw material, the raw material may further contain Si oxide.

(化学式3)
3Si(s)+Mg2SiO4(s)→4SiO(g)+2Mg(g)
2Si(s)+MgSiO(s)→3SiO(g)+Mg(g)
Si(s)+MgCO(s)→SiO(g)+Mg(g)+CO2(g)
Si(s)+Mg(OH)2(s)→SiO(g)+Mg(g)+H2O(g)
(Chemical formula 3)
3Si (s) + Mg 2 SiO 4 (s) → 4SiO (g) + 2Mg (g)
2Si (s) + MgSiO 3 (s) → 3SiO (g) + Mg (g)
Si (s) + MgCO 3 (s) → SiO (g) + Mg (g) + CO 2 (g)
Si (s) + Mg (OH) 2 (s) → SiO (g) + Mg (g) + H 2 O (g)

Si、Mg及びOの混合比は、1.0<Si/O<1.5及び0.33<Mg/O<1.0を満足することが望ましい。Si量とO量が異なる場合、未反応で残留する原料が増えるために反応効率が低下する。特にOが多い場合には、SiOガスが優先して生成し、Mg原料が残留してMg量が低下するおそれがある。Mgについては、少なすぎると生成物中にSiOが含まれ、多すぎる場合には活性な金属Mgの生成や原料残留のおそれが生じる。 The mixing ratio of Si, Mg and O desirably satisfies 1.0 <Si / O <1.5 and 0.33 <Mg / O <1.0. When the amount of Si and the amount of O are different, the raw material remaining unreacted increases, so the reaction efficiency decreases. In particular, when there is a large amount of O, SiO gas is preferentially generated, and there is a possibility that the Mg raw material remains and the amount of Mg decreases. As for Mg, if the amount is too small, SiO 2 is contained in the product, and if it is too much, active metal Mg may be generated or a raw material may remain.

蒸着面上での冷却、回収により作製された材料については、回収後、所定の粒度に粉砕、調整することで、電極用粉末材料とすることができる。粉砕方法は特定されないが、金属不純物が混入しないように粉末接触部にはセラミックス等の非金属材料を用いるのが望ましい。粉末粒子径はメディアン径D50で1〜20μmが望ましい。粉末粒子径がこの範囲内であると、粉末の分散性がよく、スラリー化の工程等で取り扱いが容易となり、結果的に電池性能が向上する。 About the material produced by cooling and collection | recovery on a vapor deposition surface, it can be set as the powder material for electrodes by grind | pulverizing and adjusting to a predetermined particle size after collection | recovery. Although the pulverization method is not specified, it is desirable to use a non-metallic material such as ceramics for the powder contact portion so that metal impurities are not mixed. The powder particle diameter is preferably 1 to 20 μm in median diameter D 50 . When the particle size of the powder is within this range, the dispersibility of the powder is good and the handling becomes easy in the slurrying process, resulting in improved battery performance.

ここにおける電極用粉末材料は、粉末粒子の表面もしくはその表面の一部に導電性材料が被覆されてもよい。導電性材料の被覆により、表面抵抗が下がり、電池性能が向上する。導電性材料としては、グラファイトが代表的であり、例えば炭化水素ガスを用いた熱CVD反応により、粒子表面へグラファイトを被覆することができる。   In the electrode powder material here, the surface of the powder particles or a part of the surface may be coated with a conductive material. By covering the conductive material, the surface resistance is lowered and the battery performance is improved. A typical example of the conductive material is graphite. For example, graphite can be coated on the particle surface by a thermal CVD reaction using a hydrocarbon gas.

SiOガスとMgガスを同一の容器内で同時に発生させ、それらのガスを同じ蒸着面上で冷却して回収する方法は、Mgがドープされた酸化珪素系負極材の製造方法であるが、Mgを他の金属元素に変えることにより、Mg以外の金属元素がドープされた酸化珪素系負極材の製造も可能である。   A method of simultaneously generating SiO gas and Mg gas in the same container and cooling and recovering these gases on the same vapor deposition surface is a method for producing a silicon oxide negative electrode material doped with Mg. It is also possible to manufacture a silicon oxide negative electrode material doped with a metal element other than Mg by changing to other metal elements.

すなわち、Si単体と、酸素を含有する金属化合物とを含む原料を同一の容器内で同時に減圧加圧して、SiOガスと金属ガスとを同時に発生させ、それらのガスを同じ蒸着面上で冷却して回収することにより、Mg以外の金属元素がドープされた酸化珪素系負極材が製造される。   That is, a raw material containing a simple substance of Si and a metal compound containing oxygen is simultaneously decompressed and pressurized in the same container to simultaneously generate SiO gas and metal gas, and these gases are cooled on the same deposition surface. Thus, a silicon oxide negative electrode material doped with a metal element other than Mg is produced.

ここにおけるMg以外の金属元素としては、SiO以上の蒸気圧を有し、かつSiO2 を還元可能な元素が望ましく、例えばLi、Na、K、Rb、Cs、Ca、Sr、Ba、Alなどを挙げることができる。原料に金属元素単体を用いると、生成する材料の組成が不均一となるおそれがあるため、金属元素の酸化物や水酸化物、炭酸塩、珪酸塩などの化合物を用いることが望ましい。化合物としては、SiOガス発生反応が進行するまで金属元素ガスを発生せず、気化しない材料が望ましい。ガス発生反応は化学式4のように表される。Si、O比を調整するために原料に更にSi酸化物を含有させてもよい。 The metal element other than Mg here is preferably an element having a vapor pressure higher than that of SiO and capable of reducing SiO 2 , such as Li, Na, K, Rb, Cs, Ca, Sr, Ba, Al, and the like. Can be mentioned. When a single metal element is used as a raw material, the composition of the material to be produced may be non-uniform, so it is desirable to use a compound such as an oxide, hydroxide, carbonate, or silicate of the metal element. As the compound, a material that does not generate metal element gas and does not vaporize until the SiO gas generation reaction proceeds is desirable. The gas generation reaction is expressed as in Chemical Formula 4. In order to adjust the Si and O ratio, the raw material may further contain Si oxide.

