JP2017142187A - Sample preparation method for powder X-ray diffraction analysis - Google Patents

Sample preparation method for powder X-ray diffraction analysis Download PDF

Info

Publication number
JP2017142187A
JP2017142187A JP2016024302A JP2016024302A JP2017142187A JP 2017142187 A JP2017142187 A JP 2017142187A JP 2016024302 A JP2016024302 A JP 2016024302A JP 2016024302 A JP2016024302 A JP 2016024302A JP 2017142187 A JP2017142187 A JP 2017142187A
Authority
JP
Japan
Prior art keywords
powder
sample
ray diffraction
embedding agent
diffraction analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016024302A
Other languages
Japanese (ja)
Other versions
JP6642078B2 (en
Inventor
大河 塩谷
Taiga Shiotani
大河 塩谷
近藤 光
Hikari Kondo
光 近藤
公二 中村
Koji Nakamura
公二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2016024302A priority Critical patent/JP6642078B2/en
Publication of JP2017142187A publication Critical patent/JP2017142187A/en
Application granted granted Critical
Publication of JP6642078B2 publication Critical patent/JP6642078B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sample preparation method for powder X-ray diffraction analysis, in which preferred orientation does not occur even if a sample is powder having orientation.SOLUTION: A sample preparation method for powder X-ray diffraction analysis is characterized in that powder to be analyzed having orientation and an embedding agent are mixed with each other, the embedding agent is hardened to obtain a hardened material, and the hardened material is crushed to obtain powder samples after processed. It is preferable that the embedding agent be made from resin. Preferred orientation does not occur even if a sample holder is filled with powder samples after processed. If the embedding agent is made from resin, preparation of the hardened material is facilitated.SELECTED DRAWING: Figure 1

Description

本発明は、粉末X線回折分析用の試料作成方法に関する。さらに詳しくは、配向性を有する粉末試料をX線回折分析する際の試料作成方法に関する。   The present invention relates to a sample preparation method for powder X-ray diffraction analysis. More specifically, the present invention relates to a sample preparation method for X-ray diffraction analysis of a powder sample having orientation.

粉末X線回折分析は試料の結晶性や結晶構造を分析する手法として広く知られている(例えば、特許文献1)。一般に、粉末X線回折分析の試料の調整は以下の手順で行われる。まず、試料を粉砕して適当な粒径の粉末試料を得る。つぎに、粉末試料を試料ホルダに充填する。試料ホルダはガラスや金属などの板材に凹部を形成したものである。試料ホルダの凹部に粉末試料を均一に充填する。この際、スライドガラス等を試料ホルダに擦り合わせることで、試料面を平坦にする。   Powder X-ray diffraction analysis is widely known as a technique for analyzing crystallinity and crystal structure of a sample (for example, Patent Document 1). In general, preparation of a sample for powder X-ray diffraction analysis is performed according to the following procedure. First, a sample is pulverized to obtain a powder sample having an appropriate particle size. Next, the powder sample is filled in the sample holder. The sample holder is obtained by forming a recess in a plate material such as glass or metal. The powder sample is uniformly filled in the concave portion of the sample holder. At this time, the sample surface is flattened by rubbing a slide glass or the like against the sample holder.

前記の方法で配向性を有する粉末試料を試料ホルダに充填すると、結晶子の向きが特定の方向に偏る。その結果、X線回折分析において、特定の回折X線だけが強く観測されてしまう。この現象は選択配向と称される。   When the sample holder is filled with a powder sample having orientation by the above method, the orientation of the crystallites is biased in a specific direction. As a result, only specific diffraction X-rays are strongly observed in the X-ray diffraction analysis. This phenomenon is called selective orientation.

