JP2017152653A - 半導体発光素子の製造方法、半導体発光素子用ウェハの製造方法 - Google Patents

半導体発光素子の製造方法、半導体発光素子用ウェハの製造方法 Download PDF

Info

Publication number
JP2017152653A
JP2017152653A JP2016036244A JP2016036244A JP2017152653A JP 2017152653 A JP2017152653 A JP 2017152653A JP 2016036244 A JP2016036244 A JP 2016036244A JP 2016036244 A JP2016036244 A JP 2016036244A JP 2017152653 A JP2017152653 A JP 2017152653A
Authority
JP
Japan
Prior art keywords
semiconductor layer
light
layer
semiconductor
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016036244A
Other languages
English (en)
Inventor
月原 政志
Masashi Tsukihara
政志 月原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP2016036244A priority Critical patent/JP2017152653A/ja
Publication of JP2017152653A publication Critical patent/JP2017152653A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Recrystallisation Techniques (AREA)
  • Led Devices (AREA)

Abstract

【課題】結晶品質の高い半導体層を有する発光素子を、簡易な方法で製造する。【解決手段】 半導体発光素子用ウェハの製造方法であって、成長基板を準備する工程(a)と、成長基板の上層に半導体層を形成する工程(b)と、半導体層に対して励起光を照射する工程(c)と、工程(c)の実行時に半導体層から放射される蛍光を受光する工程(d)と、工程(d)において受光される蛍光の光出力に基づいて半導体層の良否判定を行う工程(e)とを有する。【選択図】 図3H