(化学式4)
xSi(s)+MOx(s)→xSiO(g)+M(g)
2xSi(s)+M(SiO3)x(s)→3xSiO(g)+M(g)
xSi(s)+M(CO3)x(s)→xSiO(g)+M(g)+xCO2(g)
xSi(s)+M(OH)x(s)→xSiO(g)+M(g)+xH2O(g)
(Chemical formula 4)
xSi (s) + MO x (s) → xSiO (g) + M (g)
2 × Si (s) + M (SiO 3 ) × (s) → 3 × SiO (g) + M (g)
xSi (s) + M (CO 3 ) x (s) → xSiO (g) + M (g) + xCO 2 (g)
xSi (s) + M (OH) x (s) → xSiO (g) + M (g) + xH 2 O (g)

(実施例1)
Si粉末とMgO粉末とMg2SiO4粉末とを4:1:1のモル比で混合した(Si:Mg:O=1:0.6:1)。この混合粉末をAr雰囲気、1Paで1350℃に加熱し、発生したガスを上部に設置した蒸着板上で400℃に冷却し析出させて回収した。回収した析出材料をアルミナボールミルで粉砕し、平均粒子径をメディアン径D50で5μmに調整した。
Example 1
Si powder, MgO powder, and Mg 2 SiO 4 powder were mixed at a molar ratio of 4: 1: 1 (Si: Mg: O = 1: 0.6: 1). The mixed powder was heated to 1350 ° C. in an Ar atmosphere and 1 Pa, and the generated gas was cooled to 400 ° C. on a vapor deposition plate installed on the upper side, and was collected. The collected precipitated material was pulverized with an alumina ball mill, and the average particle diameter was adjusted to 5 μm with a median diameter D50.

こうして得た粉末に対してCuKα線を用いたXRD測定を行った。XRDデータを図1に示す。Si、MgO、Mg2SiO4の各結晶ピークが確認できた一方で、MgSiO3の結晶ピーク、SiO2のアモルファスピーク及び結晶ピーク、並びに金属Mg及びMgSi合金の結晶ピークは確認できなかった。 XRD measurement using CuKα rays was performed on the powder thus obtained. XRD data is shown in FIG. While each crystal peak of Si, MgO, and Mg 2 SiO 4 could be confirmed, the crystal peak of MgSiO 3 , the amorphous peak and crystal peak of SiO 2 , and the crystal peak of metal Mg and MgSi alloy could not be confirmed.

すなわち、SiO2のアモルファスピーク強度はP1/B1=1.18(<1.25)、結晶ピーク強度はP2/B2=0.91(<1.1)であった。また、金属Mgの結晶ピーク強度はP3/B3=0.99(<1.1)、MgSi合金の結晶ピークはP4/B4=1.04(<1.1)であった。一方、MgOの結晶ピーク強度はP5/B5=1.37(>1.1)、Mg2SiO4の結晶ピーク強度はP6/B6=1.67(>1.1)であり、他方、MgSiO3の結晶ピーク強度はP7/B7=1.05(<1.1)であった。 That is, the amorphous peak intensity of SiO 2 was P1 / B1 = 1.18 (<1.25), and the crystal peak intensity was P2 / B2 = 0.91 (<1.1). The crystal peak intensity of metal Mg was P3 / B3 = 0.99 (<1.1), and the crystal peak of MgSi alloy was P4 / B4 = 1.04 (<1.1). On the other hand, the crystal peak intensity of MgO is P5 / B5 = 1.37 (> 1.1), and the crystal peak intensity of Mg 2 SiO 4 is P6 / B6 = 1.67 (> 1.1), while MgSiO 3 The crystal peak intensity was P7 / B7 = 1.05 (<1.1).

また、Siの結晶ピーク強度はP8/B8=2.31であり、結晶粒子径は12.2μmであった。   Further, the crystal peak intensity of Si was P8 / B8 = 2.31, and the crystal particle diameter was 12.2 μm.

(実施例2)
Si粉末とMgO粉末とSiO2粉末とを19:18:1のモル比で混合した(Si:Mg:O=1:0.9:1)。この混合粉末を実施例1と同じ条件で加熱、析出させ、粉末化した。得られた粉末に対して実施例1と同じXRD測定を行ったところ、Si、MgO、Mg2SiO4の各結晶ピークが確認できた一方で、MgSiOの結晶ピーク、SiO2のアモルファスピーク及び結晶ピーク、並びに金属Mg及びMgSi合金の結晶ピークは確認できなかった。
(Example 2)
Si powder, MgO powder and SiO 2 powder were mixed at a molar ratio of 19: 18: 1 (Si: Mg: O = 1: 0.9: 1). This mixed powder was heated and precipitated under the same conditions as in Example 1 to form a powder. When the same XRD measurement as in Example 1 was performed on the obtained powder, Si, MgO, Mg 2 SiO 4 crystal peaks were confirmed, while MgSiO 3 crystal peak, SiO 2 amorphous peak, and A crystal peak and a crystal peak of metallic Mg and MgSi alloy could not be confirmed.

すなわち、SiO2のアモルファスピーク強度はP1/B1=1.19(<1.25)、結晶ピーク強度はP2/B2=1.02(<1.1)であった。また、金属Mgの結晶ピーク強度はP3/B3=1.02(<1.1)、MgSi合金の結晶ピークはP4/B4=1.03(<1.1)であった。一方、MgOの結晶ピーク強度はP5/B5=22(>1.1)、Mg2SiO4の結晶ピーク強度はP6/B6=1.72(>1.1)であり、他方、MgSiOの結晶ピーク強度はP7/B7=1.02(<1.1)であった。 That is, the amorphous peak intensity of SiO 2 was P1 / B1 = 1.19 (<1.25), and the crystal peak intensity was P2 / B2 = 1.02 (<1.1). The crystal peak intensity of metal Mg was P3 / B3 = 1.02 (<1.1), and the crystal peak of MgSi alloy was P4 / B4 = 1.03 (<1.1). On the other hand, the crystal peak intensity of MgO is P5 / B5 = 22 (> 1.1 ), the crystalline peak intensity of Mg 2 SiO 4 is P6 / B6 = 1.72 (> 1.1 ), while the MgSiO 3 The crystal peak intensity was P7 / B7 = 1.02 (<1.1).

また、Siの結晶ピーク強度はP8/B8=14.8であり、結晶粒子径は32.8μmであった。   Further, the crystal peak intensity of Si was P8 / B8 = 14.8, and the crystal particle diameter was 32.8 μm.

(実施例3)
Si粉末とMgO粉末とSiO2粉末とを7:4:3のモル比で混合した(Si:Mg:O=1:0.4:1)。この混合粉末を実施例1と同じ条件で加熱、析出させ、粉末化した。得られた粉末に対して実施例1と同じXRD測定を行ったところ、Si、MgSiO3、Mg2SiO4の各結晶ピークが確認できた一方で、MgOの結晶ピーク、SiO2のアモルファスピーク及び結晶ピーク、並びに金属Mg及びMgSi合金の結晶ピークは確認できなかった。
(Example 3)
Si powder, MgO powder and SiO 2 powder were mixed at a molar ratio of 7: 4: 3 (Si: Mg: O = 1: 0.4: 1). This mixed powder was heated and precipitated under the same conditions as in Example 1 to form a powder. When the same XRD measurement as that of Example 1 was performed on the obtained powder, Si, MgSiO 3 , Mg 2 SiO 4 crystal peaks were confirmed, while MgO crystal peak, SiO 2 amorphous peak, and A crystal peak and a crystal peak of metallic Mg and MgSi alloy could not be confirmed.