粉末試料をキャピラリ(内径1.0mm程度のパイプ)に充填する方法であれば、選択配向を防止できる。しかし、この方法は粉末試料の充填にコツが必要である。また、キャピラリに充填できる試料の量は少量であるため、回折X線の強度が弱い。そのため、試料ホルダを用いた場合に比べて、X線回折分析に10倍程度の時間を要する。   Selective orientation can be prevented by a method of filling a powder sample into a capillary (a pipe having an inner diameter of about 1.0 mm). However, this method requires a knack for filling the powder sample. Further, since the amount of the sample that can be filled in the capillary is small, the intensity of the diffracted X-ray is weak. Therefore, X-ray diffraction analysis takes about 10 times as long as the case of using a sample holder.

特開2015−31569号公報JP 2015-31569 A

本発明は上記事情に鑑み、配向性を有する粉末試料であっても選択配向が生じない粉末X線回折分析用の試料作成方法を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a sample preparation method for powder X-ray diffraction analysis in which selective orientation does not occur even if a powder sample has orientation.

第1発明の粉末X線回折分析用の試料作成方法は、配向性を有する分析対象粉末と包埋剤とを混合し、該包埋剤を硬化させて固形物を得、前記固形物を粉砕して処理後粉末試料を得ることを特徴とする。
第2発明の粉末X線回折分析用の試料作成方法は、第1発明において、前記包埋剤は樹脂であることを特徴とする。
第3発明の粉末X線回折分析用の試料作成方法は、第1発明において、前記包埋剤はエポキシ樹脂であることを特徴とする。
第4発明の粉末X線回折分析用の試料作成方法は、第1、第2または第3発明において、前記分析対象粉末と前記包埋剤との混合比率は、見掛体積において、前記分析対象粉末1に対して前記包埋剤0.5〜2であることを特徴とする。
第5発明の粉末X線回折分析用の試料作成方法は、第1、第2、第3または第4発明において、前記処理後粉末試料の粒径は前記分析対象粉末の粒径以上であることを特徴とする。
The sample preparation method for powder X-ray diffraction analysis according to the first aspect of the invention comprises mixing an analysis target powder having an orientation and an embedding agent, curing the embedding agent to obtain a solid, and pulverizing the solid To obtain a powder sample after treatment.
The sample preparation method for powder X-ray diffraction analysis of the second invention is characterized in that, in the first invention, the embedding agent is a resin.
The sample preparation method for powder X-ray diffraction analysis of the third invention is characterized in that, in the first invention, the embedding agent is an epoxy resin.
The sample preparation method for powder X-ray diffraction analysis of the fourth invention is the first, second or third invention, wherein the mixing ratio of the powder to be analyzed and the embedding agent is the apparent volume and the analysis object The embedding agent is 0.5 to 2 with respect to the powder 1.
The sample preparation method for powder X-ray diffraction analysis of the fifth invention is the first, second, third or fourth invention, wherein the particle size of the processed powder sample is not less than the particle size of the powder to be analyzed. It is characterized by.

第1発明によれば、処理後粉末試料を試料ホルダに充填しても選択配向が生じない。
第2発明によれば、包埋剤が樹脂であるので、固形物の作成が容易である。
第3発明によれば、包埋剤がエポキシ樹脂であるので、硬化が容易である。
第4発明によれば、分析対象粉末1に対して包埋剤を0.5以上とすることで、分析対象粉末を包埋剤中に十分に分散できる。分析対象粉末1に対して包埋剤を2以下とすることで、X線回折分析において包埋剤により生じるバックグラウンドを抑えることができる。
第5発明によれば、処理後粉末試料の粒径が分析対象粉末の粒径以上であるので、分析対象粉末が包埋剤でコーティングされた状態を維持できる。
According to the first aspect of the invention, selective orientation does not occur even when the processed powder sample is filled in the sample holder.
According to the second invention, since the embedding agent is a resin, it is easy to create a solid material.
According to the third invention, since the embedding agent is an epoxy resin, curing is easy.
According to the fourth invention, the analysis target powder can be sufficiently dispersed in the embedding agent by setting the embedding agent to 0.5 or more with respect to the analysis target powder 1. By setting the embedding agent to 2 or less with respect to the analysis target powder 1, the background generated by the embedding agent in the X-ray diffraction analysis can be suppressed.
According to the fifth aspect, since the particle size of the processed powder sample is equal to or larger than the particle size of the analysis target powder, it is possible to maintain the state where the analysis target powder is coated with the embedding agent.

