JP2017008942A - 窒素ガス作動流体を使用する高効率発電(power generation)のためのシステムおよび方法 - Google Patents

窒素ガス作動流体を使用する高効率発電(power generation)のためのシステムおよび方法 Download PDF

Info

Publication number
JP2017008942A
JP2017008942A JP2016151321A JP2016151321A JP2017008942A JP 2017008942 A JP2017008942 A JP 2017008942A JP 2016151321 A JP2016151321 A JP 2016151321A JP 2016151321 A JP2016151321 A JP 2016151321A JP 2017008942 A JP2017008942 A JP 2017008942A
Authority
JP
Japan
Prior art keywords
stream
turbine
air
combustion
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016151321A
Other languages
English (en)
Other versions
JP6189500B2 (ja
Inventor
アール. パルマー,マイルス
R Palmer Miles
アール. パルマー,マイルス
ジョン アラム,ロドニー
John Allam Rodney
ジョン アラム,ロドニー
Eron Fetvedt Jeremy
エロン フェットベット,ジェレミー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
8 Rivers Capital LLC
Palmer Labs LLC
Original Assignee
8 Rivers Capital LLC
Palmer Labs LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 8 Rivers Capital LLC, Palmer Labs LLC filed Critical 8 Rivers Capital LLC
Publication of JP2017008942A publication Critical patent/JP2017008942A/ja
Application granted granted Critical
Publication of JP6189500B2 publication Critical patent/JP6189500B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/34Gas-turbine plants characterised by the use of combustion products as the working fluid with recycling of part of the working fluid, i.e. semi-closed cycles with combustion products in the closed part of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K21/00Steam engine plants not otherwise provided for
    • F01K21/04Steam engine plants not otherwise provided for using mixtures of steam and gas; Plants generating or heating steam by bringing water or steam into direct contact with hot gas
    • F01K21/047Steam engine plants not otherwise provided for using mixtures of steam and gas; Plants generating or heating steam by bringing water or steam into direct contact with hot gas having at least one combustion gas turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0857Carbon oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • F02C1/007Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid combination of cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/003Gas-turbine plants with heaters between turbine stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/08Heating air supply before combustion, e.g. by exhaust gases
    • F02C7/10Heating air supply before combustion, e.g. by exhaust gases by means of regenerative heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/48Control of fuel supply conjointly with another control of the plant
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/40Use of a multiplicity of similar components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Power Engineering (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

【課題】作動流体としてCOおよびHO燃焼生成物と混合されたNを主に用いた高圧/低圧比ブレイトン電力サイクルを使用する電力生産方法が提供される。高圧は80bar〜500barの範囲内にありうる。圧力比は1.5〜10の範囲にありうる。
【解決手段】天然ガス燃料は、ほぼ化学量論量の加圧された予熱空気を用いて第1の高圧燃焼器内で燃焼されることができ、正味の燃焼ガスは、加熱された高圧リサイクルN+CO+HOストリームと混合されることができ、そのストリームは、混合ガス温度を、シャフトパワーを生成する第1のパワータービンに対する最大入口温度のために必要とされる値まで緩和する。
【選択図】図1