すなわち、SiO2のアモルファスピーク強度はP1/B1=1.16(<1.25)、結晶ピーク強度はP2/B2=0.94(<1.1)であった。また、金属Mgの結晶ピーク強度はP3/B3=0.98(<1.1)、MgSi合金の結晶ピークはP4/B4=1.01(<1.1)であった。一方、MgOの結晶ピーク強度はP5/B5=1.04(<1.1)、Mg2SiO4の結晶ピーク強度はP6/B6=1.70(>1.1)であり、他方、MgSiO3の結晶ピーク強度はP7/B7=1.53(>1.1)であった。 That is, the amorphous peak intensity of SiO 2 was P1 / B1 = 1.16 (<1.25), and the crystal peak intensity was P2 / B2 = 0.94 (<1.1). The crystal peak intensity of metal Mg was P3 / B3 = 0.98 (<1.1), and the crystal peak of MgSi alloy was P4 / B4 = 1.01 (<1.1). On the other hand, the crystal peak intensity of MgO is P5 / B5 = 1.04 (<1.1), and the crystal peak intensity of Mg 2 SiO 4 is P6 / B6 = 1.70 (> 1.1), while MgSiO The crystal peak intensity of 3 was P7 / B7 = 1.53 (> 1.1).

また、Siの結晶ピーク強度はP8/B8=1.94であり、結晶粒子径は10.3μmであった。   The crystal peak intensity of Si was P8 / B8 = 1.94, and the crystal particle diameter was 10.3 μm.

(実施例4)
Si粉末とMgO粉末とSiO2粉末とを2:1:1のモル比で混合した(Si:Mg:O=1:0.33:1)。この混合粉末を実施例1と同じ条件で加熱、析出させ、粉末化した。得られた粉末に対して実施例1と同じXRD測定を行ったところ、Si、MgSiO3の各結晶ピークが確認できた一方で、MgO、Mg2SiO4の結晶ピーク、SiO2のアモルファスピーク及び結晶ピーク、並びに金属Mg及びMgSi合金の結晶ピークは確認できなかった。
Example 4
Si powder, MgO powder and SiO 2 powder were mixed at a molar ratio of 2: 1: 1 (Si: Mg: O = 1: 0.33: 1). This mixed powder was heated and precipitated under the same conditions as in Example 1 to form powder. When the same XRD measurement as in Example 1 was performed on the obtained powder, each crystal peak of Si and MgSiO 3 could be confirmed, while the crystal peak of MgO, Mg 2 SiO 4 , the amorphous peak of SiO 2 and A crystal peak and a crystal peak of metallic Mg and MgSi alloy could not be confirmed.

すなわち、SiO2のアモルファスピーク強度はP1/B1=1.15(<1.25)、結晶ピーク強度はP2/B2=0.92(<1.1)であった。また、金属Mgの結晶ピーク強度はP3/B3=0.99(<1.1)、MgSi合金の結晶ピークはP/B=1.04(<1.1)であった。一方、MgOの結晶ピーク強度はP5/B5=1.03(<1.1)、Mg2SiO4の結晶ピーク強度はP6/B6=1.00(<1.1)であり、他方、MgSiO3の結晶ピーク強度はP7/B7=1.85(>1.1)であった。 That is, the amorphous peak intensity of SiO 2 was P1 / B1 = 1.15 (<1.25), and the crystal peak intensity was P2 / B2 = 0.92 (<1.1). The crystal peak intensity of metal Mg was P3 / B3 = 0.99 (<1.1), and the crystal peak of MgSi alloy was P / B = 1.04 (<1.1). On the other hand, the crystal peak intensity of MgO is P5 / B5 = 1.03 (<1.1), and the crystal peak intensity of Mg 2 SiO 4 is P6 / B6 = 1.00 (<1.1), while MgSiO The crystal peak intensity of No. 3 was P7 / B7 = 1.85 (> 1.1).

また、Siの結晶ピーク強度はP8/B8=1.69であり、結晶粒子径は8.50μmであった。   Further, the crystal peak intensity of Si was P8 / B8 = 1.69, and the crystal particle diameter was 8.50 μm.

(実施例5)
Si粉末とMgO粉末とSiO2粉末とを3:2:1のモル比で混合した(Si:Mg:O=1:0.5:1)。この混合粉末を実施例1と同じ条件で加熱、析出させ、粉末化した。得られた粉末に対して実施例1と同じXRD測定を行ったところ、Si、Mg2SiO4の各結晶ピークが確認できた一方で、MgSiO3、MgOの結晶ピーク、SiO2のアモルファスピーク及び結晶ピーク、並びに金属Mg及びMgSi合金の結晶ピークは確認できなかった
(Example 5)
Si powder, MgO powder and SiO 2 powder were mixed at a molar ratio of 3: 2: 1 (Si: Mg: O = 1: 0.5: 1). This mixed powder was heated and precipitated under the same conditions as in Example 1 to form a powder. When the same XRD measurement as in Example 1 was performed on the obtained powder, each crystal peak of Si and Mg 2 SiO 4 could be confirmed, while the crystal peak of MgSiO 3 and MgO, the amorphous peak of SiO 2 and Crystal peak and metal Mg and MgSi alloy crystal peak could not be confirmed

すなわち、SiO2のアモルファスピーク強度はP1/B1=1.19(<1.25)、結晶ピーク強度はP2/B2=1.01(<1.1)であった。また、金属Mgの結晶ピーク強度はP3/B3=0.99(<1.1)、MgSi合金の結晶ピークはP4/B4=1.02(<1.1)であった。一方、MgOの結晶ピーク強度はP5/B5=1.05(<1.1)、Mg2SiO4の結晶ピーク強度はP6/B6=2.14(>1.1)であり、他方、MgSiO3の結晶ピーク強度はP7/B7=1.03(<1.1)であった。 That is, the amorphous peak intensity of SiO 2 was P1 / B1 = 1.19 (<1.25), and the crystal peak intensity was P2 / B2 = 1.01 (<1.1). The crystal peak intensity of metal Mg was P3 / B3 = 0.99 (<1.1), and the crystal peak of MgSi alloy was P4 / B4 = 1.02 (<1.1). On the other hand, the crystal peak intensity of MgO is P5 / B5 = 1.05 (<1.1), and the crystal peak intensity of Mg 2 SiO 4 is P6 / B6 = 2.14 (> 1.1), while MgSiO The crystal peak intensity of 3 was P7 / B7 = 1.03 (<1.1).

