JP2016186316A - Vacuum insulation housing - Google Patents

Vacuum insulation housing Download PDF

Info

Publication number
JP2016186316A
JP2016186316A JP2015065880A JP2015065880A JP2016186316A JP 2016186316 A JP2016186316 A JP 2016186316A JP 2015065880 A JP2015065880 A JP 2015065880A JP 2015065880 A JP2015065880 A JP 2015065880A JP 2016186316 A JP2016186316 A JP 2016186316A
Authority
JP
Japan
Prior art keywords
gas barrier
vacuum
vacuum heat
heat insulating
outer box
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015065880A
Other languages
Japanese (ja)
Inventor
智章 北野
Tomoaki Kitano
智章 北野
秀司 河原崎
Hideji Kawarasaki
秀司 河原崎
平野 俊明
Toshiaki Hirano
俊明 平野
平井 剛樹
Tsuyoki Hirai
剛樹 平井
西村 晃一
Koichi Nishimura
晃一 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2015065880A priority Critical patent/JP2016186316A/en
Priority to DE112016001425.2T priority patent/DE112016001425T5/en
Priority to CN201680017559.2A priority patent/CN107429964A/en
Priority to PCT/JP2016/001332 priority patent/WO2016157747A1/en
Publication of JP2016186316A publication Critical patent/JP2016186316A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/062Walls defining a cabinet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/14Insulation with respect to heat using subatmospheric pressure

Abstract

PROBLEM TO BE SOLVED: To provide a vacuum insulation housing which achieves optimization of a gas barrier structure by the use environmental temperature and use location and thereby guarantees long term vacuum and thermal insulation performance with an inexpensive structure.SOLUTION: A vacuum insulation housing comprises: a vacuum insulation body 32 in which a core member 39 is enclosed in a resin made gas barrier vessel 33 formed into a hollow shape and is sealed in a vacuum; an exterior box 30 disposed at a high temperature side and made of a gas barrier material; and an internal box 44 disposed at a lower temperature side. The vacuum insulation body 32 is disposed closely contacting with the exterior box 30.SELECTED DRAWING: Figure 2

Description

本発明は、冷蔵庫などに用いた真空断熱筐体に関するものである。   The present invention relates to a vacuum heat insulating housing used for a refrigerator or the like.

近年、地球環境問題である温暖化の対策として省エネルギー化を推進する動きが活発し断熱技術の性能進化が期待されている。従来、この種の断熱技術は、図35に示されているように、真空断熱体103のガスバリア容器107と筐体パネル101とを一体化した構造にすることで断熱性能を向上させた技術が提案されている(例えば、特許文献1参照)。なお、真空断熱体とは、容器内を真空にすることで断熱性能を向上させた構造体のことをいう。   In recent years, there has been an active movement to promote energy saving as a countermeasure against global warming, which is a global environmental problem, and the performance of thermal insulation technology is expected to evolve. Conventionally, as shown in FIG. 35, this type of heat insulation technology is a technology that improves the heat insulation performance by integrating the gas barrier container 107 of the vacuum heat insulator 103 and the housing panel 101. It has been proposed (see, for example, Patent Document 1). In addition, a vacuum heat insulating body means the structure which improved the heat insulation performance by evacuating the inside of a container.

特開平7−195385号公報Japanese Unexamined Patent Publication No. 7-195385

しかしながら、前記従来の構成は、真空引き用のフランジ部105の密閉封止を主な課題とするもので、ガスバリア容器107と筐体パネル101とを一体化した構造としか記載されておらず、真空度を長期間保つことのできる具体的な一体化について手段は明記されていない。そして、ガスバリア容器107と、筐体パネル101の間に微小な空間が存在した場合には、ガスバリア容器107内へ空気や水蒸気などのガスが進入することを完全に防止することが困難であり、長期間真空度を保つことで、断熱性能を保つことが困難であるという課題があった。   However, the above-described conventional configuration is mainly intended to hermetically seal the flange portion 105 for vacuuming, and only describes a structure in which the gas barrier container 107 and the housing panel 101 are integrated. Means for specific integration that can maintain the degree of vacuum for a long time is not specified. And, when there is a minute space between the gas barrier container 107 and the housing panel 101, it is difficult to completely prevent gas such as air and water vapor from entering the gas barrier container 107, There existed a subject that it was difficult to maintain heat insulation performance by maintaining a vacuum degree for a long period of time.

本発明は、前記従来の課題を解決するもので、使用環境温度や使用箇所によって、ガスバリア構造の最適化を図ることで、安価な構成で長期間真空度を保証し、断熱性能も保証できる内装筐体部材や外観筐体部材として使用可能な真空断熱筐体を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and by optimizing the gas barrier structure according to the use environment temperature and the use location, the interior can guarantee the degree of vacuum for a long period of time with a low-cost configuration and also guarantee the heat insulation performance. It aims at providing the vacuum heat insulation housing | casing which can be used as a housing | casing member or an external appearance housing member.

前記従来の課題を解決するために、本発明の真空断熱筐体は、中空形成された樹脂製のガスバリア容器に芯部材を内包して真空密閉した真空断熱体と、高温側に配置するガスバリア材料からなる外箱と、低温側に配置する内箱と、からなり、前記真空断熱体は前記外箱と密着して配置した構造としたものである。   In order to solve the above-described conventional problems, the vacuum heat insulating casing of the present invention includes a vacuum heat insulating body in which a core member is enclosed in a hollow resin gas barrier container, and a gas barrier material disposed on a high temperature side. And an inner box disposed on the low temperature side, and the vacuum heat insulating body is arranged in close contact with the outer box.

これによって、真空断熱体は外箱との間に空間が存在しないため、外箱のガスバリア性により真空断熱体の内部に空気や、水蒸気などのガス物質が透過し浸入することがないので、真空度を長期間保つことができ、断熱性能の長期信頼性といった品質の向上を実現できる。   As a result, since there is no space between the vacuum insulator and the outer box, the gas barrier property of the outer box prevents gas substances such as air and water vapor from penetrating into and entering the vacuum insulator. The degree of quality can be maintained for a long time, and long-term reliability of heat insulation performance can be realized.

本発明の真空断熱筐体は、外箱をガスバリア材料で形成し、ガスバリア容器と密着させることにより、高温でガスバリア性が劣化する温度依存性のあるガスバリア樹脂の欠点を補い、外箱側のガスバリア容器のガスバリア性を向上でき、安価な構成で長期間真空度を保証し、断熱性能も保証できるので、内装筐体部材や外観筐体部材として使用可能な真空断熱筐体を提供することができる。   The vacuum heat insulating casing of the present invention compensates for the defect of the temperature-dependent gas barrier resin that deteriorates the gas barrier property at a high temperature by forming the outer box with a gas barrier material and closely contacting the gas barrier container. Since the gas barrier property of the container can be improved, the degree of vacuum can be ensured for a long time with an inexpensive configuration, and the heat insulation performance can also be ensured, so that a vacuum heat insulation housing that can be used as an interior housing member or an exterior housing member can be provided. .