本発明の一実施形態に係る試料作成方法の工程図である。It is process drawing of the sample preparation method which concerns on one Embodiment of this invention. 実施例1におけるX線回折パターンである。2 is an X-ray diffraction pattern in Example 1. FIG. 比較例1におけるX線回折パターンである。2 is an X-ray diffraction pattern in Comparative Example 1. FIG.

つぎに、本発明の実施形態を図面に基づき説明する。
図1に示すように、本発明の一実施形態に係る粉末X線回折分析用の試料作成方法は、X線回折分析の対象である分析対象粉末に処理を施して処理後粉末試料を得る方法である。前記処理は、混合工程10、硬化工程20、粉砕工程30からなる。以下、順に説明する。
Next, an embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, a sample preparation method for powder X-ray diffraction analysis according to an embodiment of the present invention is a method for obtaining a processed powder sample by processing a powder to be analyzed that is an object of X-ray diffraction analysis. It is. The treatment includes a mixing step 10, a curing step 20, and a pulverizing step 30. Hereinafter, it demonstrates in order.

(分析対象粉末)
分析対象粉末は配向性を有する粉末である。配向性を有する粉末としては板状や針状の粒子が挙げられる。このような粉末として、二硫化モリブデン、グラファイト、雲母、参加チタン(IV)などが知られている。
(Powder for analysis)
The analysis target powder is a powder having orientation. Examples of the powder having orientation include plate-like and needle-like particles. Known examples of such powders include molybdenum disulfide, graphite, mica, and participating titanium (IV).

分析対象粉末は予め粉砕などの処理により適当な粒径に整えられている。分析対象粉末の粒径は特に限定されないが、100μm程度とすれば後述の混合工程10において包埋剤と混合しやすいので好ましい。   The powder to be analyzed is previously adjusted to a suitable particle size by a process such as pulverization. The particle size of the analysis target powder is not particularly limited, but is preferably about 100 μm because it is easy to mix with the embedding agent in the mixing step 10 described later.

(混合工程10)
混合工程10では分析対象粉末と包埋剤とを混合し、混合物を得る。包埋剤中に分析対象粉末が分散した状態とする。
(Mixing step 10)
In the mixing step 10, the analysis target powder and the embedding agent are mixed to obtain a mixture. The analysis target powder is dispersed in the embedding agent.

包埋剤は分析対象粉末が溶解することがなく、硬化後には粉砕することが可能な硬度を有していれば特に限定されない。X線回折パターンへの影響を抑えるため、包埋剤はアモルファスが好ましい。包埋剤として、樹脂、ガラス、金属などを用いることができる。包埋剤として樹脂を用いれば、後述の固形物の作成が容易であるので好ましい。樹脂としては何らかの処理により硬化可能な樹脂が用いられる。このような樹脂として熱硬化性樹脂、熱可塑性樹脂が挙げられる。また、液体または粉末の樹脂を用いれば、分析対象粉末との混合が容易である。特に、顕微鏡観察用の包埋樹脂が好ましい。包埋樹脂として、エポキシ樹脂、アクリル樹脂、ベークライト(フェノール樹脂)などが知られている。   The embedding agent is not particularly limited as long as the powder to be analyzed does not dissolve and has a hardness that can be pulverized after curing. In order to suppress the influence on the X-ray diffraction pattern, the embedding agent is preferably amorphous. As the embedding agent, resin, glass, metal, or the like can be used. It is preferable to use a resin as the embedding agent because a solid material described later can be easily prepared. As the resin, a resin that can be cured by any treatment is used. Examples of such a resin include a thermosetting resin and a thermoplastic resin. If a liquid or powder resin is used, mixing with the powder to be analyzed is easy. In particular, an embedding resin for microscopic observation is preferable. As the embedding resin, epoxy resin, acrylic resin, bakelite (phenol resin) and the like are known.