また、Siの結晶ピーク強度はP8/B8=2.12であり、結晶粒子径は11.1μmであった。   Further, the crystal peak intensity of Si was P8 / B8 = 2.12, and the crystal particle diameter was 11.1 μm.

(実施例6)
Si粉末とMgO粉末とを1:1のモル比で混合した(Si:Mg:O=1:1:1)。この混合粉末を実施例1と同じ条件で加熱、析出させ、粉末化した。得られた粉末に対して実施例1と同じXRD測定を行ったところ、Si、MgOの各結晶ピークが確認できた一方で、Mg2SiO4、MgSiO3の結晶ピーク、SiO2のアモルファスピーク及び結晶ピーク、並びに金属Mg及びMgSi合金の結晶ピークは確認できなかった。
(Example 6)
Si powder and MgO powder were mixed at a molar ratio of 1: 1 (Si: Mg: O = 1: 1: 1). This mixed powder was heated and precipitated under the same conditions as in Example 1 to form a powder. When the same XRD measurement as in Example 1 was performed on the obtained powder, each of Si and MgO crystal peaks could be confirmed, while Mg 2 SiO 4 , MgSiO 3 crystal peaks, SiO 2 amorphous peaks and A crystal peak and a crystal peak of metallic Mg and MgSi alloy could not be confirmed.

すなわち、SiO2のアモルファスピーク強度はP1/B1=1.15(<1.25)、結晶ピーク強度はP2/B2=1.05(<1.1)であった。また、金属Mgの結晶ピーク強度はP3/B3=1.01(<1.1)、MgSi合金の結晶ピークはP4/B4=1.01(<1.1)であった。一方、MgOの結晶ピーク強度はP5/B5=28.6(>1.1)、Mg2SiO4の結晶ピーク強度はP6/B6=1.07(<1.1)であり、他方、MgSiO3の結晶ピーク強度はP7/B7=1.01(<1.1)であった。 That is, the amorphous peak intensity of SiO 2 was P1 / B1 = 1.15 (<1.25), and the crystal peak intensity was P2 / B2 = 1.05 (<1.1). The crystal peak intensity of metal Mg was P3 / B3 = 1.01 (<1.1), and the crystal peak of MgSi alloy was P4 / B4 = 1.01 (<1.1). On the other hand, the crystal peak intensity of MgO is P5 / B5 = 28.6 (> 1.1), and the crystal peak intensity of Mg 2 SiO 4 is P6 / B6 = 1.07 (<1.1), while MgSiO The crystal peak intensity of 3 was P7 / B7 = 1.01 (<1.1).

また、Siの結晶ピーク強度はP8/B8=17.5であり、結晶粒子径は38.1μmであった。   Further, the crystal peak intensity of Si was P8 / B8 = 17.5, and the crystal particle diameter was 38.1 μm.

(実施例7)
Si粉末とMgSiO3粉末とを2:1のモル比で混合した(Si:Mg:O=1:0.33:1)。この混合粉末を実施例1と同じ条件で加熱、析出させ、粉末化した。得られた粉末に対して実施例1と同じXRD測定を行ったところ、Si、MgSiO3の各結晶ピークが確認できた一方で、MgO、Mg2SiO4の結晶ピーク、SiO2のアモルファスピーク及び結晶ピーク、並びに金属Mg及びMgSi合金の結晶ピークは確認できなかった。
(Example 7)
Si powder and MgSiO 3 powder were mixed at a molar ratio of 2: 1 (Si: Mg: O = 1: 0.33: 1). This mixed powder was heated and precipitated under the same conditions as in Example 1 to form a powder. When the same XRD measurement as in Example 1 was performed on the obtained powder, each crystal peak of Si and MgSiO 3 could be confirmed, while the crystal peak of MgO, Mg 2 SiO 4 , the amorphous peak of SiO 2 and A crystal peak and a crystal peak of metallic Mg and MgSi alloy could not be confirmed.

すなわち、SiO2のアモルファスピーク強度はP1/B1=1.14(<1.25)、結晶ピーク強度はP2/B2=0.95(<1.1)であった。また、金属Mgの結晶ピーク強度はP3/B3=1.01(<1.1)、MgSi合金の結晶ピークはP/B=1.02(<1.1)であった。一方、MgOの結晶ピーク強度はP5/B5=0.99(<1.1)、Mg2SiO4の結晶ピーク強度はP6/B6=1.04(<1.1)であり、他方、MgSiO3の結晶ピーク強度はP7/B7=1.93(>1.1)であった。 That is, the amorphous peak intensity of SiO 2 was P1 / B1 = 1.14 (<1.25), and the crystal peak intensity was P2 / B2 = 0.95 (<1.1). The crystal peak intensity of metal Mg was P3 / B3 = 1.01 (<1.1), and the crystal peak of MgSi alloy was P / B = 1.02 (<1.1). On the other hand, the crystal peak intensity of MgO is P5 / B5 = 0.99 (<1.1), and the crystal peak intensity of Mg 2 SiO 4 is P6 / B6 = 1.04 (<1.1), while MgSiO The crystal peak intensity of No. 3 was P7 / B7 = 1.93 (> 1.1).

また、Siの結晶ピーク強度はP8/B8=1.47であり、結晶粒子径は7.93μmであった。   The crystal peak intensity of Si was P8 / B8 = 1.47, and the crystal particle diameter was 7.93 μm.

