WO2011148977A1 - Conductive material and method for producing same - Google Patents

Conductive material and method for producing same Download PDF

Info

Publication number
WO2011148977A1
WO2011148977A1 PCT/JP2011/061987 JP2011061987W WO2011148977A1 WO 2011148977 A1 WO2011148977 A1 WO 2011148977A1 JP 2011061987 W JP2011061987 W JP 2011061987W WO 2011148977 A1 WO2011148977 A1 WO 2011148977A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotube
conductive material
nanotube structure
conductive
core conductor
Prior art date
Application number
PCT/JP2011/061987
Other languages
French (fr)
Japanese (ja)
Inventor
弘 飯塚
信 勝亦
勉 西郷
聡 吉永
Original Assignee
矢崎総業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 矢崎総業株式会社 filed Critical 矢崎総業株式会社
Publication of WO2011148977A1 publication Critical patent/WO2011148977A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys

Definitions

  • the present invention relates to a conductive material for use in electric wires, bus bars and the like and a method for manufacturing the same.
  • electric wires and bus bars are routed between a power source and a load in order to distribute and supply power from the power source to various loads.
  • conductive materials such as copper and aluminum are used as these materials.
  • these conductive materials are used as core wires, and the periphery of the core wires is covered with an insulating coating.
  • a wiring circuit is formed of these conductive materials.
  • the electric wire or bus bar When a current flows through a conductive material such as an electric wire or bus bar, the electric wire or bus bar generally generates heat due to electrical resistance, but its cross-sectional area is set according to the value of the flowing current, minimizing heat generation. It is supposed to be.
  • An object of the present invention is to provide a conductive material capable of reducing heat loss by reducing the surface resistance of electric wires, bus bars, and the like, and a method for manufacturing the same.
  • a first aspect of the present invention is a conductive material formed of a composite including a carbon nanotube structure and a conductive metal attached to the carbon nanotube structure in an electrical contact state. .
  • the composite constituting the conductive material includes the carbon nanotube structure to which the conductive metal is attached in an electrical contact state, and the composite is formed by the excellent conductivity of the carbon nanotube structure.
  • the electrical resistance of the surface part of the body is small. For this reason, generation
  • the composite may include a conductive core conductor, and the carbon nanotube structure may be provided in an electrical contact state on the outer periphery of the core conductor.
  • the conductive material is formed of the composite in which the carbon nanotube structure is attached to the outer periphery of the core conductor in an electrical contact state, so that a high-frequency current flows and the current density is increased by the skin effect. Even when concentrated on the side, since the resistance of the surface portion is small due to the excellent conductivity of the carbon nanotube structure, the generation of heat is suppressed and the heat loss can be reduced.
  • the carbon nanotube structure is formed of an aggregate of a plurality of carbon nanotubes, and a conductive material is attached to the surface of each carbon nanotube, inside each carbon nanotube, and between the carbon nanotubes to improve wettability. May be given.
  • the conductive metal may be impregnated in the carbon nanotube structure by pressurization.
  • a good electrical contact state between the carbon nanotube structure and the core conductor can be obtained by impregnating the carbon nanotube structure with the conductive metal.
  • the conductive metal may be attached to the carbon nanotube structure by compacting.
  • the said carbon nanotube structure obtains the favorable electrical contact state of a carbon nanotube structure and a core conductor, when the electroconductive metal is formed in the compact by compacting. be able to.
  • the carbon nanotube structure may be formed in a braided shape and attached to the outer periphery of the core conductor.
  • the carbon nanotube structure is braided and attached to the outer periphery of the core conductor, a good electrical contact with the core conductor can be achieved.
  • the carbon nanotube structure may have a cylindrical shape, and the inside of the cylindrical shape of the carbon nanotube structure may be in close contact with the outer periphery of the core conductor.
  • the core conductor is press-fitted inside the cylindrical carbon nanotube structure, a good electrical contact with the core conductor can be achieved.
  • the core conductor may be made of a rod or plate made of copper or aluminum and an alloy thereof, and the conductive metal may have a melting point in a temperature range where the carbon nanotube structure does not burn.
  • the conductive metal may be made of copper, aluminum, or an alloy thereof.
  • the core conductor is made of copper or aluminum and an alloy thereof, and the carbon nanotube structure is impregnated with, for example, copper or aluminum, the resistance between the carbon nanotube structure and the core conductor is small. In addition, a good electrical contact state can be obtained.
  • the gist of the second aspect of the present invention is a method for producing a conductive material in which a conductive metal is attached to a carbon nanotube structure in an electrical contact state.
  • a carbon nanotube structure having excellent conductivity can be manufactured.
  • the carbon nanotube structure may be attached to the outer periphery of the conductive core conductor in an electrical contact state.
  • the wettability improving treatment is performed by attaching a conductor to the surface of the carbon nanotube in the carbon nanotube structure, the inside of the carbon nanotube, or between the carbon nanotubes, and performing the wettability improving treatment with the metal. Thereafter, the carbon nanotube structure is formed in a braided shape and attached to the outer periphery of the conductive core conductor in an electrical contact state, and the conductive carbon nanotube structure is attached to the braided carbon nanotube structure attached to the core conductor. Metal may be deposited in electrical contact.
  • the carbon nanotube structure is attached to the outer periphery of the core conductor as a braid, and the carbon nanotube structure is impregnated with a conductive metal, so that the carbon nanotube structure and the core conductor are in good electrical contact.
  • a conductive material can be manufactured.
  • the wettability improving treatment is performed by attaching a conductor to the surface of the carbon nanotube in the carbon nanotube structure, the inside of the carbon nanotube, or between the carbon nanotubes, and performing the wettability improving treatment with the metal.
  • the carbon nanotube structure subjected to the above treatment is impregnated with the conductive metal to form a cylindrical shape, and a conductive core conductor is inserted into the cylindrical carbon nanotube structure in a close contact state. Good.
  • the carbon nanotube structure is impregnated with a conductive metal and the core conductor is inserted in a close contact state with the carbon nanotube structure to produce a conductive material in which the carbon nanotube structure and the core conductor are in good electrical contact. can do.
  • FIG. 1 is a perspective view showing a conductive material according to the first embodiment of the present invention.
  • FIG. 2 is a perspective view showing a conductive material according to the second embodiment of the present invention.
  • FIGS. 3A and 3B show a conductive material according to the second embodiment of the present invention in which a carbon nanotube structure is attached to the outer periphery of a core conductor and impregnated with aluminum, and
  • FIG. A perspective view and FIG. 3B are sectional views thereof.
  • 4A, 4B, and 4C are explanatory views showing a state in which a conductor made of nano metal particles is attached to a carbon nanotube.
  • FIG. 1 is a perspective view showing a conductive material according to the first embodiment of the present invention.
  • FIG. 2 is a perspective view showing a conductive material according to the second embodiment of the present invention.
  • FIGS. 3A and 3B show a conductive material according to the second embodiment of the present invention in which a carbon nanotube structure is attached to the
  • FIG. 5 is a perspective view showing a conductive material according to a third embodiment of the present invention in which a carbon nanotube structure is attached to the outer periphery of a core conductor in a horizontal winding shape.
  • 6A is a perspective view showing a composite in which a carbon nanotube structure is impregnated with a conductive metal
  • FIG. 6B is a perspective view showing a core conductor
  • FIG. 6C is a composite showing the core conductor as a composite. It is a perspective view which shows the state made to press-fit.
  • FIG. 7 is a cross-sectional view comparing the diameters of a conventional conductive material and a conductive material according to an embodiment of the present invention.
  • FIG. 1 shows a conductive material 11 according to the first embodiment of the present invention.
  • the conductive material 11 is formed of a composite including the carbon nanotube structure 13.
  • the carbon nanotube structure 13 is a unit of carbon nanotubes (hereinafter abbreviated as “CNT”) having a nano-level size, and the CNT structure 13 is formed by a plurality of aggregates of the CNTs. .
  • CNT carbon nanotubes
  • the CNT has a hexagonal structure in which six carbons are bonded, and this hexagonal structure is a cylindrical structure that is combined with another hexagonal structure.