Description

本発明は、半導体発光素子の製造方法、及び半導体発光素子用ウェハの製造方法に関する。
近年、窒化物半導体を用いた発光素子の開発が進められている。この発光素子は、n型半導体層と、p型半導体層と、これらn型半導体層及びp型半導体層に挟まれるように形成された活性層とを含んで構成される。n型半導体層とp型半導体層の間に電位差が設けられることで両者間に電流が流れ、活性層内で電子と正孔が再結合して発光する。活性層内で生成されたこの光を有効に利用すべく、種々の研究開発が進められている。
図7は、特許文献1に開示された、窒化物半導体発光素子の断面図を模式的に示したものである。発光素子90は、基板91上に導電層92、反射膜93、絶縁層94、反射電極95、半導体層99、及びn側電極100を備えて構成される。半導体層99は、p型半導体層96、活性層97、及びn型半導体層98が基板91側から順に積層されて構成される。
絶縁層94の下層には金属材料からなる反射膜93が形成されているが、この反射膜93はオーミック性を有さず電極としての機能を奏さない。一方、反射電極95は金属材料からなり、p型半導体層96の間でオーミック接触が実現されることで電極(p側電極)として機能している。
反射電極95は、活性層97で生成された光のうち、基板91に向かう方向(図面下向き)に放射された光を反射させてn側半導体層98側(図面上向き)に取り出すことで、光の取り出し効率を高める目的を兼ねている。反射膜93も同様の目的で形成されており、反射電極95が形成されていない箇所を通過して下向きに進行した光を反射させてn側半導体層98側に進行方向を変えることで、光の取り出し効率が高められる。
特許第4207781号公報
図7に示される発光素子90のような、窒化物半導体で発光素子を形成する場合には、半導体層を成長させるための成長基板として、半導体層とは異なる材料からなる基板が一般的に使用される。特許文献1においても、サファイア基板の上面に、サファイアとは異なる材料である半導体層を成長させる旨の記述がなされている。
しかし、このような異種基板上に半導体層を成長させる場合、基板と半導体との間の格子不整合が不可避的に発生する。このような格子不整合は、半導体層内の特定の箇所に、クラックや組成の異なる領域を生じさせることがある。かかる現象は、光出力の低下を招く原因となる。
近年、上記のような結晶品質の低い半導体層にならないように、結晶品質を高めて半導体層を成長させる方法について開発が進められている。しかし、結晶品質を極めて向上させた半導体層を成長させるには、製造プロセスが煩雑化し、素子としての製造単価が著しく上昇してしまうなど、実用的な面で課題がある。
ところで、従来、予め品質が低いウェハを製造ラインから排除すべく、光学顕微鏡を用いて外観検査を行う方法が知られている。この方法では、半導体層の表面に白色光を照射し、クラックの存否によって白色光の反射の程度が異なる現象を利用して、反射光の照度によって目視でクラックの有無を検査している。しかし、本発明者の鋭意研究によれば、半導体層の表面で白色光が散乱し、クラックの視認が難しい場合があることが分かった。
図8は、クラックを有した半導体層を含む発光素子に対して白色光を照射したときの写真であるが、写真からはクラックが全く確認できない。このような方法で検査を行った場合、良品として判定された素子にクラック等が存在することで、低い光出力しか実現できなかったり、寿命特性の低い素子が市場に流通するおそれがある。
本発明は、上記の課題に鑑み、結晶品質の高い半導体層を有する発光素子を、簡易な方法で製造することを目的とする。
本発明の第一態様は、半導体発光素子用ウェハの製造方法であって、
成長基板を準備する工程(a)と、
前記成長基板の上層に半導体層を形成する工程(b)と、
前記半導体層に対して励起光を照射する工程(c)と、
前記工程(c)の実行時に前記半導体層から放射される蛍光を受光する工程(d)と、
前記工程(d)において受光される蛍光の光出力に基づいて前記半導体層の良否判定を行う工程(e)とを有することを特徴とする。
本発明者の鋭意研究により、結晶欠陥やクラック等の不良部を有する半導体層に対して励起光を照射した場合、当該不良部の存在箇所と、不良部が存在しない箇所とで、蛍光の光出力が異なることが確認された。よって、上記方法によれば、受光された蛍光の出力によって、不良部の存否を確認することができる。
図1は、図8の素子に対して励起光を照射し、発せされる蛍光を観察した写真である。図1によれば、周囲よりも光強度の弱い領域2が斜めの線として黒っぽく現れている。このような領域は、図8の写真では確認されていない。図1の写真より、この領域2内の半導体層には不良部が存在しているため、他の領域よりも蛍光の強度が弱くなっていると考えられる。
特に、励起光として紫外光を用いる場合には、白色光を照射する場合のように、半導体層の表面で反射された光で視認が困難になるということがない。すなわち、励起光を可視域にない波長帯の光とし、蛍光を可視域の波長帯の光とすることで、不良部の判定精度を更に高めることができる。
前記工程(e)は、前記半導体層の特定箇所から受光された蛍光強度が所定の閾値以下である場合に、前記半導体層の前記特定箇所に不良部を有すると判断する工程とすることができる。
半導体層内にクラックが存在する場合や、複数の異なる準位が存在する場合には、励起光が照射されたときに生じる蛍光の強度が弱まる。よって、所定の閾値以下の蛍光しか受光されなかった場合をもって、不良部が存在すると判断することができる。
前記工程(d)は、前記蛍光のうち、所定の波長帯の光を選択して受光する工程であり、
前記工程(e)は、前記半導体層の特定箇所から受光された、前記所定の波長帯の蛍光強度が所定の閾値以下である場合に、前記半導体層の前記特定箇所に不良部を有すると判断するものとしても構わない。
半導体層内に組成の異なる領域が存在する場合には、当該領域は、周囲と比較してバンドギャップエネルギーが異なる。このため、当該領域に励起光が照射された場合に生じる蛍光の波長と、本来の半導体層の組成を示す領域に励起光が照射された場合に生じる蛍光の波長とが異なる。よって、本来の半導体層の組成を示す領域に励起光が照射された場合に生じるであろう蛍光が示す波長帯の光を選択的に受光したときに、受光された光の強度が閾値以下である場合には、当該領域に不良部が存在すると判断することができる。
前記工程(b)は、窒化物半導体からなる前記半導体層を形成する工程であるものとしても構わない。このとき、前記半導体層は、Alを含む窒化物半導体を有し、前記励起光は、紫外光であるものとしても構わない。
Alを含む窒化物半導体を成長させる場合においては、特に、半導体層の表面に異常な凹凸部が形成されていると、結晶の配列が乱れ、半導体層における組成が所望する値から異なってしまう場合があり、不良部を形成しやすい。このような場合に、上記の方法によれば、予め不良部が存在するか否かの判定を行うことができるため、高品質なウェハを市場に提供することが可能となる。
本発明の第二態様は、半導体発光素子の製造方法であって、
成長基板を準備する工程(a)と、
前記成長基板の上層に、n型又はp型の第一半導体層、活性層、及び前記第一半導体層とは導電型の異なる第二半導体層を含む半導体層を形成する工程(b)と、
前記半導体層に対して励起光を照射する工程(c)と、
前記工程(c)の実行時に前記半導体層から放射される蛍光を受光する工程(d)と、
前記工程(d)において受光される蛍光の光出力に基づいて前記半導体層の良否判定を行う工程(e)と、
前記工程(b)の後に、前記第二半導体層の上層に第二電極を形成する工程(f)と、
前記第二電極の上層に、前記成長基板とは別の基板を貼り合わせる工程(g)と、
前記工程(g)の後に、前記成長基板を剥離して、前記第一半導体層を露出させる工程(h)と、
前記第一半導体層の上面に第一電極を形成する工程(i)とを有することを特徴とする。