(比較例1)
Si粉末とSiO2粉末を1:1のモル比で混合した(Si:Mg:O=1:0:1)。この混合粉末を実施例1と同じ条件で加熱、析出させ、粉末化した。得られた粉末に対して実施例1と同じXRD測定を行ったところ、Siの結晶ピークは確認できなかった。しかし、SiO2のアモルファスピークは確認され、P1/B1=1.28(>1.25)であった上、2x+y>zが満足されているので、得られた酸化珪素粉末はSiとSiO2の混合物でアモルファス状態と見ることができる。
(Comparative Example 1)
Si powder and SiO 2 powder were mixed at a molar ratio of 1: 1 (Si: Mg: O = 1: 0: 1). This mixed powder was heated and precipitated under the same conditions as in Example 1 to form a powder. When the same XRD measurement as Example 1 was performed with respect to the obtained powder, the crystal peak of Si was not able to be confirmed. However, an amorphous peak of SiO 2 was confirmed, P1 / B1 = 1.28 (> 1.25), and 2x + y> z was satisfied, so that the obtained silicon oxide powder was composed of Si and SiO 2. It can be seen as an amorphous state with a mixture of

(比較例2)
Si粉末とMg粉末を1:0.6のモル比で混合した(Si:Mg:O=1:0.6:1)。この混合粉末を実施例1と同じ条件で加熱、析出させ、粉末化した。得られた粉末に対して実施例1と同じXRD測定を行った。XRDデータを図2に示す。Si、MgO、Mg2SiO4の各結晶ピーク、及びSiO2のアモルファスピークが確認できた。その一方で、金属Mg及びMgSi合金の結晶ピーク、並びにMgSiO3の結晶ピークは確認できなかった。
(Comparative Example 2)
Si powder and Mg powder were mixed at a molar ratio of 1: 0.6 (Si: Mg: O = 1: 0.6: 1). This mixed powder was heated and precipitated under the same conditions as in Example 1 to form a powder. The same XRD measurement as in Example 1 was performed on the obtained powder. XRD data is shown in FIG. Each crystal peak of Si, MgO, Mg 2 SiO 4 and an amorphous peak of SiO 2 were confirmed. On the other hand, the crystal peak of metallic Mg and MgSi alloy and the crystal peak of MgSiO 3 could not be confirmed.

すなわち、SiO2のアモルファスピーク強度はP1/B1=1.28(<1.25)、結晶ピーク強度はP2/B2=0.98(<1.1)であった。また、金属Mgの結晶ピーク強度はP3/B3=1.00、MgSi合金の結晶ピークはP4/B4=1.08であった。一方、MgOの結晶ピーク強度はP5/B5=6.42(>1.1)、Mg2SiO4の結晶ピーク強度はP6/B6=2.82(>1.1)であり、他方、MgSiOの結晶ピーク強度はP7/B7=1.07(<1.1)であった。 That is, the amorphous peak intensity of SiO 2 was P1 / B1 = 1.28 (<1.25), and the crystal peak intensity was P2 / B2 = 0.98 (<1.1). The crystal peak intensity of metal Mg was P3 / B3 = 1.00, and the crystal peak of MgSi alloy was P4 / B4 = 1.08. On the other hand, the crystal peak intensity of MgO is P5 / B5 = 6.42 (> 1.1), and the crystal peak intensity of Mg 2 SiO 4 is P6 / B6 = 2.82 (> 1.1), while MgSiO The crystal peak intensity of No. 3 was P7 / B7 = 1.07 (<1.1).

また、Siの結晶ピーク強度はP8/B8=9.09であり、結晶粒子径は41.6μmであった。   Further, the crystal peak intensity of Si was P8 / B8 = 9.09, and the crystal particle diameter was 41.6 μm.

(比較例3)
容器を2つ用意し、一方の容器にSi粉末とSiO2粉末を1:1のモル比で混合して仕込み(Si:Mg:O=1:0:1)、もう一方の容器に金属Mgを上記Siに対して0.6の割合で仕込んだ。Ar雰囲気、1Paの条件下で、一方の容器は1350℃に加熱し、もう一方の容器は450℃に加熱し、2容器からガスを発生させた。これらのガスを上部に設置した蒸着板上で冷却した。他の条件は実施例1と同じとした。
(Comparative Example 3)
Two containers are prepared, and Si powder and SiO 2 powder are mixed and charged in a molar ratio of 1: 1 in one container (Si: Mg: O = 1: 0: 1), and metal Mg is charged in the other container. Was charged at a ratio of 0.6 to Si. Under conditions of Ar atmosphere and 1 Pa, one container was heated to 1350 ° C., the other container was heated to 450 ° C., and gas was generated from the two containers. These gases were cooled on the vapor deposition plate installed in the upper part. Other conditions were the same as in Example 1.

得られた粉末に対して実施例1と同じXRD測定を行ったところ、Si、MgO、Mg2SiO4、MgSiO3の各結晶ピーク、及びSiO2のアモルファスピークが確認できた。一方、金属Mg及びMgSi合金の結晶ピークは確認できなかった。 When the obtained powder was subjected to the same XRD measurement as in Example 1, Si, MgO, Mg 2 SiO 4, the crystal peak of MgSiO 3, and amorphous peak of SiO 2 was confirmed. On the other hand, the crystal peak of metal Mg and MgSi alloy was not able to be confirmed.

すなわち、SiO2のアモルファスピーク強度はP1/B1=1.31(<1.25)、結晶ピーク強度はP2/B2=0.99(<1.1)であった。また、金属Mgの結晶ピーク強度はP3/B3=0.96(<1.1)、MgSi合金の結晶ピークはP4/B4=1.03(<1.1)であった。一方、MgOの結晶ピーク強度はP5/B5=2.62(>1.1)、Mg2SiO4の結晶ピーク強度はP6/B6=1.66(>1.1)、MgSiO3の結晶ピーク強度はP7/B7=1.21(<1.1)であった。 That is, the amorphous peak intensity of SiO 2 was P1 / B1 = 1.31 (<1.25), and the crystal peak intensity was P2 / B2 = 0.99 (<1.1). The crystal peak intensity of metal Mg was P3 / B3 = 0.96 (<1.1), and the crystal peak of MgSi alloy was P4 / B4 = 1.03 (<1.1). On the other hand, the crystal peak intensity of MgO is P5 / B5 = 2.62 (> 1.1), the crystal peak intensity of Mg 2 SiO 4 is P6 / B6 = 1.66 (> 1.1), and the crystal peak intensity of MgSiO 3 Was P7 / B7 = 1.21 (<1.1).

また、Siの結晶ピーク強度はP8/B8=3.67であり、結晶粒子径は13.5μmであった。   Further, the crystal peak intensity of Si was P8 / B8 = 3.67, and the crystal particle diameter was 13.5 μm.

(電池評価)
実施例1〜6及び比較例1〜3において製造された粉末試料に対して次の手順で電池評価を実施した。
(Battery evaluation)
Battery evaluation was performed on the powder samples produced in Examples 1 to 6 and Comparative Examples 1 to 3 by the following procedure.