本発明の実施の形態1における真空断熱筐体を備えた冷蔵庫の斜視図The perspective view of the refrigerator provided with the vacuum heat insulation housing | casing in Embodiment 1 of this invention. 本発明の実施の形態1における真空断熱筐体を備えた冷蔵庫の断面図Sectional drawing of the refrigerator provided with the vacuum heat insulation housing | casing in Embodiment 1 of this invention. 本発明の実施の形態1における真空断熱筐体に用いた樹脂材料の周囲温度とガス透過度の関係図Relationship diagram between ambient temperature and gas permeability of resin material used for vacuum heat insulating casing in Embodiment 1 of the present invention 本発明の実施の形態1における真空断熱筐体を備えた冷蔵庫の局部断面図Local sectional drawing of the refrigerator provided with the vacuum heat insulation housing | casing in Embodiment 1 of this invention. 本発明の実施の形態1における真空断熱筐体のガスバリア容器の局部断面図Local sectional drawing of the gas barrier container of the vacuum heat insulation housing | casing in Embodiment 1 of this invention 本発明の実施の形態1における真空断熱筐体のガスバリア容器の局部断面図Local sectional drawing of the gas barrier container of the vacuum heat insulation housing | casing in Embodiment 1 of this invention 本発明の実施の形態1における真空断熱筐体のガスバリア容器の局部断面図Local sectional drawing of the gas barrier container of the vacuum heat insulation housing | casing in Embodiment 1 of this invention 本発明の実施の形態1における真空断熱筐体のガスバリア容器の局部断面図Local sectional drawing of the gas barrier container of the vacuum heat insulation housing | casing in Embodiment 1 of this invention 本発明の実施の形態1における真空断熱筐体のガスバリア容器の局部断面図Local sectional drawing of the gas barrier container of the vacuum heat insulation housing | casing in Embodiment 1 of this invention 本発明の実施の形態1における真空断熱筐体のガスバリア容器の局部断面図Local sectional drawing of the gas barrier container of the vacuum heat insulation housing | casing in Embodiment 1 of this invention 本発明の実施の形態1における真空断熱筐体のガスバリア容器の局部断面図Local sectional drawing of the gas barrier container of the vacuum heat insulation housing | casing in Embodiment 1 of this invention 本発明の実施の形態2における真空断熱筐体を備えた冷蔵庫の製氷室蓋体の正面斜視図Front perspective view of an ice making chamber lid of a refrigerator provided with a vacuum heat insulating casing in Embodiment 2 of the present invention 本発明の実施の形態2における真空断熱筐体を備えた冷蔵庫の製氷室蓋体の後面斜視図Rear perspective view of an ice making chamber lid of a refrigerator provided with a vacuum heat insulating housing in Embodiment 2 of the present invention 本発明の実施の形態2における真空断熱筐体を備えた冷蔵庫の製氷蓋体の部品展開図Exploded view of parts of ice making lid of refrigerator provided with vacuum heat insulating casing in embodiment 2 of the present invention 本発明の実施の形態2における真空断熱筐体を備えた冷蔵庫の製氷蓋体の断面図Sectional drawing of the ice-making lid body of the refrigerator provided with the vacuum heat insulation housing | casing in Embodiment 2 of this invention 本発明の実施の形態2における真空断熱筐体を備えた冷蔵庫の製氷蓋体の部品展開断面図Component expanded sectional view of the ice-making lid body of the refrigerator provided with the vacuum heat insulation housing | casing in Embodiment 2 of this invention 本発明の実施の形態2における真空断熱筐体を備えた冷蔵庫の製氷蓋体の封止工程を示す断面図Sectional drawing which shows the sealing process of the ice-making lid body of the refrigerator provided with the vacuum heat insulation housing | casing in Embodiment 2 of this invention. 本発明の実施の形態2における真空断熱筐体を備えた冷蔵庫の製氷蓋体の封止工程を示す断面図Sectional drawing which shows the sealing process of the ice-making lid body of the refrigerator provided with the vacuum heat insulation housing | casing in Embodiment 2 of this invention. 本発明の実施の形態2における真空断熱筐体を備えた冷蔵庫の製氷蓋体の封止工程を示す断面図Sectional drawing which shows the sealing process of the ice-making lid body of the refrigerator provided with the vacuum heat insulation housing | casing in Embodiment 2 of this invention. 本発明の実施の形態2における真空断熱筐体を備えた冷蔵庫の製氷蓋体の封止例を示す図19のA部局部断面図19 is a partial cross-sectional view of FIG. 19 showing a sealing example of an ice-making lid body of a refrigerator provided with a vacuum heat insulating casing according to Embodiment 2 of the present invention. 本発明の実施の形態2における真空断熱筐体を備えた冷蔵庫の製氷蓋体の封止例を示す図19のB部局部断面図Section B local cross-sectional view of FIG. 19 showing an example of sealing an ice making lid of a refrigerator provided with a vacuum heat insulating housing in Embodiment 2 of the present invention. 本発明の実施の形態2における真空断熱筐体を備えた冷蔵庫の製氷蓋体の封止例を示す図19のC部局部断面図FIG. 19 is a cross-sectional view of a portion C of FIG. 19 showing an example of sealing an ice making lid of a refrigerator provided with a vacuum heat insulating casing in Embodiment 2 of the present invention. 本発明の実施の形態3における真空断熱筐体を備えた冷蔵庫本体の真空断熱筐体の正面斜視図Front perspective view of the vacuum heat insulation casing of the refrigerator main body provided with the vacuum heat insulation casing in Embodiment 3 of the present invention 本発明の実施の形態3における真空断熱筐体を備えた冷蔵庫本体の真空断熱筐体の断面図Sectional drawing of the vacuum heat insulation housing | casing of the refrigerator main body provided with the vacuum heat insulation housing | casing in Embodiment 3 of this invention. 本発明の実施の形態3における真空断熱筐体を備えた冷蔵庫本体の真空断熱筐体の図24のB部局部断面図Section B local sectional view of FIG. 24 of the vacuum heat insulation housing of the refrigerator main body provided with the vacuum heat insulation housing in Embodiment 3 of the present invention. 本発明の実施の形態3における真空断熱筐体を備えた冷蔵庫本体の真空断熱筐体の封止例を示す図24のC部局部断面図Section C local cross-sectional view of FIG. 24 showing a sealing example of the vacuum heat insulating housing of the refrigerator main body provided with the vacuum heat insulating housing in the third embodiment of the present invention. 本発明の実施の形態3における真空断熱筐体を備えた冷蔵庫本体の真空断熱筐体の封止例を示す図24のD部局部断面図24. Section D local sectional view of FIG. 24 showing a sealing example of the vacuum heat insulation housing of the refrigerator main body provided with the vacuum heat insulation housing in the third embodiment of the present invention. 本発明の実施の形態3における真空断熱筐体を備えた冷蔵庫本体の真空断熱筐体の封止例を示す図24のE部局部断面図FIG. 24 is a cross-sectional view of a part E of FIG. 24 showing a sealing example of the vacuum heat insulating casing of the refrigerator main body provided with the vacuum heat insulating casing in the third embodiment of the present invention. 本発明の実施の形態3における真空断熱筐体を備えた冷蔵庫本体の真空断熱筐体の断面図Sectional drawing of the vacuum heat insulation housing | casing of the refrigerator main body provided with the vacuum heat insulation housing | casing in Embodiment 3 of this invention. 本発明の実施の形態4における真空断熱筐体を備えた冷蔵庫の製氷室野菜室間仕切体の正面斜視図Front perspective view of an ice making room vegetable compartment partition of a refrigerator provided with a vacuum heat insulating housing in Embodiment 4 of the present invention 本発明の実施の形態4における真空断熱筐体を備えた冷蔵庫の製氷室野菜室間仕切体の封止例を示す断面図Sectional drawing which shows the sealing example of the ice-making room vegetable compartment partition of the refrigerator provided with the vacuum heat insulation housing | casing in Embodiment 4 of this invention. 本発明の実施の形態4における真空断熱筐体を備えた冷蔵庫の製氷室野菜室間仕切体の別断面の封止例を示す断面図Sectional drawing which shows the sealing example of another cross section of the ice-making room vegetable compartment partition of the refrigerator provided with the vacuum heat insulation housing | casing in Embodiment 4 of this invention. 本発明の実施の形態5における真空断熱筐体を備えた冷蔵庫の冷却室壁真空断熱筐体の正面斜視図Front perspective view of a cooling chamber wall vacuum heat insulation housing of a refrigerator provided with a vacuum heat insulation housing in Embodiment 5 of the present invention 本発明の実施の形態5における真空断熱筐体を備えた冷蔵庫の野菜室壁真空断熱筐体の封止例を示す断面図Sectional drawing which shows the sealing example of the vegetable compartment wall vacuum heat insulation housing | casing of the refrigerator provided with the vacuum heat insulation housing | casing in Embodiment 5 of this invention. 従来の真空断熱筐体の断面図Sectional view of a conventional vacuum insulation housing

第1の発明は、中空形成された樹脂製のガスバリア容器に芯部材を内包して真空密閉した真空断熱体と、高温側に配置するガスバリア材料からなる外箱と、低温側に配置する内箱と、からなり、前記真空断熱体は前記外箱と密着して配置したことによって、外箱をガスバリア部材で形成し、ガスバリア容器と密着させることにより、外箱側のガスバリア容器のガスバリア性を向上でき、外箱は高温側であり、高温でガスバリア性が劣化する温度依存性のあるガスバリア樹脂の欠点を補えることができる。   A first invention includes a vacuum heat insulating body in which a core member is enclosed in a hollow resin gas barrier container and sealed in a vacuum, an outer box made of a gas barrier material disposed on a high temperature side, and an inner box disposed on a low temperature side The vacuum insulator is arranged in close contact with the outer box, so that the outer box is formed of a gas barrier member and is in close contact with the gas barrier container, thereby improving the gas barrier property of the gas barrier container on the outer box side. In addition, the outer box is on the high temperature side, and it is possible to compensate for the drawbacks of the temperature-dependent gas barrier resin that deteriorates the gas barrier properties at high temperatures.

また、自由に形状を形成できる中空形成による樹脂製のガスバリア容器を用いることにより、真空断熱体を外箱内壁形状に成形し、真空断熱体と外箱間の隙間を無くし、空気の対流空間をなくすことにより、断熱性能が向上するとともに、真空断熱体と外箱を密着させることにより、真空断熱筐体の剛性強度を向上できる。   In addition, by using a resin-made gas barrier container with a hollow shape that can be freely formed, the vacuum heat insulating body is formed into the shape of the inner wall of the outer box, eliminating the gap between the vacuum heat insulating body and the outer box, and creating a convection space for air By eliminating, the heat insulation performance is improved, and the rigidity of the vacuum heat insulation casing can be improved by bringing the vacuum heat insulator and the outer box into close contact with each other.

第2の発明は、前記真空断熱体と前記外箱との密着面にガスバリア性の接着部材を配置したことにより、外箱とガスバリア容器との間の隙間を完全に無くすことができ、ガスバリア容器内へのガスの進入を防止できる。   According to a second aspect of the present invention, a gas barrier adhesive member is disposed on a contact surface between the vacuum heat insulating body and the outer box, whereby a gap between the outer box and the gas barrier container can be completely eliminated. The gas can be prevented from entering the inside.

また、真空断熱体を外箱内壁形状に成形し、真空断熱体と外箱間の隙間空間を無くせるので、空気の対流も無くなり、断熱性能が向上できることや、前記ガスバリア性の接着部材の接着強度により、真空断熱体の剛性強度も向上できる。   In addition, the vacuum heat insulator is molded into the inner wall shape of the outer box, and the gap space between the vacuum heat insulator and the outer box can be eliminated, so that air convection can be eliminated, heat insulation performance can be improved, and adhesion of the gas barrier adhesive member Depending on the strength, the rigidity of the vacuum insulator can also be improved.