上記方法によれば、蛍光の光出力に基づいて半導体層の良否判定が行われる。このため、良品と判定された素子のみを後の工程に送る等の処置を施すことで、品質の高い発光素子を市場に供給することができる。また、上記方法によれば、励起光を半導体層に照射して、半導体層から放出される蛍光を受光するのみでよく、簡易な方法で良不良判定を行うことができる。よって、製造コストを高騰させることなく、品質の高い発光素子を市場に提供することが可能となる。
前記工程(e)は、前記半導体層の特定箇所から受光された蛍光強度が所定の閾値以下である場合に、前記半導体層の前記特定箇所に不良部を有すると判断するものとしても構わない。
前記工程(d)は、前記蛍光のうち、所定の波長帯の光を選択して受光する工程であり、
前記工程(e)は、前記半導体層の特定箇所から受光された、前記所定の波長帯の蛍光強度が所定の閾値以下である場合に、前記半導体層の前記特定箇所に不良部を有すると判断する工程であるものとしても構わない。
前記工程(c)、前記工程(d)、及び前記工程(e)は、前記工程(h)の後で、前記工程(i)の前に実行されるものとしても構わない。工程(h)の後で、工程(i)の前において、半導体層が完全に露出されているため、半導体層の全面に対して励起光を照射することができ、良不良判定の精度を向上させることができる。
前記工程(i)の後、ウェハをチップ毎に分割する工程(j)と、
各チップに対して実装処理を行う工程(k)とを有し、
前記工程(c)、前記工程(d)、及び前記工程(e)は、前記工程(k)の前に実行され、
前記工程(e)において良品と判定された前記チップに対してのみ前記工程(k)が実行されるものとしても構わない。
前記工程(b)は、窒化物半導体からなる前記半導体層を形成する工程であるものとすることができる。
前記半導体層は、Alを含む窒化物半導体を有し、
前記工程(c)は、紫外光を照射する工程であるものとすることができる。
本発明によれば、安価で高輝度の半導体発光素子が実現される。
クラックを有した半導体層を含む発光素子に対して励起光を照射し、発せされる蛍光を観察した写真である。 半導体発光素子の一実施形態の構成を模式的に示す平面図である。 半導体発光素子の一実施形態の構成を模式的に示す断面図である。 半導体発光素子の製造方法における一工程を模式的に示す断面図である。 半導体発光素子の製造方法における一工程を模式的に示す断面図である。 半導体発光素子の製造方法における一工程を模式的に示す断面図である。 半導体発光素子の製造方法における一工程を模式的に示す断面図である。 半導体発光素子の製造方法における一工程を模式的に示す断面図である。 半導体発光素子の製造方法における一工程を模式的に示す断面図である。 半導体発光素子の製造方法における一工程を模式的に示す断面図である。 半導体発光素子の製造方法における一工程を模式的に示す断面図である。 半導体発光素子の製造方法における一工程を模式的に示す断面図である。 半導体発光素子の製造方法における一工程を模式的に示す断面図である。 一部の領域に不良部が存在する場合の半導体層のエネルギーバンド図を模式的に示したものである。 一部の領域に不良部が存在する場合の半導体層のエネルギーバンド図を模式的に示したものである。 一部の領域に不良部が存在する場合の半導体層のエネルギーバンド図を模式的に示したものである。 正常な組成を示す半導体層を含む発光素子に対して励起光を照射し、発せされる蛍光を観察した写真である。 一部の領域に組成異常部が存在する半導体層を含む発光素子に対して励起光を照射し、発せされる蛍光を観察した写真である。 半導体発光素子の別実施形態の構成を模式的に示す断面図である。 半導体発光素子の別実施形態の構成を模式的に示す平面図である。 従来の半導体発光素子の構造を模式的に示す断面図である。 クラックを有した半導体層を含む発光素子に対して白色光を照射したときの写真である。
本発明の半導体発光素子の製造方法、及び半導体発光素子用ウェハの製造方法につき、図面を参照して説明する。各図において図面の寸法比と実際の寸法比は必ずしも一致しない。以下で説明する製造条件や膜厚等の寸法はあくまで一例であって、これらの数値に限定されるものではない。
また、以下において、「AlGaN」という記述は、AlmGa1-mN(0<m<1)という記述と同義であり、AlとGaの組成比の記述を単に省略して記載したものであって、AlとGaの組成比が1:1である場合に限定する趣旨ではない。「InGaN」等の記述についても同様である。
[構造]
図2A〜図2Bは、半導体発光素子の一実施形態の構成を模式的に示す図面である。図2Aは光取り出し方向から見たときの平面図に対応する。図2Bは、図2A内におけるX1−X1線で切断したときの断面図に対応する。以下では、光取り出し面をX−Y平面とし、このX−Y平面に直交する方向をZ方向と規定する。
図2Aは、上述した図1の写真に対応している。
半導体発光素子1は、図2Bに示すように、基板3と、基板3の上層に形成された半導体層5と、第一電極15と、第二電極13とを備える。以下では、半導体発光素子1を単に「発光素子1」と適宜略記することがある。
(基板3)
基板3は、例えばCuW、W、Moなどの導電性基板、又はSiなどの半導体基板で構成される。
(半導体層5)
本実施形態では、半導体層5は、基板3に近い側からp型半導体層11、活性層9、及びn型半導体層7が順に積層されて形成されている。本実施形態では、n型半導体層7が「第一半導体層」に対応し、p型半導体層11が「第二半導体層」に対応する。
p型半導体層11は、例えばMg、Be、Zn、又はCなどのp型不純物がドープされた窒化物半導体層で構成される。窒化物半導体層としては、例えばGaN、AlGaN、AlInGaN等を利用することができる。
活性層9は、例えばInGaNで構成される発光層及びn型AlGaNで構成される障壁層が周期的に繰り返されてなる半導体層で構成される。これらの層はアンドープでもp型又はn型にドープされていても構わない。活性層9は、少なくともエネルギーバンドギャップの異なる2種類の材料からなる層が積層されて構成されていればよい。活性層9の構成材料は、生成したい光の波長に応じて適宜選択される。本実施形態の発光素子1は、活性層9における主たる発光波長を410nm以下の紫外光とすることができる。例えば、主たる発光波長が365nmの場合、活性層9は、In0.05Ga0.95NとAl0.09Ga0.91Nとが繰り返し積層されて構成される。
n型半導体層7は、例えばSi、Ge、S、Se、Sn、又はTeなどのn型不純物がドープされた窒化物半導体層で構成される。この窒化物半導体層としては、例えばGaN、AlGaN、AlInGaN等を利用することができる。なお、n型半導体層7のn型不純物濃度は、例えば2〜5×1019/cm3程度に設定される。n型半導体層7のn型不純物濃度は、1×1018/cm3以上であるのが好ましく、1×1019/cm3以上であるのがより好ましい。
なお、n型半導体層7は、p型半導体層11と異なる組成の材料で構成されているものとしても構わない。
(第一電極15)
第一電極15は、半導体層5の面のうち、基板3に対して遠い側の面に接触して形成されている。より詳細には、第一電極15は、n型半導体層7の面に接触して形成されている。
本実施形態では、第一電極15はn側の電極を構成する。第一電極15は、例えば、Ni/Al/Ni/Ti/Auの多層構造の他、Cr/Au、Ti/Pt/Au、Ti/Pt/Cr/Au/Cr/Pt/Au等で構成することができる。
図2Aに示すように、第一電極15は、Z方向(基板3の面に直交する方向)に見たときに枠形状を示す。より詳細には、第一電極15の外縁部は、半導体層5の外縁部に沿って枠形状を有して構成されている。なお、図2Aに示す発光素子1は、枠形状を示す第一電極15の外縁部の内側の2箇所で、外縁部からX方向に離間した位置に、Y方向に延伸した2本の第一電極15を有している。しかし、枠形状を示す領域の内側において、第一電極15の延伸する本数は2本に限られるものではなく、1本でもよいし、3本以上であっても構わない。また、第一電極15の形状は枠形状に限定されない。図2Aに示した第一電極15の形状はあくまで一例であり、設計に応じて任意に変更可能である。