粉末試料と非水系(有機系)バインダーであるPIバインダーと、導電助材であるKBとを80:15:5の重量比で混合し、有機系のNMPを溶媒として混練してスラリーとした。作製したスラリーを銅箔上に塗工し、350℃で30min真空熱処理することで負極とした。この負極と対極(Li箔)と電解液(EC:DEC=1:1)と電解質(LiPF6 1mol/L)とセパレータ(ポリエチレン製多孔質フィルム30μm厚)とを組み合わせてコインセル電池を作製した。   A powder sample, a PI binder as a non-aqueous (organic) binder, and KB as a conductive aid were mixed at a weight ratio of 80: 15: 5, and kneaded into a slurry using organic NMP as a solvent. The prepared slurry was coated on a copper foil and vacuum heat-treated at 350 ° C. for 30 minutes to obtain a negative electrode. This negative electrode, counter electrode (Li foil), electrolyte (EC: DEC = 1: 1), electrolyte (LiPF6 1 mol / L) and separator (polyethylene porous film 30 μm thick) were combined to produce a coin cell battery.

作製されたコインセル電池に充放電試験を実施した。充電は、電池の両極間の電圧が0.05Vに達するまでは0.5Cの定電流で行い、電圧が0.05Vに達した後は電流が0.01Cになるまで定電位充電で行った。放電は、電池の両極間の電圧が1.5Vに達するまでは0.1Cの定電流で行った。   A charge / discharge test was performed on the manufactured coin cell battery. Charging was performed at a constant current of 0.5C until the voltage between the two electrodes of the battery reached 0.05V, and was charged at a constant potential until the current reached 0.01C after the voltage reached 0.05V. . Discharging was performed at a constant current of 0.1 C until the voltage between both electrodes of the battery reached 1.5V.

この充放電試験により、初期充電容量、及び初期放電容量を測定して、初期効率を求めた。結果を粉末試料の主要な仕様(Mg/Si比、含有物質、Si結晶粒子径)と共に表1に示す。   By this charge / discharge test, the initial charge capacity and the initial discharge capacity were measured to determine the initial efficiency. The results are shown in Table 1 together with the main specifications of the powder sample (Mg / Si ratio, contained substances, Si crystal particle diameter).

Figure 2017224600
Figure 2017224600

実施例1〜実施例7では、Mgがドープされているが、結晶Si及び適切な種類のMg含有化合物が含有され、その一方でSiO2や金属Mg、MgSi合金が存在せず、Si結晶粒子径も40nm以下に抑制されているため、比較例1で得られたSiとSiO2の混合物と比べて、Mgドープによる初期効率の改善効果が顕著である。 In Examples 1 to 7, Mg is doped, but contains crystalline Si and an appropriate type of Mg-containing compound, while no SiO 2 , metal Mg, or MgSi alloy exists, and Si crystal particles Since the diameter is also suppressed to 40 nm or less, compared with the mixture of Si and SiO 2 obtained in Comparative Example 1, the effect of improving the initial efficiency by Mg doping is remarkable.

比較例2では、固相法ではあるが、機械的な合金化法ではなく、焼成法のため、反応の不均一は比較的軽いが、それでもSiO2が生じており、何よりも高熱処理のためにSi結晶粒子径が増大した。これらによる影響のため初期効率の改善効果が小さい上に、充放電容量が大きく低下した。 In Comparative Example 2, although it is a solid-phase method, it is not a mechanical alloying method but a firing method, so the reaction non-uniformity is relatively light, but still SiO 2 is formed, and above all, for high heat treatment In addition, the Si crystal particle diameter increased. Because of these effects, the effect of improving the initial efficiency is small and the charge / discharge capacity is greatly reduced.

比較例3では、実施例と同じ気相法のため、Si結晶粒子径は小さいものの、不均一なドープ反応により、不適切な組合せである3種類のMg含有化合物が生じると共に、SiO2 が生じ、比較例1よりも更に初期効率が低下する結果になった。   In Comparative Example 3, because of the same vapor phase method as in the example, the Si crystal particle size is small, but the heterogeneous doping reaction generates three kinds of Mg-containing compounds that are inappropriate combinations, and SiO2 is generated, As a result, the initial efficiency was lower than that of Comparative Example 1.

Claims (7)

Liイオン二次電池の負極形成に使用される酸化珪素系負極材であって、Si−Mg−Oの3元系材料からなり、Si相を含むと共に、Mg含有化合物としてMgSiO、Mg2SiO4、MgO、MgSiO+Mg2SiO4又はMg2SiO4+MgOの5種のうちの何れか1種を含む一方、SiO2、金属Mg及びMgSi合金の何れも含まない酸化珪素系負極材。 A silicon oxide negative electrode material used for forming a negative electrode of a Li ion secondary battery, which is made of a ternary material of Si-Mg-O, contains a Si phase, and includes MgSiO 3 and Mg 2 SiO as Mg-containing compounds. 4. A silicon oxide-based negative electrode material that contains any one of MgO, MgSiO 3 + Mg 2 SiO 4 or Mg 2 SiO 4 + MgO, but does not contain any of SiO 2 , metal Mg, and MgSi alloy. 請求項1に記載の酸化珪素系粉末負極材において、組成がSixMgyzで表して、3y>z>y、且つ2x+y>zを満足する酸化珪素系負極材。 In silicon oxide powder negative electrode material according to claim 1, the composition is expressed by Si x Mg y O z, 3y >z> y, and 2x + y> silicon oxide negative electrode material that satisfies z. 請求項1又は2に記載の酸化珪素系粉末負極材において、CuKα線を用いたXRD測定を行った際に、2θ=28.4±0.3°付近に表れるSiに由来のピークの半値幅から算出するSi結晶粒子径が40nm以下である酸化珪素系粉末負極材。   The half width of the peak derived from Si appearing in the vicinity of 2θ = 28.4 ± 0.3 ° when XRD measurement using a CuKα ray is performed in the silicon oxide powder negative electrode material according to claim 1 or 2. A silicon oxide-based powder negative electrode material having a Si crystal particle diameter of 40 nm or less calculated from Liイオン二次電池の負極形成に使用される酸化珪素系負極材の製造方法であって、SiOガスとMgガスを同一の容器内で同時に発生させ、それらのガスを蒸着面上で冷却して回収する酸化珪素系負極材の製造方法。   A method for producing a silicon oxide negative electrode material used for forming a negative electrode of a Li ion secondary battery, wherein SiO gas and Mg gas are simultaneously generated in the same container, and these gases are cooled on a deposition surface. A method for producing a silicon oxide negative electrode material to be recovered. 請求項4に記載の酸化珪素系負極材の製造方法において、Si、Mg及びOを含有する原料を同一の容器内で減圧加熱することにより、SiOガスとMgガスを同一の容器内で同時に発生させる酸化珪素系負極材の製造方法。   5. The method for producing a silicon oxide negative electrode material according to claim 4, wherein SiO gas and Mg gas are simultaneously generated in the same container by heating the raw material containing Si, Mg and O under reduced pressure in the same container. A method for producing a silicon oxide negative electrode material. 請求項5に記載の酸化珪素系負極材の製造方法において、Si、Mg及びOを含有する原料はSi単体とMg・O含有化合物とを含み、Mg・O含有化合物はMgO、Mg2SiO4、MgSiO、Mg2CO、Mg(OH)2のうちの1種又は2種以上である酸化珪素系負極材の製造方法。 6. The method for producing a silicon oxide negative electrode material according to claim 5, wherein the raw material containing Si, Mg, and O contains Si alone and a Mg.O-containing compound, and the Mg.O-containing compound is MgO, Mg 2 SiO 4. , MgSiO 3 , Mg 2 CO 3 , Mg (OH) 2 , or a method for producing a silicon oxide negative electrode material that is one or more of them. Liイオン二次電池の負極形成に使用される酸化珪素系負極材の製造方法であって、Si単体と、酸素を含有する金属化合物とを含む原料を同一の容器内で同時に減圧加圧して、SiOガスと金属ガスとを同時に発生させ、それらのガスを同じ蒸着面上で冷却して回収する酸化珪素系負極材の製造方法。   A method for producing a silicon oxide-based negative electrode material used for forming a negative electrode of a Li ion secondary battery, wherein a raw material containing a simple substance of Si and a metal compound containing oxygen is simultaneously decompressed and pressurized in the same container, A method for producing a silicon oxide-based negative electrode material, in which SiO gas and metal gas are simultaneously generated, and these gases are cooled and recovered on the same vapor deposition surface.
JP2017113290A 2016-06-09 2017-06-08 Silicon oxide negative electrode material Active JP6573646B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016114968 2016-06-09
JP2016114968 2016-06-09