  • a fiber CNT is formed from the structure of the plurality of CNTs, and the intertwined fiber CNTs are stretched and aligned from the assembly of the plurality of fiber CNTs, and then twisted to form a uniform and constant thread shape.
  • a spun CNT structure is formed.
  • the braided CNT structure is formed into a tubular shape (cylindrical shape) by knitting the spun CNT structure into a braided shape.
  • the CNT structure 13 in the embodiment of the present invention includes a fiber CNT, an aggregate of fiber CNTs, a spun CNT structure, and a braided CNT structure knitted from the CNT structure.
  • Such a spun or braided CNT structure 13 is impregnated with a conductive metal.
  • a conductive metal aluminum, copper, or an alloy thereof is used.
  • the CNT structure 13 is impregnated with these conductive metals by a vacuum pressure impregnation method.
  • the CNT structure 13 can be impregnated with a conductive metal by using the technique of “composite material and manufacturing method thereof” described in JP-A-2002-194515.
  • the reason why copper or aluminum and an alloy thereof are used as the conductive metal is that the melting point of these metals and alloys is a temperature range in which carbon does not burn, and the conductive metal having a high melting point is impregnated. This is because the CNT will burn if you try.
  • Other conductive metals include tin, magnesium, and alloys thereof.
  • the CNT structure 13 impregnated with a conductive metal has excellent conductivity, and the composite material including the CNT structure 13 has a small resistance at the surface portion. For this reason, generation
  • FIGSecond Embodiment 2 and 3 show a conductive material 14 according to a second embodiment of the present invention.
  • the conductive material 14 is formed of a composite of a conductive core conductor 12 and a braided CNT structure 13 attached to the outer periphery of the core conductor 12 in an electrical contact state.
  • the core conductor 12 is formed of a copper core material formed of a copper rod or plate material or an aluminum core material formed of an aluminum rod or plate material. Any material used for the core conductor 12 has high conductivity, high current density resistance, and excellent high thermal conductivity.
  • the core conductor 12 is formed of a copper core material made of a copper rod.
  • the braided CNT structure 13 is adhered to the outer periphery of the copper core material, and the CNT structure 13 is impregnated with aluminum as a conductive metal in this state.
  • the bonding force between unit CNTs is weak, and the contact resistance between unit CNTs is large.
  • the wettability improvement process which improves what is called wettability by making the conductor which consists of a metal nanoparticle adhere on a nanoscale between the surface of CNT, the inside of CNT, and CNT. Is given.
  • the technique of “an assembled assembly of carbon and non-carbon and its manufacturing method” described in JP-T-2009-535294, which has already been filed, is used.
  • the non-carbon substance Fe, Si, Co, Cr, Mn, Mo, Nb, Ta, Th, Ti, which consists of the metal nanoparticles 18 between the surface of CNT15, the inside of CNT15, and between CNT15. , U, V, Y, Zr).
  • the CNTs 15 become strong bonds (covalent bonds) by the metal nanoparticles 18, and the resistance between the metal nanoparticles 18 can be reduced, so that the resistance between the CNTs 15 becomes low.
  • the metal nanoparticles 18 attached to the surface of the CNT 15 make it easier for electrons to pass through the inside of the CNT 15 through the metal nanoparticles 18, and the electrons more easily flow due to the metal nanoparticles 18 attached to the inside of the CNT 15. Therefore, high conductivity can be obtained.
  • the entangled fiber CNTs are stretched and aligned from the aggregate of the fiber CNTs formed from the CNTs 15 to which the metal nanoparticles 18 are adhered, and the fibers are twisted to form a spun fiber having a uniform and constant thickness.
  • a braid is formed by adhering the CNT structure 13 to the surface (outer periphery) of the core conductor 12 made of a copper core material in a braid shape.
  • the CNT structure 13 is impregnated with aluminum 16 as a conductive metal with the braided CNT structure 13 attached to the outer periphery of the copper core material that is the core conductor 12.
  • aluminum 16 As in the above-mentioned Japanese Patent Application Laid-Open No. 2001-107203, Japanese Patent Application Laid-Open No. 2002-59257, or Japanese Patent Application Laid-Open No. 2002-194515, as in the first embodiment. It can be performed by performing a vacuum pressure impregnation method.
  • the conductive material 14 is formed by a composite composed of the core conductor 12 and the CNT structure 13. Since the conductive material 14 has excellent conductivity and the resistance of the surface portion is small, generation of heat can be suppressed and heat loss can be reduced. Therefore, by using the conductive material 14 as a conductive material such as an electric wire or a bus bar, current transmission efficiency does not decrease even when a high-frequency current flows.
  • aluminum is impregnated.
  • other metals such as copper, tin, and magnesium may be used as long as the metal has a melting point in a temperature range in which carbon does not burn. .
  • FIG. 5 shows a conductive material 19 according to the third embodiment of the present invention.
  • the CNT structure 13 is attached to the outer periphery of the core conductor 12 made of a copper core material in a braided shape to form a braid.
  • Spinning CNTs 13 are horizontally wound on the outer periphery of a core conductor 12 made of a core material.
  • the conductive metal is formed by vacuum pressure impregnation as in the second embodiment.
  • the conductive material 19 is formed by impregnating the aluminum 16.
  • FIG. 6 shows a conductive material 21 according to the fourth embodiment of the present invention.
  • a spun CNT structure 13 is attached to the outer periphery of the core conductor 12 and then impregnated with aluminum 16 as a conductive metal, whereas in this embodiment, the CNT structure
  • the assembly of fibers of the CNT structure 13 is made conductive by the same vacuum pressure impregnation method as in the first embodiment in a state where the wettability improving process for attaching the conductor is applied to the body 13 as in the second embodiment.
  • a composite 17 impregnated with aluminum 16 as a metallic material is formed.
  • FIG. 6 (a) shows the composite 17, which is formed in a cylindrical shape (cylindrical shape).
  • the core conductor 12 made of the copper core material shown in FIG. 6B is placed inside the cylindrical composite body 17 in which the assembly of fiber CNTs in the CNT structure 13 is impregnated with aluminum 16 as shown in FIG.
  • the conductive material 21 is formed by the cylindrical composite body 17 composed of the core conductor 12 and the CNT structure 13 by press-fitting.
  • the core conductor 12 is inserted into the CNT structure 13 in close contact with the press-fit of the core conductor 12.
  • the core conductor 12 is press-fitted into the cylindrical CNT structure 13 impregnated with the aluminum 16, but the aluminum 16 is formed on the surface of the core conductor 12 by swaging.
  • the inner surface of the composite 17 of the impregnated cylindrical CNT structure 13 may be brought into close contact.
  • the conductive materials 14 and 19 are composed of a composite composed of the conductive core conductor 12 and the CNT structure 13 attached to the outer periphery of the core conductor 12 in an electrical contact state. , 21 is formed, even when a high-frequency current flows on the surface of the core conductor 12, the CNT structure 13 having high conductivity is attached to the surface side, so that the resistance can be reduced. .
  • the surface resistance can be reduced, the heat loss is reduced because the amount of heat generated is small even if the high frequency current is concentrated on the surface side due to the skin effect.
  • the CNT structure 13 is lighter than other conductive materials (aluminum and copper), in the structure using the core conductor 12, the diameter of the core conductor 12 is equal to the CNT structure 13 attached to the outer periphery. Can be reduced. For this reason, the weight of the whole electric wire and bus bar can be reduced.
  • the conductive materials 14, 19, and 21 according to the embodiment of the present invention having the same conductivity are equivalent to the conductive material 23 that has been set to the conventionally required diameter L ⁇ b> 1.
  • the diameter L2 can be made smaller than L1.
  • the CNT structure 13 is formed in a cylindrical shape, but may be formed in a cylindrical shape other than the cylindrical shape.
  • the core conductor 12 is formed with the copper core material which consists of a copper rod, and the example which impregnated or compacted aluminum as a conductive metal in the CNT structure 13 is shown.
  • the core conductor 12 is formed with the copper core material which consists of a copper rod, and the example which impregnated or compacted aluminum as a conductive metal in the CNT structure 13 is shown.
  • An example of impregnating or compacting conductive metal around the metal core material was shown.
  • conductive metal is placed around the CNT structure impregnated or compacted with conductive metal. Good.
  • Core conductor 12 CNT structure (a) Copper core material Aluminum adhered (first to second 4 embodiment) (B) Aluminum core material Copper adheres (c) Copper core material Copper adheres (d) Aluminum core material Aluminum adheres
  • (2)-(a) and (b) can reduce corrosion because the core conductor (outer conductor) to which copper is attached is present on the outer periphery.

Abstract

Disclosed is a conductive material (11, 14, 19, 21) which is configured of a composite body that contains a carbon nanotube structure (13) and a conductive metal that adheres to the carbon nanotube structure (13) in an electrically connected state.