第3の発明は、中空形成された樹脂製のガスバリア容器に芯部材を内包して真空密閉した真空断熱体と、高温側に配置する外箱と、低温側に配置する内箱と、からなり、前記真空断熱体は外箱側の材質を内箱側の材質よりガスバリア性の高い材質で構成したことにより、高温環境下でガスバリア性が劣化する温度依存性のあるガスバリア樹脂の欠点を補え、真空断熱体の性能を維持できる。   According to a third aspect of the present invention, there is provided a vacuum heat insulating body in which a core member is enclosed in a resin-made gas barrier container formed in a hollow state and sealed in a vacuum, an outer box disposed on a high temperature side, and an inner box disposed on a low temperature side. The vacuum insulator is made up of a material having a gas barrier property higher than that of the inner box side material on the outer box side, thereby making up for the disadvantages of the temperature-dependent gas barrier resin that deteriorates the gas barrier property in a high temperature environment. The performance of the vacuum insulator can be maintained.

第4の発明は、中空形成された樹脂製のガスバリア容器に芯部材を内包して真空密閉した真空断熱体と、高温側に配置する外箱と、低温側に配置する内箱と、からなり、前記真空断熱体は外箱側の厚みを内箱側の厚みより厚くしたことにより、高温環境下でガスバリア性が劣化する温度依存性のあるガスバリア樹脂材料の欠点を補え、真空断熱体の性能を維持できる。   According to a fourth aspect of the present invention, there is provided a vacuum heat insulating body in which a core member is enclosed in a hollow resin-made gas barrier container and vacuum-sealed, an outer box disposed on a high temperature side, and an inner box disposed on a low temperature side. In addition, the vacuum insulator is made thicker on the outer box than the inner box, thereby compensating for the disadvantages of the temperature-dependent gas barrier resin material that deteriorates the gas barrier properties in a high temperature environment. Can be maintained.

第5の発明は、前記ガスバリア容器の真空引き時の封止口は低温側となる前記内箱側に配置したことにより、ガスバリア性が悪い封止口のガスバリア性を向上できる。   5th invention can improve the gas barrier property of a sealing port with bad gas barrier property by arrange | positioning the sealing port at the time of evacuation of the said gas barrier container in the said inner-box side used as a low temperature side.

第6の発明は、前記真空断熱体は、形状の難易度や、使用箇所や使用環境によって、前記ガスバリア容器の厚みや材質などの断熱構成を選択して構成されたことにより、求める断熱性能を容易に実現することができる。   According to a sixth aspect of the present invention, the vacuum insulator has a heat insulation performance required by selecting a heat insulation configuration such as a thickness and a material of the gas barrier container according to the degree of difficulty in shape, the use location and the use environment. It can be easily realized.

第7の発明は、前記ガスバリア容器は、単層部材或いは、多層部材或いは、異材質で形成された積層部材で形成されたことにより、外観形状や内装形状によって自由に形状を変えられ、求める断熱性能を容易に実現することができる。   According to a seventh aspect of the present invention, the gas barrier container is formed of a single layer member, a multilayer member, or a laminated member formed of different materials, so that the shape can be freely changed depending on the external shape or the interior shape, and the required heat insulation Performance can be easily realized.

第8の発明は、前記芯部材は、多孔性構造体で形成され、気泡ウレタンフォームを用いたことにより、前記真空断熱体の内容積を真空引き工程にて確実に所定の設定真空度に到達できるので、求める真空断熱性能を実現することができる。   In an eighth aspect of the invention, the core member is formed of a porous structure, and by using a cellular urethane foam, the internal volume of the vacuum heat insulator is reliably reached to a predetermined set vacuum level in a vacuum drawing step. Therefore, the required vacuum insulation performance can be realized.

第9の発明は、前記ガスバリア容器の中空成形時の空気挿入口をウレタン発泡充填時の空気抜き口としたことにより、空気抜き口を新たに設ける必要がなく、ガスバリア容器内へのガス進入の箇所を少なくでき、前記真空断熱体の内容積をウレタン発泡工程にて確実に所定の設定充填量に到達できるので、求める真空断熱性能を実現することができる。   According to a ninth aspect of the present invention, since the air insertion port at the time of hollow molding of the gas barrier container is an air vent at the time of urethane foam filling, there is no need to newly provide an air vent, and the location of gas entry into the gas barrier container can be reduced. Since the internal volume of the vacuum heat insulator can be surely reached a predetermined set filling amount in the urethane foaming process, the required vacuum heat insulation performance can be realized.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における真空断熱筐体を備えた冷蔵庫の斜視図、図2は、同実施の形態1における真空断熱筐体を備えた冷蔵庫の断面図、図3は、同実施の形態1における真空断熱筐体に用いた樹脂材料の周囲温度とガス透過度の関係図、図4は、同実施の形態1における図2のA部拡大断面図、図5は、同実施の形態1における真空断熱筐体のガスバリア容器の局部断面図、図6は、同実施の形態1における真空断熱筐体のガスバリア容器の局部断面図、図7は、同実施の形態1における真空断熱筐体のガスバリア容器の局部断面図、図8は、同実施の形態1における真空断熱筐体のガスバリア容器の局部断面図、図9は、同実施の形態1における真空断熱筐体のガスバリア容器の局部断面図、図10は、同実施の形態1における真空断熱筐体のガスバリア容器の局部断面図、図11は、同実施の形態1における図10の廃材混合層の拡大断面図である。
(Embodiment 1)
FIG. 1 is a perspective view of a refrigerator provided with a vacuum heat insulating housing in Embodiment 1 of the present invention, FIG. 2 is a cross-sectional view of a refrigerator provided with a vacuum heat insulating housing in Embodiment 1, and FIG. FIG. 4 is an enlarged cross-sectional view of FIG. 2 in FIG. 2 in the first embodiment, and FIG. 5 is a diagram showing the relationship between the ambient temperature of the resin material used in the vacuum heat insulating casing and gas permeability in the first embodiment. FIG. 6 is a local cross-sectional view of the gas barrier container of the vacuum heat insulating casing in the first embodiment, and FIG. 7 is a vacuum in the first embodiment. FIG. 8 is a local sectional view of the gas barrier container of the vacuum heat insulating casing in the first embodiment, and FIG. 9 is a gas barrier container of the vacuum insulating casing in the first embodiment. FIG. 10 is a sectional view of a part of the first embodiment. Local cross-sectional view of a gas barrier container of the vacuum heat insulating housing kicking, FIG. 11 is an enlarged sectional view of a waste mixture layer of FIG. 10 in Embodiment 1 of the embodiment.

図1において冷蔵庫1は、外観を形成する冷蔵庫本体2と、冷蔵室蓋体3と、製氷室蓋体4と、野菜室蓋体5と、冷凍室蓋体6から配置した構成としている。図2・図4において冷蔵庫本体2は、ガスバリア材料からなる外箱30と、ガスバリア性の接着部材31と、中空形成された樹脂製のガスバリア容器33に多孔性構造体で形成された気泡ウレタンフォームからなる芯部材39を内包して真空密閉した真空断熱体32と、発泡断熱材43と、内箱44を配置した構成としている。そして、ガスバリア容器33を外箱内壁形状に成形し外箱30と密着させている。   In FIG. 1, the refrigerator 1 has a configuration in which a refrigerator body 2, a refrigerator compartment lid 3, an ice making compartment lid 4, a vegetable compartment lid 5, and a freezer compartment lid 6 that form an appearance are arranged. 2 and 4, the refrigerator main body 2 includes a foamed urethane foam formed of a porous structure in an outer box 30 made of a gas barrier material, a gas barrier adhesive member 31, and a hollow resin gas barrier container 33. A vacuum heat insulating body 32 enclosing a core member 39 made of the above and vacuum-sealed, a foam heat insulating material 43, and an inner box 44 are arranged. The gas barrier container 33 is molded into the shape of the inner wall of the outer box and is in close contact with the outer box 30.

次に、ガスバリア容器33の壁面の構成について説明する。図5においてガスバリア容器33は、単層板材34の単層で構成している。図6においてガスバリア容器33は、単層板材34の両面に高バリア層35を配置した構成としている。図7においてガスバリア容器33は、空気バリア層36と、水バリア層37と、接着層38を配置した構成としている。図8においてガスバリア容器33は、両面に高バリア層35と、空気バリア層36と、水バリア層37と、接着層38を配置した構成としている。図9においてガスバリア容器33は、庫外側に高バリア層35と、空気バリア層36と、水バリア層37と、接着層38を配置した構成としている。図10においてガスバリア容器33は、冷蔵庫1の庫外側に廃材混合層45と、空気バリア層36と、水バリア層37と、接着層38を配置した構成としている。また、図11において、廃材混合層45は、空気バリア層36と、水
バリア層37と、接着層38の廃材から形成した構成としている。
Next, the configuration of the wall surface of the gas barrier container 33 will be described. In FIG. 5, the gas barrier container 33 is constituted by a single layer of a single-layer plate material 34. In FIG. 6, the gas barrier container 33 has a configuration in which high barrier layers 35 are disposed on both surfaces of a single-layer plate material 34. In FIG. 7, the gas barrier container 33 has a configuration in which an air barrier layer 36, a water barrier layer 37, and an adhesive layer 38 are arranged. In FIG. 8, the gas barrier container 33 has a structure in which a high barrier layer 35, an air barrier layer 36, a water barrier layer 37, and an adhesive layer 38 are disposed on both sides. In FIG. 9, the gas barrier container 33 has a configuration in which a high barrier layer 35, an air barrier layer 36, a water barrier layer 37, and an adhesive layer 38 are arranged on the outside of the warehouse. In FIG. 10, the gas barrier container 33 has a configuration in which a waste material mixed layer 45, an air barrier layer 36, a water barrier layer 37, and an adhesive layer 38 are disposed outside the refrigerator 1. Further, in FIG. 11, the waste material mixed layer 45 is configured to be formed from waste materials of the air barrier layer 36, the water barrier layer 37, and the adhesive layer 38.

以上、様々な形態のガスバリア容器の壁構造を紹介したが、要求されるガスバリア性能に対応して最適な構造のものを選択すれば良い。   As described above, the wall structures of various types of gas barrier containers have been introduced. However, an optimal structure corresponding to the required gas barrier performance may be selected.