Publications (2)

Publication Number Publication Date
JP2017224600A true JP2017224600A (en) 2017-12-21
JP6573646B2 JP6573646B2 (en) 2019-09-11

Family

ID=60688515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017113290A Active JP6573646B2 (en) 2016-06-09 2017-06-08 Silicon oxide negative electrode material

Country Status (1)

Country Link
JP (1) JP6573646B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108987689A (en) * 2018-06-22 2018-12-11 杨庆 A kind of preparation method of silicon-carbon cathode material
CN109546122A (en) * 2018-11-23 2019-03-29 浙江众泰汽车制造有限公司 A kind of Si-C composite material of surface modification and its preparation method and application
CN110311120A (en) * 2019-07-10 2019-10-08 洛阳联创锂能科技有限公司 A kind of lithium ion battery negative electrode material of SiClx containing magnesia and preparation method thereof
WO2020122602A1 (en) * 2018-12-11 2020-06-18 주식회사 엘지화학 Anode for lithium secondary battery and lithium secondary battery comprising same
CN111466046A (en) * 2018-01-31 2020-07-28 株式会社Lg化学 Negative electrode active material, negative electrode comprising the same, and lithium secondary battery comprising the same
KR20200144855A (en) * 2019-06-19 2020-12-30 대주전자재료 주식회사 Carbon-silicon complex oxide compoite for anode material of secondary battery and method for preparing the same
CN112259708A (en) * 2020-10-28 2021-01-22 成都新柯力化工科技有限公司 Preparation method of multilayer core-shell structure silicon monoxide lithium battery cathode
CN112349900A (en) * 2019-08-07 2021-02-09 珠海冠宇电池股份有限公司 Negative pole piece and lithium ion battery containing same
EP3902035A4 (en) * 2019-01-18 2022-03-16 Lg Energy Solution, Ltd. Anode active material for lithium secondary battery, and lithium secondary battery comprising same
CN114447310A (en) * 2020-10-30 2022-05-06 特拉技术有限公司 Cathode material for secondary battery
CN115663151A (en) * 2022-11-10 2023-01-31 广东凯金新能源科技股份有限公司 Pre-magnesium-silicon-oxygen composite material, silicon-based negative electrode material, preparation method and secondary battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066370A (en) * 2004-07-28 2006-03-09 Mitsubishi Chemicals Corp Negative electrode for nonaqueous electrolyte secondary battery, its manufacturing method and nonaqueous electrolyte secondary battery
JP2010170943A (en) * 2009-01-26 2010-08-05 Asahi Glass Co Ltd Negative electrode material for secondary battery, and its manufacturing method
WO2011077654A1 (en) * 2009-12-21 2011-06-30 株式会社豊田自動織機 Negative electrode active substance for nonaqueous secondary cell and method for producing the same
JP2014187007A (en) * 2013-02-21 2014-10-02 Connexx Systems株式会社 Composite active material for lithium secondary battery and method for producing the same
US20140377653A1 (en) * 2013-06-21 2014-12-25 Unist Academy-Industry Research Corporation Porous silicon based negative electrode active material, method for manufacturing the same, and rechargeable lithium battery including the same
KR101586816B1 (en) * 2015-06-15 2016-01-20 대주전자재료 주식회사 Negative active material for non-aqueous electrolyte rechargeable battery, the preparation method thereof, and rechargeable battery including the same
WO2016085953A1 (en) * 2014-11-25 2016-06-02 Corning Incorporated Method and material for lithium ion battery anodes

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066370A (en) * 2004-07-28 2006-03-09 Mitsubishi Chemicals Corp Negative electrode for nonaqueous electrolyte secondary battery, its manufacturing method and nonaqueous electrolyte secondary battery
JP2010170943A (en) * 2009-01-26 2010-08-05 Asahi Glass Co Ltd Negative electrode material for secondary battery, and its manufacturing method
WO2011077654A1 (en) * 2009-12-21 2011-06-30 株式会社豊田自動織機 Negative electrode active substance for nonaqueous secondary cell and method for producing the same
JP2014187007A (en) * 2013-02-21 2014-10-02 Connexx Systems株式会社 Composite active material for lithium secondary battery and method for producing the same
US20140377653A1 (en) * 2013-06-21 2014-12-25 Unist Academy-Industry Research Corporation Porous silicon based negative electrode active material, method for manufacturing the same, and rechargeable lithium battery including the same
WO2016085953A1 (en) * 2014-11-25 2016-06-02 Corning Incorporated Method and material for lithium ion battery anodes
KR101586816B1 (en) * 2015-06-15 2016-01-20 대주전자재료 주식회사 Negative active material for non-aqueous electrolyte rechargeable battery, the preparation method thereof, and rechargeable battery including the same