Description

本開示は、空気中での燃料の燃焼によるN作動流体を使用する電力生産(power production)のための高効率な方法を提供する。
エネルギー要求が世界中で増大し続けているため、さらなる電力生産プロセスについての絶えず増加するニーズが存在する。天然ガス燃料または炭化水素留出燃料を使用する発電のための現行の高効率な方法は、ブレイトンサイクルガスタービンおよびランキンサイクル蒸気システムを備える天然ガスコンバインドサイクル(NGCC)システムである。商業的に入手可能な最大のガスタービンは、ISO(国際標準化機構)の条件において約56%〜約60%の範囲の低位発熱量効率で、約450MW(メガワット)〜約550MW(メガワット)の範囲内のNGCCシステムの電力出力(power output)が可能である。石炭燃焼ボイラに蒸気発生器を加えたものを使用する現行の単一トレインユニットが入手可能であり、それは、1,000MWより大きい電力出力を有することができ、現行の最良のボイラ設計および材料によって達成可能な最大蒸気条件に基づいて最大約45%の正味の発電効率を与える。単一蒸気タービンを有する原子炉は、1,000MWより大きい電力出力で利用可能である。
上記に加えて、米国特許公報第2011/0179799号は、高濃度酸素雰囲気の存在下で燃焼され、したがって、高純度酸素源の装備を必要とする炭素質または炭化水素燃料を使用する高圧低圧比電力サイクルを開示する。燃焼生成物は、熱交換器内でタービン排気ストリームに接して加熱された高温で高圧で高純度のCOのリサイクルによって冷却される。
上記で見られるように、本分野において既存の技術および出現する技術は、燃焼のために複数のサイクルの使用ならびに高純度材料の装備を必要としうる。
したがって、最大500MWまたはさらにそれ以上の、単一トレインからの電力出力を提供しうる、空気中で燃焼される天然ガスまたは留出燃料を使用する電力システムについての必要性が存在したままである。
電力生産のための目下述べるシステムおよび方法は、高効率な電力生産を提供するのに非常に有用であり、また、以下の特徴の1つまたは複数を示しうる。
開示されるシステムおよび方法は、従来のNGCCシステムより低い最大タービン温度によって、従来のNGCCシステムに匹敵する効率を達成しうる。
開示されるシステムおよび方法は、従来のNGCCシステムと同等のタービン温度によって、従来のNGCCシステムより高い効率を達成しうる。
開示されるシステムおよび方法は、従来のNGCCシステムより著しく低い資本コストを有しうる。
開示されるシステムおよび方法は、単一の作動流体を利用しうる。
開示されるシステムおよび方法は、タービン(複数可)を駆動するために蒸気システム以外の手段を利用しうる。
開示されるシステムおよび方法は、NGCCシステムより著しくコンパクトでありうる。
開示されるシステムおよび方法は、NGCC排ガス内の約3%濃度より著しく高い排ガス内のCOの濃度を有する可能性があるため、COは、適切な除去システムを使用してより容易に捕捉されうる。
開示されるシステムおよび方法は、高純度酸素を必要とするのではなく、低コストオキシダント源として空気を利用しうる。
開示されるシステムおよび方法は、過剰の不活性ガス(大気に排出されうる)の生成をもたらしうるほぼ化学量論的燃焼条件を実現しうる。
開示されるシステムおよび方法は、電力生産時に、不活性ガスを含む高圧ストリームを、1つまたは複数のタービンにわたってそのストリームを膨張させることによって利用しうる。
開示されるシステムおよび方法は、電力生産プロセスを運転する方法を提供することができ、その方法において、燃焼器内の酸素の消費後に残る加圧された過剰の不活性ガスが、膨張して大気圧になり、さらなる電力の最大限の生産を伴うのに十分な高圧低圧比で、化石燃料が、閉サイクルにおけるほぼ化学量論的条件で空気中において高圧で燃焼されうる。
上記に対してさらに、一実施形態では、本開示は、電力生産システムを提供する。電力生産システムは、第1の燃焼ストリームを生成するために、第1のリサイクルストリームの存在下で第1の燃料ストリームおよび第1の空気ストリームを燃焼させるように構成された第1の燃焼器と、第1の燃焼ストリームを膨張させるように構成された第1のタービンと、第1のタービンから第1の放出ストリームの少なくとも一部分を受取るように構成された第1の熱交換器を備えることができる。第1の熱交換器は、第1の空気ストリームおよび第1の放出ストリームから生成される第1のリサイクルストリームの少なくとも一部分を加熱するために、第1の放出ストリームの部分を使用するように構成されうる。電力生産システムはまた、第2の燃焼ストリームを生成するために、第1の放出ストリームから生成される第2のリサイクルストリームの存在下で第2の燃料ストリームおよび第2の空気ストリームを燃焼させるように構成された第2の燃焼器と、第2の燃焼ストリームを膨張させるように構成された第2のタービンと、第2の空気ストリームおよび第2のリサイクルストリームを加熱するように構成された第2の熱交換器とを備えることができる。
いくつかの実施形態では、第2の熱交換器は、第2の空気ストリームおよび第2のリサイクルストリームを加熱するために、第2のタービンから第2の放出ストリームを使用するように構成されうる。第2の熱交換器は、第1のリサイクルストリームの第2の部分を加熱するようにさらに構成されうる。電力生産システムは、第3の燃焼ストリームを生成するために、第2のタービンから受取られる第2の放出ストリームの存在下で第3の燃料ストリームおよび第3の空気ストリームを燃焼させるように構成された第3の燃焼器と、第3の燃焼ストリームを膨張させるように構成された第3のタービンとをさらに備えることができる。第2の熱交換器は、第2の空気ストリームおよび第2のリサイクルストリームを加熱するために、第3のタービンから第3の放出ストリームを使用するように構成されうる。第2の熱交換器は、第3の空気ストリームを加熱するようにさらに構成されうる。第2の熱交換器は、第1のリサイクルストリームの第2の部分を加熱するようにさらに構成されうる
いくつかの実施形態では、リサイクル圧縮機は、第1のリサイクルストリームを圧縮するように構成されうる。第1の放出ストリームの第2の部分は、第2の燃焼器に送られることができる。電力生産システムは、第2の熱交換器から、冷却された放出ストリームを受取るように構成されたスクラバをさらに備えることができる。スクラバは、CO吸着システムを備えることができる。
いくつかの実施形態では、電力生産システムは、第1の空気ストリームおよび第2の空気ストリームを生成するために、給送空気ストリームを圧縮するように構成された空気圧縮機システムをさらに備えることができる。空気圧縮機システムは、第1の空気ストリームを圧縮するように構成された第1の空気圧縮機および第2の空気ストリームを圧縮するように構成された第2の空気圧縮機を備えることができる。第2の空気圧縮機は、第1の空気圧縮機が第1の空気ストリームを圧縮する前に第1の空気ストリームを圧縮するようにさらに構成されうる。空気圧縮機システムは、第1の燃焼器および第2の燃焼器内で実質的に化学量論的な燃焼をもたらすために、第1の空気ストリームの流量および第2の空気ストリームの流量を制御するように構成されうる。たとえば、空気圧縮機システムは、第1の燃焼器および第2の燃焼器内で燃焼において最大約5%の過剰のOをもたらすために、第1の空気ストリームの流量および第2の空気ストリームの流量を制御するように構成されうる。
いくつかの実施形態では、第1の燃料ストリームおよび第2の燃料ストリームは、圧縮された炭化水素ガスを含むことができる。圧縮された炭化水素ガスはメタンを含むことができる。第1の空気ストリームおよび第2の空気ストリームは、圧縮された周囲空気を含むことができる。第1のリサイクルストリームおよび第2のリサイクルストリームは、分子ベースで50%より多いNを含むことができる。電力生産システムは、第1の熱交換器を通して送られる第1の放出ストリームの部分から液体ストリームを除去するように構成された分離器をさらに備えることができる。さらに、電力生産システムは、約1,300℃〜約1,500℃のタービン温度で運転するときに、少なくとも約60%の、低位発熱量ベースの正味の発電効率で運転するように構成されうる。
別の実施形態では、電力を生成するための方法が提供される。方法は、第1の燃焼ストリームを生成するために、第1のリサイクルストリームの存在下で第1の燃料ストリームおよび第1の空気ストリームを燃焼させること、第1のタービン内の第1の燃焼ストリームを膨張させることであって、それにより、第1のタービンを回転させ電力を生成する、膨張させること、第1のタービンから第1の放出ストリームの少なくとも一部分を第1の熱交換器に送ること、および、第1の放出ストリームの部分を使用することであって、それにより、第1の熱交換器によって第1の空気ストリームおよび第1の放出ストリームから生成される第1のリサイクルストリームの少なくとも一部分を加熱する、使用することを含むことができる。方法は、第2の燃焼ストリームを生成するために、第1の放出ストリームから生成される第2のリサイクルストリームの存在下で第2の燃焼器内で第2の燃料ストリームおよび第2の空気ストリームを燃焼させること、第2のタービン内で第2の燃焼ストリームを膨張させることであって、それにより、電力を生成するように第2のタービンを回転させる、膨張させること、第2の空気ストリームおよび第2のリサイクルストリームを第2の熱交換器に送ること、および、第2の熱交換器によって第2の空気ストリームおよび第2のリサイクルストリームを加熱することを含むことができる。
いくつかの実施形態では、第2の熱交換器によって第2の空気ストリームおよび第2のリサイクルストリームを加熱することは、空気ストリームおよびリサイクルストリームを加熱するために第2のタービンから第2の放出ストリームを使用することを含むことができる。方法は、第2の熱交換器によって第1のリサイクルストリームの第2の部分を加熱することをさらに含むことができる。方法は、第3の燃焼ストリームを生成するために、第2のタービンから受取られる第2の放出ストリームの存在下で第3の燃焼器内で第3の燃料ストリームおよび第3の空気ストリームを燃焼させること、および、第3のタービン内で第3の燃焼ストリームを膨張させることであって、それにより、電力を生成するように第3のタービンを回転させる、膨張させることをさらに含むことができる。第2の熱交換器によって第2の空気ストリームおよび第2のリサイクルストリームを加熱することは、第2の空気ストリームおよび第2のリサイクルストリームを加熱するために第3のタービンから第3の放出ストリームを使用することを含むことができる。方法は、第2の熱交換器によって第3の空気ストリームを加熱することをさらに含むことができる。同様に、方法は、第2の熱交換器によって第1のリサイクルストリームの第2の部分を加熱することを含むことができる。
いくつかの実施形態では、方法は、リサイクル圧縮機によって第1のリサイクルストリームを圧縮することをさらに含むことができる。方法はまた、第1の放出ストリームの第2の部分を第2の燃焼器に送ることをさらに含むことができる。さらに、方法は、冷却された放出ストリームを第2の熱交換器からスクラバへ送ることを含むことができる。スクラバはCO吸着システムを備えることができる。
いくつかの実施形態では、方法は、第1の空気ストリームおよび第2の空気ストリームを生成するために、空気圧縮機システムによって給送空気ストリームを圧縮することをさらに含むことができる。空気圧縮機システムによって給送空気ストリームを圧縮することは、第1の空気圧縮機によって第1の空気ストリームを圧縮することおよび第2の空気圧縮機によって第2の空気ストリームを圧縮することを含むことができる。空気圧縮機システムによって給送空気ストリームを圧縮することは、第1の空気圧縮機によって第1の空気ストリームを圧縮する前に第2の空気圧縮機によって第1の空気ストリームを圧縮することを含むことができる。さらに、方法は、空気圧縮機システムによって第1の空気ストリームの流量および第2の空気ストリームの流量を制御することであって、それにより、第1の燃焼器および第2の燃焼器内で実質的に化学量論的な燃焼をもたらす、制御することを含むことができる。たとえば、方法は、空気圧縮機システムによって第1の空気ストリームの流量および第2の空気ストリームの流量を制御することであって、それにより、第1の燃焼器および第2の燃焼器内で燃焼において最大約5%の過剰のOをもたらす、制御することを含むことができる。
いくつかの実施形態では、第1の燃料ストリームおよび第2の燃料ストリームは、圧縮された炭化水素ガスを含むことができる。圧縮された炭化水素ガスはメタンを含むことができる。第1の空気ストリームおよび第2の空気ストリームは、圧縮された周囲空気を含むことができる。第1のリサイクルストリームおよび第2のリサイクルストリームは、分子ベースで50%より多いNを含むことができる。方法はまた、分離器によって、第1の熱交換器を通して送られる第1の放出ストリームの部分から液体ストリームを除去することを含むことができる。さらに、電力は、約1,300℃〜約1,500℃のタービン温度で運転するときに、少なくとも約60%の、低位発熱量ベースの正味の発電効率で運転されうる。
電力生産システムのさらなる実施形態が提供される。電力生産システムは、空気ストリームを供給するように構成された空気供給部と、燃料ストリームを供給するように構成された燃料供給部と、分子ベースで50%より多いNである燃焼ストリームを生成するためにリサイクルストリームの存在下で燃料ストリームおよび空気ストリームを燃焼させるように構成された燃焼器とを備えることができる。空気供給部および燃料供給部は、最大約5%の過剰のOを有する実質的に化学量論的な燃焼を燃焼器内でもたらすように構成された比で空気ストリームおよび燃料ストリームを供給するように構成されうる。電力生産システムは、燃焼ストリームを膨張させるように構成されたタービンと、タービンから放出ストリームの少なくとも一部分を受取るように構成された熱交換器とをさらに備えることができる。熱交換器は、空気ストリームおよび放出ストリームから生成されるリサイクルストリームの少なくとも一部分を加熱するために、放出ストリームの部分を使用するように構成されうる。
いくつかの実施形態では、電力生産システムは、第2の燃焼ストリームを生成するために、放出ストリームから生成される第2のリサイクルストリームの存在下で第2の燃料ストリームおよび第2の空気ストリームを燃焼させるように構成された第2の燃焼器と、第2の燃焼ストリームを膨張させるように構成された第2のタービンと、第2の空気ストリームおよび第2のリサイクルストリームを加熱するように構成された第2の熱交換器とをさらに備えることができる。
電力を生産するための方法のさらなる実施形態が提供される。方法は、分子ベースで50%より多いNである燃焼ストリームを生成するためにリサイクルストリームの存在下で、燃焼器内で燃料ストリームおよび空気ストリームを燃焼させることを含むことができ、燃料ストリームと空気ストリームの比は、最大約5%の過剰のOを有する実質的に化学量論的な燃焼をもたらすように制御される。方法は、タービン内の燃焼ストリームを膨張させることであって、それにより、タービンを回転させ電力を生成する、膨張させること、タービンから放出ストリームの少なくとも一部分を熱交換器に送ること、および、放出ストリームの部分を使用することであって、それにより、熱交換器によって空気ストリームおよび放出ストリームから生成されるリサイクルストリームの少なくとも一部分を加熱する、使用することをさらに含むことができる。
いくつかの実施形態では、方法は、第2の燃焼ストリームを生成するために、放出ストリームから生成される第2のリサイクルストリームの存在下で第2の燃焼器内で第2の燃料ストリームおよび第2の空気ストリームを燃焼させること、第2のタービン内で第2の燃焼ストリームを膨張させることであって、それにより、電力を生成するように第2のタービンを回転させる、膨張させること、第2の空気ストリームおよび第2のリサイクルストリームを第2の熱交換器に送ること、および、第2の熱交換器によって第2の空気ストリームおよび第2のリサイクルストリームを加熱することをさらに含むことができる。
本開示の実施形態の理解を支援するために、必ずしも一定比例尺で描かれていない添付図面に対してここで参照が行われる。図面は、例示に過ぎず、本開示を制限するものとして解釈されるべきでない。
本開示の実施形態による、3つのタービンを含む1つの電力生産システムおよびその運転方法を示すフロー図である。 本開示の別の実施形態による、2つのタービンを含む1つの電力生産システムおよびその運転方法を示すフロー図である。
本開示は、ここで種々の実施形態に対する参照を通して以降でより完全に述べられる。これらの実施形態は、本開示が、徹底的かつ完全であり、また、本開示の範囲を当業者に完全に伝達するように提供される。実際には、本開示は、多くの異なる形態で具現化されることができ、本明細書で述べる実施形態に限定されるものとして解釈されるべきでなく、むしろ、これらの実施形態は、本開示が適用可能な法的要件を満たすように提供される。本明細書で使用されるように、単数形「ある(a)」、「ある(an)」、「その(the)」は、文脈が別途明確に指示しない限り、複数の指示物を含む。
ある実施形態では、本開示は、知られている電力生産システムおよび方法に優る明白な利点を提供する方法およびシステムを備える。たとえば、種々の実施形態では、本開示は、以下のものの1つまたは複数を実現しうる。以下のものとは、
・ブレイトンサイクルであって、空気と共に燃料を燃焼させ、サイクル内の主な成分が窒素である、ブレイトンサイクルにおいて、無灰ガス燃料(たとえば、天然ガスなど)または無灰液体燃料(たとえば、留出燃料など)を使用した電力(electric power)の発生、
・高効率を達成するために別個のランキン蒸気サイクルがないこと、
・現行の最良のガスタービンコンバインドサイクルシステムとほぼ同じ(またはそれよりよい)、低位発熱量(lower heating value)(LHV)ベースの正味の効率での電力の生産、
・システムが比較的コンパクトなフォームファクタを規定し、また、比較的少なく費用がかかることを可能にする場合がある高圧、