第一電極15は、一部の箇所において、電流供給線14が連結される電流供給部15aを含んで構成される。電流供給部15aは、第一電極15の他の領域と比較して幅広の領域を示す。電流供給線14は、例えばAu、Cuなどで構成されている。電流供給線14は、電流供給部15aが連結されている端部とは反対側の端部は、例えばパッケージ基板の給電パターンなどに接続されている。
(第二電極13)
第二電極13は、p型半導体層11に接触して形成されており、p型半導体層11との間でオーミック接触が形成されている。本実施形態では、第二電極13はp側電極を構成する。
第一電極15と第二電極13との間に電圧が印加されることで、活性層9内を電流が流れ、活性層9が発光する。
第二電極13は、活性層9から放射される光に対して高い反射率(例えば80%以上であり、より好ましくは90%以上)を示す導電性の材料で構成されるのが好ましい。より具体的には、第二電極13は、例えばAg、Al、又はRhを含む材料で構成される。上述したように、図2Aに示す発光素子1は、活性層9から放射された光をn型半導体層7側に取り出すことが想定されている。第二電極13が高い反射率を示す材料で構成されることで、活性層9から基板3側に向けて放射された光がn型半導体層7側に向けて反射されるため、光取り出し効率が高められる。
(導電層20)
導電層20は、基板3の上層に形成されている。本実施形態では、導電層20は、保護層23、接合層21、接合層19、及び保護層17の多層構造で構成されている。
接合層19及び接合層21は、例えばAu−Sn、Au−In、Au−Cu−Sn、Cu−Sn、Pd−Sn、Snなどで構成される。後述するように、これらの接合層19と接合層21は、基板3上に形成された接合層21と、別の基板(後述する成長基板25)上に形成された接合層19を対向させた後に、両者を貼り合わせることで形成されたものである。これらの接合層19及び接合層21は、単一の層として一体化されているものとしても構わない。
保護層17は、例えばNi/Ti/Pt、TiW/Pt等の多層構造で構成されており、接合層(19,21)を構成する材料が第二電極13側に拡散して、第二電極13の反射率が低下することを抑制する目的で設けられている。ただし、発光素子1が保護層17を備えるか否かは任意である。
保護層23は、例えば保護層17と同一の材料で構成され、接合層(19,21)を構成する材料が基板3側に拡散するのを抑制する目的で設けられている。ただし、発光素子1が保護層23を備えるか否かは任意である。
(電流遮断層24)
本実施形態の発光素子1は、Z方向に関して第一電極15と対向する位置であって、第二電極13に接触するように形成された、電流遮断層24を備える。電流遮断層24は、例えばSiO2、SiN、Zr23、AlN、Al23などで構成される。電流遮断層24は、活性層9を流れる電流を、XY平面に平行な方向に拡げる役割を果たしている。ただし、発光素子1が電流遮断層24を備えるか否かは任意である。
[製造方法]
次に、発光素子1の製造方法につき、図面を参照して説明する。
(ステップS1)
まず、図3Aに示すように、成長基板25を準備する。成長基板25としては、一例としてC面を有するサファイア基板を用いることができる。
準備工程として、成長基板25のクリーニングを行う。このクリーニングは、より具体的な一例としては、MOCVD(Metal Organic Chemical Vapor Deposition:有機金属化学気相蒸着)装置の処理炉内に成長基板25を配置し、処理炉内に所定の流量の水素ガスを流しながら、炉内温度を例えば1150℃に昇温することにより行われる。
ステップS1が工程(a)に対応する。
(ステップS2)
図3Bに示すように、成長基板25の上層に、下地層27、n型半導体層7、活性層9、及びp型半導体層11を順に形成する。このステップS2は、例えば以下の手順で行われる。
まず、МОCVD装置の炉内圧力を100kPa、炉内温度を480℃とする。そして、処理炉内にキャリアガスとして流量がそれぞれ5slmの窒素ガス及び水素ガスを流しながら、原料ガスとして、流量が50μmol/minのトリメチルガリウム(TMG)及び流量が250000μmol/minのアンモニアを処理炉内に68秒間供給する。これにより、成長基板25の表面に、厚みが20nmのGaNよりなる低温バッファ層を形成する。
次に、MOCVD装置の炉内温度を1150℃に昇温する。そして、処理炉内に、キャリアガスとして、流量が20slmの窒素ガス及び流量が15slmの水素ガスを流しながら、原料ガスとして、流量が100μmol/minのTMG及び流量が250000μmol/minのアンモニアを処理炉内に30分間供給する。これにより、低温バッファ層の表面に、厚みが1.7μmのGaNよりなるバッファ層を形成する。これらのバッファ層により下地層27が形成される。
次に、下地層27の上層にn型半導体層7を形成する。n型半導体層7の具体的な形成方法は、例えば以下の通りである。
引き続き炉内温度を1150℃とした状態で、MOCVD装置の炉内圧力を30kPaとする。そして、処理炉内にキャリアガスとして流量が20slmの窒素ガス及び流量が15slmの水素ガスを流しながら、原料ガスとして、流量が94μmol/minのTMG、流量が6μmol/minのトリメチルアルミニウム(TMA)、流量が250000μmol/minのアンモニア及び流量が0.013μmol/minのテトラエチルシランを処理炉内に60分間供給する。これにより、例えばAl0.06Ga0.94Nの組成を有し、厚みが2μm、n型不純物濃度が3×1019/cm3のn型半導体層7が下地層27の上層に形成される。なお、n型半導体層7をGaN又はAlGaNで構成する場合、Alの組成比は、0%以上15%以下であるのが好ましく、2%以上11%以下であるのがより好ましく、5%以上9%以下であるのが更により好ましい。
なお、この後、TMAの供給を停止すると共に、それ以外の原料ガスを6秒間供給することにより、n型AlGaN層の上層に、厚みが5nm程度のn型GaNよりなる保護層を有してなるn型半導体層7を実現してもよい。
上記の説明では、n型半導体層7に含まれるn型不純物をSiとする場合について説明したが、n型不純物としては、Si以外にGe、S、Se、Sn又はTe等を用いることができる。
次に、n型半導体層7の上層に活性層9を形成する。活性層9の具体的な形成方法は、例えば以下の通りである。
まずMOCVD装置の炉内圧力を100kPa、炉内温度を830℃とする。そして、処理炉内にキャリアガスとして流量が15slmの窒素ガス及び流量が1slmの水素ガスを流しながら、原料ガスとして、流量が10μmol/minのTMG、流量が12μmol/minのトリメチルインジウム(TMI)及び流量が300000μmol/minのアンモニアを処理炉内に48秒間供給するステップを行う。その後、流量が10μmol/minのTMG、流量が1.6μmol/minのTMA、0.002μmol/minのテトラエチルシラン及び流量が300000μmol/minのアンモニアを処理炉内に120秒間供給するステップを行う。以下、これらの2つのステップを繰り返すことにより、厚みが2nmのInGaNよりなる発光層、及び厚みが7nmのn型AlGaNよりなる障壁層が15周期積層されてなる活性層9が、n型半導体層7の上層に形成される。
なお、活性層9から放射される光の波長を410nm以下とする場合には、発光層を構成するInGaNのIn組成比を10%以下とするのが好ましい。この場合、障壁層を構成するGaN又はAlGaNのAl組成比を、0%以上15%以下とするのが好ましく、2%以上13%以下とするのがより好ましく、5%以上10%以下とするのが更により好ましい。
次に、活性層9の上層にp型半導体層11を形成する。p型半導体層11の具体的な形成方法は、例えば以下の通りである。