Description

導電材及びその製造方法Conductive material and manufacturing method thereof
 本発明は、電線やブスバー等に用いるための導電材及びその製造方法に関する。 The present invention relates to a conductive material for use in electric wires, bus bars and the like and a method for manufacturing the same.
 一般に電線やブスバーは、電源からの電力を各種の負荷に分配供給するために電源と負荷との間に配索されている。特許文献1に記載されているように、これらの材料としては、銅やアルミニウム等の導電材料が用いられている。電線においては、これらの導電材料を芯線とし、芯線の周囲を絶縁被覆によって覆っている。ブスバーにおいては、これらの導電材料によって配線回路を形成している。 Generally, electric wires and bus bars are routed between a power source and a load in order to distribute and supply power from the power source to various loads. As described in Patent Document 1, conductive materials such as copper and aluminum are used as these materials. In electric wires, these conductive materials are used as core wires, and the periphery of the core wires is covered with an insulating coating. In the bus bar, a wiring circuit is formed of these conductive materials.
 このような電線やブスバー等の導電材に電流が流れると電気抵抗により電線やブスバーは一般的に発熱するが、流れる電流値に応じてその断面積が設定されており、発熱が最小限に抑えられるようになっている。 When a current flows through a conductive material such as an electric wire or bus bar, the electric wire or bus bar generally generates heat due to electrical resistance, but its cross-sectional area is set according to the value of the flowing current, minimizing heat generation. It is supposed to be.
特公昭58-11116号公報Japanese Patent Publication No.58-11116
 ところが、電線やブスバー等の導電材に高周波電流が流れると、表皮効果により電流密度が導電材の表面で高くなり、高周波電流が導電材の表面側に集中して、表面側の小さな断面積中を高周波電流が流れることになるため抵抗が増大する。そして、このように電気抵抗が増大すると、熱が発生して熱損失が大きくなり、電流の伝達効率が悪くなる問題がある。 However, when a high-frequency current flows through a conductive material such as an electric wire or a bus bar, the current density increases on the surface of the conductive material due to the skin effect, and the high-frequency current concentrates on the surface side of the conductive material, and the small cross-sectional area on the surface side Since a high-frequency current flows through the resistor, the resistance increases. When the electrical resistance increases in this way, heat is generated, heat loss increases, and current transmission efficiency deteriorates.
 本発明は、電線やブスバー等における表面の抵抗を低下させることにより熱損失の低減を図ることが可能な導電材及びその製造方法を提供することを目的とする。 An object of the present invention is to provide a conductive material capable of reducing heat loss by reducing the surface resistance of electric wires, bus bars, and the like, and a method for manufacturing the same.
 本発明の第1のアスペクトは、カーボンナノチューブ構造体と、前記カーボンナノチューブ構造体に電気的接触状態で付着した導電性の金属とを含む複合体により形成された導電材であることを要旨とする。 A first aspect of the present invention is a conductive material formed of a composite including a carbon nanotube structure and a conductive metal attached to the carbon nanotube structure in an electrical contact state. .
 前記第1のアスペクトによれば、導電材を構成する複合体が導電性の金属が電気的接触状態で付着されたカーボンナノチューブ構造体を含んでおり、カーボンナノチューブ構造体の優れた導電性により複合体の表面部分の電気抵抗が小さくなっている。このため、熱の発生が抑制されて熱損失を小さくすることができる。 According to the first aspect, the composite constituting the conductive material includes the carbon nanotube structure to which the conductive metal is attached in an electrical contact state, and the composite is formed by the excellent conductivity of the carbon nanotube structure. The electrical resistance of the surface part of the body is small. For this reason, generation | occurrence | production of a heat | fever is suppressed and a heat loss can be made small.
 また、前記複合体は、導電性の芯導体を含み、前記カーボンナノチューブ構造体は、前記芯導体の外周に電気的接触状態で設けられていてもよい。 The composite may include a conductive core conductor, and the carbon nanotube structure may be provided in an electrical contact state on the outer periphery of the core conductor.
 前記構成によれば、芯導体の外周にカーボンナノチューブ構造体を電気的接触状態で付着させた複合体により導電材を形成することにより、高周波電流が流れて表皮効果により電流密度が芯導体の表面側に集中しても、カーボンナノチューブ構造体の優れた導電性により表面部分の抵抗が小さいので熱の発生が抑制され熱損失を小さくすることができる。 According to the above configuration, the conductive material is formed of the composite in which the carbon nanotube structure is attached to the outer periphery of the core conductor in an electrical contact state, so that a high-frequency current flows and the current density is increased by the skin effect. Even when concentrated on the side, since the resistance of the surface portion is small due to the excellent conductivity of the carbon nanotube structure, the generation of heat is suppressed and the heat loss can be reduced.
 また、前記カーボンナノチューブ構造体は、複数のカーボンナノチューブの集合体で形成され、前記各カーボンナノチューブの表面、前記各カーボンナノチューブの内部及び前記カーボンナノチューブの間に導電体が付着されて濡れ性向上処理が施されていてもよい。 Further, the carbon nanotube structure is formed of an aggregate of a plurality of carbon nanotubes, and a conductive material is attached to the surface of each carbon nanotube, inside each carbon nanotube, and between the carbon nanotubes to improve wettability. May be given.
 前記構成によれば、カーボンナノチューブの表面及びカーボンナノチューブの内部及びカーボンナノチューブの間に導電体を付着させることにより、カーボンナノチューブ内に電子がより入りやすくなって高速で電子が流れるので導電性を向上させることができ、抵抗を低減できる。また、カーボンナノチューブ間に導電体を付着させることにより、一つのカーボンナノチューブから他のカーボンナノチューブへも電子が入りやすくなり、さらに高速で電子を流すことができるので、導電性がさらに向上して抵抗が小さくなる。 According to the above configuration, by attaching a conductor to the surface of the carbon nanotube, the inside of the carbon nanotube, and between the carbon nanotubes, electrons are more likely to enter the carbon nanotube, and the electrons flow at a high speed, thereby improving conductivity. The resistance can be reduced. In addition, by attaching a conductor between the carbon nanotubes, electrons can easily enter from one carbon nanotube to the other carbon nanotube, and electrons can flow at a higher speed, further improving conductivity and resistance. Becomes smaller.
 また、前記導電性の金属は、加圧により前記カーボンナノチューブ構造体に含浸されていてもよい。 Further, the conductive metal may be impregnated in the carbon nanotube structure by pressurization.
 前記構成によれば、カーボンナノチューブ構造体に導電性の金属が含浸されていることにより、カーボンナノチューブ構造体と芯導体との良好な電気的接触状態を得ることができる。 According to the above configuration, a good electrical contact state between the carbon nanotube structure and the core conductor can be obtained by impregnating the carbon nanotube structure with the conductive metal.
 また、前記導電性の金属は、圧粉成形により前記カーボンナノチューブ構造体に付着されていてもよい。 Further, the conductive metal may be attached to the carbon nanotube structure by compacting.
 前記構成によれば、前記カーボンナノチューブ構造体が、導電性の金属が圧粉成形により圧粉体に形成されていることにより、カーボンナノチューブ構造体と芯導体との良好な電気的接触状態を得ることができる。 According to the said structure, the said carbon nanotube structure obtains the favorable electrical contact state of a carbon nanotube structure and a core conductor, when the electroconductive metal is formed in the compact by compacting. be able to.
 また、前記カーボンナノチューブ構造体は、編組状に形成されて前記芯導体の外周に付着されていてもよい。 In addition, the carbon nanotube structure may be formed in a braided shape and attached to the outer periphery of the core conductor.
 前記構成によれば、カーボンナノチューブ構造体が編組状となって芯導体の外周に付着されているので、芯導体との良好な電気的接触状態とすることができる。 According to the above configuration, since the carbon nanotube structure is braided and attached to the outer periphery of the core conductor, a good electrical contact with the core conductor can be achieved.
 また、前記カーボンナノチューブ構造体は、筒状形状を有し、前記カーボンナノチューブ構造体の前記筒状形状の内部と前記芯導体の外周とが密着していてもよい。 The carbon nanotube structure may have a cylindrical shape, and the inside of the cylindrical shape of the carbon nanotube structure may be in close contact with the outer periphery of the core conductor.
 前記構成によれば、筒状のカーボンナノチューブ構造体の内部に芯導体が圧入されているため、芯導体との良好な電気的接触状態とすることができる。 According to the above configuration, since the core conductor is press-fitted inside the cylindrical carbon nanotube structure, a good electrical contact with the core conductor can be achieved.
 また、前記芯導体は、銅又はアルミニウム及びその合金の棒体又は板体からなり、前記導電性の金属は、前記カーボンナノチューブ構造体が燃えることのない温度域の融点を有してもよい。前記導電性の金属は、銅又はアルミニウム及びその合金からなってもよい。 The core conductor may be made of a rod or plate made of copper or aluminum and an alloy thereof, and the conductive metal may have a melting point in a temperature range where the carbon nanotube structure does not burn. The conductive metal may be made of copper, aluminum, or an alloy thereof.
 前記構成によれば、芯導体が銅又はアルミニウム及びその合金からなり、カーボンナノチューブ構造体に、例えば、銅又はアルミニウムが含浸されているため、カーボンナノチューブ構造体と芯導体との間の抵抗が小さくなると共に、良好な電気的接触状態を得ることができる。 According to the above configuration, since the core conductor is made of copper or aluminum and an alloy thereof, and the carbon nanotube structure is impregnated with, for example, copper or aluminum, the resistance between the carbon nanotube structure and the core conductor is small. In addition, a good electrical contact state can be obtained.