・システムが、500MWより大きい電力出力を有する単一トレインユニットならびに比較的コンパクトなユニットを提供するようにカスタマイズされうること、
・圧縮予熱空気ストリーム内での燃料のほぼ化学量論的燃焼を使用することによってCOの濃度が10%〜12%モル濃度の範囲内にあるベントガスからのCO捕捉の容易さ、
・Nガスが豊富であるリサイクルストリームによって緩和される排気温度で燃焼器を運転することによって排ガスの低NOを達成すること
である。
特定の実施形態では、本開示は、蒸気サイクルまたは酸素プラントなしで空気/クリーン燃料ブレイトンサイクル電力システムの運転を実現し、現行のコンバインドサイクルユニットより低い資本コストを与えることができ、同時に、効率の犠牲が実質的になくかつ排ガス中のCOの濃度がたとえば約10%以上のモル濃度である。いくつかの実施形態では、システムは、アミンCOスクラビングシステムを使用して、大気に排出される排ガスからさらなるCOを除去することができる。
本開示は、図1に示すシステムの実施形態を参照してここで述べられることになり、その実施形態は、本開示を制限するものであると意図されず、むしろ、例示的な実施形態を示すために提供される。大まかに言えば、図1は、電力を生産するように構成されたブレイトンサイクルの実施形態を示す。システムは、第1の燃焼器3、第2の燃焼器4、および第3の燃焼器34を含むことができる。燃焼器3、4、34のそれぞれは、それぞれ、各燃焼ストリーム(第1の燃焼ストリーム27、第2の燃焼ストリーム23、第3の燃焼ストリーム36)を生成するために、燃料ストリーム(第1の燃料ストリーム26、第2の燃料ストリーム24、第3の燃料ストリーム37)を受取り、加熱圧縮空気ストリーム(第1の加熱圧縮空気ストリーム51、第2の加熱圧縮空気ストリーム21、第3の加熱圧縮空気ストリーム38)と共に燃焼させることができる。燃焼ストリーム27、23、36は、それぞれ、第1のタービン5、第2のタービン6、および第3のタービン35に供給され、タービンは、燃焼ストリームを膨張させて、電力に変換されうる回転運動を生成する。たとえば、タービン5、6、35は、発電機45に、直接的にまたは間接的に結合されうる。
効率を上げるために、システムは、第1の熱交換器2および第2の熱交換器1を含むことができる。第1のタービン5からの放出ストリーム28の部分58は、第1の熱交換器2を通して送られて、第1の圧縮空気ストリーム30を暖め、それにより、第1の加熱圧縮空気ストリーム51を形成することができる。第1の熱交換器2はまた、第1の燃焼器3に提供される第1のリサイクルストリーム57を暖めることができる。第1のリサイクルストリーム57は、第1の燃焼器3内の温度を減少させ、それにより、第1の空気ストリーム51と一緒の第1の燃料ストリーム26の燃焼においてNOの生成を低減するように機能することができる。第1のリサイクルストリーム57はまた、第1の燃焼器3を出る燃焼ストリーム27の温度を、第1のタービン5の最大入口温度であるかまたはそれより低い温度まで減少させるように機能することができる。第1のリサイクルストリーム57はまた、第1のタービン5からの第1の放出ストリーム28の部分を、第1の熱交換器2およびクーラ8内で冷却すること、分離器9内で液体ストリーム31を分離する(separate out)こと、分離されたストリーム15の部分59をリサイクル圧縮機53内で圧縮すること、および圧縮分離されたストリーム49の部分60を、第1の熱交換器を通して戻るように送ることによって形成されうる。第1のリサイクルストリーム57はまた、圧縮分離されたストリーム49の残りの部分16を含むことができ、残りの部分16は、加熱圧縮分離されたストリーム50を形成するために第2の熱交換器1内で加熱された。
第2の熱交換器1は、第3のタービン35からの放出ストリーム39によって加熱されうる。特に、第2のタービン6からの放出ストリーム18は、第3の燃焼器34を通して送られることができ、第3の燃焼器34からの燃焼ストリーム36は、第3のタービン35に供給されうる。そのため、第2のタービン6からの放出ストリーム18は、加熱され、燃焼ガスと結合されて、第2のタービン6からの放出ストリームより比較的高い温度にある場合がある第3の燃焼ストリーム36を形成することができ、したがって、第3のタービン35は、第2のタービンから放出ストリームを直接受取る場合より高い効率で運転することができる。第3のタービン35からの放出ストリーム39は、その後、第2の熱交換器1に送られ、冷却された放出ストリーム19は、その後、大気に放出されうる。あるいは、示すように、冷却された放出ストリーム19は、ベントガス99を大気に送る前にCOおよび/または他のガスを除去するように構成されたスクラバ97(たとえば、CO吸着システム)を通して送られることができる。
第2の熱交換器1は、加熱圧縮分離されたストリーム50を形成するために圧縮分離されたストリーム49の残りの部分16を加熱するために使用されることができ、加熱圧縮分離されたストリーム50は、第1の熱交換器2内で加熱される圧縮分離されたストリーム49の他の部分60と結合(combine)されることができる。第2の熱交換器1はまた、第2の燃焼器4を通して送られる第2のリサイクルストリーム40を形成するために、分離されたストリーム15の残りの部分17を加熱するために使用されることができ、第2のリサイクルストリーム40は、第2の燃焼器4内の温度を減少させ、それにより、第2の空気ストリーム21と一緒の第2の燃料ストリーム24の燃焼においてNOの生成を低減するように機能することができる。第2のリサイクルストリーム40はまた、第2の燃焼器4を出る燃焼ストリーム23の温度を、第2のタービン6の最大入口温度であるかまたはそれより低い温度まで減少させるように機能することができる。いくつかの実施形態では、第1のタービン5からの第1の放出ストリーム28の残りの部分22はまた、第1のタービンを出た後で冷却されることなく、加熱されることなく、またはその他の方法で処理されることなく、第2の燃焼器4を通してリサイクルされうる。放出ストリーム28の残りの部分22は、燃焼空気ストリームおよび燃料ストリームからの窒素、アルゴン、および他の不活性非燃焼性成分が、燃焼生成物として送出されるかまたは空気ストリームまたは燃料ストリーム内に存在するCOのほとんどおよび水の一部と共に、ストリーム99として大気に排出されることを可能にし、システム内へのそれらの成分の蓄積を防止するのに役立つ。第1のタービン5は、高い入口圧力および低い圧力の比で運転することができ、高い放出圧力をもたらす。関連する燃焼器4、34を有する第2のタービン6および第3のタービン35ならびに第2の熱交換器1の目的は、放出ストリーム28の残りの部分22内の圧力エネルギーが、総合的な電力生産およびプロセスの効率を増加させるために効率的に利用されることを可能にすることである。第2の熱交換器1はまた、第2の燃焼器4および第3の燃焼器34にそれぞれ送られる第2の空気ストリーム21および第3の空気ストリーム38に熱を提供することができる。
燃焼器3、4、34に供給される圧縮加熱された空気ストリーム51、21、38にさらに関して、システムは、いくつかの実施形態では電気モータ54によって駆動されうる、または、タービン5、6、35の1つまたは複数に機械的に結合されうる、第1の空気圧縮機10、第2の空気圧縮機11、および第3の空気圧縮機42を含む空気圧縮機システムを含むことができる。第3の空気圧縮機42は、給送空気ストリーム12(たとえば、周囲空気)を受取り、給送空気ストリームを圧縮することができる。第3の空気圧縮機42によって圧縮される給送ストリーム12の第1の部分48は、第2の熱交換器1を通して送られて、第3の燃焼器34に供給される加熱圧縮された空気ストリーム38を形成することができる。第3の空気圧縮機42によって圧縮される給送ストリーム12の第2の部分47は、第2の空気圧縮機11に送られることができる。第2の空気圧縮機11によって圧縮される空気ストリーム47の第1の部分20は、第2の熱交換器1を通して送られて、第2の燃焼器4に供給される加熱圧縮された空気ストリーム21を形成することができる。第2の空気圧縮機11によって圧縮される空気ストリーム47の第2の部分14は、第1の空気圧縮機10によって受取られることができる。第1の空気圧縮機10によって圧縮される空気ストリーム30は、第1の熱交換器2を通して送られて、第1の燃焼器3に供給される第1の空気ストリーム51を形成することができる。
第3の燃焼器34が、第3の空気圧縮機42によって圧縮される空気ストリーム38を受取り、第2の燃焼器4が、第3の空気圧縮機と第2の空気圧縮機11の両方によって圧縮される空気ストリーム21を受取り、第1の燃焼器3が、第3の空気圧縮機、第2の空気圧縮機、および第1の空気圧縮機によって圧縮される空気ストリーム51を受取る、このシリアルな圧縮機構成のせいで、燃焼器への空気の供給が変動する場合がある。特に、燃焼器に入る空気の流量は、第1の燃焼器3において最大であり、第3の燃焼器34において最小であり、第2の燃焼器4において第1の燃焼器についての空気の流量と第3の燃焼器についての空気の流量との中間であるとすることができる。さらに、第1の燃焼器3および第2の燃焼器4によってそれぞれ受取られる燃料ストリーム26、24は、燃料圧縮機によって圧縮されない場合がある第3の燃焼器34に供給される燃料ストリーム37と比較して、電気モータ77によって駆動されうる燃料圧縮機7によって燃料の燃料ストリーム25が圧縮されるため、比較的高い圧力にあるとすることができる。したがって、燃料ストリーム26、24、37および加熱圧縮された空気ストリーム51、21、38は、所望の空燃比を実現するように制御されうる。たとえば、流量は、実質的に化学量論的燃焼を実現するように構成されうる。燃焼器3、4、34のそれぞれに対する燃料ストリーム26、24、37のそれぞれの流量は、タービン5、6、35のそれぞれについて必要とされる入口温度を与えるために、ほぼ化学量論的な条件で燃焼しかつリサイクル流と混合されるときに、十分な熱を提供するように別々に制御される。空気ストリーム51、21、38は、燃焼器3、4、34内で燃料ストリーム26、24、37から燃料のほぼ化学量論的な燃焼を与えるために、1つまたは複数の場所で(たとえば、ストリーム48、20、30で)別々に制御される。リサイクルストリーム57、40の流量は、タービン5、6、35に提供される燃焼ストリーム27、23、36の必要とされる流量を与えるために、1つまたは複数の場所で(たとえば、ストリーム60、16、17で)別々に制御される。そのため、空気供給部(たとえば、空気ストリーム51、21、38を燃焼器3、4、34に供給するように構成された1つまたは複数の構成要素)および/または、燃料供給部(たとえば、燃料ストリーム26、24、37を燃焼器3、4、34のそれぞれに供給するように構成された1つまたは複数の構成要素)は、燃焼器において実質的に化学量論的な燃焼(たとえば、最大約5%の過剰のOを有する)をもたらすように構成された比で空気ストリームおよび燃料ストリームを供給するように構成されうる。この点に関して、周囲空気を含む空気ストリームの実質的に化学量論的な燃焼を使用することによって、燃焼に起因する過剰の不活性ガス(たとえば、NおよびAr)は、閉システムから除去され、大気に排出されうる。たとえば、第3の燃焼器34を出て、第3のタービン35に入るストリーム36は、高圧(たとえば、20bar(2MPa)〜60bar(6MPa))および高温を示し、不活性ガスの大多数の濃度を含むことができる。膨張後、ストリーム39およびストリーム19はそれぞれ、大気圧のまたは大気圧に近い低圧を有することができる。示された方法で、ストリームは、上述したように、1つまたは複数のタービンにわたって膨張して、電力を生成し、不活性ガスを大気に排出する前に不活性ガスの圧力を実質的に大気の圧力に減少させる。図1のシステムの運転のさらなる説明が、以下に提供される。しかし、温度、圧力、燃料、ガスなどが例のために提供されることが理解させるべきである。したがって、システムの運転は、幾つかの実施形態で提供される例と1つまたは複数の点で異なる場合がある。
図1のシステムは、複数のリサイクルストリーム57、40、22、18を通して燃焼器に提供される作動流体として、COおよびHO燃焼生成物と混合されたNを主に使用しうる高圧/低圧比ブレイトン電力サイクルにおいて熱交換器2、1(たとえば、節減器)を使用しうる。窒素は、リサイクルストリーム57、40、22、18の1つまたは複数における主要な成分(たとえば、モル濃度ベースで50%より大きいN)を構成することができる。燃焼器3内の高圧は、約60bar(6PMa)より大きい、約80bar(8PMa)より大きい、または約120bar(12PMa)より大きいとすることができる、あるいは、約80bar(8PMa)〜約500bar(50PMa)、100bar(10PMa)〜約450bar(45PMa)、または200bar(20PMa)〜約400bar(40PMa)の範囲内にあるとすることができる。タービン5、6、35のそれぞれの前後の圧力比は、約4〜約12、約5〜約11、または約7〜約10の範囲内にあるとすることができる。炭化水素を含む燃料ストリーム26は、第1の加熱圧縮された空気ストリーム51からのほぼ化学量論的量の酸素を用いて、第1の高圧燃焼器3内で燃焼されうる。燃料ストリームは、好ましくは、メタン(すなわち、天然ガス)などの、周囲条件においてガスである炭化水素を含む。しかし、液化石油ガス(liquefied petroleum gas)(LPG)などの他の炭化水素が使用されうる。そのため、燃料ストリームは、圧縮された炭化水素ガス(たとえば、C〜C炭化水素ガスの任意の組合せ)を含むことができる。なおさらに、留出燃料が使用されうる。具体的には、ガソリン、ディーゼル、灯油、軽油、およびジェット燃料などの石油留出から得られる任意の液体燃料が使用されうる。より一般的には、適した液体燃料は、C〜C70、C〜C50、C〜C30、またはC〜C20炭化水素を含む石油留出分とすることができる。正味の燃焼ガスは、リサイクルストリーム57と混合されることができ、それが、燃焼ストリーム27の温度を、第1のタービン5の最大入口温度にあるかまたはそれより低い値まで緩和する。第1のリサイクルストリーム57の部分60は、第1のタービン5から受取られる放出ストリーム28の部分58からの熱を使用して第1の熱交換器2内で予熱されうる。タービン5、6、および35の高い入口圧力と入口温度および低い圧力比は、放出温度が、比較的高い、通常、400℃〜800℃の範囲内にあるとすることができることを意味する。タービン放出ストリーム28、18、および39内に存在する熱は、熱交換器1、2で回復されて、高い効率が達成され、電力出力が最大にされうる。
第1のタービン5によって受取られる燃焼ストリーム27の温度は、少なくとも約500℃、少なくとも約700℃、または少なくとも約900℃とすることができる、あるいは、その温度は、約900℃〜約1,600℃、約1,000℃〜約1,500℃、または約1,100℃〜約1,400℃の範囲内とすることができる。第1のタービン5において約4〜約12、約5〜約11、約7〜約10の高圧と低圧の比を使用することは、約6.7bar(0.67PMa)〜約125bar(12.5PMa)、12bar(1.2PMa)〜約100bar(10PMa)、15bar(1.5PMa)〜約75bar(7.5PMa)、または20bar(2PMa)〜約57bar(5.7PMa)の範囲内の放出ストリーム28の放出圧をもたらすことができる。N+CO+HOを含む場合がある第1の燃焼器3からの燃焼ストリーム27の部分は、最終的に大気に放出されうる。第1の燃焼器3からの燃焼ストリーム27の一部分は、第2のリサイクルストリーム40による温度緩和によって第2の燃焼器4内で再加熱された後に、第2のタービン6で膨張されうる。第2のリサイクルストリーム40および第2の空気ストリーム21は、第2の熱交換器1内で第3のタービン35からの放出ストリーム39によって、約200℃〜約800℃、約300℃〜約600℃、または約450℃〜約550℃の温度に加熱されうる。
任意選択で、高効率を達成するために、第2の燃焼器4からの燃焼ストリーム23は、第3の燃焼器34が第2のタービン6と第3のタービン35との間にある状態で、第3のタービン35を通して流されて、燃焼ストリームが大気圧まで膨張されるときに燃焼ストリームからの電力出力が最大にされうる。第2のタービン6および第3のタービン35は、実質的に等しい圧力比を使用することができる。燃焼ストリーム27、23、36のそれぞれは、約500℃〜約1,800℃、約900℃〜約1,600℃、または約1,100℃〜約1,400℃にあるとすることができる。第2の燃焼器4に提供され、また任意ン選択で、第3の燃焼器34に提供される第2のリサイクルストリーム40、および、第2および第3の燃焼器用の加熱圧縮された空気ストリーム21、38は、第2の熱交換器1内で第3のタービン35からの放出ストリーム39に接して予熱される。第3のタービン35からの放出ストリーム39は、冷却された排気ストリーム19として放出される前に第2の熱交換器1内で100℃未満に冷却されうる。排気ストリーム19は、好ましくは、約5%より多い、約8%より多い、または約10%より多いモル濃度CO含量を有することができる。この点に関して、排気ストリーム19に比較的高いCO含量を持たせることによって、スクラバ97の使用が容易になる場合がある。本明細書で使用されるように、スクラバは、あるストリームの規定された成分の除去、より具体的には、CO、SO、およびNOなどの汚染物質の除去のために構成された任意の装置またはシステムを包含しうる。特に、CO吸着および除去のための任意の適したシステムが、スクラバとして使用されうる。使用されうる溶媒ベースシステムの非制限的な例は、BENFIELD(商標)プロセス(UOP,LLC)で使用されるアルカリ炭酸塩、ECONAMINE FG PLUS(商標)プロセス(Fluor Corporation)で使用されるアルコールアミン、RECTISOL(登録商標)プロセス(Lurgi,GMBH)で使用されるアルコール、ジオール、およびエーテル、ならびに、SELEXOL(商標)溶媒(The Dow Chemical Company)を含む。膜ベースシステムまたは吸着システムなどの他のシステムもまた使用されうる。したがって、スクラバ97は、CO含量を低減し、ベントガス99を大気に送る。除去されたCOは、隔離するため、または、他の方法で使用するために捕捉されうる。他の実施形態では、排気ストリーム19は、浄化システムを通して排気ストリームを送ることなく、大気に送られることができる。