(硬化工程20)
硬化工程20では包埋剤を硬化させて固形物を得る。包埋剤中に分析対象粉末が分散した状態のまま硬化できればよく、硬化方法は特に限定がない。例えば、混合工程10で得られた混合物を型に充填し、硬化させる。混合物を充填する型は、得られた固形物の粉砕に障害とならない形状や寸法であればよい。
(Curing step 20)
In the curing step 20, the embedding agent is cured to obtain a solid material. There is no particular limitation on the curing method as long as it can be cured while the powder to be analyzed is dispersed in the embedding agent. For example, the mixture obtained in the mixing step 10 is filled in a mold and cured. The mold filled with the mixture may have any shape or size that does not hinder the pulverization of the obtained solid.

包埋剤としてエポキシ樹脂を用いた場合、所定時間放置するだけで硬化する。このように、包埋剤としてエポキシ樹脂を用いれば、硬化が容易である。   When an epoxy resin is used as an embedding agent, it hardens only by leaving it for a predetermined time. Thus, if an epoxy resin is used as the embedding agent, curing is easy.

包埋剤としてアクリル樹脂を用いた場合には、硬化剤を添加することで硬化する。包埋剤としてベークライトを用いた場合には、混合物を加圧加熱成形機にセットして、所定の硬化処理をする。   When an acrylic resin is used as the embedding agent, it is cured by adding a curing agent. When bakelite is used as the embedding agent, the mixture is set in a pressure heating molding machine and subjected to a predetermined curing process.

(粉砕工程30)
粉砕工程30では固形物を粉砕して処理後粉末試料を得る。粉砕方法は特に限定されないが、例えば、ハンマーにより粗粉砕した後、乳鉢で微粉砕すればよい。
(Crushing step 30)
In the pulverizing step 30, the solid material is pulverized to obtain a processed powder sample. The pulverization method is not particularly limited. For example, after pulverization with a hammer, the pulverization may be performed with a mortar.

以上の処理で得られた処理後粉末試料を試料ホルダに充填する。具体的には、試料ホルダの凹部に処理後粉末試料を盛り上げ、スライドガラス等を試料ホルダに擦り合わせることで、余分な試料を除去し、試料面を平坦にする。   The processed powder sample obtained by the above processing is filled in the sample holder. Specifically, the processed powder sample is raised in the concave portion of the sample holder, and a slide glass or the like is rubbed against the sample holder to remove an excess sample and flatten the sample surface.

以上の手順で処理後粉末試料を試料ホルダに充填しても選択配向が生じない。そのため、X線回折分析において、特定の回折X線だけが強く観測されることがなく、精度の高い分析が可能となる。   Even if the powder sample after processing is filled in the sample holder by the above procedure, selective orientation does not occur. Therefore, in X-ray diffraction analysis, only specific diffraction X-rays are not strongly observed, and highly accurate analysis is possible.

処理後粉末試料を用いると選択配向が生じない理由は以下のとおりと考えられる。
処理後粉末試料は分析対象粉末の表面が包埋剤でコーティングされたものである。処理後粉末試料は球形に近い形状であるか、分析対象粉末の結晶子の向きとは無関係の形状である。そのため、処理後粉末試料を試料ホルダに充填しても、分析対象粉末の結晶子がランダムな方向を向き、選択配向が生じない。
The reason why the selective orientation does not occur when the processed powder sample is used is considered as follows.
The post-treatment powder sample is obtained by coating the surface of the powder to be analyzed with an embedding agent. The processed powder sample has a shape close to a sphere or a shape independent of the orientation of the crystallites of the powder to be analyzed. Therefore, even if the processed powder sample is filled in the sample holder, the crystallites of the powder to be analyzed are oriented in a random direction and no selective orientation occurs.