具体的には、MOCVD装置の炉内圧力を100kPaに維持し、処理炉内にキャリアガスとして流量が15slmの窒素ガス及び流量が25slmの水素ガスを流しながら、炉内温度を1025℃に昇温する。その後、原料ガスとして、流量が35μmol/minのTMG、流量が20μmol/minのTMA、流量が250000μmol/minのアンモニア及びp型不純物をドープするための流量が0.1μmol/minのビスシクロペンタジエニルマグネシウム(Cp2Mg)を処理炉内に60秒間供給する。これにより、活性層9の表面に、厚みが20nmのAl0.3Ga0.7Nの組成を有する正孔供給層を形成する。その後、TMAの流量を4μmol/minに変更して原料ガスを360秒間供給することにより、厚みが120nmのAl0.13Ga0.87Nの組成を有する正孔供給層を形成する。これらの正孔供給層によりp型半導体層11が形成される。なお、これらの正孔供給層のp型不純物濃度は、例えば2〜5/cm3程度に設定される。
なお、この工程の後、TMAの供給を停止すると共に、CP2Mgの流量を0.2μmol/minに変更して原料ガスを20秒間供給することにより、厚みが5nm程度で、p型不純物濃度が1×1020/cm3程度のp型GaN層を有してなるp型半導体層11を実現してもよい。
上記の説明では、p型半導体層11に含まれるp型不純物をMgとする場合について説明したが、p型不純物としては、Mg以外に、Be、Zn、又はC等を用いることもできる。
ステップS2が工程(b)に対応する。
(ステップS3)
ステップS2で得られたウェハに対して活性化処理を行う。具体的な一例としては、RTA(Rapid Thermal Anneal:急速加熱)装置を用いて、窒素雰囲気下中650℃で15分間の活性化処理を行う。
(ステップS4)
図3Cに示すように、p型半導体層11の上層に、電流遮断層24を形成する。電流遮断層24は、例えば、SiO2、SiN、Zr23、AlN、又はAl23等をスパッタリング法等によって成膜することで形成される。なお、本ステップS4において、電流遮断層24は、後のステップS13で第一電極15を形成する予定の領域に対して、Z方向に対向する位置に形成される。
(ステップS5)
図3Cに示すように、p型半導体層11の所定の領域の上面に第二電極13を形成する。ここでは、第二電極13を電流遮断層24の上面にも形成しているが、第二電極13の形状は任意に選択される。第二電極13は、例えば、スパッタリング装置にてNi/Agを成膜した後、RTA装置を用いてドライエア雰囲気中でコンタクトアニールを行うことで形成される。ここでは、一例として、第二電極13の材料としてNiとAgの合金を挙げたが、Al、Rh、AgとPdとCuの合金等を用いることもできる。上述したように、第二電極13の材料としては、活性層9から放射される光に対する反射率の高い材料を用いるのが好ましい。
本ステップS5が工程(f)に対応する。
(ステップS6)
次に、図3Cに示すように、第二電極13の上面に保護層17を形成し、保護層17の上面に接合層19を形成する。
保護層17は、例えば、電子線蒸着装置(EB装置)を用いて、膜厚80nmのNi、膜厚100nmのTi、及び膜厚200nmのPtを成膜することで形成される。なお、保護層17の材料としては、Ni/Ti/Pt以外にも、TiW/Pt等を用いることができる。
その後、保護層17の上面に、膜厚10nmのTiを蒸着させた後、Au80%Sn20%で構成されるAu−Snハンダを膜厚3μm蒸着させることで、接合層19が形成される。なお、接合層19としては、Au−Snハンダの他、Au−In、Au−Cu−Sn、Cu−Sn、Pd−Sn、Sn等を利用することができる。
(ステップS7)
図3Dに示すように、成長基板25とは別に準備された基板3の上面に、保護層23及び接合層21を形成する。基板3としては、上述したようにCuW、W、Mo等の導電性基板、又はSi等の半導体基板を利用することができる。保護層23は、保護層17と同様に形成することができ、接合層21は、接合層19と同様に形成することができる。保護層23を設けるか否かは任意である。
(ステップS8)
図3Eに示すように、成長基板25の上層に形成された接合層19と、基板3の上層に形成された接合層21を貼り合わせることで、成長基板25と基板3の貼り合わせを行う。具体的な一例としては、280℃の温度、0.2MPaの圧力下で、貼り合わせ処理が行われる。
この工程により、接合層19及び接合層21が溶融して接合されることで、基板3と成長基板25が表裏面に貼り合わされた構造が形成される。つまり、接合層19と接合層21は、本ステップ以後においては一体化されているものとして構わない。そして、本ステップS8の実行前の段階で保護層23及び保護層17が形成されていることで、接合層(19,21)の構成材料の拡散が抑制されている。
本ステップS8が、工程(g)に対応する。
(ステップS9)
図3Fに示すように、成長基板25を剥離する。より具体的には、成長基板25側からレーザ光を照射する。ここで、照射するレーザ光を、成長基板25の構成材料(本実施形態ではサファイア)を透過し、下地層27の構成材料(本実施形態ではGaN)によって吸収されるような波長の光とする。これにより、下地層27でレーザ光が吸収されるため、成長基板25と下地層27の界面が高温化してGaNが分解され、成長基板25が剥離される。
(ステップS10)
ウェハ上に残存している金属Gaを塩酸等を用いて除去した後、GaN(下地層27)をICP装置を用いたドライエッチングによって除去し、n型半導体層7を露出させる(図3G参照)。
ステップS9及びS10が工程(h)に対応する。
(ステップS11)
光源部51から半導体層5に対して所定の波長を有する励起光55を照射する。そして、受光部52において、半導体層5から発せられる蛍光56を受光し、受光された強度に関する情報を演算部53に出力する。演算部53では、蛍光56の強度を例えば、半導体層5内の場所毎に、所定の閾値と大小比較を行う。演算部53は、受光部52で受光された強度が閾値以下である場合には当該強度を示す半導体層5内の領域に不良部が存在すると判断する。
光源部51は、任意の光源を利用することができる。一例として、発光ダイオード素子、レーザ素子、固体レーザ、放電ランプ等を利用することができる。なお、光源部51として、良品判定がされた発光素子1を用いることも可能である。
受光部52は、例えばフォトトランジスタ、フォトダイオード、イメージセンサ等の、受光光量に応じて電気信号を生成可能な受光素子を利用することができる。
演算部53は、CPU、マイコン等の演算装置にて実現することができる。
図4A〜図4Cは、一部の領域A2に不良部が存在する場合の半導体層5のエネルギーバンド図を模式的に示したものである。
図4Aは、領域A2にクラックが発生している場合のエネルギーバンド図を模式的に示している。領域A1に励起光が照射されると、電子が励起され、蛍光L1が発せられる。一方、領域A2にはそもそも半導体層5が存在しないため、励起される電子が存在せず、蛍光が発生しない。よって、図4Aのような構成の場合、受光部52において受光された蛍光の強度が閾値以下である領域A2には不良部が存在すると判断される。
図4Bは、領域A2内に半導体層5が構成する準位とは異なる準位が存在する場合のエネルギーバンド図を模式的に示している。半導体層5内に結晶欠陥が存在すると、電子捕獲準位が形成される。このような構成の下で、領域A2に励起光が照射されると、伝導帯に存在していた自由電子が、電子捕獲準位に順次トラップされることで、熱変換され、蛍光が生じない場合がある。また、電子捕獲準位にトラップされる際に、蛍光L2を発する場合もある。
図4Bの場合においても、領域A1内で発せられる蛍光L1と比較として、領域A2から発せられる蛍光L2の強度は低くなる。よって、図4Bのような構成の場合、受光部52において受光された蛍光の強度が閾値以下である領域A2には不良部が存在すると判断される。