燃焼器3、4、34のそれぞれに送出される加熱圧縮された空気ストリーム51、21、38からの空気の量は、燃料26、24、37の完全な燃焼に必要とされる化学量論的量と比較して、約5%未満、約3%未満、または約2%未満の、あるいは、約0.1%〜約5%、約0.15%〜約4%、または約0.25%〜約3%の範囲の正味の過剰のO濃度を有する、Oのほぼ化学量論的な濃度に制限されうる。加熱圧縮された空気ストリーム51、21、38によって燃焼器3、4、34に送出される空気に関してこうした化学量論的濃度を使用し、Oが枯渇した燃焼生成物ストリームをリサイクルすることによって、開示されるサイクルは、NGCCプラントで使用される従来のガスタービンと区別される。従来のガスタービンは、圧縮された空気ストリームを使用して、燃焼器で生成される燃焼ガスを希釈し、それにより、必要とされるタービン入口温度を達成することができる。通常、全圧縮空気の約2/3が燃焼をバイパスし、これは、排ガス中に、通常、約14%のOおよび約3%のCOをもたらす。対照的に、本開示によるシステムは、第1の燃焼器3における燃焼および第1のタービン5における膨張によって生成される分離されたストリーム15であって、第1の熱交換器2およびクーラ8で冷却され、凝縮された水ストリーム31を除去された後に得られる、分離ストリーム15をもたらすことができ、分離ストリーム15は、典型的なガスタービンシステムについての約2%〜約4%と比較して、通常、約6%〜約15%、約8%〜約14%、または約10%〜約12%の範囲内のCO含量を有する。
有利には、CO除去の場合、第1のタービン5からの放出ストリーム28から得られる圧縮分離されたストリーム49は、第1の熱交換器2における冷却、セパレータ9における水の除去、およびリサイクル圧縮機53における圧縮後に、約5bar(0.5PMa)〜約150bar(15PMa)または6.5bar(0.65PMa)〜約124bar(12.4PMa)の好ましい圧力範囲でかつほぼ大気温度で入手可能である。COのこの高い分圧は、CO除去の資本コストを減少させ、除去効率の増加を可能にする。たとえば、燃料燃焼によって生成される全COストリームの約50%〜約80%、約55%〜約75%、または約60%〜約70%は、好ましくは約15bar(1.5MPa)〜約100bar(10MPa)でかつほぼ大気温度で、(N+Ar)、CO、過剰のO、および気相残留水を含むことができるこの圧縮分離されたストリーム49内で利用可能でありうる。全COストリームの残りの部分は、大気圧で、かつ、約7%〜約15%、約8%〜約14%、または約10%〜約12%の範囲内の乾式モル濃度で、分離されたストリーム15の残りの部分17であって、圧縮分離されたストリーム49と同じ成分を含むことができる、残りの部分17において利用可能である。
本明細書で述べるシステムは、2つまたは3つの圧力レベルで空気を供給する多段空気圧縮機(第1の空気圧縮機10、第2の空気圧縮機11、および第3の空気圧縮機42を備える)、および、リサイクルストリーム57、40、22、18の1つまたは複数を燃焼器3、4、34の1つまたは複数に循環させることができる別個の高圧低圧比リサイクル圧縮機53を備えることができる。空気圧縮機10、11、42は、電気的に(たとえば、電気モータ54によって)駆動されうる、または、タービン5、6、および35からのシャフトパワーの少なくとも一部によって駆動されうる。空気圧縮機10、11、42およびリサイクル圧縮機53は、任意選択で、単一ドライブシステムによって駆動される単一システムとして連結されうる。あるいは、空気圧縮機10、11、42および/またはリサイクル圧縮機53は、分離され、独立に駆動されうる。
第1の熱交換器2は、約400℃〜約1,200℃、約500℃〜約1,000℃、または約600℃〜約800℃の範囲内の温度で、第1のタービン5を出て第1の熱交換器2に入る高圧タービン放出ストリーム28の冷却を実現するように構成されうる。放出ストリーム28によって第1のタービン5から逃がされる熱は、第1のリサイクルストリーム57の少なくとも一部分60を加熱するために使用されうる。全体システムの高い効率は、放出ストリーム28の温度と加熱された第1のリサイクルストリーム57の温度との間で比較的小さな温度差を達成することによって大きく影響を受ける。圧縮分離されたストリーム49の比熱は、第1のタービン5からの放出ストリーム28の比熱より著しく高いとすることができ、また、放出ストリームの流量が(凝縮されたストリーム31および分離されたストリーム15の残りの部分17のせいで)圧縮分離されたストリームの流量より高くても、第1の熱交換器2の前後に比較的小さな温度差をもたらすのに不十分な放出ストリーム流が存在する場合がある。
この問題を克服するために、圧縮分離されたストリーム49の一部分16は、第2の熱交換器1内で第3のタービン35からの放出ストリーム39に接して予熱されうる。圧縮分離されたストリーム49の部分16の流量は、第2の熱交換器1において、第3のタービン35からの放出ストリーム39の初期温度に対して、約40℃未満、約30℃未満、約20℃未満、または約10℃未満の温度差を部分16の流量が持つことになるように構成されうる。それにより、第1の熱交換器2を通して送られる圧縮分離されたストリーム49の部分60の流量は、第1のタービン5からの放出ストリーム28の流量に対してさらに低減されることができ、比較的小さな温度差が、同様に、第1のリサイクルストリーム57と第1のタービンからの放出ストリームとの間で達成されることができる。加熱された流れ50を形成するために、第2の熱交換器1内で予熱される圧縮分離されたストリーム49の部分16は、第1の加熱されたリサイクルストリーム57を形成するために、第1の熱交換器2によって加熱される圧縮分離されたストリームの部分60と結合されうる。第1の熱交換器2の下流で圧縮分離されたストリーム49の部分60と結合するものとして示されるが、加熱された流れ50は、代わりに、第1の熱交換器の上流で、または、熱交換器内で2つのストリームが実質的に同じ温度を有する地点でこの部分と結合することができる。
分離されたストリーム15の残りの部分17は、リサイクル圧縮機53をバイパスし、第2のリサイクルストリーム40として、第2の熱交換器1を通って第2の燃焼器4へ進む。上述した構成は、約10℃〜約40℃の範囲内の、第1の熱交換器2を出る(また、第1の加熱されたリサイクルストリーム57を少なくとも部分的に形成する)流れと第1のタービン5からのタービン排ガス28との間の温度差をもたらしうる。熱交換器2、1は、いくつかの実施形態では、合金617などの高ニッケル合金を使用するマルチチャネル拡散接合式熱交換器(たとえば、Meggit PLCのHeatric Divisionからの)または真空ろう付け式ステンレス鋼板フィン熱交換器(たとえば、Chart IndustriesまたはSumitomo Precision Productsからの)とすることができる。他の適した熱交換器が、同様に使用されうる。
好ましいシステムでは、放出ストリーム28から形成される冷却され分離されたストリーム15の一部分17、放出ストリーム28から形成される冷却され分離され加圧されたストリーム49の一部分16、および、第2の燃焼器4および第3の燃焼器34用の空気ストリーム21、38は、第2の熱交換器1内で第3のタービン35からの放出ストリーム39に接して加熱される。第2のリサイクルストリーム40(たとえば、第2の熱交換器1内で加熱された後の、冷却され分離されたストリーム15の残りの部分17)は、燃料ストリーム24、加熱され圧縮された空気ストリーム21(たとえば、加熱後の空気ストリーム20)、およびタービン放出ストリーム28のリサイクルされる部分22と共に第2の燃焼器4に入る。燃料ストリーム24は、燃料圧縮機7によって、第2のリサイクルストリーム40の圧力に実質的に等しい圧力に圧縮されうる。第2の燃焼ストリーム23は、第2のタービン6への入口ストリームに適した(たとえば、約900℃〜約1,600℃の範囲内の)温度で、第2の燃焼器4から放出される。
第1のタービン5からのタービン放出ストリーム28の一部分58は、第1の熱交換器2に送られて、第1の燃焼器3に供給される第1のリサイクルストリーム57および空気ストリーム51に熱を提供しうる。空気ストリーム51および第1のリサイクルストリーム57は、約400℃〜約900℃、好ましくは約600℃〜約800℃の温度に加熱されうる。第1の熱交換器2を通って流れた後、放出ストリーム28は、100℃未満とすることができる温度の冷却されたストリーム33を形成する。冷却されたストリーム33は、クーラ8によってさらに冷却されて、平均周囲温度に実質的に等しい温度の冷却されたストリーム32を形成し、それにより、ストリームから液体が凝縮させられることができ、その液体は、セパレータ9によって液体ストリーム31として除去されることができる。
第2のタービン6からの放出ストリーム18は、任意選択で、第3の燃焼器34内で予熱され、第3の燃焼器34内で、第3の燃料ストリーム37が、第3の加熱圧縮された空気ストリーム38によって燃焼する。第2のタービン6を出る放出ストリーム18の再加熱は、約600℃〜約1,800℃、約700℃〜約1,700℃、または約900℃〜約1,600℃の範囲内の、第3のタービン35用の入口温度を達成することができ、第2のタービンからの放出ストリームより高い温度である作動流体を第3のタービンに提供することによって、サイクル効率を上げることになる。第3のタービン35を出る放出ストリーム39の温度は、第2の熱交換器1の最大設計温度によって制限される約200℃〜約900℃の範囲まで増加することができる。第1の熱交換器2を加熱するために、第1のタービン5からの放出ストリーム28の一部分58を使用する実施形態では、第3の燃焼器34および第2のタービン6は、第3のタービン35の前後で適切な圧力比を保証するために使用されうる。一般に、第3のタービン35は、第2のタービン6より高い圧力比および低い出口温度を有することができる。第3のタービン35の入口温度は、できる限り高く、たとえば、第3のタービン35の最大入口温度によって制限される約1,000℃〜約1,600℃の範囲内にあるべきである。
熱交換器2、1は、温度および圧力の設計組合せに応じて、真空ろう付け式ステンレス鋼板フィン熱交換器または拡散接合式高ニッケル合金高圧熱交換器でありうる。こうしたユニットは、たとえば、Sumitomo Precision Products、Chart Industries、またはHeatricによって製造される。任意選択で、熱交換器2、1の一方または両方はまた、システムに給送される燃料25の給送ストリームの一部または全てを予熱するために使用されうる。いくつかの実施形態では、熱交換器2、1は、第1のタービン5からの放出ストリーム28の部分58および第3のタービン35からの放出ストリーム39をそれぞれ使用して、熱交換器を通してそれぞれ受取られる他の流体のそれぞれを、約100℃未満の温度から約300℃〜約900℃の温度まで、好ましくは約450℃〜約800℃の温度まで加熱するように構成されうる。任意選択で、タービン5、6、35の2つまたは3つは、各タービンのそれぞれの最適速度での運転を可能にするように各タービンにおいて異なる回転速度を可能にするために共通ドライブシャフトを介してまたはギアボックスを介して単一発電機45に連結されうる。したがって、システムは、いくつかの実施形態では、電気を発生するために使用されうる。
以下に提供される表1〜4は、図1に示すシステムの運転中の、種々のストリーム12、28、22、23、58、51、18、24、19、27、33、32、31、15、26、および25ならびに第2の燃焼器4における例示的な運転パラメータを示す。運転パラメータは、88.7%タービン効率および85%圧縮機効率を仮定して、ISO条件において0.4536kmol/hrの純粋メタン燃料を用いた運転に基づく。図表で示すいくつかの圧縮機は、中間冷却を有する多段ユニットとして計算された。他の補助電力需要は含まれない。LHVベースでのシステムの正味の効率は、約60%であるように計算される。
Figure 2017008942
Figure 2017008942
Figure 2017008942
Figure 2017008942
本明細書で開示されるシステムは、知られているNGCCシステムの効率に匹敵するかまたはそれより大きい効率が、著しく低いタービン温度を使用して達成されうる点で特に有益でありうる。そのため、本発明のシステムは、現行の技術より著しく低い最大タービン温度(たとえば、タービンのうちの任意のタービンを通る流体の最大温度)を使用し、それでも、知られているNGCCシステムの効率に匹敵するかまたはそれより大きい正味の発電効率を達成しうる。いくつかの実施形態では、システムおよび方法は、全てのタービン温度についてNGCCより高い効率を提供するものとして述べられうる。
以前は、効率の増加を達成するために、タービン運転温度を著しく増加させることが必要であった。たとえば、従来のNGCCシステムは、約59%のLHVベースの正味の効率を達成するために、約1,500℃の最大タービン温度を使用した。64%ほどに大きな値の効率に達するために、知られている技術は、1,700℃の範囲で運転する超高温ガスタービンの使用を必要とした。比較すると、本明細書で開示される本システムは、約1,279℃のタービン温度を使用して、約60%のLHVベースの正味の効率を達成しうる。本開示のシステムの効率と既存のNGCCシステムの効率との間のさらなる比較は、種々のタービン運転温度について表5に示される。
Figure 2017008942
そのため、一実施形態では、開示されるシステムは、より低い最大タービン温度を使用して、従来のNGCCシステムの効率に匹敵するかまたはそれより大きい効率を達成することができる。先に述べたように、タービン温度を下げて、高温に耐えるように構成された高価な材料についての必要性を低減することによってタービンのコストを低減することが望ましい場合がある。あるいは、本明細書で開示されるシステムは、従来のNGCCシステムの同じ最大温度で運転するが、比較的高い効率を達成することができる。たとえば、一実施形態では、目下開示されているシステムまたは方法は、約1,300℃〜約1,500℃のタービン温度で運転するときに、少なくとも約60%の、低加熱値ベースの正味の発電効率で運転できる。他の実施形態では、本開示によるシステムまたは方法は、以下のうちの任意のものによる低加熱値ベースの正味の発電効率で、すなわち、約1,100℃の温度において少なくとも約55%、約1,200℃の温度において少なくとも約58%、約1,400℃の温度において少なくとも約63%、または約1,700℃の温度において少なくとも約68%で運転できる。特定の実施形態では、本開示によるシステムまたは方法は、約1,500℃未満、約1,400℃未満、または約1,300℃未満であるタービン温度で運転するときに、少なくとも約60%の、低加熱値ベースの正味の発電効率で運転できる。なおさらなる実施形態では、本開示によるシステムまたは方法は、約1,100℃〜約1,300℃のタービン温度で運転するときに、少なくとも約55%の、低加熱値ベースの正味の発電効率で運転できる。
先に述べたように、第3のタービン35および第3の燃焼器34は、いくつかの実施形態ではオプションである。この点に関して、図2は、第3の燃焼器、第3のタービン、または第3の空気圧縮機を含まないシステムの実施形態を示す。システムは、述べる差を除いて、図1のシステムと実質的に同様であるとすることができる。示すように、第2のタービン6からの放出ストリーム18’は、第3の燃焼器および第3のタービンを通って最初に進むことなく、第2の熱交換器1’に送られることができる。この実施形態では、放出ストリーム18’は、第2のタービン6と大気との間の、第2の熱交換器1’(および任意の相互接続パイピングおよび/または機器)を通した圧力降下に等しい、大気を超える圧力にあるとすることができる。この実施形態では、スクラバが使用されないことに留意されたい。そのため、冷却された放出ストリーム19'は、スクラバを通って最初に進むことなく、大気に放出されうる。しかし、スクラバシステムはまた、図1のシステムの実施形態で示すように、この実施形態で使用されうる。
第3のタービンが使用されないため、第3の燃焼器ならびにそれに関連する燃料および空気ストリームが存在しないとすることができる。したがって、空気圧縮機システムは、第3の空気圧縮機を使用せず、第2の熱交換器1’は、第3の空気ストリームを加熱しないとすることができる。そのため、給送空気ストリーム12'は、第3の空気圧縮機によって最初に圧縮されるのではなく、第2の空気圧縮機12’に直接提供されうる。他の点において、図2のシステムは、図1のシステムと実質的に同じであるとすることができる。
高圧低圧比の第1のタービンの使用であって、結合された1つまたは2つのさらなる電力タービン段で膨張されることによって燃焼生成物が得られ、加圧され予熱された空気をタービン入口温度を緩和するためのリサイクルストリームと共に使用するほぼ化学量論的燃焼を用いる、高圧低圧比の第1のタービンの使用は、約55%〜約65%の範囲内の効率を有するシステムをもたらすことができる。システムの高圧は、プラントが、比較的低い資本コストで比較的コンパクトなフォームファクタを規定することを可能にする場合がある。システムは、ベース負荷発電について500MWを超える単一トレイン電力出力のために設計されうる。システムはまた、50%より大きいLHVベースの熱効率が達成されうる、留出低硫黄燃料を使用する船舶推進ユニットなどの低出力用途で使用されうる。
本明細書で述べる開示の多くの変更形態および他の実施形態を、先の説明で提示された教示の利益を受ける、本開示が関連する当業者が思い付くである。したがって、本開示が特定の実施形態に制限されないこと、および、変更形態および他の実施形態が、添付特許請求の範囲内に含まれることを意図されることが理解される。特定の用語は、本明細書で使用されるが、制限するためではなく、一般的でかつ記述的な意味でだけ使用される。