前記混合工程10において、分析対象粉末と包埋剤との混合比率は、見掛体積において、分析対象粉末1に対して包埋剤0.5〜2とすることが好ましい。分析対象粉末に対して包埋剤が少ないと、包埋剤中に分析対象粉末が十分に分散できない恐れがある。そうすると、分析対象粉末のコーティングが不十分になる可能性がある。分析対象粉末1に対して包埋剤を0.5以上とすることで、分析対象粉末を包埋剤中に十分に分散できる。その結果、分析対象粉末を十分にコーティングできる。   In the mixing step 10, the mixing ratio of the analysis target powder and the embedding agent is preferably 0.5 to 2 with respect to the analysis target powder 1 in the apparent volume. If the embedding agent is less than the analysis target powder, the analysis target powder may not be sufficiently dispersed in the embedding agent. As a result, the coating of the powder to be analyzed may be insufficient. By setting the embedding agent to 0.5 or more with respect to the analysis target powder 1, the analysis target powder can be sufficiently dispersed in the embedding agent. As a result, the powder to be analyzed can be sufficiently coated.

また、包埋剤が多すぎると、X線回折分析において包埋剤により生じるバックグラウンドが大きくなり、相対的に分析対象粉末の回折X線の強度が弱くなる。分析対象粉末1に対して包埋剤を2以下とすることで、X線回折分析において包埋剤により生じるバックグラウンドを抑えることができる。その結果、精度の高い分析が可能となる。   Moreover, when there are too many embedding agents, the background which arises with an embedding agent in X-ray diffraction analysis will become large, and the intensity | strength of the diffraction X-ray of analysis object powder will become weak relatively. By setting the embedding agent to 2 or less with respect to the analysis target powder 1, the background generated by the embedding agent in the X-ray diffraction analysis can be suppressed. As a result, highly accurate analysis is possible.

前記粉砕工程30において、処理後粉末試料の粒径は分析対象粉末の粒径以上とすることが好ましい。処理後粉末試料を分析対象粉末の粒径未満まで粉砕すると、包埋剤でコーティングされていない分析対象粉末が生成され、選択配向が生じる。処理後粉末試料の粒径を分析対象粉末の粒径以上とすれば、分析対象粉末が包埋剤でコーティングされた状態を維持できる。   In the pulverization step 30, it is preferable that the particle size of the processed powder sample is equal to or larger than the particle size of the powder to be analyzed. When the processed powder sample is pulverized to less than the particle size of the analysis target powder, the analysis target powder not coated with the embedding agent is generated, and a selective orientation occurs. If the particle size of the processed powder sample is set to be equal to or larger than the particle size of the analysis target powder, the analysis target powder can be maintained in a state of being coated with the embedding agent.

処理後粉末試料の粒径は試料ホルダの凹部の深さに対して十分に小さい方が好ましい。例えば、処理後粉末試料の粒径の上限を試料ホルダの凹部の深さの5分の1とすることが好ましい。   The particle size of the powder sample after treatment is preferably sufficiently small with respect to the depth of the concave portion of the sample holder. For example, the upper limit of the particle size of the processed powder sample is preferably set to one fifth of the depth of the concave portion of the sample holder.

つぎに、実施例を説明する。
(実施例1)
分析対象粉末として二流化モリブデン粉末を用いた。分析対象粉末の粒径は篩下100μmであり、重量は0.5gである。包埋剤として液体のエポキシ樹脂(丸本ストルアス株式会社製、エポフィックス)を用いた。
Next, examples will be described.
Example 1
As the analysis target powder, molybdenum disulfide powder was used. The particle size of the powder to be analyzed is 100 μm below the sieve and the weight is 0.5 g. A liquid epoxy resin (manufactured by Marumoto Struers Co., Ltd., Epofix) was used as the embedding agent.