 本発明の第2のアスペクトは、カーボンナノチューブ構造体に導電性の金属を電気的接触状態で付着させる導電材の製造方法であることを要旨とする。 The gist of the second aspect of the present invention is a method for producing a conductive material in which a conductive metal is attached to a carbon nanotube structure in an electrical contact state.
 前記第2のアスペクトによれば、導電性に優れたカーボンナノチューブ構造体を製造することができる。 According to the second aspect, a carbon nanotube structure having excellent conductivity can be manufactured.
 また、導電性の芯導体の外周に電気的接触状態で前記カーボンナノチューブ構造体を付着させてもよい。 Further, the carbon nanotube structure may be attached to the outer periphery of the conductive core conductor in an electrical contact state.
 前記構成によれば、芯導体の外周にカーボンナノチューブ構造体を電気的接触状態で付着させた複合体を製造できるため、高周波電流が流れても熱の発生を抑制でき熱損失を小さくすることが可能な導電材を製造することができる。 According to the above-described configuration, since a composite in which the carbon nanotube structure is attached in an electrical contact state to the outer periphery of the core conductor can be manufactured, heat generation can be suppressed even when a high-frequency current flows, and heat loss can be reduced. Possible conductive materials can be produced.
 また、第2のアスペクトでは、前記カーボンナノチューブ構造体におけるカーボンナノチューブの表面、カーボンナノチューブの内部又はカーボンナノチューブの間に導電体を付着させて金属との濡れ性向上処理を施し、前記濡れ性向上処理後、前記カーボンナノチューブ構造体を編組状に形成して導電性の芯導体の外周に電気的接触状態で付着させ、前記芯導体に付着させた編組状の前記カーボンナノチューブ構造体に前記導電性の金属を電気的接触状態で付着させてもよい。 In the second aspect, the wettability improving treatment is performed by attaching a conductor to the surface of the carbon nanotube in the carbon nanotube structure, the inside of the carbon nanotube, or between the carbon nanotubes, and performing the wettability improving treatment with the metal. Thereafter, the carbon nanotube structure is formed in a braided shape and attached to the outer periphery of the conductive core conductor in an electrical contact state, and the conductive carbon nanotube structure is attached to the braided carbon nanotube structure attached to the core conductor. Metal may be deposited in electrical contact.
 前記構成によれば、金属との濡れ性向上処理を施すことにより、カーボンナノチューブ内に電子がより入りやすくなって高速で電子が流れ、しかも一つのカーボンナノチューブから他のカーボンナノチューブへも電子が入りやすくなり、高速で電子を流すことができるので、導電性が向上した小さな抵抗のカーボンナノチューブ構造体とすることができる。そして、このカーボンナノチューブ構造体を編組状として芯導体の外周に付着させ、カーボンナノチューブ構造体に導電性の金属を含浸させるため、カーボンナノチューブ構造体と芯導体とが良好な電気的接触状態となった導電材を製造することができる。 According to the above-described configuration, by performing the wettability improving process with the metal, electrons can more easily enter the carbon nanotubes, and the electrons flow at a high speed, and electrons also enter from one carbon nanotube to another carbon nanotube. Since it becomes easy and an electron can be flowed at high speed, it can be set as the carbon nanotube structure of the small resistance which improved electroconductivity. The carbon nanotube structure is attached to the outer periphery of the core conductor as a braid, and the carbon nanotube structure is impregnated with a conductive metal, so that the carbon nanotube structure and the core conductor are in good electrical contact. A conductive material can be manufactured.
 また、第2のアスペクトでは、前記カーボンナノチューブ構造体におけるカーボンナノチューブの表面、カーボンナノチューブの内部又はカーボンナノチューブの間に導電体を付着させて金属との濡れ性向上処理を施し、前記濡れ性向上処理を施した前記カーボンナノチューブ構造体に前記導電性の金属を含浸させて筒状に形成し、筒状に形成した前記カーボンナノチューブ構造体の内部に導電性の芯導体を密着状態で挿入してもよい。 In the second aspect, the wettability improving treatment is performed by attaching a conductor to the surface of the carbon nanotube in the carbon nanotube structure, the inside of the carbon nanotube, or between the carbon nanotubes, and performing the wettability improving treatment with the metal. The carbon nanotube structure subjected to the above treatment is impregnated with the conductive metal to form a cylindrical shape, and a conductive core conductor is inserted into the cylindrical carbon nanotube structure in a close contact state. Good.
 前記構成によれば、金属との濡れ性向上処理を施すことにより、カーボンナノチューブ内に電子がより入りやすくなって高速で電子が流れ、しかも一つのカーボンナノチューブから他のカーボンナノチューブへも電子が入りやすくなり、高速で電子を流すことができるので、導電性が向上した小さな抵抗のカーボンナノチューブ構造体とすることができる。そして、このカーボンナノチューブ構造体に導電性の金属を含浸させて内部に芯導体を密着状態で挿入するため、カーボンナノチューブ構造体と芯導体とが良好な電気的接触状態となった導電材を製造することができる。 According to the above-described configuration, by performing the wettability improving process with the metal, electrons can more easily enter the carbon nanotubes, and the electrons flow at a high speed, and electrons also enter from one carbon nanotube to another carbon nanotube. Since it becomes easy and an electron can be flowed at high speed, it can be set as the carbon nanotube structure of the small resistance which improved electroconductivity. The carbon nanotube structure is impregnated with a conductive metal and the core conductor is inserted in a close contact state with the carbon nanotube structure to produce a conductive material in which the carbon nanotube structure and the core conductor are in good electrical contact. can do.
図1は、本発明の第1実施形態に係る導電材を示す斜視図である。FIG. 1 is a perspective view showing a conductive material according to the first embodiment of the present invention. 図2は、本発明の第2実施形態に係る導電材を示す斜視図である。FIG. 2 is a perspective view showing a conductive material according to the second embodiment of the present invention. 図3(a)、(b)は、芯導体の外周にカーボンナノチューブ構造体を付着させ、アルミニウムを含浸させた本発明の第2実施形態に係る導電材を示し、図3(a)はその斜視図、図3(b)はその断面図である。FIGS. 3A and 3B show a conductive material according to the second embodiment of the present invention in which a carbon nanotube structure is attached to the outer periphery of a core conductor and impregnated with aluminum, and FIG. A perspective view and FIG. 3B are sectional views thereof. 図4(a)、(b)、(c)は、カーボンナノチューブにナノ金属粒子からなる導電体を付着させた状態を示す説明図である。4A, 4B, and 4C are explanatory views showing a state in which a conductor made of nano metal particles is attached to a carbon nanotube. 図5は、芯導体の外周にカーボンナノチューブ構造体を横巻状に付着させた本発明の第3実施形態に係る導電材を示す斜視図である。FIG. 5 is a perspective view showing a conductive material according to a third embodiment of the present invention in which a carbon nanotube structure is attached to the outer periphery of a core conductor in a horizontal winding shape. 図6(a)はカーボンナノチューブ構造体に導電性金属を含浸させた複合体を示す斜視図、図6(b)は芯導体を示す斜視図、図6(c)は芯導体を複合体に圧入させた状態を示す斜視図である。6A is a perspective view showing a composite in which a carbon nanotube structure is impregnated with a conductive metal, FIG. 6B is a perspective view showing a core conductor, and FIG. 6C is a composite showing the core conductor as a composite. It is a perspective view which shows the state made to press-fit. 図7は、従来の導電材と本発明の実施形態に係る導電材の径を比較して示す断面図である。FIG. 7 is a cross-sectional view comparing the diameters of a conventional conductive material and a conductive material according to an embodiment of the present invention.
 以下、本発明の実施形態に係る導電材について図面を参照して詳細に説明する。なお、各実施形態において、同一の部材には同一の符号を付して対応させてある。 Hereinafter, the conductive material according to the embodiment of the present invention will be described in detail with reference to the drawings. In each embodiment, the same member is assigned the same reference numeral.
 [第1実施形態]
 図1は、本発明の第1実施形態に係る導電材11を示す。導電材11は、カーボンナノチューブ構造体13を含む複合体によって形成されている。
[First Embodiment]
FIG. 1 shows a conductive material 11 according to the first embodiment of the present invention. The conductive material 11 is formed of a composite including the carbon nanotube structure 13.
 カーボンナノチューブ構造体13は、ナノレベルの大きさのカーボンナノチューブ(以下、「CNT」と略称する。)を単位とするものであり、このCNTの複数の集合体によってCNT構造体13が形成される。 The carbon nanotube structure 13 is a unit of carbon nanotubes (hereinafter abbreviated as “CNT”) having a nano-level size, and the CNT structure 13 is formed by a plurality of aggregates of the CNTs. .
 CNTは、6個の炭素が結びついた六角形構造となっており、この六角形構造がさらに他の六角形構造と結合された状態で円筒状に形成された構造体である。これらの複数のCNTの構造体から繊維CNTが形成され、複数の繊維CNTの集合体から、絡み合った繊維CNTを伸ばして揃えて、これに撚りを加えて均一な一定の太さの糸状にすることで紡糸状のCNT構造体が形成される。さらに、紡糸状のCNT構造体を編組状に編むことにより編組状のCNT構造体が筒状(円筒状)に形成される。本発明の実施形態におけるCNT構造体13は、繊維CNT、繊維CNTの集合体、紡糸状のCNT構造体及びこれを編んだ編組状のCNT構造体を含むものである。 CNT has a hexagonal structure in which six carbons are bonded, and this hexagonal structure is a cylindrical structure that is combined with another hexagonal structure. A fiber CNT is formed from the structure of the plurality of CNTs, and the intertwined fiber CNTs are stretched and aligned from the assembly of the plurality of fiber CNTs, and then twisted to form a uniform and constant thread shape. Thus, a spun CNT structure is formed. Further, the braided CNT structure is formed into a tubular shape (cylindrical shape) by knitting the spun CNT structure into a braided shape. The CNT structure 13 in the embodiment of the present invention includes a fiber CNT, an aggregate of fiber CNTs, a spun CNT structure, and a braided CNT structure knitted from the CNT structure.