Claims (4)

  1. 電力生産システムであって、
    第1の空気ストリームを供給するように構成された空気供給部と、
    第1の燃料ストリームを供給するように構成された燃料供給部と、
    分子ベースで50%より多いNである燃焼ストリームを生成するために第1のリサイクルストリームの存在下で前記第1の燃料ストリームおよび前記第1の空気ストリームを燃焼させるように構成された第1の燃焼器と、
    前記第1の燃焼ストリームを膨張させるように構成された第1のタービンと、
    前記第1のタービンから放出ストリームの少なくとも一部分を受取るように構成された第1の熱交換器であって、前記第1の熱交換器は、前記第1の空気ストリームおよび前記放出ストリームから生成される前記第1のリサイクルストリームの少なくとも一部分を加熱するために、前記放出ストリームの少なくとも一部分を使用するように構成される、第1の熱交換器と、を備え、
    前記空気供給部および前記燃料供給部は、最大5%の過剰のOを有する化学量論的な燃焼を前記燃焼器内でもたらすように構成された比で前記空気ストリームおよび前記燃料ストリームを供給するように構成される、電力生産システム。
  2. 第2の燃焼ストリームを生成するために、前記放出ストリームから生成される第2のリサイクルストリームの存在下で第2の燃料ストリームおよび第2の空気ストリームを燃焼させるように構成された第2の燃焼器と、
    前記第2の燃焼ストリームを膨張させるように構成された第2のタービンと、
    前記第2の空気ストリームおよび前記第2のリサイクルストリームを加熱するように構成された第2の熱交換器と、
    をさらに備える、請求項1に記載の電力生産システム。
  3. 電力を生成するための方法であって、
    分子ベースで50%より多いNである第1の燃焼ストリームを生成するために第1のリサイクルストリームの存在下において、第1の燃焼器内で第1の燃料ストリームおよび第1の空気ストリームを燃焼させることであって、前記第1の燃料ストリームと前記第1の空気ストリームの比は、最大5%の過剰のOを有する化学量論的な燃焼をもたらすように制御されることと、
    第1のタービン内の第1の燃焼ストリームを膨張させ、前記第1のタービンを回転させて電力を生成することと、
    前記第1のタービンから放出ストリームの少なくとも一部分を第1の熱交換器に送ることと、
    前記放出ストリームの少なくとも一部分を使用し、前記第1の熱交換器によって前記第1の空気ストリームおよび前記放出ストリームから生成される前記第1のリサイクルストリームの少なくとも一部分を加熱することと、
    を含む、方法。
  4. 第2の燃焼ストリームを生成するために、前記放出ストリームから生成される第2のリサイクルストリームの存在下で第2の燃焼器内で第2の燃料ストリームおよび第2の空気ストリームを燃焼させることと、
    第2のタービン内で前記第2の燃焼ストリームを膨張させ、電力を生成するように前記第2のタービンを回転させることと、
    前記第2の空気ストリームおよび前記第2のリサイクルストリームを第2の熱交換器に送ることと、
    前記第2の熱交換器によって前記第2の空気ストリームおよび前記第2のリサイクルストリームを加熱することと、
    をさらに含む、請求項3に記載の方法。
JP2016151321A 2010-09-21 2016-08-01 窒素ガス作動流体を使用する高効率発電(power generation)のためのシステムおよび方法 Active JP6189500B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US38504210P 2010-09-21 2010-09-21
US61/385,042 2010-09-21