分析対象粉末とエポキシ樹脂とを内径25mm、高さ20mmの円筒形の鋼製筒に入れ、ガラス棒で60秒撹拌した。ここで、分析対象粉末とエポキシ樹脂との混合比率を、見掛体積において1:1とした。空気中に4分間放置して、直径25mm、高さ10mmの円筒形の固形物を得た。得られた固形物をハンマーで数mmの粒度まで粉砕した。つぎに、得られた粉末をメノウ乳鉢で100μm篩下となるまで粉砕して、処理後粉末試料を得た。   The analysis target powder and the epoxy resin were placed in a cylindrical steel tube having an inner diameter of 25 mm and a height of 20 mm, and stirred with a glass rod for 60 seconds. Here, the mixing ratio of the powder to be analyzed and the epoxy resin was 1: 1 in apparent volume. By leaving it in the air for 4 minutes, a cylindrical solid material having a diameter of 25 mm and a height of 10 mm was obtained. The obtained solid was pulverized to a particle size of several mm with a hammer. Next, the obtained powder was pulverized in an agate mortar until it was sieved to 100 μm to obtain a processed powder sample.

処理後粉末試料をガラス製試料ホルダの凹部に充填した。この際、スライドガラスを試料ホルダに擦り合わせることで、試料面を平坦にした。試料ホルダとして、直径25mm、深さ0.5mmの凹部を有するものを用いた。X線回折分析装置として、PANalyticl社製 型式:X’Pert PRO(Cu−Kα線 45kV 40mA)を用いて、X線回折分析を行った。   After the treatment, the powder sample was filled in the recess of the glass sample holder. At this time, the sample surface was flattened by rubbing the slide glass against the sample holder. A sample holder having a recess having a diameter of 25 mm and a depth of 0.5 mm was used. X-ray diffraction analysis was performed using an X-ray diffraction analyzer manufactured by PANalyticl, model number: X′Pert PRO (Cu—Kα ray 45 kV 40 mA).

図2にX線回折分析により得られたX線回折パターンを示す。図2の横軸は入射角(2θ)、縦軸は回折強度である。図2中の縦線は予想されるピーク位置、強度を示す。図2から分かるように、X線回折パターンは予想されるピーク位置、強度と良く一致した。   FIG. 2 shows an X-ray diffraction pattern obtained by X-ray diffraction analysis. The horizontal axis in FIG. 2 is the incident angle (2θ), and the vertical axis is the diffraction intensity. The vertical line in FIG. 2 indicates the expected peak position and intensity. As can be seen from FIG. 2, the X-ray diffraction pattern agreed well with the expected peak position and intensity.

(比較例1)
粉末試料として二流化モリブデン粉末を用いた。粉末試料の粒径は篩下100μmであり、重量は0.5gである。粉末試料をガラス製試料ホルダの凹部に充填した。この際、スライドガラスを試料ホルダに擦り合わせることで、試料面を平坦にした。試料ホルダとして、直径25mm、深さ0.5mmの凹部を有するものを用いた。X線回折分析装置として、PANalyticl社製 型式:X’Pert PRO(Cu−Kα線 45kV 40mA)を用いて、X線回折分析を行った。
(Comparative Example 1)
As a powder sample, molybdenum disulfide powder was used. The particle size of the powder sample is 100 μm under the sieve and the weight is 0.5 g. The powder sample was filled into the recess of the glass sample holder. At this time, the sample surface was flattened by rubbing the slide glass against the sample holder. A sample holder having a recess having a diameter of 25 mm and a depth of 0.5 mm was used. X-ray diffraction analysis was performed using an X-ray diffraction analyzer manufactured by PANalyticl, Model: X'Pert PRO (Cu-Kα ray 45 kV 40 mA).