 このような紡糸状又は編組状のCNT構造体13には、導電性の金属が含浸される。導電性の金属としては、アルミニウム又は銅及びその合金が用いられる。CNT構造体13に導電性の金属を含浸させるには、真空加圧含浸法によってCNT構造体13にこれらの導電性の金属を含浸させる。この場合、既に出願されている特開2001-107203号公報に記載されている「複合材料及びその製造方法」の技術、特開2002-59257号公報に記載されている「複合材料」の技術、特開2002-194515号公報に記載されている「複合材料及びその製造方法」の技術を用いて、CNT構造体13に導電性の金属を含浸させることができる。 Such a spun or braided CNT structure 13 is impregnated with a conductive metal. As the conductive metal, aluminum, copper, or an alloy thereof is used. In order to impregnate the CNT structure 13 with conductive metals, the CNT structure 13 is impregnated with these conductive metals by a vacuum pressure impregnation method. In this case, the technology of “composite material and manufacturing method thereof” described in Japanese Patent Application Laid-Open No. 2001-107203, the technology of “composite material” described in Japanese Patent Application Laid-Open No. 2002-59257, The CNT structure 13 can be impregnated with a conductive metal by using the technique of “composite material and manufacturing method thereof” described in JP-A-2002-194515.
 なお、実施形態において、導電性の金属として銅またはアルミニウム及びその合金を用いる理由は、これらの金属、合金の融点は、カーボンが燃えない温度領域であり、融点の高い導電性の金属を含浸させようとすると、CNTが燃えてしまうからである。また、他の導電性の金属としては、錫やマグネシウム、及びこれらの合金が挙げられる。 In the embodiment, the reason why copper or aluminum and an alloy thereof are used as the conductive metal is that the melting point of these metals and alloys is a temperature range in which carbon does not burn, and the conductive metal having a high melting point is impregnated. This is because the CNT will burn if you try. Other conductive metals include tin, magnesium, and alloys thereof.
 導電性の金属が含浸されたCNT構造体13は、優れた導電性を有しており、このCNT構造体13を含む複合材は、その表面部分の抵抗が小さくなっている。このため、熱の発生が抑制されて熱損失を小さくすることができる。従って、このCNT構造体13を電線やブスバー等の導電材に用いることにより、高周波電流が流れても電流の伝達効率が低下することがなくなる。 The CNT structure 13 impregnated with a conductive metal has excellent conductivity, and the composite material including the CNT structure 13 has a small resistance at the surface portion. For this reason, generation | occurrence | production of a heat | fever is suppressed and a heat loss can be made small. Therefore, by using the CNT structure 13 as a conductive material such as an electric wire or a bus bar, the current transmission efficiency does not decrease even when a high-frequency current flows.
 [第2実施形態]
 図2及び図3は、本発明の第2実施形態に係る導電材14を示す。この導電材14は、導電性の芯導体12と、この芯導体12の外周に電気的接触状態で付着した編組状のCNT構造体13との複合体によって形成されている。
[Second Embodiment]
2 and 3 show a conductive material 14 according to a second embodiment of the present invention. The conductive material 14 is formed of a composite of a conductive core conductor 12 and a braided CNT structure 13 attached to the outer periphery of the core conductor 12 in an electrical contact state.
 芯導体12は、銅製の棒体又は板材によって形成された銅コア材又はアルミニウム製の棒体又は板材によって形成されたアルミニウムコア材で形成されている。芯導体12に用いるいずれの材質も導電率が高く、電流密度耐性が高く、高熱伝導性に優れたものとなっている。この実施形態では、芯導体12が銅製の棒体からなる銅コア材で形成されている。この銅コア材の外周に、編組状に形成されたCNT構造体13が付着され、この状態でCNT構造体13に対して導電性の金属としてのアルミニウムを含浸するものである。 The core conductor 12 is formed of a copper core material formed of a copper rod or plate material or an aluminum core material formed of an aluminum rod or plate material. Any material used for the core conductor 12 has high conductivity, high current density resistance, and excellent high thermal conductivity. In this embodiment, the core conductor 12 is formed of a copper core material made of a copper rod. The braided CNT structure 13 is adhered to the outer periphery of the copper core material, and the CNT structure 13 is impregnated with aluminum as a conductive metal in this state.
 CNTにおいては、単位CNT間の結合力が弱く、単位CNT同士の接触抵抗が大きい。このため、本実施形態の複合体14では、CNTの表面、CNTの内部及びCNTの間に金属ナノ粒子からなる導電体をナノスケールで付着させることにより、いわゆる濡れ性を向上させる濡れ性向上処理が施されている。 In CNT, the bonding force between unit CNTs is weak, and the contact resistance between unit CNTs is large. For this reason, in the composite 14 of this embodiment, the wettability improvement process which improves what is called wettability by making the conductor which consists of a metal nanoparticle adhere on a nanoscale between the surface of CNT, the inside of CNT, and CNT. Is given.
 この濡れ性向上処理の方法としては、既に出願されている特表2009-535294に記載された「炭素と非炭素との組織化されたアセンブリー、及びその製造方法」の技術を用いる。これにより、図4に示すようにCNT15の表面、CNT15の内部及びCNT15の間に金属ナノ粒子18からなる非炭素物質(Fe、Si、Co、Cr、Mn、Mo、Nb、Ta、Th、Ti、U、V、Y、Zr)を付着させる。これにより、CNT15同士が金属ナノ粒子18によって強い結合(共有結合)になると推定され、金属ナノ粒子18間の低抵抗化を図ることができるので、CNT15間が低抵抗となる。すなわち、CNT15の内部を通り、金属ナノ粒子18を通って隣接するCNT15に電子が移動する場合、CNT15間が低抵抗なので、CNT15間の導電性が高い。したがって、CNT15間にバインダとしての金属ナノ粒子18を付着させることで単位CNT間の結合力を強化して電気的な接触抵抗を小さくすることによりCNT15間の高い導電性が得られる。 As the wettability improving method, the technique of “an assembled assembly of carbon and non-carbon and its manufacturing method” described in JP-T-2009-535294, which has already been filed, is used. Thereby, as shown in FIG. 4, the non-carbon substance (Fe, Si, Co, Cr, Mn, Mo, Nb, Ta, Th, Ti, which consists of the metal nanoparticles 18 between the surface of CNT15, the inside of CNT15, and between CNT15. , U, V, Y, Zr). Thereby, it is estimated that the CNTs 15 become strong bonds (covalent bonds) by the metal nanoparticles 18, and the resistance between the metal nanoparticles 18 can be reduced, so that the resistance between the CNTs 15 becomes low. That is, when electrons pass through the inside of the CNT 15 and pass through the metal nanoparticles 18 to the adjacent CNT 15, since the resistance between the CNTs 15 is low, the conductivity between the CNTs 15 is high. Therefore, by attaching metal nanoparticles 18 as a binder between the CNTs 15 to enhance the bonding force between the unit CNTs and to reduce the electrical contact resistance, high conductivity between the CNTs 15 can be obtained.
 また、CNT15の表面に付着した金属ナノ粒子18は、電子が金属ナノ粒子18を通ってCNT15の内部を通過し易くなり、さらにCNT15の内部に付着した金属ナノ粒子18によって電子がより流れ易くなることで高い導電性が得られる。 In addition, the metal nanoparticles 18 attached to the surface of the CNT 15 make it easier for electrons to pass through the inside of the CNT 15 through the metal nanoparticles 18, and the electrons more easily flow due to the metal nanoparticles 18 attached to the inside of the CNT 15. Therefore, high conductivity can be obtained.
 このような金属ナノ粒子18が付着したCNT15から形成した繊維CNTの集合体から絡み合った繊維CNTを伸ばして揃えて、これに撚りを加えて均一な一定の太さの糸状に形成した紡糸状のCNT構造体13を、銅コア材からなる芯導体12の表面(外周)に編組状に付着させることにより編組が形成される。 The entangled fiber CNTs are stretched and aligned from the aggregate of the fiber CNTs formed from the CNTs 15 to which the metal nanoparticles 18 are adhered, and the fibers are twisted to form a spun fiber having a uniform and constant thickness. A braid is formed by adhering the CNT structure 13 to the surface (outer periphery) of the core conductor 12 made of a copper core material in a braid shape.
 そして、芯導体12である銅コア材の外周に編組状のCNT構造体13が付着した状態で、CNT構造体13に導電性の金属としてのアルミニウム16が含浸されている。CNT構造体13にアルミニウム16を含浸させるには、第1実施形態と同様に、上記特開2001-107203号公報、特開2002-59257号公報又は特開2002-194515号公報に記載されている真空加圧含浸法を行うことにより行うことができる。 The CNT structure 13 is impregnated with aluminum 16 as a conductive metal with the braided CNT structure 13 attached to the outer periphery of the copper core material that is the core conductor 12. In order to impregnate the CNT structure 13 with aluminum 16, it is described in the above-mentioned Japanese Patent Application Laid-Open No. 2001-107203, Japanese Patent Application Laid-Open No. 2002-59257, or Japanese Patent Application Laid-Open No. 2002-194515, as in the first embodiment. It can be performed by performing a vacuum pressure impregnation method.
 これにより、芯導体12とCNT構造体13とからなる複合体によって導電材14が形成される。この導電材14は、優れた導電性を有し、その表面部分の抵抗が小さくなっているため、熱の発生が抑制されて熱損失を小さくすることができる。従って、この導電材14を電線やブスバー等の導電材に用いることにより、高周波電流が流れても電流の伝達効率が低下することがなくなる。 In this way, the conductive material 14 is formed by a composite composed of the core conductor 12 and the CNT structure 13. Since the conductive material 14 has excellent conductivity and the resistance of the surface portion is small, generation of heat can be suppressed and heat loss can be reduced. Therefore, by using the conductive material 14 as a conductive material such as an electric wire or a bus bar, current transmission efficiency does not decrease even when a high-frequency current flows.