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013529414A Division JP5982379B2 (ja) 2010-09-21 2011-09-20 窒素ガス作動流体を使用する高効率発電(powergeneration)のためのシステムおよび方法

Publications (2)

Publication Number Publication Date
JP2017008942A true JP2017008942A (ja) 2017-01-12
JP6189500B2 JP6189500B2 (ja) 2017-08-30

Family

ID=44720176

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2013529414A Active JP5982379B2 (ja) 2010-09-21 2011-09-20 窒素ガス作動流体を使用する高効率発電(powergeneration)のためのシステムおよび方法
JP2016151321A Active JP6189500B2 (ja) 2010-09-21 2016-08-01 窒素ガス作動流体を使用する高効率発電(power generation)のためのシステムおよび方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2013529414A Active JP5982379B2 (ja) 2010-09-21 2011-09-20 窒素ガス作動流体を使用する高効率発電(powergeneration)のためのシステムおよび方法

Country Status (16)

Country Link
US (3) US9410481B2 (ja)
EP (1) EP2619428B1 (ja)
JP (2) JP5982379B2 (ja)
KR (1) KR101825395B1 (ja)
CN (1) CN103221660B (ja)
AU (1) AU2011305628B2 (ja)
BR (1) BR112013008661B1 (ja)
CA (1) CA2811940C (ja)
DK (1) DK2619428T3 (ja)
EA (2) EA023988B1 (ja)
ES (1) ES2508173T3 (ja)
HK (1) HK1187968A1 (ja)
MX (1) MX345241B (ja)
PL (1) PL2619428T3 (ja)
TW (1) TWI589770B (ja)
WO (1) WO2012040195A2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2694420C1 (ru) * 2017-10-23 2019-07-12 Мицубиси Дзидося Когио Кабусики Кайся Структура переднего бампера