次に、図3を用いてガスバリア容器の材料であるガスバリア樹脂の使用環境温度とガス透過度の関係を説明する。ガスバリア樹脂材料のガス透過度は、周囲環境が高温側になるほど、材料の分子間に微細な隙間を生じ悪化させ、低温度側では逆に、分子間の隙間が減少するので、良化する傾向となる。つまり、高温になる程ガスバリア性能が劣化する特徴がある。   Next, the relationship between the operating temperature of the gas barrier resin, which is the material of the gas barrier container, and the gas permeability will be described with reference to FIG. The gas permeability of the gas barrier resin material tends to improve because the higher the ambient environment, the worse the fine gaps between the molecules of the material, and conversely, the gaps between the molecules decrease on the low temperature side. It becomes. That is, the gas barrier performance is deteriorated as the temperature becomes higher.

故に、使用箇所や使用環境の温度帯によって、最適なガスバリア性能を満たすガスバリア容器の厚みや材質を選択することで断熱性能の最適化と低コスト化を図ることができる。   Therefore, the heat insulation performance can be optimized and the cost can be reduced by selecting the thickness and material of the gas barrier container that satisfies the optimum gas barrier performance depending on the temperature zone of the use location and the use environment.

具体的には、冷蔵庫1の真空断熱体を使用している箇所により、周囲温度が異なり、例えば冷蔵庫1の外気温度を20℃とすると、冷蔵庫本体2は、周囲温度の高温側で圧縮器8の影響で約40℃と最高温度となり、低温側で蒸発器9の影響で内部温度約−30℃と最低温度となるので、周囲温度とガス透過度の関係図から図3のE範囲となりE範囲を満たすものを選択すればよい。   Specifically, the ambient temperature varies depending on the location where the vacuum insulator of the refrigerator 1 is used. For example, when the outside air temperature of the refrigerator 1 is 20 ° C., the refrigerator body 2 is connected to the compressor 8 on the high temperature side of the ambient temperature. The maximum temperature is about 40 ° C. due to the influence of the evaporator, and the minimum temperature is about −30 ° C. due to the influence of the evaporator 9 on the low temperature side. What is necessary is just to select what satisfy | fills a range.

同様に、冷蔵室蓋体3では、冷蔵室空間部11の室温により、高温側の外気温度が約20℃で、低温側が約2℃となるので、周囲温度とガス透過度の関係図からB範囲となり、製氷室蓋体4では、製氷室空間部12の室温により、高温側の外気温度が約20℃で、低温側が約−18℃となるので、周囲温度とガス透過度の関係図からA範囲となり、野菜室蓋体5では、野菜室空間部13の室温により高温側の外気温度が約20℃で、低温側が約5℃となるので、周囲温度とガス透過度の関係図からB範囲となり、冷凍室蓋体6では、冷凍室空間部14により高温側の外気温度が約20℃となり、低温側が−18℃となるので、周囲温度とガス透過度の関係図からA範囲となり、冷蔵室製氷室間仕切体15では、冷蔵室空間部11の室温により、高温側の周囲温度が約5℃で、製氷室空間部12の室温により、低温側が約−18℃となるので、周囲温度とガス透過度の関係図からC範囲となる。   Similarly, in the refrigerating room lid 3, since the outside air temperature on the high temperature side is about 20 ° C. and the low temperature side is about 2 ° C. depending on the room temperature of the refrigerating room space 11, the relationship between the ambient temperature and the gas permeability is B In the ice making chamber lid 4, the outside temperature on the high temperature side is about 20 ° C. and the temperature on the low temperature side is about −18 ° C. depending on the room temperature of the ice making space 12. In the vegetable compartment lid 5, the outdoor air temperature on the high temperature side is about 20 ° C. and the low temperature side is about 5 ° C. depending on the room temperature of the vegetable compartment space portion 13. In the freezer compartment cover 6, the outside air temperature on the high temperature side is about 20 ° C. and the low temperature side is −18 ° C. due to the freezer compartment space portion 14, and therefore the A range from the relationship diagram between the ambient temperature and the gas permeability. In the refrigerator compartment partition 15, depending on the room temperature of the refrigerator compartment 11. At ambient temperature of about 5 ° C. on the high temperature side, the room temperature of the ice making compartment space part 12, since the low temperature side is about -18 ° C., the C range of the relationship diagram of the ambient temperature and gas permeability.

また、製氷室野菜室間仕切体16では、野菜室空間部13により高温側の周囲温度が約5℃で、製氷室空間部12により低温側が約−18℃となるので、周囲温度とガス透過度の関係図からC範囲となり、野菜室冷凍室間仕切体17では、野菜室空間部13により高温側の周囲温度が約5℃で、冷凍室空間部14により低温側が約−18℃となるので、周囲温度とガス透過度の関係図からC範囲となり、冷却室壁体19では、野菜室空間部13により高温側の周囲温度が約5℃で、蒸発器9による熱の影響で冷却室空間部18の室温により、低温側が約−20℃となるので、周囲温度とガス透過度の関係図からD範囲とすることにより、各箇所に応じて、冷蔵庫1を構成している部材の周囲温度から、容易な構成でガス透過度の最適化が図れ安価な断熱構成ができる。   In the ice compartment vegetable compartment partition 16, the ambient temperature on the high temperature side is about 5 ° C. due to the vegetable compartment space 13 and the low temperature side is about −18 ° C. due to the ice compartment space 12. In the vegetable compartment freezer compartment partition 17, the ambient temperature on the high temperature side is about 5 ° C. due to the vegetable compartment space 13 and the low temperature side is about −18 ° C. due to the freezer compartment 14. In the cooling chamber wall 19, the ambient temperature on the high temperature side is about 5 ° C. due to the vegetable chamber space 13, and the cooling chamber space is affected by the heat of the evaporator 9. Since the low temperature side is about −20 ° C. due to the room temperature of 18, by setting the D range from the relationship diagram of the ambient temperature and the gas permeability, the ambient temperature of the members constituting the refrigerator 1 is determined according to each location. Optimize gas permeability with an easy configuration It can cost thermal insulation structure.

以上のように構成された真空断熱筐体について、以下その動作、作用を説明する。   About the vacuum heat insulation housing | casing comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

冷蔵庫1は、外箱30をガスバリア部材で形成し、ガスバリア容器33と密着させることにより、外箱30側のガスバリア容器33のガスバリア性を向上できる。   The refrigerator 1 can improve the gas barrier property of the gas barrier container 33 on the outer box 30 side by forming the outer box 30 with a gas barrier member and closely contacting the gas barrier container 33.

外箱30は高温側であり、周囲環境が高温で、ガスバリア樹脂のガスバリア性が劣化するが、ガスバリア材料からなる外箱30によりガスバリア性を維持することができるので
、断熱性能が低下することなく真空断熱性能を長期保証できる。さらに、自由に形状を形成できる中空形成による樹脂製のガスバリア容器33を用いることにより、真空断熱体32を外箱30の内壁形状に成形し、真空断熱体32と外箱30間の隙間を無くし、空気の対流空間をなくすことにより、断熱性能が向上するとともに、真空断熱体32と外箱30を密着させることにより、真空断熱筐体の剛性強度を向上できる。
The outer box 30 is on the high temperature side, and the ambient environment is high, and the gas barrier property of the gas barrier resin is deteriorated. However, since the gas barrier property can be maintained by the outer box 30 made of the gas barrier material, the heat insulation performance is not deteriorated. Long-term guarantee of vacuum insulation performance. Furthermore, by using a resin-made gas barrier container 33 with a hollow shape that can be freely formed, the vacuum heat insulating body 32 is formed into the inner wall shape of the outer box 30, and the gap between the vacuum heat insulating body 32 and the outer box 30 is eliminated. The heat insulation performance is improved by eliminating the convection space of air, and the rigidity and strength of the vacuum heat insulation casing can be improved by bringing the vacuum heat insulator 32 and the outer box 30 into close contact with each other.

また、外箱30の材質は、例えばアルミ、ステンレス、鉄などのガスバリア性の高い金属板やガラス板で形成することで、ガス透過がなく、ガスバリア容器33と密着した構成にしているので、周囲環境が高温下でも、ガスバリア容器33の内部のガスバリア性の劣化を防止し、断熱性能が低下する恐れがないので真空断熱性能を長期保証することができる。   In addition, the outer box 30 is made of a metal plate or glass plate having high gas barrier properties such as aluminum, stainless steel, and iron, so that there is no gas permeation and the gas barrier container 33 is in close contact with the outer box 30. Even in an environment of high temperature, deterioration of the gas barrier property inside the gas barrier container 33 is prevented, and there is no fear that the heat insulation performance is lowered, so that the vacuum heat insulation performance can be ensured for a long time.

また、真空断熱体32と外箱30との密着面にガスバリア性の接着部材31を配置したことにより、外箱30とガスバリア容器33との間の隙間を完全に無くすことができ、ガスバリア容器内へのガスの進入を防止できる。さらに、真空断熱体32を外箱30内壁形状に成形し、真空断熱体32と外箱30間の隙間空間を無くせるので、空気の対流も無くなり、断熱性能が向上できることや、ガスバリア性の接着部材31の接着強度により、冷蔵庫本体2の真空断熱体32の剛性強度も向上できる。   Further, by arranging the gas barrier adhesive member 31 on the contact surface between the vacuum heat insulator 32 and the outer box 30, the gap between the outer box 30 and the gas barrier container 33 can be completely eliminated, and the inside of the gas barrier container Gas can be prevented from entering. Furthermore, since the vacuum heat insulating body 32 is formed into the inner wall shape of the outer box 30 and the gap space between the vacuum heat insulating body 32 and the outer box 30 can be eliminated, air convection can be eliminated, heat insulating performance can be improved, and gas barrier adhesive The rigidity strength of the vacuum heat insulating body 32 of the refrigerator main body 2 can be improved by the adhesive strength of the member 31.