 なお、本実施形態では、アルミニウムを含浸させたが、含浸させる導電性の金属として、カーボンが燃えることのない温度域の融点を有する金属であれば他の金属例えば、銅、錫、マグネシウムでも良い。 In this embodiment, aluminum is impregnated. However, as the conductive metal to be impregnated, other metals such as copper, tin, and magnesium may be used as long as the metal has a melting point in a temperature range in which carbon does not burn. .
 [第3実施形態]
 図5は、本発明の第3実施形態に係る導電材19を示す。第2実施形態では、銅コア材からなる芯導体12の外周にCNT構造体13を編組状に付着させて編組を形成したのに対して、本実施形態では、図5に示すように、銅コア材からなる芯導体12の外周に紡糸CNT13を横巻状に付着させている。このように銅コア材からなる芯導体12の外周に紡糸状のCNT構造体13を横巻状に付着させた状態で、第2実施形態と同様に、真空加圧含浸法により導電性の金属としてのアルミニウム16を含浸させて導電材19を形成する。
[Third Embodiment]
FIG. 5 shows a conductive material 19 according to the third embodiment of the present invention. In the second embodiment, the CNT structure 13 is attached to the outer periphery of the core conductor 12 made of a copper core material in a braided shape to form a braid. In the present embodiment, as shown in FIG. Spinning CNTs 13 are horizontally wound on the outer periphery of a core conductor 12 made of a core material. In this manner, in the state where the spun CNT structure 13 is attached to the outer periphery of the core conductor 12 made of the copper core material, the conductive metal is formed by vacuum pressure impregnation as in the second embodiment. The conductive material 19 is formed by impregnating the aluminum 16.
 [第4実施形態]
 図6は、本発明の第4実施形態に係る導電材21を示す。第2実施形態では、芯導体12の外周に紡糸状のCNT構造体13を付着させ、次に導電性の金属としてのアルミニウム16を含浸させているのに対して、本実施形態では、CNT構造体13に第2実施形態と同様に、導電体を付着させる濡れ性向上処理を施した状態で、CNT構造体13の繊維の集合体に第1実施形態と同様の真空加圧含浸法により導電性の金属としてのアルミニウム16を含浸させた複合体17を形成する。
[Fourth Embodiment]
FIG. 6 shows a conductive material 21 according to the fourth embodiment of the present invention. In the second embodiment, a spun CNT structure 13 is attached to the outer periphery of the core conductor 12 and then impregnated with aluminum 16 as a conductive metal, whereas in this embodiment, the CNT structure As in the second embodiment, the assembly of fibers of the CNT structure 13 is made conductive by the same vacuum pressure impregnation method as in the first embodiment in a state where the wettability improving process for attaching the conductor is applied to the body 13 as in the second embodiment. A composite 17 impregnated with aluminum 16 as a metallic material is formed.
 図6(a)は複合体17を示し、筒状(円筒状)に成形されている。このようなCNT構造体13における繊維CNTの集合体にアルミニウム16が含浸された筒状の複合体17の内部に、図6(b)に示す銅コア材からなる芯導体12を、図6(c)に示すように圧入することで芯導体12とCNT構造体13からなる筒状の複合体17によって導電材21とする。この導電材21においては、芯導体12の圧入により、芯導体12がCNT構造体13に密着状態で挿入される。 FIG. 6 (a) shows the composite 17, which is formed in a cylindrical shape (cylindrical shape). The core conductor 12 made of the copper core material shown in FIG. 6B is placed inside the cylindrical composite body 17 in which the assembly of fiber CNTs in the CNT structure 13 is impregnated with aluminum 16 as shown in FIG. As shown in c), the conductive material 21 is formed by the cylindrical composite body 17 composed of the core conductor 12 and the CNT structure 13 by press-fitting. In the conductive material 21, the core conductor 12 is inserted into the CNT structure 13 in close contact with the press-fit of the core conductor 12.
 なお、この第4実施形態では、アルミニウム16が含浸された筒状のCNT構造体13の内部に芯導体12を圧入したが、スウェージングを行うことにより芯導体12の表面に対し、アルミニウム16が含浸された筒状のCNT構造体13の複合体17の内面を密着接触させても良い。 In the fourth embodiment, the core conductor 12 is press-fitted into the cylindrical CNT structure 13 impregnated with the aluminum 16, but the aluminum 16 is formed on the surface of the core conductor 12 by swaging. The inner surface of the composite 17 of the impregnated cylindrical CNT structure 13 may be brought into close contact.
 以上説明した第2~4実施形態によれば、導電性の芯導体12と、この芯導体12の外周に電気的接触状態で付着するCNT構造体13とからなる複合体によって導電材14,19,21が形成されていることにより、高周波電流が芯導体12の表面に流れても、表面側には高い導電率を有するCNT構造体13が付着されているので、抵抗を低減することができる。また、表面の抵抗を低減することができるので、表皮効果によって高周波電流が表面側に集中しても発熱量が少ないので、熱損失が低減される。 According to the second to fourth embodiments described above, the conductive materials 14 and 19 are composed of a composite composed of the conductive core conductor 12 and the CNT structure 13 attached to the outer periphery of the core conductor 12 in an electrical contact state. , 21 is formed, even when a high-frequency current flows on the surface of the core conductor 12, the CNT structure 13 having high conductivity is attached to the surface side, so that the resistance can be reduced. . In addition, since the surface resistance can be reduced, the heat loss is reduced because the amount of heat generated is small even if the high frequency current is concentrated on the surface side due to the skin effect.
 また、CNT構造体13は、他の導電材料(アルミニウムや銅)と比較して軽いので、芯導体12を用いた構造においては、外周に付着するCNT構造体13の分だけ芯導体12の径を小さくすることができる。このため、電線やブスバー全体の重さを軽減することができる。 In addition, since the CNT structure 13 is lighter than other conductive materials (aluminum and copper), in the structure using the core conductor 12, the diameter of the core conductor 12 is equal to the CNT structure 13 attached to the outer periphery. Can be reduced. For this reason, the weight of the whole electric wire and bus bar can be reduced.
 また、図7に示すように、従来必要な径L1の大きさに設定されていた導電材23に対し、同等の導電率を有する本発明の実施形態に係る導電材14,19,21を同等の導電率とする場合、その径L2をL1よりも小さくすることができる。 Further, as shown in FIG. 7, the conductive materials 14, 19, and 21 according to the embodiment of the present invention having the same conductivity are equivalent to the conductive material 23 that has been set to the conventionally required diameter L <b> 1. The diameter L2 can be made smaller than L1.
 なお、以上の実施形態では、CNT構造体13を円筒状に形成しているが、円筒状以外の筒状に形成しても良い。 In the above embodiment, the CNT structure 13 is formed in a cylindrical shape, but may be formed in a cylindrical shape other than the cylindrical shape.
 また、上記実施形態では、CNT構造体13に銅またはアルミニウム及びその合金等の導電性の金属を加圧により含浸させた例を示したが、圧粉成形によりCNT構造体13に銅またはアルミニウム及びその合金等の導電性の金属を混ぜ合わせて圧粉体としてもよい。 Moreover, in the said embodiment, although the example which impregnated conductive metals, such as copper or aluminum, and its alloy, to the CNT structure 13 by the pressurization was shown, copper or aluminum and the CNT structure 13 were pressed by the compacting. A conductive metal such as an alloy may be mixed to form a green compact.
 また、上記実施形態では、芯導体12が銅製の棒体からなる銅コア材で形成され、CNT構造体13に導電性の金属としてアルミニウムを含浸又は圧粉成形させた例を示し、導電性の金属コア材の周囲に導電性の金属を含浸又は圧粉成形させた例を示したが、導電性の金属を含浸又は圧粉成形させたCNT構造体の周囲に導電性の金属を配置してよい。 Moreover, in the said embodiment, the core conductor 12 is formed with the copper core material which consists of a copper rod, and the example which impregnated or compacted aluminum as a conductive metal in the CNT structure 13 is shown. An example of impregnating or compacting conductive metal around the metal core material was shown. However, conductive metal is placed around the CNT structure impregnated or compacted with conductive metal. Good.
 以下に、芯導体12とCNT構造体13との組合せを示す。 Hereinafter, combinations of the core conductor 12 and the CNT structure 13 are shown.
 (1)中心部の導電性のコア材の周囲に導電性の金属が付着したCNT構造体を配置する場合の組合せ
    芯導体12       CNT構造体
 (a)銅コア材        アルミニウムが付着(第1~第4実施形態)
 (b)アルミニウムのコア材  銅が付着
 (c)銅コア材        銅が付着
 (d)アルミニウムのコア材  アルミニウムが付着
(1) Combination in the case where a CNT structure having conductive metal adhered around the conductive core material in the center is disposed. Core conductor 12 CNT structure (a) Copper core material Aluminum adhered (first to second 4 embodiment)
(B) Aluminum core material Copper adheres (c) Copper core material Copper adheres (d) Aluminum core material Aluminum adheres
 (2)中心部に金属が付着したCNT構造体を配置しその周囲に導電性の金属(芯導体)を被せる場合の組合せ
    CNT構造体      芯導体(外周導体)
 (a)アルミニウムが付着   銅材
 (b)銅が付着        銅材
 (c)アルミニウムが付着   アルミニウム
 (d)銅が付着        アルミニウム
(2) Combination when placing a CNT structure with metal attached to the center and covering the periphery with a conductive metal (core conductor) CNT structure Core conductor (outer conductor)
(A) Aluminum adheres Copper material (b) Copper adheres Copper material (c) Aluminum adheres Aluminum (d) Copper adheres Aluminum
 上記の組合せの中で、(2)-(a)、(b)は、銅が付着した芯導体(外周導体)が外周にあるので、腐食の軽減を図ることができる。 Among the above combinations, (2)-(a) and (b) can reduce corrosion because the core conductor (outer conductor) to which copper is attached is present on the outer periphery.
 また、(1)-(b)、(c)の場合でも、銅が付着したCNT構造体が外周にあるので、腐食の軽減を図ることができる。 Also in the cases (1) to (b) and (c), since the CNT structure to which copper adheres is present on the outer periphery, corrosion can be reduced.
 以上、本発明の実施形態について説明したが、本発明は上記実施形態には限定されず、種々の変形が可能である。 As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment, A various deformation | transformation is possible.