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0489068A (ja) * 1990-07-31 1992-03-23 Ya Man Ltd 高周波美容装置
AP3086A (en) * 2008-08-20 2015-01-31 Sasol Technology Propertary Ltd Co-production of synthesis gas and power
US9410481B2 (en) 2010-09-21 2016-08-09 8 Rivers Capital, Llc System and method for high efficiency power generation using a nitrogen gas working fluid
WO2014071118A1 (en) * 2012-11-02 2014-05-08 General Electric Company System and method for reheat in gas turbine with exhaust gas recirculation
US9708977B2 (en) 2012-12-28 2017-07-18 General Electric Company System and method for reheat in gas turbine with exhaust gas recirculation
MX2015013069A (es) * 2013-03-15 2016-04-06 Palmer Labs Llc Sistema y metodo para la generacion de energia de alta eficiencia usando un fluido de trabajo circulante de dioxido de carbono.
US9377202B2 (en) 2013-03-15 2016-06-28 General Electric Company System and method for fuel blending and control in gas turbines
US9382850B2 (en) 2013-03-21 2016-07-05 General Electric Company System and method for controlled fuel blending in gas turbines
JP6220586B2 (ja) * 2013-07-22 2017-10-25 8 リバーズ キャピタル,エルエルシー ガスタービン設備
JP6220589B2 (ja) * 2013-07-26 2017-10-25 8 リバーズ キャピタル,エルエルシー ガスタービン設備
JP6250332B2 (ja) 2013-08-27 2017-12-20 8 リバーズ キャピタル,エルエルシー ガスタービン設備
CN104314704B (zh) * 2013-09-22 2016-04-27 摩尔动力(北京)技术股份有限公司 速度型热气机
CN104196630A (zh) * 2014-08-11 2014-12-10 胡晋青 一种燃气轮机
TWI657195B (zh) 2014-07-08 2019-04-21 美商八河資本有限公司 加熱再循環氣體流的方法、生成功率的方法及功率產出系統
US11231224B2 (en) 2014-09-09 2022-01-25 8 Rivers Capital, Llc Production of low pressure liquid carbon dioxide from a power production system and method
CA2960195C (en) 2014-09-09 2023-04-25 8 Rivers Capital, Llc Production of low pressure liquid carbon dioxide from a power production system and method
US11686258B2 (en) 2014-11-12 2023-06-27 8 Rivers Capital, Llc Control systems and methods suitable for use with power production systems and methods
US10961920B2 (en) 2018-10-02 2021-03-30 8 Rivers Capital, Llc Control systems and methods suitable for use with power production systems and methods
MA40950A (fr) * 2014-11-12 2017-09-19 8 Rivers Capital Llc Systèmes et procédés de commande appropriés pour une utilisation avec des systèmes et des procédés de production d'énergie
WO2016205116A1 (en) 2015-06-15 2016-12-22 8 Rivers Capital, Llc System and method for startup of a power production plant
US10422252B2 (en) * 2015-09-01 2019-09-24 8 Rivers Capital, Llc Systems and methods for power production using nested CO2 cycles
WO2017069922A1 (en) 2015-10-21 2017-04-27 Conlon William M High pressure liquid air power and storage
AU2017223264B2 (en) * 2016-02-26 2019-08-29 8 Rivers Capital, Llc Systems and methods for controlling a power plant
ES2925773T3 (es) 2016-04-21 2022-10-19 8 Rivers Capital Llc Sistema y método para la oxidación de gases de hidrocarburos
CN110225789A (zh) 2016-11-15 2019-09-10 八河流资产有限责任公司 通过与氧化剂和与水性物流接触除去工艺物流中的杂质
WO2018131051A1 (en) * 2017-01-11 2018-07-19 Mahesh Lakshminarayanan Combined-cycle power generation thermodynamic system
JP7084939B2 (ja) 2017-03-07 2022-06-15 8 リバーズ キャピタル,エルエルシー ガスタービン用フレキシブル燃料燃焼器の動作に関するシステムおよび方法
US10766097B2 (en) * 2017-04-13 2020-09-08 Raytheon Company Integration of ultrasonic additive manufactured thermal structures in brazements
AU2018364702B2 (en) 2017-11-09 2024-01-11 8 Rivers Capital, Llc Systems and methods for production and separation of hydrogen and carbon dioxide
CN108999701A (zh) * 2017-12-26 2018-12-14 上海齐耀动力技术有限公司 基于分级燃烧的超临界二氧化碳半闭式纯氧燃烧发电***
PL3759322T3 (pl) 2018-03-02 2024-03-18 8 Rivers Capital, Llc Układy i sposoby wytwarzania energii z wykorzystaniem płynu roboczego z dwutlenku węgla
CN108894875B (zh) * 2018-03-29 2020-10-20 李�杰 一种高压燃气作动直线式发电装置
WO2020070717A1 (en) 2018-10-05 2020-04-09 8 Rivers Capital, Llc Direct gas capture systems and methods of use thereof
CN109356679B (zh) * 2018-11-30 2020-04-10 西安交通大学 一种核能蒸汽-布雷顿联合循环发电***
US11285437B2 (en) 2019-05-03 2022-03-29 8 Rivers Capital, Llc Systems and methods for carbon capture
US11193421B2 (en) 2019-06-07 2021-12-07 Saudi Arabian Oil Company Cold recycle process for gas turbine inlet air cooling
AU2020292848A1 (en) 2019-06-13 2022-02-03 8 Rivers Capital, Llc Power production with cogeneration of further products
AU2020338423A1 (en) 2019-08-26 2022-03-24 8 Rivers Capital, Llc Flame control in an oxyfuel combustion process
WO2021049966A1 (ru) * 2019-09-13 2021-03-18 Владимир Игоревич ЛАВРЕНТЬЕВ Газотурбинный двигатель
WO2021079324A1 (en) 2019-10-22 2021-04-29 8 Rivers Capital, Llc Control schemes for thermal management of power production systems and methods
CN110905747B (zh) * 2019-11-28 2021-07-13 西安石油大学 一种利用高温太阳能和lng冷能的联合动力循环发电***
WO2021138093A2 (en) 2019-12-30 2021-07-08 Exxonmobil Chemical Patents Inc. Pyrolysis product compression using co2 loop
CN114981387A (zh) 2019-12-30 2022-08-30 埃克森美孚化学专利公司 具有较少的废气排放的烃热解
US20230288058A1 (en) * 2022-03-10 2023-09-14 Uop Llc Processes and apparatuses for burning a hydrogen fuel and a hydrocarbon fuel

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4202169A (en) * 1977-04-28 1980-05-13 Gulf Research & Development Company System for combustion of gases of low heating value
US4498289A (en) * 1982-12-27 1985-02-12 Ian Osgerby Carbon dioxide power cycle
JPS6040733A (ja) * 1983-06-03 1985-03-04 ゼネラル・エレクトリツク・カンパニイ 閉サイクル化学処理装置
JP2001041007A (ja) * 1999-05-26 2001-02-13 Mitsubishi Heavy Ind Ltd タービン設備
US6269624B1 (en) * 1998-04-28 2001-08-07 Asea Brown Boveri Ag Method of operating a power plant with recycled CO2
JP2001221059A (ja) * 2000-02-09 2001-08-17 Ishikawajima Harima Heavy Ind Co Ltd 燃料ガス化発電設備
EP1429000A1 (de) * 2002-12-09 2004-06-16 Siemens Aktiengesellschaft Verfahren und Vorrichtung zum Betrieb einer Gasturbine mit einer fossilbefeuerten Brennkammer
US20040128975A1 (en) * 2002-11-15 2004-07-08 Fermin Viteri Low pollution power generation system with ion transfer membrane air separation
WO2009041617A1 (ja) * 2007-09-28 2009-04-02 Central Research Institute Of Electric Power Industry タービン設備及び発電設備
JP2009276053A (ja) * 2008-05-15 2009-11-26 General Electric Co <Ge> ガスタービンNOxの乾式三元触媒還元法
JP2009293618A (ja) * 2008-06-04 2009-12-17 General Electric Co <Ge> 排ガス再循環及び再熱を有するタービンシステム
JP2010065694A (ja) * 2008-09-11 2010-03-25 General Electric Co <Ge> 排気ガス再循環システム、排気ガス再循環システムを有するターボ機械システム、及び排気ガス再循環制御方法