図3にX線回折分析により得られたX線回折パターンを示す。図3の横軸は入射角(2θ)、縦軸は回折強度である。図3中の縦線は予想されるピーク位置、強度を示す。図3から分かるように、X線回折パターンは比較的小さい角度領域では予想されるピーク位置と合致したが、比較的大きい角度領域では予想されるピーク位置とほとんど合致しなかった。   FIG. 3 shows an X-ray diffraction pattern obtained by X-ray diffraction analysis. The horizontal axis in FIG. 3 is the incident angle (2θ), and the vertical axis is the diffraction intensity. The vertical line in FIG. 3 shows the expected peak position and intensity. As can be seen from FIG. 3, the X-ray diffraction pattern matched the expected peak position in a relatively small angle region, but hardly matched the expected peak position in a relatively large angle region.

以上より、実施例1では選択配向を防止でき、精度よく分析できることが確認された。   From the above, it was confirmed that selective orientation can be prevented and analysis can be performed accurately in Example 1.

10 混合工程
20 硬化工程
30 粉砕工程
10 mixing process 20 curing process 30 grinding process

Claims (5)

配向性を有する分析対象粉末と包埋剤とを混合し、該包埋剤を硬化させて固形物を得、
前記固形物を粉砕して処理後粉末試料を得る
ことを特徴とする粉末X線回折分析用の試料作成方法。
Mix the powder to be analyzed with the orientation and the embedding agent, cure the embedding agent to obtain a solid,
A method for preparing a sample for powder X-ray diffraction analysis, wherein the solid material is pulverized to obtain a processed powder sample.
前記包埋剤は樹脂である
ことを特徴とする請求項1記載の粉末X線回折分析用の試料作成方法。
2. The method for preparing a sample for powder X-ray diffraction analysis according to claim 1, wherein the embedding agent is a resin.
前記包埋剤はエポキシ樹脂である
ことを特徴とする請求項1記載の粉末X線回折分析用の試料作成方法。
The sample preparation method for powder X-ray diffraction analysis according to claim 1, wherein the embedding agent is an epoxy resin.
前記分析対象粉末と前記包埋剤との混合比率は、見掛体積において、前記分析対象粉末1に対して前記包埋剤0.5〜2である
ことを特徴とする請求項1、2または3記載の粉末X線回折分析用の試料作成方法。
The mixing ratio of the analysis target powder and the embedding agent is 0.5 to 2 of the embedding agent with respect to the analysis target powder 1 in an apparent volume. 3. A method for preparing a sample for powder X-ray diffraction analysis according to 3.
前記処理後粉末試料の粒径は前記分析対象粉末の粒径以上である
ことを特徴とする請求項1、2、3または4記載の粉末X線回折分析用の試料作成方法。
The sample preparation method for powder X-ray diffraction analysis according to claim 1, 2, 3, or 4, wherein the particle size of the processed powder sample is equal to or larger than the particle size of the powder to be analyzed.
JP2016024302A 2016-02-12 2016-02-12 Sample preparation method for powder X-ray diffraction analysis Active JP6642078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016024302A JP6642078B2 (en) 2016-02-12 2016-02-12 Sample preparation method for powder X-ray diffraction analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016024302A JP6642078B2 (en) 2016-02-12 2016-02-12 Sample preparation method for powder X-ray diffraction analysis

Publications (2)

Publication Number Publication Date
JP2017142187A true JP2017142187A (en) 2017-08-17
JP6642078B2 JP6642078B2 (en) 2020-02-05

Family

ID=59627300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016024302A Active JP6642078B2 (en) 2016-02-12 2016-02-12 Sample preparation method for powder X-ray diffraction analysis

Country Status (1)

Country Link
JP (1) JP6642078B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019017072A1 (en) 2017-07-21 2019-01-24 Agc株式会社 Front panel for display device
CN111551574A (en) * 2020-03-17 2020-08-18 宸鸿科技(厦门)有限公司 Powder cross-section sample preparation method and sample preparation device for electron microscope observation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201616A (en) * 1992-12-28 1994-07-22 Fujitsu Ltd Method for testing borosilicate glass
JPH11273678A (en) * 1998-03-23 1999-10-08 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacture, and nonaqueous electrolyte secondary battery using positive electrode active material
JP2008058323A (en) * 2002-11-22 2008-03-13 Showa Denko Kk Method of evaluating metal structure of r-t-b magnet alloy
JP2012242171A (en) * 2011-05-17 2012-12-10 Taiheiyo Cement Corp Coal ash evaluation method and manufacturing method of cement or concrete