図4Cは、領域A2内に領域A1とは組成の異なる半導体層5が形成されている場合のエネルギーバンド図を模式的に示している。特に、Alを含む窒化物半導体層を成長させる場合において、半導体層表面に異常な凹凸が形成されているときには、結晶の配列が乱れ、半導体層5における組成が所定値から変化した組成異常部がランダムに形成されることがある。このとき、半導体層5内において、Al組成の異なる領域が形成される。
このとき、図4Cに示すように、周囲と組成の異なる領域A2は、領域A1と比較してエネルギーバンドギャップの大きさが異なる。よって、領域A2から発せられる蛍光L2は、領域A1から発せされる蛍光L1と比較して波長が異なる。この場合、受光部52には、予め、半導体層5が所望の組成を示す場合に発せられるであろう蛍光L1の波長を含む波長帯の光を選択的に受光する波長選択素子(フィルタ)を備えているものとして構わない。このように構成されるとき、図4Aや図4Bの場合と同様に、受光部52において受光された蛍光の強度が閾値以下である領域A2には不良部が存在すると判断される。
図5Aは、組成異常部を有しない半導体層5を含む発光素子に対して励起光を照射したときの写真であり、図5Bは、組成異常部を有する半導体層5を含む発光素子に対して励起光を照射したときの写真である。図5Bに示す写真によれば、特定の箇所に明るさの異なる部位2aが確認される。これは、当該部位2aから、他の箇所とは波長の異なる蛍光が発せられていることを示唆するものである。
このステップS11が工程(c)、(d)、及び(e)に対応する。なお、光源部51から発せされる励起光の波長は、適宜選択されるが、例えば320nm〜380nmの紫外域とすることができる。演算部53は、不良部が存在すると判断した半導体層5の場所を記憶可能に構成されているものとしても構わない。
(ステップS12)
図3Iに示すように、隣接する素子同士を分離する。具体的には、隣接素子との境界領域に対し、ICP装置を用いて、素子分離領域に形成された電流遮断層24の上面が露出するまで半導体層5をエッチングする。このとき、電流遮断層24がエッチングストッパー層として機能する。なお、図3Iでは、半導体層5の側面が鉛直方向に対して傾斜を有するように図示しているが、これは一例であって、このような形状に限定する趣旨ではない。
(ステップS13)
図3Jに示すように、n型半導体層7の上面の一部に、第一電極15を形成する。例えば、電子線蒸着装置によって例えばNi/Al/Ni/Ti/Auからなる導電性材料を、例えば膜厚3μm程度蒸着させる。
本ステップS13を経て形成される第一電極15は、図2Aを参照して上述したように、外縁部が枠形状を示す。また、本実施形態では、特に、第一電極15は、Z方向(基板3の面に直交する方向)に関し、電流遮断層24と対向する位置に配置される。
本ステップS13が工程(i)に対応する。
(ステップS14)
ウェハをチップ単位に分割する。具体的な一例としては、各素子同士を例えばレーザダイシング装置によって分離する。このステップS14が工程(j)に対応する。
(ステップS15)
チップ単位に分割された各素子に対し実装処理を行う。具体的には、基板3の裏面を例えばAgペーストにてパッケージと接合し、電流供給部15aに対して電流供給線14を連結させる。例えば、50gの荷重で、Φ100μmの電流供給部15aにAuからなる電流供給線14を連結させることで、ワイヤボンディングを行う。これにより、発光素子1が形成される。
なお、このステップS15において、ステップS11で不良部が存在すると判断された領域に対応するチップについては、本ステップS15を行わず、不良部が存在しないと判断されたチップに対してのみ本ステップS15を行うものとしても構わない。
ステップS15が工程(k)に対応する。
[作用]
上記の方法で半導体発光素子1を製造することにより、不良部を有すると判定された発光素子については後の工程に送らずに、不良部が存在しないと判定された発光素子についてのみを後の工程に送ることができる。特に、ステップS11のように、励起光を照射して受光された蛍光の光強度を確認するのみで良不良判定が行えるため、ウェハ単位で一括して判定処理を行うことができる。また、白色光とは異なり、紫外光を励起光として照射するため、散乱光によって判定精度が低下するという課題も生じにくい。よって、製造プロセスを複雑化することなく、高精度に良不良判定を行うことができる。
[別実施形態]
以下、別実施形態について説明する。
〈1〉 上述した実施形態では、ステップS11を、ステップS10とステップS12の間に実行する場合について説明した。しかし、ステップS11は、種々のタイミングで実行することができる。
例えば、ステップS3の後にステップS11を実行しても構わない。この場合、図3Bに示されるウェハの良不良判定が可能となる。よって、図3Bに示されるようなウェハを流通させる場合においては、良品のみを流通させることができる。
また、ステップS12に係る素子分離工程を実行した後や、ステップS13に係る第一電極15の形成工程を実行した後に、ステップS11の判定処理を行っても構わない。すなわち、ステップS3より後で、ステップS14より前の任意のタイミングで、ステップS11を実行しても構わない。
〈2〉 上述した各実施形態において、半導体発光素子1は図2A〜図2Bに示すような構造であるものとして説明した。しかし、半導体発光素子1の構造は、上記に限られない。図6A及び図6Bは、半導体発光素子1の別の構造を模式的に示す図面である。図6Aは平面図に対応し、図6Bは断面図に対応する。
この構造を製造するに際しては、ステップS1〜S3を実行後に、ステップS11を行って、半導体層5の良不良判定を行う。その後、以下のステップを行う。
(ステップS21)
良品として判定された領域内において、一部の領域に形成されたp型半導体層11及び活性層9を、n型半導体層7の上面が露出するまでエッチングする。
(ステップS22)
p型半導体層11の所定の領域の上面に第二電極13を形成し、露出されたn型半導体層7の所定の領域の上面に第一電極15を形成する。なお、この構造においては、第二電極13は第一電極15と同じ材料で構成しても構わない。その後、必要な実装処理を行う。
〈3〉 上記の実施形態では、半導体層5を構成する層のうち、基板3に近い側をp型半導体層11とし、基板3から遠い側をn型半導体層7として説明したが、これらの導電型を反転させても構わない。
〈4〉 上述したように、図2Bに示す発光素子1が電流遮断層24を備えるか否かは任意である。
なお、電流遮断層24を備える場合において、素子分離領域においては絶縁層からなる電流遮断層24を形成する一方、Z方向に関して第一電極15に対向する位置には、金属材料からなる電流遮断層24を備える構成としても構わない。この電流遮断層24は、例えば、第二電極13と同一の材料で構成され、p型半導体層11との間でショットキー接触が形成されているものとすることができる。この場合においても、電流遮断層24とp型半導体層11との接触抵抗は、第二電極13とp型半導体層11との接触抵抗よりも高いため、活性層9内を流れる電流を基板3の面に平行な方向に拡げる効果が発揮される。
1 : 半導体発光素子
2 : 蛍光強度が周囲よりも低い領域
3 : 基板
5 : 半導体層
7 : n型半導体層
9 : 活性層
11 : p型半導体層
13 : 第二電極
14 : 電流供給線
15 : 第一電極
15a : 電流供給部
17 : 保護層
19 : 接合層
20 : 導電層
21 : 接合層
23 : 保護層
24 : 電流遮断層
25 : 成長基板
27 : 下地層
51 : 光源部
52 : 受光部
53 : 演算部
55 : 励起光
56 : 蛍光
90 : 従来の半導体発光素子
91 : 基板
92 : 導電層
93 : 反射膜
94 : 絶縁層
95 : 反射電極
96 : p型半導体層
97 : 活性層
98 : n型半導体層
99 : 半導体層
100 : n側電極