また、接着部材31の材質は、例えば変性ポリエチレン・変性ポリプロピレン等の変性ポリオレフィンなどで、エチレン−ビニルアルコール共重合体などのガスバリア性樹脂や、金属、ガラス、セラミックスなどの基材に強力に接着する特長を持っており、共押出成形によるシート、フィルム、チューブ、ボトルなどの多層成形体を作ることができるので、真空断熱体32の断熱構成を安易に実現することができる。   The material of the adhesive member 31 is, for example, a modified polyolefin such as modified polyethylene or modified polypropylene, and strongly adheres to a gas barrier resin such as an ethylene-vinyl alcohol copolymer, or a substrate such as metal, glass, or ceramic. Since it has a feature and a multilayer molded body such as a sheet, a film, a tube, and a bottle can be formed by coextrusion molding, the heat insulating configuration of the vacuum heat insulating body 32 can be easily realized.

また、冷蔵庫1を構成している部材の周囲温度から、容易な構成でガス透過度の最適化を図るために、ガスバリア容器の壁構造を変化させても良い。   Further, the wall structure of the gas barrier container may be changed from the ambient temperature of the members constituting the refrigerator 1 in order to optimize the gas permeability with an easy configuration.

例えば、冷蔵庫1を構成している部材の周囲温度と樹脂材料のガス透過度の関係図3により、CやDのなどの低温域で使用される部材では、ガス透過度も低く設定できるので、図5のような単層板材34などで構成でき、Bなどの0℃以上の高温域のみで使用される部材なら、図6のような高温側のガスバリア性のみ向上させるために単層板材34の外側両面に金属箔などの高バリア層35の表面処理を施すなどで構成でき、Aなど低温域から高温域まで使用される部材なら、図7のようなガスバリア性の透過ガス物質別の構成が必要となり、中心より空気バリア層36、接着層38、両端に水バリア層37などの多層で構成でき、Eなどの高温域を更に高い領域の場合は、図8のような中心より空気バリア層36、接着層38、両端に水バリア層37、最外両端に金属などの高バリア層35などの多層で構成できる。   For example, the relationship between the ambient temperature of the members constituting the refrigerator 1 and the gas permeability of the resin material can be set to a low gas permeability in members used in low temperature regions such as C and D, as shown in FIG. In the case of a member that can be composed of a single-layer plate material 34 as shown in FIG. 5 and is used only in a high temperature range of 0 ° C. or higher such as B, the single-layer plate material 34 is used to improve only the high-temperature side gas barrier property as shown in FIG. 7 can be constructed by subjecting both the outer surfaces of the surface to a surface treatment of a high barrier layer 35 such as a metal foil. If the member is used from a low temperature range to a high temperature range, such as A, the configuration according to the permeating gas substance having gas barrier properties as shown in FIG. In the case where the high temperature region such as E is higher, the air barrier layer 36, the adhesive layer 38, and the water barrier layer 37 at both ends from the center. Layer 36, adhesive layer 38, water A layer 37 can be composed of a multilayer such as a high barrier layer 35, such as a metal outermost ends.

よって、単層部材或いは、多層部材或いは、金属箔など高バリア層35の異材質で形成された積層部材で形成されたことにより、外観形状や内装形状によって自由に形状を変えられ、求める断熱性能を容易に実現することができる。   Therefore, since it is formed of a single layer member, a multilayer member, or a laminated member made of a different material of the high barrier layer 35 such as a metal foil, the shape can be freely changed depending on the appearance shape and interior shape, and the required heat insulation performance Can be easily realized.

また、図5の単層板材34の材質は、エチレン−ビニルアルコール共重合体や、液晶ポリマー、ポリエチレン、ポリプロピレンなどの空気、水などの高バリア材質とすることにより、安易な材料構成で、ガスバリア容器33内のガス透過を防止でき、真空度を保つことができるので、断熱性能の低下も防止できる。   Further, the material of the single-layer plate material 34 in FIG. 5 is a gas barrier with an easy material configuration by using a high barrier material such as ethylene-vinyl alcohol copolymer, liquid crystal polymer, polyethylene, polypropylene, etc., air, water, etc. Since the gas permeation in the container 33 can be prevented and the degree of vacuum can be maintained, the heat insulation performance can be prevented from being lowered.

また、図6と図8の高バリア層35の材質は、熱架橋の少ないアルミ箔、ステンレス箔、金属箔と、ポリプロピレンなどの樹脂材でラミネートされた極薄フィルム板などを熱溶
着する方法や、エチレン−ビニルアルコール共重合体などの有機樹脂層と、無機物質を層状に噴霧した表面処理により、空気や水などのバリア性を向上させることができるので、安価な材料構成で、ガスバリア容器33内のガス透過を防止でき、真空度を保つことができるので、断熱性能の低下も防止できる。
Further, the material of the high barrier layer 35 in FIGS. 6 and 8 is a method of heat-welding an aluminum foil, a stainless steel foil, a metal foil with little thermal cross-linking and an ultrathin film plate laminated with a resin material such as polypropylene. Since the barrier property such as air or water can be improved by the surface treatment in which an organic resin layer such as ethylene-vinyl alcohol copolymer is sprayed and an inorganic substance is sprayed in layers, the gas barrier container 33 can be formed with an inexpensive material structure. The gas permeation inside can be prevented and the degree of vacuum can be maintained, so that the heat insulation performance can be prevented from being lowered.

また、図7の空気バリア層36の材質は、エチレン−ビニルアルコール共重合体などとし、水バリア層37の材質は、ポリエチレン、ポリプロピレンなどとし、接着層38は、変性ポリエチレン・変性ポリプロピレン等の変性ポリオレフィンなどで形成できるので、使用周囲温度によって、ガスバリア容器33内のガス透過度の最適化を実現できるバリア構成を容易に確立することができる。   The material of the air barrier layer 36 in FIG. 7 is an ethylene-vinyl alcohol copolymer, the material of the water barrier layer 37 is polyethylene, polypropylene, or the like, and the adhesive layer 38 is a modified polyethylene, modified polypropylene, or the like. Since it can be formed of polyolefin or the like, a barrier configuration capable of realizing optimization of gas permeability in the gas barrier container 33 can be easily established depending on the ambient temperature used.

また、ガスバリア容器の壁構造を外箱側と芯部材側でガスバリア性を変化させ外箱側をガスバリア性が高くなるようにしても良い。   In addition, the gas barrier property of the wall structure of the gas barrier container may be changed between the outer box side and the core member side so that the gas barrier property is increased on the outer box side.

例えば、図9に示すように、冷蔵庫本体2のガスバリア容器33は、庫外側に高バリア層35と、空気バリア層36と、水バリア層37と、接着層38を配置した構成とされ、ガスバリア容器33の材料構成は、高温側であるガス透過度の悪化する外箱側のみ高バリア層35を配置する構成となり、図10では、冷蔵庫本体2のガスバリア容器33は、冷蔵庫1の外箱側に廃材混合層45と、空気バリア層36と、水バリア層37と、接着層38を配置した構成となり、図11に示すように、廃材混合層45は、空気バリア層36と、水バリア層37と、接着層38の廃材から形成した構成としたので、単層板材34よりもガスバリア性を有し、高温側であるガス透過度の悪化する庫外側のみ廃材混合層45を配置する構成となり、高温環境下でガスバリア性が劣化する温度依存性のあるガスバリア樹脂の欠点を補え、真空断熱体の性能を維持できるので、断熱性能が低下する恐れがないので真空断熱性能を長期保証できる。   For example, as shown in FIG. 9, the gas barrier container 33 of the refrigerator main body 2 has a configuration in which a high barrier layer 35, an air barrier layer 36, a water barrier layer 37, and an adhesive layer 38 are arranged on the outside of the refrigerator. The material structure of the container 33 is a structure in which the high barrier layer 35 is disposed only on the outer box side where the gas permeability is deteriorated on the high temperature side. In FIG. 10, the gas barrier container 33 of the refrigerator body 2 is the outer box side of the refrigerator 1. The waste material mixed layer 45, the air barrier layer 36, the water barrier layer 37, and the adhesive layer 38 are disposed. As shown in FIG. 11, the waste material mixed layer 45 includes the air barrier layer 36, the water barrier layer, and the water barrier layer. 37 and the waste material of the adhesive layer 38, the waste material mixed layer 45 is disposed only on the outside of the warehouse, which has a gas barrier property than the single-layer plate material 34 and the gas permeability is deteriorated on the high temperature side. , High temperature environment In compensated the disadvantage of the gas barrier resin with a temperature-dependent gas barrier properties is deteriorated, it is possible to maintain the performance of the vacuum heat insulator, can be long-term guarantee vacuum insulation performance since the heat insulating performance is not likely to deteriorate.

また、図11の廃材混合層45の材質は、エチレン−ビニルアルコール共重合体や、ポリプロピレンなどで多層混合で形成されているので、熱の流れが、冷蔵庫1の庫外側から庫内側へ熱の移動が迷路のようになり、熱伝達が悪くなるので、ポリエチレン、ポリプロピレンなどの単層で構成している材質よりも、空気や水などのガスバリア性が優位になるため、使用する周囲温度によっては、廃材混合層45のみで、ガスバリア容器33を形成することで、設定ガス透過度を確立できる。   Moreover, since the material of the waste material mixing layer 45 in FIG. 11 is formed by multi-layer mixing with an ethylene-vinyl alcohol copolymer, polypropylene, or the like, heat flows from the outside of the refrigerator 1 to the inside of the refrigerator. Since the movement becomes a maze and the heat transfer becomes worse, the gas barrier properties such as air and water are superior to the material composed of single layer such as polyethylene and polypropylene, so depending on the ambient temperature used The set gas permeability can be established by forming the gas barrier container 33 with only the waste material mixed layer 45.