Claims (13)

  1.  カーボンナノチューブ構造体と、前記カーボンナノチューブ構造体に電気的接触状態で付着した導電性の金属とを含む複合体により形成された
    導電材。
    A conductive material formed of a composite including a carbon nanotube structure and a conductive metal attached to the carbon nanotube structure in electrical contact.
  2.  前記複合体は、導電性の芯導体を含み、
     前記カーボンナノチューブ構造体は、前記芯導体の外周に電気的接触状態で設けられている
    請求項1記載の導電材。
    The composite includes a conductive core conductor,
    The conductive material according to claim 1, wherein the carbon nanotube structure is provided in an electrical contact state on an outer periphery of the core conductor.
  3.  前記カーボンナノチューブ構造体は、複数のカーボンナノチューブの集合体で形成され、前記各カーボンナノチューブの表面、前記各カーボンナノチューブの内部及び前記カーボンナノチューブの間に導電体が付着されて濡れ性向上処理が施されている
    請求項1に記載の導電材。
    The carbon nanotube structure is formed of an aggregate of a plurality of carbon nanotubes, and a conductive material is attached to the surface of each carbon nanotube, the inside of each carbon nanotube, and between the carbon nanotubes to perform a wettability improving process. The conductive material according to claim 1.
  4.  前記導電性の金属は、加圧により前記カーボンナノチューブ構造体に含浸されている
    請求項2に記載の導電材。
    The conductive material according to claim 2, wherein the conductive metal is impregnated in the carbon nanotube structure by pressurization.
  5.  前記導電性の金属は、圧粉成形により前記カーボンナノチューブ構造体に付着された
    請求項2に記載の導電材。
    The conductive material according to claim 2, wherein the conductive metal is attached to the carbon nanotube structure by compacting.
  6.  前記カーボンナノチューブ構造体は、編組状に形成されて前記芯導体の外周に付着されている
    請求項2に記載の導電材。
    The conductive material according to claim 2, wherein the carbon nanotube structure is formed in a braided shape and attached to the outer periphery of the core conductor.
  7.  前記カーボンナノチューブ構造体は、筒状形状を有し、
     前記カーボンナノチューブ構造体の前記筒状形状の内部と前記芯導体の外周とが密着している
    請求項2に記載の導電材。
    The carbon nanotube structure has a cylindrical shape,
    The conductive material according to claim 2, wherein the inside of the cylindrical shape of the carbon nanotube structure is in close contact with the outer periphery of the core conductor.
  8.  前記芯導体は、銅又はアルミニウム及びその合金の棒体又は板体からなり、
     前記導電性の金属は、前記カーボンナノチューブ構造体が燃えることのない温度域の融点を有する
    請求項2に記載の導電材。
    The core conductor is made of a rod or plate of copper or aluminum and its alloy,
    The conductive material according to claim 2, wherein the conductive metal has a melting point in a temperature range in which the carbon nanotube structure does not burn.
  9.  前記芯導体は、銅又はアルミニウム及びその合金の棒体又は板体からなり、
     前記導電性の金属は、銅又はアルミニウムからなる
    請求項2に記載の導電材。
    The core conductor is made of a rod or plate of copper or aluminum and its alloy,
    The conductive material according to claim 2, wherein the conductive metal is made of copper or aluminum.
  10.  カーボンナノチューブ構造体に導電性の金属を電気的接触状態で付着させる
    導電材の製造方法。
    A method for producing a conductive material, wherein a conductive metal is attached to a carbon nanotube structure in an electrical contact state.
  11.  導電性の芯導体の外周に電気的接触状態で前記カーボンナノチューブ構造体を付着させる
    請求項10に記載の導電材の製造方法。
    The method for producing a conductive material according to claim 10, wherein the carbon nanotube structure is attached to an outer periphery of a conductive core conductor in an electrical contact state.
  12.  前記カーボンナノチューブ構造体におけるカーボンナノチューブの表面、カーボンナノチューブの内部又はカーボンナノチューブの間に導電体を付着させて濡れ性向上処理を施し、
     前記濡れ性向上処理後、前記カーボンナノチューブ構造体を編組状に形成して導電性の芯導体の外周に電気的接触状態で付着させ、
     前記芯導体に付着させた編組状の前記カーボンナノチューブ構造体に前記導電性の金属を電気的接触状態で付着させる
    請求項10に記載の導電材の製造方法。
    The surface of the carbon nanotubes in the carbon nanotube structure, the inside of the carbon nanotubes, or between the carbon nanotubes, a conductive material is attached to perform wettability improvement treatment,
    After the wettability improvement treatment, the carbon nanotube structure is formed in a braided shape and attached to the outer periphery of the conductive core conductor in an electrical contact state,
    The method for producing a conductive material according to claim 10, wherein the conductive metal is attached to the braided carbon nanotube structure attached to the core conductor in an electrical contact state.
  13.  前記カーボンナノチューブ構造体におけるカーボンナノチューブの表面、カーボンナノチューブの内部又はカーボンナノチューブの間に導電体を付着させて金属との濡れ性向上処理を施し、
     前記濡れ性向上処理を施した前記カーボンナノチューブ構造体に前記導電性の金属を含浸させて筒状に形成し、
     筒状に形成した前記カーボンナノチューブ構造体の内部に導電性の芯導体を密着状態で挿入する
    請求項10に記載の導電材の製造方法。
    The surface of the carbon nanotube in the carbon nanotube structure, the inside of the carbon nanotube, or between the carbon nanotubes, a conductive material is attached to perform a wettability improvement treatment with a metal,
    The carbon nanotube structure subjected to the wettability improvement treatment is impregnated with the conductive metal and formed into a cylindrical shape,
    The manufacturing method of the electrically conductive material of Claim 10 which inserts a conductive core conductor in the inside of the inside of the said carbon nanotube structure formed in the cylinder shape.
PCT/JP2011/061987 2010-05-25 2011-05-25 Conductive material and method for producing same WO2011148977A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-119677 2010-05-25
JP2010119677 2010-05-25