Claims (12)

  1. 半導体発光素子用ウェハの製造方法であって、
    成長基板を準備する工程(a)と、
    前記成長基板の上層に半導体層を形成する工程(b)と、
    前記半導体層に対して励起光を照射する工程(c)と、
    前記工程(c)の実行時に前記半導体層から放射される蛍光を受光する工程(d)と、
    前記工程(d)において受光される蛍光の光出力に基づいて前記半導体層の良否判定を行う工程(e)とを有することを特徴とする半導体発光素子用ウェハの製造方法。
  2. 前記工程(e)は、前記半導体層の特定箇所から受光された蛍光強度が所定の閾値以下である場合に、前記半導体層の前記特定箇所に不良部を有すると判断する工程であることを特徴とする請求項1に記載の半導体発光素子用ウェハの製造方法。
  3. 前記工程(d)は、前記蛍光のうち、所定の波長帯の光を選択して受光する工程であり、
    前記工程(e)は、前記半導体層の特定箇所から受光された、前記所定の波長帯の蛍光強度が所定の閾値以下である場合に、前記半導体層の前記特定箇所に不良部を有すると判断する工程であることを特徴とする請求項1に記載の半導体発光素子用ウェハの製造方法。
  4. 前記工程(b)は、窒化物半導体からなる前記半導体層を形成する工程であることを特徴とする請求項1〜3のいずれか1項に記載の半導体発光素子用ウェハの製造方法。
  5. 前記半導体層は、Alを含む窒化物半導体を有し、
    前記励起光は、紫外光であることを特徴とする請求項4に記載の半導体発光素子用ウェハの製造方法。
  6. 半導体発光素子の製造方法であって、
    成長基板を準備する工程(a)と、
    前記成長基板の上層に、n型又はp型の第一半導体層、活性層、及び前記第一半導体層とは導電型の異なる第二半導体層を含む半導体層を形成する工程(b)と、
    前記半導体層に対して励起光を照射する工程(c)と、
    前記工程(c)の実行時に前記半導体層から放射される蛍光を受光する工程(d)と、
    前記工程(d)において受光される蛍光の光出力に基づいて前記半導体層の良否判定を行う工程(e)と、
    前記工程(b)の後に、前記第二半導体層の上層に第二電極を形成する工程(f)と、
    前記第二電極の上層に、前記成長基板とは別の基板を貼り合わせる工程(g)と、
    前記工程(g)の後に、前記成長基板を剥離して、前記第一半導体層を露出させる工程(h)と、
    前記第一半導体層の上面に第一電極を形成する工程(i)とを有することを特徴とする半導体発光素子の製造方法。
  7. 前記工程(e)は、前記半導体層の特定箇所から受光された蛍光強度が所定の閾値以下である場合に、前記半導体層の前記特定箇所に不良部を有すると判断する工程であることを特徴とする請求項6に記載の半導体発光素子の製造方法。
  8. 前記工程(d)は、前記蛍光のうち、所定の波長帯の光を選択して受光する工程であり、
    前記工程(e)は、前記半導体層の特定箇所から受光された、前記所定の波長帯の蛍光強度が所定の閾値以下である場合に、前記半導体層の前記特定箇所に不良部を有すると判断する工程であることを特徴とする請求項6に記載の半導体発光素子の製造方法。
  9. 前記工程(c)、前記工程(d)、及び前記工程(e)は、前記工程(h)の後で、前記工程(i)の前に実行されることを特徴とする請求項6〜8のいずれか1項に記載の半導体発光素子の製造方法。
  10. 前記工程(i)の後、ウェハをチップ毎に分割する工程(j)と、
    各チップに対して実装処理を行う工程(k)とを有し、
    前記工程(c)、前記工程(d)、及び前記工程(e)は、前記工程(k)の前に実行され、
    前記工程(e)において良品と判定された前記チップに対してのみ前記工程(k)が実行されることを特徴とする請求項6〜8のいずれか1項に記載の半導体発光素子の製造方法。
  11. 前記工程(b)は、窒化物半導体からなる前記半導体層を形成する工程であることを特徴とする請求項6〜10のいずれか1項に記載の半導体発光素子の製造方法。
  12. 前記半導体層は、Alを含む窒化物半導体を有し、
    前記工程(c)は、紫外光を照射する工程であることを特徴とする請求項11に記載の半導体発光素子の製造方法。
JP2016036244A 2016-02-26 2016-02-26 半導体発光素子の製造方法、半導体発光素子用ウェハの製造方法 Pending JP2017152653A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016036244A JP2017152653A (ja) 2016-02-26 2016-02-26 半導体発光素子の製造方法、半導体発光素子用ウェハの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016036244A JP2017152653A (ja) 2016-02-26 2016-02-26 半導体発光素子の製造方法、半導体発光素子用ウェハの製造方法