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201616A (en) * 1992-12-28 1994-07-22 Fujitsu Ltd Method for testing borosilicate glass
JPH11273678A (en) * 1998-03-23 1999-10-08 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacture, and nonaqueous electrolyte secondary battery using positive electrode active material
JP2008058323A (en) * 2002-11-22 2008-03-13 Showa Denko Kk Method of evaluating metal structure of r-t-b magnet alloy
JP2012242171A (en) * 2011-05-17 2012-12-10 Taiheiyo Cement Corp Coal ash evaluation method and manufacturing method of cement or concrete

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019017072A1 (en) 2017-07-21 2019-01-24 Agc株式会社 Front panel for display device
CN111551574A (en) * 2020-03-17 2020-08-18 宸鸿科技(厦门)有限公司 Powder cross-section sample preparation method and sample preparation device for electron microscope observation

Also Published As

Publication number Publication date
JP6642078B2 (en) 2020-02-05

Similar Documents

Publication Publication Date Title
US10605709B2 (en) Mounting medium for embedding a sample material and a method of mounting a sample material in a mounting medium
WO2018212889A3 (en) Methods and systems for making nanocarbon particle admixtures and concrete
Khalfaoui et al. Characterization of swift heavy ion tracks in CaF2 by scanning force and transmission electron microscopy
JP2016041850A (en) Method for treating powder and powder treated by said method
JP2017142187A (en) Sample preparation method for powder X-ray diffraction analysis
JP2009276194A (en) Radiation shielding concrete composition and placement apparatus for the same, and radioactive waste container
Schäfer et al. Polymer-bonded magnets produced by laser powder bed fusion: Influence of powder morphology, filler fraction and energy input on the magnetic and mechanical properties
KR101583752B1 (en) Method of high-speed dispersing beta-type capacious nanoparticles within epoxy resin
JP2018044829A (en) Method for preparing particulate/resin-embedded sample for use in surface analysis, method for analyzing sample, and method for evaluating sample preparation condition
JP2019056682A (en) Analysis sample preparation method, auger electron spectroscopy measurement method, and analysis sample
Bharadwaja et al. Investigation of hardness & tribology behavior of Epoxy and Sio2 composite: an experimental study
JP7215147B2 (en) Sample for transmission electron microscope observation
JP7345277B2 (en) Evaluation method of analytical sample embedding resin and manufacturing method of analytical sample embedding resin
JP2018190777A (en) Magnetic material film and method for manufacturing the same
JP6497247B2 (en) Method for producing cross-linked fluororesin powder
JP6798077B2 (en) X-ray diffraction analysis method for powder samples
JP7424204B2 (en) Method for preparing specimens for transmission electron microscopy
Popov et al. Investigation into processes of mechanical alloying when obtaining composite materials with nanodimensional strengthening particles
Necaise Layered Epoxide-Amine/Boron Nitride/Graphene Nanocomposites for Enhanced Multifunctional Shielding
Shakirov et al. Investigation of Physical and Mechanical Properties of Samples Grown by Selective Laser Melting of Iron Powder
WO2018229913A1 (en) Additive for concrete and method for manufacturing additive for concrete
RU2633532C1 (en) Polymer composite for neutron shielding and method of its production
Nguyen et al. Study on optimization of PES/CaCO3 composite powder for selective laser sintering (SLS) 3D printing technology
JP2019082474A (en) Resin-embedded sample producing method
RU2277548C1 (en) Polymer composition preparation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191216

R150 Certificate of patent or registration of utility model

Ref document number: 6642078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150