また、芯部材39は、多孔性構造体で形成され、気泡ウレタンフォームなどを用いたことにより、真空断熱体の内容積を真空引き工程にて確実に所定の設定真空度に到達するので、求める真空断熱性能を実現することができる。   Further, the core member 39 is formed of a porous structure, and by using a cellular urethane foam or the like, the internal volume of the vacuum heat insulator can be surely reached a predetermined set vacuum degree in the evacuation step. Vacuum insulation performance can be realized.

(実施の形態2)
図12は、本発明の実施の形態2における真空断熱筐体を備えた冷蔵庫の製氷室蓋体の正面斜視図、図13は、同実施の形態2における真空断熱筐体を備えた冷蔵庫の製氷室蓋体の後面斜視図、図14は、同実施の形態2における真空断熱筐体を備えた冷蔵庫の製氷蓋体の部品展開図、図15は、同実施の形態2における真空断熱筐体を備えた冷蔵庫の製氷蓋体の断面図、図16は、同実施の形態2における真空断熱筐体を備えた冷蔵庫の製氷蓋体の部品展開断面図、図17〜図19は、同実施の形態2における真空断熱筐体を備えた冷蔵庫の製氷蓋体の封止工程を示す断面図、図20は、同実施の形態2における真空断熱筐体を備えた冷蔵庫の製氷蓋体の図19のA部局部断面図、図21は、同実施の形態2における真空断熱筐体を備えた冷蔵庫の製氷蓋体の図19のB部局部断面図、図22は、同実施の形態2における真空断熱筐体を備えた冷蔵庫の製氷蓋体の図19のC部局部断面図である。
(Embodiment 2)
FIG. 12 is a front perspective view of the ice making chamber lid of the refrigerator provided with the vacuum heat insulating casing according to the second embodiment of the present invention, and FIG. 13 is the ice making of the refrigerator including the vacuum insulating casing according to the second embodiment. 14 is a rear perspective view of the chamber lid, FIG. 14 is an exploded view of the parts of the ice making lid of the refrigerator provided with the vacuum heat insulation casing in the second embodiment, and FIG. 15 is a diagram of the vacuum heat insulation casing in the second embodiment. 16 is a cross-sectional view of the ice making lid of the refrigerator provided, FIG. 16 is an exploded cross-sectional view of parts of the ice making lid of the refrigerator provided with the vacuum heat insulating casing in the second embodiment, and FIGS. Sectional drawing which shows the sealing process of the ice making lid body of the refrigerator provided with the vacuum heat insulation housing | casing in FIG. 2, FIG. 20: A of FIG. 19 of the ice making lid body of the refrigerator provided with the vacuum heat insulation housing | casing in Embodiment 2 Local sectional view, FIG. 21 is provided with the vacuum heat insulating casing in the second embodiment B department sectional view of Figure 19 of the ice making lid Kura box, FIG 22 is a C department sectional view of a refrigerator ice making cover of Figure 19 with the vacuum heat insulating housing in the second of the same embodiment.

図12〜図14において、冷蔵庫1の製氷室蓋体4は、ガラスや金属材料等のガスバリア材料からなる外観を形成する外箱部材4aと、接着部材4bと、樹脂製の内箱部材4cと、真空断熱体20と、ガスケット21と、フレーム22と、フレーム止めネジ23からなる構成としている。   12 to 14, the ice making chamber lid 4 of the refrigerator 1 includes an outer box member 4a that forms an external appearance made of a gas barrier material such as glass or a metal material, an adhesive member 4b, and a resin inner box member 4c. The vacuum heat insulator 20, the gasket 21, the frame 22, and the frame fixing screw 23 are used.

図15と図16において、冷蔵庫の製氷室蓋体4は、外箱部材4a、接着部材4b、真空断熱体20、内箱部材4cを重ねて配置した構成とし、真空断熱体20はガスバリア容器20aの内部に芯部材20bと吸着部材20cを配置した構成としている。ガスバリア容器20aは中空成形(ブロー成形)によりガスバリア樹脂を加工したものであり、形状を自由に形成でき、外箱部材4aや内箱部材4cの内壁形状に成形する。芯部材20bは多孔性構造体で形成され、気泡ウレタンフォームなどを用いている。気泡ウレタンフォームは連続気泡ウレタンフォームでも独立気泡ウレタンフォームでもよく、真空引きの効率を重視する場合は連続気泡ウレタンフォームなどを使用する方がよい。   15 and 16, the ice making chamber lid 4 of the refrigerator has a configuration in which an outer box member 4a, an adhesive member 4b, a vacuum heat insulator 20, and an inner box member 4c are arranged so as to overlap each other, and the vacuum heat insulator 20 is a gas barrier container 20a. It is set as the structure which has arrange | positioned the core member 20b and the adsorption | suction member 20c inside. The gas barrier container 20a is obtained by processing a gas barrier resin by hollow molding (blow molding), can be freely formed in shape, and is molded into the inner wall shape of the outer box member 4a or the inner box member 4c. The core member 20b is formed of a porous structure and uses cellular urethane foam or the like. The cellular urethane foam may be an open-celled urethane foam or a closed-celled urethane foam. If importance is placed on the efficiency of vacuuming, it is better to use an open-celled urethane foam.

図17〜図22において、冷蔵庫の製氷室蓋体4の真空断熱体20は、ガスバリア容器20aの内部に芯部材20bと吸着部材20cを配置し、ガスバリア容器20aにはウレタン充填用兼真空引き用の真空穴20d、真空引き後、真空穴20dを封止する真空穴封止部材20e、ウレタン充填時の空気逃穴20f、空気逃穴封止部材20gを配置した構成としている。真空穴20dと真空穴封止部材20eは、低温側となる内箱部材側に配置している。なお、空気逃穴20fは中空成形時の空気注入口を利用している。   17 to 22, the vacuum heat insulator 20 of the ice making chamber lid 4 of the refrigerator has a core member 20b and an adsorbing member 20c arranged inside the gas barrier container 20a, and the gas barrier container 20a is used for filling and evacuating urethane. The vacuum hole 20d, a vacuum hole sealing member 20e for sealing the vacuum hole 20d after evacuation, an air escape hole 20f at the time of urethane filling, and an air escape hole sealing member 20g are arranged. The vacuum hole 20d and the vacuum hole sealing member 20e are arranged on the inner box member side which is the low temperature side. The air escape hole 20f uses an air inlet at the time of hollow molding.

以上のように構成された真空断熱筐体について、以下その動作、作用を説明する。   About the vacuum heat insulation housing | casing comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

冷蔵庫の製氷室蓋体4は、外観を形成する外箱部材4aと、接着部材4bと、内箱部材4cと、真空断熱体20と、ガスケット21と、フレーム22と、フレーム止めネジ23を配置した構成により、内箱部材4cにフレーム22をフレーム止めネジ23で固定することで、引き出し扉を構成することができる。フレーム止めネジ23は内箱部材4cを貫通することなく、真空断熱体20を破損することはない。   The ice making chamber lid 4 of the refrigerator has an outer box member 4a, an adhesive member 4b, an inner box member 4c, a vacuum heat insulator 20, a gasket 21, a frame 22, and a frame set screw 23 that form an appearance. With the configuration described above, the drawer door can be configured by fixing the frame 22 to the inner box member 4c with the frame fixing screw 23. The frame fixing screw 23 does not penetrate the inner box member 4c and does not damage the vacuum heat insulating body 20.

冷蔵庫の製氷室蓋体4は、外箱部材4aをガスバリア部材で形成し、ガスバリア容器20aと密着させることにより、外箱部材4a側のガスバリア容器20aのガスバリア性を向上できる。   The ice making chamber lid 4 of the refrigerator can improve the gas barrier property of the gas barrier container 20a on the outer box member 4a side by forming the outer box member 4a with a gas barrier member and closely contacting the gas barrier container 20a.

外箱部材4aは高温側であり、周囲環境が高温で、ガスバリア樹脂のガスバリア性が劣化するが、ガスバリア材料からなる外箱部材4aによりガスバリア性を維持することができるので、断熱性能が低下することなく真空断熱性能を長期保証できる。さらに、自由に形状を形成できる中空形成による樹脂製のガスバリア容器20aを用いることにより、真空断熱体20を外箱部材4aの内壁形状に成形し、真空断熱体20と外箱部材4a間の隙間を無くし、空気の対流空間をなくすことにより、断熱性能が向上するとともに、真空断熱体20と外箱部材4aを密着させることにより、真空断熱筐体の剛性強度を向上できる。   The outer box member 4a is on the high temperature side, and the ambient environment is high, and the gas barrier property of the gas barrier resin is deteriorated. However, since the gas barrier property can be maintained by the outer box member 4a made of the gas barrier material, the heat insulating performance is lowered. Long-term guarantee of vacuum insulation performance without any problems. Further, by using a resin-made gas barrier container 20a having a hollow shape that can be freely formed, the vacuum heat insulating body 20 is formed into the inner wall shape of the outer box member 4a, and the gap between the vacuum heat insulating body 20 and the outer box member 4a is formed. The heat insulation performance is improved by eliminating the air convection space, and the rigidity of the vacuum heat insulation housing can be improved by bringing the vacuum heat insulator 20 and the outer box member 4a into close contact with each other.