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3971211A (en) * 1974-04-02 1976-07-27 Mcdonnell Douglas Corporation Thermodynamic cycles with supercritical CO2 cycle topping
US4314442A (en) * 1978-10-26 1982-02-09 Rice Ivan G Steam-cooled blading with steam thermal barrier for reheat gas turbine combined with steam turbine
EP0055852B1 (en) * 1980-12-27 1987-05-27 Hitachi, Ltd. Method and apparatus for controlling combustion of gasified fuel
DE3600432A1 (de) * 1985-05-21 1987-02-05 Gutehoffnungshuette Man Verfahren zum vergasen eines kohlenstoffhaltigen brennstoffs, insbesondere kohle
US4684081A (en) * 1986-06-11 1987-08-04 Lockheed Corporation Multifunction power system for an aircraft
US4754607A (en) * 1986-12-12 1988-07-05 Allied-Signal Inc. Power generating system
US4765143A (en) * 1987-02-04 1988-08-23 Cbi Research Corporation Power plant using CO2 as a working fluid
US4831817A (en) * 1987-11-27 1989-05-23 Linhardt Hans D Combined gas-steam-turbine power plant
US5669216A (en) * 1990-02-01 1997-09-23 Mannesmann Aktiengesellschaft Process and device for generating mechanical energy
US5184460A (en) * 1991-01-30 1993-02-09 The United States Of America As Represented By The Administrator, National Aeronautics And Space Administration Multi-heat addition turbine engine
DE4130317A1 (de) 1991-09-12 1993-03-18 Standard Elektrik Lorenz Ag Verfahren und vorrichtung zur umwandlung der datenstruktur von nachrichten in einem paketvermittlungssystem
US5295350A (en) * 1992-06-26 1994-03-22 Texaco Inc. Combined power cycle with liquefied natural gas (LNG) and synthesis or fuel gas
DE4303174A1 (de) * 1993-02-04 1994-08-18 Joachim Dipl Ing Schwieger Verfahren zum Erzeugen elektrischer Energie
DE4333439C1 (de) * 1993-09-30 1995-02-02 Siemens Ag Vorrichtung zur Kühlmittelkühlung einer gekühlten Gasturbine einer Gas- und Dampfturbinenanlage
US5666800A (en) * 1994-06-14 1997-09-16 Air Products And Chemicals, Inc. Gasification combined cycle power generation process with heat-integrated chemical production
JPH08270950A (ja) * 1995-02-01 1996-10-18 Mitsubishi Heavy Ind Ltd ガスタービン燃焼器
US5572861A (en) * 1995-04-12 1996-11-12 Shao; Yulin S cycle electric power system
US6170264B1 (en) * 1997-09-22 2001-01-09 Clean Energy Systems, Inc. Hydrocarbon combustion power generation system with CO2 sequestration
GB9520002D0 (en) * 1995-09-30 1995-12-06 Rolls Royce Plc Turbine engine control system
US5740673A (en) * 1995-11-07 1998-04-21 Air Products And Chemicals, Inc. Operation of integrated gasification combined cycle power generation systems at part load
US6141953A (en) * 1998-03-04 2000-11-07 Solo Energy Corporation Multi-shaft reheat turbine mechanism for generating power
DE69931548T2 (de) * 1998-04-07 2007-05-10 Mitsubishi Heavy Industries, Ltd. Turbinenanlage
GB0005374D0 (en) * 2000-03-06 2000-04-26 Air Prod & Chem Apparatus and method of heating pumped liquid oxygen
US6622487B2 (en) * 2001-01-16 2003-09-23 Rolls-Royce Plc Fluid flow control valve
US20030221409A1 (en) * 2002-05-29 2003-12-04 Mcgowan Thomas F. Pollution reduction fuel efficient combustion turbine
US7284362B2 (en) * 2002-02-11 2007-10-23 L'Air Liquide, Société Anonyme à Directoire et Conseil de Surveillance pour l'Étude et l'Exploitation des Procedes Georges Claude Integrated air separation and oxygen fired power generation system
US6532745B1 (en) * 2002-04-10 2003-03-18 David L. Neary Partially-open gas turbine cycle providing high thermal efficiencies and ultra-low emissions
US7254951B2 (en) * 2003-01-07 2007-08-14 Lockwood Jr Hanford N High compression gas turbine with superheat enhancement
WO2004081479A2 (en) * 2003-03-10 2004-09-23 Clean Energy Systems, Inc. Reheat heat exchanger power generation systems
US7074033B2 (en) * 2003-03-22 2006-07-11 David Lloyd Neary Partially-open fired heater cycle providing high thermal efficiencies and ultra-low emissions
US6931856B2 (en) * 2003-09-12 2005-08-23 Mes International, Inc. Multi-spool turbogenerator system and control method
GB0323255D0 (en) * 2003-10-04 2003-11-05 Rolls Royce Plc Method and system for controlling fuel supply in a combustion turbine engine
US7124589B2 (en) * 2003-12-22 2006-10-24 David Neary Power cogeneration system and apparatus means for improved high thermal efficiencies and ultra-low emissions
US7306871B2 (en) * 2004-03-04 2007-12-11 Delphi Technologies, Inc. Hybrid power generating system combining a fuel cell and a gas turbine
US7402188B2 (en) * 2004-08-31 2008-07-22 Pratt & Whitney Rocketdyne, Inc. Method and apparatus for coal gasifier
EP1669572A1 (en) * 2004-12-08 2006-06-14 Vrije Universiteit Brussel Process and installation for producing electric power
US7194869B2 (en) * 2005-03-08 2007-03-27 Siemens Power Generation, Inc. Turbine exhaust water recovery system
US7416716B2 (en) * 2005-11-28 2008-08-26 Air Products And Chemicals, Inc. Purification of carbon dioxide
US7743861B2 (en) * 2006-01-06 2010-06-29 Delphi Technologies, Inc. Hybrid solid oxide fuel cell and gas turbine electric generating system using liquid oxygen
US7770376B1 (en) * 2006-01-21 2010-08-10 Florida Turbine Technologies, Inc. Dual heat exchanger power cycle
US8075646B2 (en) * 2006-02-09 2011-12-13 Siemens Energy, Inc. Advanced ASU and HRSG integration for improved integrated gasification combined cycle efficiency
US7819951B2 (en) * 2007-01-23 2010-10-26 Air Products And Chemicals, Inc. Purification of carbon dioxide
US7850763B2 (en) * 2007-01-23 2010-12-14 Air Products And Chemicals, Inc. Purification of carbon dioxide
US8088196B2 (en) * 2007-01-23 2012-01-03 Air Products And Chemicals, Inc. Purification of carbon dioxide
US20090064654A1 (en) * 2007-09-11 2009-03-12 General Electric Company Turbine engine with modulated combustion and reheat chambers
US8122725B2 (en) * 2007-11-01 2012-02-28 General Electric Company Methods and systems for operating gas turbine engines
US8051654B2 (en) * 2008-01-31 2011-11-08 General Electric Company Reheat gas and exhaust gas regenerator system for a combined cycle power plant
AU2009243512A1 (en) * 2008-12-05 2010-06-24 Shell Internationale Research Maatschappij B.V. Method of cooling a hydrocarbon stream and an apparatus therefor
US8596075B2 (en) * 2009-02-26 2013-12-03 Palmer Labs, Llc System and method for high efficiency power generation using a carbon dioxide circulating working fluid
US9410481B2 (en) 2010-09-21 2016-08-09 8 Rivers Capital, Llc System and method for high efficiency power generation using a nitrogen gas working fluid

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4202169A (en) * 1977-04-28 1980-05-13 Gulf Research & Development Company System for combustion of gases of low heating value
US4498289A (en) * 1982-12-27 1985-02-12 Ian Osgerby Carbon dioxide power cycle
JPS6040733A (ja) * 1983-06-03 1985-03-04 ゼネラル・エレクトリツク・カンパニイ 閉サイクル化学処理装置
US6269624B1 (en) * 1998-04-28 2001-08-07 Asea Brown Boveri Ag Method of operating a power plant with recycled CO2
JP2001041007A (ja) * 1999-05-26 2001-02-13 Mitsubishi Heavy Ind Ltd タービン設備
JP2001221059A (ja) * 2000-02-09 2001-08-17 Ishikawajima Harima Heavy Ind Co Ltd 燃料ガス化発電設備
US20040128975A1 (en) * 2002-11-15 2004-07-08 Fermin Viteri Low pollution power generation system with ion transfer membrane air separation
EP1429000A1 (de) * 2002-12-09 2004-06-16 Siemens Aktiengesellschaft Verfahren und Vorrichtung zum Betrieb einer Gasturbine mit einer fossilbefeuerten Brennkammer
WO2009041617A1 (ja) * 2007-09-28 2009-04-02 Central Research Institute Of Electric Power Industry タービン設備及び発電設備
JP2009276053A (ja) * 2008-05-15 2009-11-26 General Electric Co <Ge> ガスタービンNOxの乾式三元触媒還元法
JP2009293618A (ja) * 2008-06-04 2009-12-17 General Electric Co <Ge> 排ガス再循環及び再熱を有するタービンシステム
JP2010065694A (ja) * 2008-09-11 2010-03-25 General Electric Co <Ge> 排気ガス再循環システム、排気ガス再循環システムを有するターボ機械システム、及び排気ガス再循環制御方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2694420C1 (ru) * 2017-10-23 2019-07-12 Мицубиси Дзидося Когио Кабусики Кайся Структура переднего бампера

Also Published As

Publication number Publication date
US20120067056A1 (en) 2012-03-22
US9611785B2 (en) 2017-04-04
BR112013008661B1 (pt) 2020-12-08
CN103221660B (zh) 2016-11-09
CA2811940A1 (en) 2012-03-29
PL2619428T3 (pl) 2015-04-30
HK1187968A1 (en) 2014-04-17
WO2012040195A3 (en) 2013-03-21
MX345241B (es) 2017-01-23
EP2619428B1 (en) 2014-07-09
US20180016979A1 (en) 2018-01-18
KR20130099967A (ko) 2013-09-06
KR101825395B1 (ko) 2018-03-22
BR112013008661A2 (pt) 2016-06-21
AU2011305628A1 (en) 2013-05-02
JP5982379B2 (ja) 2016-08-31
ES2508173T3 (es) 2014-10-16
EP2619428A2 (en) 2013-07-31
US9410481B2 (en) 2016-08-09
US10054046B2 (en) 2018-08-21
JP6189500B2 (ja) 2017-08-30
WO2012040195A2 (en) 2012-03-29
EA023988B1 (ru) 2016-08-31
MX2013003131A (es) 2013-06-28
US20160319741A1 (en) 2016-11-03
DK2619428T3 (da) 2014-10-06
AU2011305628B2 (en) 2015-07-30
TW201221755A (en) 2012-06-01
CA2811940C (en) 2018-02-20
EA201600057A1 (ru) 2016-04-29
TWI589770B (zh) 2017-07-01
EA201300386A1 (ru) 2013-11-29
EA031165B1 (ru) 2018-11-30
CN103221660A (zh) 2013-07-24
JP2013537283A (ja) 2013-09-30

Similar Documents

Publication Publication Date Title
JP6189500B2 (ja) 窒素ガス作動流体を使用する高効率発電(power generation)のためのシステムおよび方法
JP7112378B2 (ja) 効率が向上した動力発生方法およびシステム
JP6153231B2 (ja) 低エミッションタービンシステムにおける二酸化炭素捕捉システム及び方法
US20140007590A1 (en) Systems and Methods For Carbon Dioxide Capture In Low Emission Turbine Systems
US9273607B2 (en) Generating power using an ion transport membrane
US8850825B2 (en) Generating power using an ion transport membrane
JP5933944B2 (ja) 統合型ターボ機械酸素プラント

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170802

R150 Certificate of patent or registration of utility model

Ref document number: 6189500

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250