Publications (1)

Publication Number Publication Date
JP2017152653A true JP2017152653A (ja) 2017-08-31

Family

ID=59741984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016036244A Pending JP2017152653A (ja) 2016-02-26 2016-02-26 半導体発光素子の製造方法、半導体発光素子用ウェハの製造方法

Country Status (1)

Country Link
JP (1) JP2017152653A (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999059195A1 (en) * 1998-05-13 1999-11-18 National University Of Singapore Crystal growth method for group-iii nitride and related compound semiconductors
JP2007088420A (ja) * 2005-08-25 2007-04-05 Sharp Corp 半導体発光素子の製造方法
JP2009128366A (ja) * 2007-11-23 2009-06-11 Samsung Electro Mech Co Ltd 発光素子検査装置及びこれを用いた発光素子検査方法
JP2013038313A (ja) * 2011-08-10 2013-02-21 Showa Denko Kk 発光素子の検査方法および発光素子の製造方法
JP2014520272A (ja) * 2011-06-24 2014-08-21 ケーエルエー−テンカー コーポレイション 光ルミネセンス画像化を使用する発光半導体デバイスの検査の方法および装置
JP2014149206A (ja) * 2013-01-31 2014-08-21 Nichia Chem Ind Ltd 半導体発光素子の検査方法及び半導体発光素子の製造方法
JP2014157131A (ja) * 2013-02-18 2014-08-28 Nichia Chem Ind Ltd 半導体発光素子の検査方法及び半導体発光素子の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999059195A1 (en) * 1998-05-13 1999-11-18 National University Of Singapore Crystal growth method for group-iii nitride and related compound semiconductors
JP2007088420A (ja) * 2005-08-25 2007-04-05 Sharp Corp 半導体発光素子の製造方法
JP2009128366A (ja) * 2007-11-23 2009-06-11 Samsung Electro Mech Co Ltd 発光素子検査装置及びこれを用いた発光素子検査方法
JP2014520272A (ja) * 2011-06-24 2014-08-21 ケーエルエー−テンカー コーポレイション 光ルミネセンス画像化を使用する発光半導体デバイスの検査の方法および装置
JP2013038313A (ja) * 2011-08-10 2013-02-21 Showa Denko Kk 発光素子の検査方法および発光素子の製造方法
JP2014149206A (ja) * 2013-01-31 2014-08-21 Nichia Chem Ind Ltd 半導体発光素子の検査方法及び半導体発光素子の製造方法
JP2014157131A (ja) * 2013-02-18 2014-08-28 Nichia Chem Ind Ltd 半導体発光素子の検査方法及び半導体発光素子の製造方法

Similar Documents

Publication Publication Date Title
US20040140474A1 (en) Semiconductor light-emitting device, method for fabricating the same and method for bonding the same
JP2007157853A (ja) 半導体発光素子およびその製造方法
US20150228848A1 (en) Nitride semiconductor light-emitting element and method for producing same
WO2015141517A1 (ja) 半導体発光素子及びその製造方法
TWI488333B (zh) LED element and manufacturing method thereof
JP2008117824A (ja) 窒化物系半導体素子の製造方法
JP2021097148A (ja) 半導体発光素子
JP5880633B2 (ja) 半導体発光素子
TWI585993B (zh) Nitride light emitting device and manufacturing method thereof
JP2017069282A (ja) 半導体発光素子及びその製造方法
JP2013175635A (ja) 半導体発光素子、およびその製造方法
JP6153351B2 (ja) 半導体発光装置
WO2016072326A1 (ja) 半導体発光素子
JP5379703B2 (ja) 紫外半導体発光素子
JP2017103439A (ja) 半導体発光素子及びその製造方法
WO2016158093A1 (ja) 窒化物半導体発光素子
JP2017152653A (ja) 半導体発光素子の製造方法、半導体発光素子用ウェハの製造方法
JP2006245555A (ja) 透光性電極
JP6690139B2 (ja) 半導体発光素子及びその製造方法
JP2017139298A (ja) 半導体発光素子及びその製造方法
WO2015029727A1 (ja) 半導体発光素子
JP2017005156A (ja) 半導体発光素子及びその製造方法
JP2009182010A (ja) 3族窒化物化合物半導体の製造方法、発光素子、照明装置及び3族窒化物化合物半導体成長用の基板
JP2016195168A (ja) 半導体発光素子及びその製造方法
JP6468459B2 (ja) 半導体発光素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200901