また、外箱部材4aの材質は、ガラスやアルミ、ステンレス、鉄などのガスバリア性の高い金属板で形成することで、ガス透過がなく、ガスバリア容器20aと密着した構成にしているので、周囲環境が高温下でも、ガスバリア容器20aの内部のガスバリア性の劣化を防止し、断熱性能が低下する恐れがないので真空断熱性能を長期保証することができる。   Further, the material of the outer box member 4a is made of a metal plate having a high gas barrier property such as glass, aluminum, stainless steel, iron, etc., so that there is no gas permeation and is in close contact with the gas barrier container 20a. However, even under high temperatures, the deterioration of the gas barrier property inside the gas barrier container 20a can be prevented and the heat insulation performance can be prevented from being lowered, so that the vacuum heat insulation performance can be ensured for a long time.

また、真空断熱体20と外箱部材4aとの密着面にガスバリア性の接着部材4bを配置したことにより、外箱30とガスバリア容器33との間の隙間を完全に無くすことができ
、ガスバリア容器内へのガスの進入を防止できる。さらに、真空断熱体20を外箱部材4a内壁形状に成形し、真空断熱体20と外箱部材4a間の隙間空間を無くせるので、空気の対流も無くなり、断熱性能が向上できることや、ガスバリア性の接着部材4bの接着強度により、製氷室蓋体4の剛性強度も向上できる。
Further, by arranging the gas barrier adhesive member 4b on the contact surface between the vacuum heat insulator 20 and the outer box member 4a, the gap between the outer box 30 and the gas barrier container 33 can be completely eliminated, and the gas barrier container The gas can be prevented from entering the inside. Furthermore, since the vacuum heat insulating body 20 is formed into the inner wall shape of the outer box member 4a and the gap space between the vacuum heat insulating body 20 and the outer box member 4a can be eliminated, air convection can be eliminated, heat insulating performance can be improved, and gas barrier properties Due to the adhesive strength of the adhesive member 4b, the rigidity strength of the ice making chamber lid 4 can be improved.

また、図16において、真空断熱体20は外箱部材側の厚みT1と内箱部材側の厚みT2を同じにして、外箱部材側の厚みT1の材質を内箱部材側の厚みT2の材質よりガスバリア製の高い材質にしても良い。高温側である外箱部材側の厚みT1のガスバリア性を高くすることでガスバリア性が向上し、高温環境下でガスバリア性が劣化する温度依存性のあるガスバリア樹脂材料の欠点を補え、真空断熱体20の性能を維持できる。   Further, in FIG. 16, the vacuum heat insulator 20 has the same thickness T1 on the outer box member side and the same thickness T2 on the inner box member side, and the material of the thickness T1 on the outer box member side is the material of the thickness T2 on the inner box member side. A higher gas barrier material may be used. Increased gas barrier property of thickness T1 on the outer box member side, which is the high temperature side, improves the gas barrier property, and compensates for the disadvantages of the temperature-dependent gas barrier resin material that degrades the gas barrier property in a high temperature environment. 20 performances can be maintained.

また、図16において、真空断熱体20は外箱部材側の厚みT1を内箱部材側の厚みT2より厚くしても良い。高温側である外箱部材側の厚みT1を厚くすることでガスバリア性が向上し、高温環境下でガスバリア性が劣化する温度依存性のあるガスバリア樹脂材料の欠点を補え、真空断熱体20の性能を維持できる。なお、上記厚みと材質は断熱性能とコストを考慮して最適になるように適宜決めれば良いものである。   Moreover, in FIG. 16, the vacuum heat insulating body 20 may make the thickness T1 on the outer box member side thicker than the thickness T2 on the inner box member side. By increasing the thickness T1 on the outer box member side, which is the high temperature side, the gas barrier property is improved, and the disadvantage of the temperature-dependent gas barrier resin material that deteriorates the gas barrier property in a high temperature environment is compensated for. Can be maintained. The thickness and material may be determined appropriately so as to be optimal in consideration of heat insulation performance and cost.

また、真空断熱体20は、ガスバリア容器20aの真空引き時の封止口の真空穴20dと真空穴封止部材20eは、低温側となる内箱側に配置したことで、封止部分のガスバリア樹脂のガスバリア性が向上し、構造的にガスバリア性が悪い封止口のガスバリア性を向上でき設定真空度に保たれ、断熱性能が低下する恐れがないので真空断熱性能を長期保証できる。   Further, the vacuum heat insulator 20 has the gas hole 20d and the vacuum hole sealing member 20e of the sealing port at the time of evacuating the gas barrier container 20a disposed on the inner box side which is the low temperature side. The gas barrier property of the resin is improved, the gas barrier property of the sealing port having a structurally poor gas barrier property can be improved, the set vacuum degree is maintained, and the heat insulation performance is not deteriorated, so that the vacuum heat insulation performance can be guaranteed for a long time.

また、真空断熱体20は、形状の難易度や、使用箇所や使用環境によって、ガスバリア容器20aの厚みや材質などの断熱構成を選択して構成することにより、外観形状や内装形状によって自由に形状を変えられ、求める断熱性能を安易に実現することができる。   Moreover, the vacuum heat insulating body 20 can be freely shaped according to the external shape and the interior shape by selecting and configuring the heat insulation configuration such as the thickness and material of the gas barrier container 20a depending on the difficulty of the shape, the use location and the use environment. The required heat insulation performance can be easily realized.

また、芯部材20bは、多孔性構造体で形成され、気泡ウレタンフォームなどを用いたことにより、真空断熱体20の内容積を真空引き工程にて確実に所定の設定真空度に到達できるので、求める真空断熱性能を実現することができる。   Further, the core member 20b is formed of a porous structure, and by using cellular urethane foam or the like, the internal volume of the vacuum heat insulating body 20 can surely reach a predetermined set degree of vacuum in the evacuation step. The required vacuum insulation performance can be realized.

また、芯部材20bの材質は、グラスウールなどと混合させることで、真空断熱体20の内容積の空隙率は向上し、真空引き工程にて、所定の設定真空度に到達する時間を短縮することができる。   Further, the material of the core member 20b is mixed with glass wool or the like, so that the void ratio of the internal volume of the vacuum heat insulating body 20 is improved, and the time to reach a predetermined set vacuum degree is shortened in the evacuation process. Can do.

また、ガスバリア容器20aの中空成形加工時の空気挿入口をウレタン発泡充填時の空気抜き口の空気逃穴20fとしたことにより、真空断熱体20の内容積をウレタン発泡工程にて確実に所定の設定充填量に到達するので、求める真空断熱性能を実現することができる。   Further, the air insertion port at the time of hollow molding of the gas barrier container 20a is the air escape hole 20f of the air vent at the time of urethane foam filling, so that the internal volume of the vacuum heat insulating body 20 is reliably set to a predetermined value in the urethane foaming process. Since the filling amount is reached, the required vacuum insulation performance can be realized.

また、ガスバリア容器20a内に吸着部材20cを内設することにより、ガスバリア容器20aの内部の空気、水などの発生ガスを吸着できるので、設定真空度は長期に保たれるので、長期信頼性を保証した断熱性能を実現することができる。   In addition, by providing the adsorbing member 20c in the gas barrier container 20a, the generated gas such as air and water inside the gas barrier container 20a can be adsorbed, so that the set vacuum can be maintained for a long period of time. Guaranteed thermal insulation performance can be achieved.

また、真空穴封止部材20eと、空気逃穴封止部材20gの材質を、ガスバリア容器20aの外層材料と同材質をラミネートしたアルミ箔樹脂ラミネートフィルムにて、真空穴20dと、空気逃穴20fを加熱溶着して密閉しているので、ガスバリア容器20a内の設定真空度は保たれるので、長期信頼性を保証した断熱性能を実現することができる。   The vacuum hole sealing member 20e and the air escape hole sealing member 20g are made of an aluminum foil resin laminate film obtained by laminating the same material as the outer layer material of the gas barrier container 20a. Since the set vacuum degree in the gas barrier container 20a is maintained, the heat insulation performance guaranteeing long-term reliability can be realized.

また、空気逃穴封止部材20gは、ガスバリア容器20aが中空成形加工時に発生した
金型パーティングラインの位置も含む密閉としているので、ガスバリア容器20a内への空気や水などのガス透過を防止することや、ガスバリア容器20a内に吸着部材20cを配置することで、内外部から発生した空気や水などのガス吸着できるので、設定真空度は保たれ、長期信頼性を保証した断熱性能を実現することができる。
Further, the air escape hole sealing member 20g is hermetically sealed including the position of the mold parting line generated during the hollow molding process of the gas barrier container 20a, thereby preventing the permeation of gas such as air and water into the gas barrier container 20a. By arranging the adsorbing member 20c in the gas barrier container 20a, gas such as air and water generated from the inside and outside can be adsorbed, so that the set vacuum level is maintained and long-term reliability is guaranteed. can do.