Publications (1)

Publication Number Publication Date
WO2011148977A1 true WO2011148977A1 (en) 2011-12-01

Family

ID=45003966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061987 WO2011148977A1 (en) 2010-05-25 2011-05-25 Conductive material and method for producing same

Country Status (2)

Country Link
JP (1) JP5876993B2 (en)
WO (1) WO2011148977A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015012275A1 (en) * 2013-07-22 2015-01-29 独立行政法人産業技術総合研究所 Cnt metal composite material, and method for producing same
JP5896422B2 (en) * 2010-12-28 2016-03-30 国立研究開発法人産業技術総合研究所 CNT metal composite
EP3364422A1 (en) * 2017-02-20 2018-08-22 Delphi Technologies LLC Metallic/carbon nanotube composite wire

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105825917A (en) * 2016-03-27 2016-08-03 安徽鑫旭新材料股份有限公司 Large-load conductive copper busbar with openings at two ends
JP2018129273A (en) * 2017-02-10 2018-08-16 本田技研工業株式会社 Conductive material, electric machine comprising conductive material, and method of producing conductive material
JP7194658B2 (en) * 2019-09-18 2022-12-22 トクセン工業株式会社 conductive wire

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009001481A (en) * 2007-06-22 2009-01-08 Samsung Electronics Co Ltd Carbon nanotube composition including metal precursor, carbon nanotube thin film and its manufacturing method
JP2009021038A (en) * 2007-07-10 2009-01-29 Sumitomo Electric Ind Ltd Wire rod, conductor, connection structure and method for producing the wire rod
JP2009252745A (en) * 2008-04-09 2009-10-29 Qinghua Univ Coaxial cable

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2546114B2 (en) * 1992-12-22 1996-10-23 日本電気株式会社 Foreign substance-encapsulated carbon nanotubes and method for producing the same
JP2004335259A (en) * 2003-05-07 2004-11-25 Matsushita Electric Ind Co Ltd Electrical wiring, electronic device, magnetoresistance effect element, magnetic head, magnetic medium, recording devices, and manufacturing method of the above
KR100584671B1 (en) * 2004-01-14 2006-05-30 (주)케이에이치 케미컬 Process for the preparation of carbon nanotube or carbon nanofiber electrodes by using sulfur or metal nanoparticle as a binder and electrode prepared thereby
JP2006265667A (en) * 2005-03-24 2006-10-05 Totoku Electric Co Ltd Carbon composite plated electric wire and method for producing the same
JP2007157372A (en) * 2005-12-01 2007-06-21 Nissan Motor Co Ltd Light-weighted wire with high conductivity and its manufacturing method
JP5253943B2 (en) * 2008-09-11 2013-07-31 国立大学法人東北大学 Conductive material and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009001481A (en) * 2007-06-22 2009-01-08 Samsung Electronics Co Ltd Carbon nanotube composition including metal precursor, carbon nanotube thin film and its manufacturing method
JP2009021038A (en) * 2007-07-10 2009-01-29 Sumitomo Electric Ind Ltd Wire rod, conductor, connection structure and method for producing the wire rod
JP2009252745A (en) * 2008-04-09 2009-10-29 Qinghua Univ Coaxial cable

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5896422B2 (en) * 2010-12-28 2016-03-30 国立研究開発法人産業技術総合研究所 CNT metal composite
WO2015012275A1 (en) * 2013-07-22 2015-01-29 独立行政法人産業技術総合研究所 Cnt metal composite material, and method for producing same
JPWO2015012275A1 (en) * 2013-07-22 2017-03-02 国立研究開発法人産業技術総合研究所 CNT metal composite and manufacturing method thereof
US10017389B2 (en) 2013-07-22 2018-07-10 National Institute Of Advanced Industrial Science And Technology CNT metal composite material, and method for producing same
EP3364422A1 (en) * 2017-02-20 2018-08-22 Delphi Technologies LLC Metallic/carbon nanotube composite wire
CN108461171A (en) * 2017-02-20 2018-08-28 德尔福技术有限公司 metal/carbon nanotube composite wire
US10109391B2 (en) 2017-02-20 2018-10-23 Delphi Technologies, Inc. Metallic/carbon nanotube composite wire
CN108461171B (en) * 2017-02-20 2022-02-11 安波福技术有限公司 Metal/carbon nano tube composite wire

Also Published As

Publication number Publication date
JP5876993B2 (en) 2016-03-02
JP2012009427A (en) 2012-01-12

Similar Documents

Publication Publication Date Title
JP5825848B2 (en) Method for manufacturing rotor of induction motor
WO2011148977A1 (en) Conductive material and method for producing same
US9570208B2 (en) Carbon nanotube composite wire
EP2896051B1 (en) Bulk carbon nanotube and metallic composites and method of fabricating
KR102005669B1 (en) Metallic/carbon nanotube composite wire
KR20180098145A (en) Electrically conductive carbon nanotube wire having a metallic coating and methods of forming same
JP2017174689A (en) Carbon nanotube wire and carbon nanotube wire-connected structure
JP6928526B2 (en) Manufacturing method of carbon nanotube wire rod, carbon nanotube wire rod connecting structure and carbon nanotube wire rod
US9293233B2 (en) Composite cable
JP6738627B2 (en) Carbon nanotube wire and carbon nanotube wire connecting structure
JP6767292B2 (en) Carbon nanotube wire rod and carbon nanotube wire rod connection structure
CN111937088A (en) Carbon nanotube-coated wire for coil, coil using carbon nanotube-coated wire for coil, and method for manufacturing carbon nanotube-coated wire coil
TWI424954B (en) Carbon nanotube composite structure
CN113922212B (en) Corona igniter assembly and method of making same
JP6719244B2 (en) Carbon nanotube wire connecting method and carbon nanotube wire connecting structure
JP7097165B2 (en) Method for manufacturing carbon nanotube wire rod, carbon nanotube wire rod connection structure and carbon nanotube wire rod
JP2018129273A (en) Conductive material, electric machine comprising conductive material, and method of producing conductive material
JP7348714B2 (en) Carbon nanotube wire, carbon nanotube-coated electric wire, method for producing carbon nanotube wire, and method for processing carbon nanotube-coated electric wire
TWI511581B (en) Loudspeaker
JP2020181686A (en) Carbon nanotube wire material, carbon nanotube wire material connecting structure, and manufacturing method of carbon nanotube wire material
JP2020181687A (en) Carbon nanotube wire material, carbon nanotube wire material connecting structure, and manufacturing method of carbon nanotube wire material
KR20220080231A (en) Electromagnetic Shielding Filler With Spherical Core Shell Structure, Method For Manufacturing The Same, And Electromagnetic Shielding Cable Using The Same
TW201543504A (en) Multi-core conductive metal wire and method of making same
JP2023148771A (en) Carbon nanotube wire material composite
IT202100001685U1 (en) INNOVATIVE WIRES FOR IGNITION COILS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786676

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11786676

Country of ref document: EP

Kind code of ref document: A1