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111466046A (en) * 2018-01-31 2020-07-28 株式会社Lg化学 Negative electrode active material, negative electrode comprising the same, and lithium secondary battery comprising the same
JP2020529709A (en) * 2018-01-31 2020-10-08 エルジー・ケム・リミテッド Negative electrode active material, negative electrode containing it and lithium secondary battery
US11824184B2 (en) 2018-01-31 2023-11-21 Lg Energy Solution, Ltd. Negative electrode active material, negative electrode including the same and lithium secondary battery including the same
JP7337202B2 (en) 2018-01-31 2023-09-01 エルジー エナジー ソリューション リミテッド Negative electrode active material, negative electrode containing the same, and lithium secondary battery
CN111466046B (en) * 2018-01-31 2022-05-24 株式会社Lg新能源 Negative electrode active material, negative electrode comprising the same, and lithium secondary battery comprising the same
JP2022076482A (en) * 2018-01-31 2022-05-19 エルジー エナジー ソリューション リミテッド Negative electrode active material, negative electrode containing the same, and lithium secondary battery
JP7063981B2 (en) 2018-01-31 2022-05-09 エルジー エナジー ソリューション リミテッド Negative electrode active material, negative electrode containing it and lithium secondary battery
CN108987689A (en) * 2018-06-22 2018-12-11 杨庆 A kind of preparation method of silicon-carbon cathode material
CN109546122A (en) * 2018-11-23 2019-03-29 浙江众泰汽车制造有限公司 A kind of Si-C composite material of surface modification and its preparation method and application
WO2020122602A1 (en) * 2018-12-11 2020-06-18 주식회사 엘지화학 Anode for lithium secondary battery and lithium secondary battery comprising same
EP3902035A4 (en) * 2019-01-18 2022-03-16 Lg Energy Solution, Ltd. Anode active material for lithium secondary battery, and lithium secondary battery comprising same
US11942640B2 (en) 2019-01-18 2024-03-26 Lg Energy Solution, Ltd. Negative electrode active material for lithium secondary battery and lithium secondary battery comprising the same
KR20200144855A (en) * 2019-06-19 2020-12-30 대주전자재료 주식회사 Carbon-silicon complex oxide compoite for anode material of secondary battery and method for preparing the same
KR102374350B1 (en) 2019-06-19 2022-03-16 대주전자재료 주식회사 Carbon-silicon complex oxide compoite for anode material of secondary battery and method for preparing the same
KR20210146874A (en) * 2019-06-19 2021-12-06 대주전자재료 주식회사 Carbon-silicon complex oxide compoite for anode material of secondary battery and method for preparing the same
KR102452874B1 (en) 2019-06-19 2022-10-12 대주전자재료 주식회사 Carbon-silicon complex oxide compoite for anode material of secondary battery and method for preparing the same
CN110311120B (en) * 2019-07-10 2022-02-08 洛阳联创锂能科技有限公司 Magnesium-containing silicon oxide negative electrode material for lithium ion battery and preparation method thereof
CN110311120A (en) * 2019-07-10 2019-10-08 洛阳联创锂能科技有限公司 A kind of lithium ion battery negative electrode material of SiClx containing magnesia and preparation method thereof
CN112349900A (en) * 2019-08-07 2021-02-09 珠海冠宇电池股份有限公司 Negative pole piece and lithium ion battery containing same
CN112259708B (en) * 2020-10-28 2021-05-07 成都新柯力化工科技有限公司 Preparation method of multilayer core-shell structure silicon monoxide lithium battery cathode
CN112259708A (en) * 2020-10-28 2021-01-22 成都新柯力化工科技有限公司 Preparation method of multilayer core-shell structure silicon monoxide lithium battery cathode
CN114447310A (en) * 2020-10-30 2022-05-06 特拉技术有限公司 Cathode material for secondary battery
CN115663151A (en) * 2022-11-10 2023-01-31 广东凯金新能源科技股份有限公司 Pre-magnesium-silicon-oxygen composite material, silicon-based negative electrode material, preparation method and secondary battery
CN115663151B (en) * 2022-11-10 2024-02-02 广东凯金新能源科技股份有限公司 Pre-magnesium silica composite material, silicon-based anode material, preparation method and secondary battery

Also Published As

Publication number Publication date
JP6573646B2 (en) 2019-09-11

Similar Documents

Publication Publication Date Title
JP6573646B2 (en) Silicon oxide negative electrode material
KR102017470B1 (en) Li-containing silicon oxide powder and its manufacturing method
JP5184567B2 (en) Anode material for non-aqueous electrolyte secondary battery, lithium ion secondary battery and electrochemical capacitor
JP5600354B2 (en) Powder for negative electrode material of lithium ion secondary battery, lithium ion secondary battery negative electrode and capacitor negative electrode, and lithium ion secondary battery and capacitor
JP7435452B2 (en) Method for producing sulfide solid electrolyte, sulfide solid electrolyte, all-solid-state battery, and method for selecting raw material compounds used for producing sulfide solid electrolyte
JP6895450B2 (en) Silicon oxide-based negative electrode material and its manufacturing method
WO2011108658A1 (en) Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
WO2011108656A1 (en) Positive electrode active material for lithium-ion batteries, positive electrode for lithium-ion batteries, and lithium-ion battery
WO2011108654A1 (en) Positive electrode active material for lithium-ion batteries, positive electrode for lithium-ion batteries, and lithium-ion battery
JP7030185B2 (en) Manufacturing method of silicon oxide powder and negative electrode material
WO2011108653A1 (en) Positive electrode active material for lithium-ion batteries, positive electrode for lithion-ion batteries, lithium-ion battery
JP2017204374A (en) Silicon oxide-based powder negative electrode material
JP2013008696A (en) Method of manufacturing negative electrode material for nonaqueous electrolyte secondary battery
JP6688663B2 (en) Li-containing silicon oxide powder and method for producing the same
TW201611394A (en) Positive electrode active material for sodium ion secondary batteries and method for producing same
JP2012204322A (en) Method for producing active material for nonaqueous electrolyte secondary battery
WO2014188654A1 (en) Lithium-containing silicon oxide powder
WO2012108113A1 (en) Powder for negative-electrode material of lithium-ion secondary battery, negative-electrode of lithium-ion secondary battery and negative-electrode of capacitor using same, lithium-ion secondary battery, and capacitor
CN108701826B (en) Lithium-containing silicon oxide powder
JP2021051904A (en) Method for manufacturing silicon-oxide-based negative electrode material
WO2011108655A1 (en) Positive electrode active material for lithium-ion batteries, positive electrode for lithium-ion battery, and lithium-ion battery
WO2011108652A1 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
WO2011108657A1 (en) Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
JP2016009644A (en) Nonaqueous electrolyte secondary battery negative electrode active material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190813

R150 Certificate of patent or registration of utility model

Ref document number: 6573646

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250