(実施の形態3)
図23は、本発明の実施の形態3における真空断熱筐体を備えた冷蔵庫本体の真空断熱筐体の正面斜視図、図24は、同実施の形態3における真空断熱筐体を備えた冷蔵庫本体の真空断熱筐体の断面図、図25は、同実施の形態3における真空断熱筐体を備えた冷蔵庫本体の真空断熱筐体の図24のB部局部断面図、図26は、同実施の形態3における真空断熱筐体を備えた冷蔵庫本体の真空断熱筐体の図24のC部局部断面図、図27は、同実施の形態3における真空断熱筐体を備えた冷蔵庫本体の真空断熱筐体の図24のD部局部断面図、図28は、同実施の形態3における真空断熱筐体を備えた冷蔵庫本体の真空断熱筐体の図24のE部局部断面図、図29は、同実施の形態3における別形態の真空断熱筐体を備えた冷蔵庫本体の真空断熱筐体の断面図である。
(Embodiment 3)
FIG. 23 is a front perspective view of the vacuum heat insulating casing of the refrigerator main body provided with the vacuum heat insulating casing in the third embodiment of the present invention, and FIG. 24 is the refrigerator main body including the vacuum heat insulating casing in the third embodiment. 25 is a cross-sectional view of the vacuum heat insulation housing of FIG. 24, FIG. 25 is a partial cross-sectional view of a portion B of FIG. 24 of the vacuum heat insulation housing of the refrigerator main body provided with the vacuum heat insulation housing in the third embodiment, and FIG. 24 is a cross-sectional view of a portion C of FIG. 24 showing the vacuum heat insulation housing of the refrigerator main body provided with the vacuum heat insulation housing in the third embodiment, and FIG. 27 is a vacuum heat insulation housing of the refrigerator main body equipped with the vacuum heat insulation housing in the third embodiment. 24 is a cross-sectional view of a part D of FIG. 24, and FIG. 28 is a cross-sectional view of a part E of FIG. 24 of the vacuum heat insulation case of the refrigerator main body provided with the vacuum heat insulation case in the third embodiment. Refrigerator main body vacuum provided with another form of vacuum heat insulating casing in Embodiment 3 It is a cross-sectional view of Netsukatamitai.

以下、実施の形態1と説明が重複する部分は省略して説明する。   In the following description, the description overlapping with that of the first embodiment is omitted.

図23、図24、図28において、冷蔵庫本体2の真空断熱体32は内箱側に真空引き用の真空穴40が設けられ、真空穴封止部材41で開口部を覆い封止している。図26、図27は、真空穴40から最も離間した真空断熱体32の開口部先端に空気逃穴42を設け、空気逃穴封止部47で覆い封止していることを示す。なお、製造工程上は、真空穴40から気泡ウレタンフォームが充填され、ガスバリア容器33内の空気は入れ替わるように空気逃穴42から排出され、真空穴40と空気逃穴42が封止される。   23, 24, and 28, the vacuum heat insulating body 32 of the refrigerator body 2 is provided with a vacuum hole 40 for evacuation on the inner box side, and the opening is covered and sealed with a vacuum hole sealing member 41. . FIGS. 26 and 27 show that an air escape hole 42 is provided at the tip of the opening of the vacuum heat insulating body 32 farthest from the vacuum hole 40 and is covered and sealed with an air escape seal 47. In the manufacturing process, the foamed urethane foam is filled from the vacuum hole 40, and the air in the gas barrier container 33 is discharged from the air escape hole 42 so as to be replaced, and the vacuum hole 40 and the air escape hole 42 are sealed.

以上のように構成された真空断熱筐体について、以下その動作、作用を説明する。   About the vacuum heat insulation housing | casing comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

真空穴40は真空穴封止部材41に、空気逃穴42は空気逃穴封止部材47により確実に熱加熱手段により、溶着封止されるので、空気や、水などのガス透過度を防止することができる。また、ガスバリア容器33の真空引き時の封止口の真空穴40と、真空穴封止部材41は、低温側となる内箱側に配置したことで、構造上、ガスバリア性が悪い封止口のガスバリア樹脂のガスバリア性を向上できることや、ガスバリア容器33内部に吸着部材46を配置しているので、芯部材39の内外部から発生した空気や水などのガス吸着できるので、設定真空度は保たれ断熱性能が低下する恐れがなく、真空断熱性能を長期保証できる。   Since the vacuum hole 40 is securely welded and sealed by the heat heating means by the vacuum hole sealing member 41 and the air escape hole 42 by the air escape hole sealing member 47, the gas permeability of air or water is prevented. can do. Further, since the vacuum hole 40 and the vacuum hole sealing member 41 at the time of evacuation of the gas barrier container 33 are arranged on the inner box side which is the low temperature side, the sealing port having a poor gas barrier property due to its structure. Since the gas barrier property of the gas barrier resin can be improved and the adsorption member 46 is disposed inside the gas barrier container 33, gas such as air and water generated from the inside and outside of the core member 39 can be adsorbed. There is no risk of sacrificing heat insulation performance, and vacuum insulation performance can be guaranteed for a long time.

また、図25に示すように、真空断熱体32の一部を、中空成形時に熱溶着し合わせ目部を形成し、穴加工することによって貫通穴48を形成することができ、冷蔵庫1の内部に配置された蒸発器9で発生した水を、冷蔵庫1の外部に配置された蒸発皿10へ排出するための貫通穴として使用することができる。   Moreover, as shown in FIG. 25, a part of the vacuum heat insulating body 32 can be heat-welded at the time of hollow molding to form a joint portion, and a through hole 48 can be formed by drilling. The water generated in the evaporator 9 disposed in the can be used as a through hole for discharging to the evaporation dish 10 disposed outside the refrigerator 1.

また、図29に示すように、冷蔵庫本体2の冷凍室空間部14に該当するガスバリア容器33のF部の厚みを厚くすることにより、特に断熱性能を要求される部分はガスバリア容器の該当部分を厚くすることで、部分的に断熱性能を向上することができる。   In addition, as shown in FIG. 29, by increasing the thickness of the F portion of the gas barrier container 33 corresponding to the freezer compartment 14 of the refrigerator body 2, the portion particularly requiring heat insulation performance is replaced with the corresponding portion of the gas barrier container. By increasing the thickness, the heat insulation performance can be partially improved.

つまり、真空断熱体は、形状の難易度や、使用箇所や使用環境によって、ガスバリア容器の厚みや材質などの断熱構成を選択して構成することにより、求める断熱性能を安易に実現することができる。   That is, the vacuum heat insulating body can easily realize the required heat insulating performance by selecting and configuring the heat insulating structure such as the thickness and material of the gas barrier container depending on the difficulty of the shape, the use location and the use environment. .

(実施の形態4)
図30は、本発明の実施の形態4における真空断熱筐体を備えた冷蔵庫の製氷室野菜室間仕切体の正面斜視図、図31は、同実施の形態4における製氷室野菜室間仕切体の封止例を示す断面図、図32は、同実施の形態4における製氷室野菜室間仕切体の別断面の封止例を示す断面図である。
(Embodiment 4)
FIG. 30 is a front perspective view of an ice making room vegetable compartment partition of a refrigerator provided with a vacuum heat insulating housing in Embodiment 4 of the present invention, and FIG. 31 is a seal of the ice making room vegetable compartment partition in Embodiment 4. FIG. 32 is a cross-sectional view showing a sealing example of another cross-section of the ice making room vegetable compartment partition in the fourth embodiment.

以下、実施の形態1と説明が重複する部分は省略して説明する。なお、図示はしないが、製氷室野菜室間仕切体16の低温側である製氷室側は内箱に該当する樹脂製の化粧部材が、高温側である野菜室側は外箱に該当する結露防止用のヒーターを固定する高ガスバリア性のアルミ箔樹脂ラミネートフィルムや、或いは、ガスバリア性樹脂の化粧部材が密着して配置されている。   In the following description, the description overlapping with that of the first embodiment is omitted. Although not shown, the ice-making room side, which is the low temperature side of the ice compartment vegetable compartment partition 16, has a resin-made decorative member corresponding to the inner box, and the vegetable room side, which is the high temperature side, corresponds to the outer box to prevent condensation. A high gas barrier aluminum foil resin laminate film or a gas barrier resin decorative member for fixing a heater for use is disposed in close contact.

図30〜32において、冷蔵庫本体2の製氷室野菜室間仕切体16は真空断熱体で構成され、ガスバリア容器16aと、芯部材16bと吸着部材16cと、上下方向にダクトを配置するダクト逃部16dと、真空穴16eと、真空穴封止部材16fと、空気逃穴16gと、空気逃穴封止部材16hを配置した構成としている。   30-32, the ice making room vegetable compartment partition 16 of the refrigerator body 2 is formed of a vacuum heat insulator, and includes a gas barrier container 16a, a core member 16b, an adsorbing member 16c, and a duct escape portion 16d that arranges ducts in the vertical direction. The vacuum hole 16e, the vacuum hole sealing member 16f, the air escape hole 16g, and the air escape hole sealing member 16h are arranged.

以上のように構成された真空断熱筐体について、以下その動作、作用を説明する。   About the vacuum heat insulation housing | casing comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

真空穴16eは真空穴封止部材16fに、空気逃穴16gは空気逃穴封止部材16hにより確実に熱加熱手段により、溶着封止されるので、空気や、水などのガス透過度を防止することができる。また、ガスバリア容器16aの真空引き時の封止口の真空穴16eと真空穴封止部材16fは、低温側である製氷室側の内箱側に配置したことで、ガスバリア性が悪い封止口のガスバリア樹脂のガスバリア性を向上できることや、ガスバリア容器16a内部に吸着部材16cを配置しているので、芯部材16bの内外部から発生した空気や水などのガス吸着できるので、設定真空度は保たれ。断熱性能が低下する恐れがなく、真空断熱性能を長期保証できる。   Since the vacuum hole 16e is securely welded and sealed by the heat heating means by the vacuum hole sealing member 16f and the air escape hole 16g by the air escape hole sealing member 16h, the gas permeability of air or water is prevented. can do. Further, the vacuum hole 16e and the vacuum hole sealing member 16f of the sealing port at the time of evacuation of the gas barrier container 16a are arranged on the inner box side on the ice making chamber side which is the low temperature side, so that the gas barrier property is poor. The gas barrier property of the gas barrier resin can be improved, and since the adsorption member 16c is disposed inside the gas barrier container 16a, gas such as air and water generated from the inside and outside of the core member 16b can be adsorbed, so that the set vacuum degree is maintained. Sauce. There is no fear that the heat insulation performance is lowered, and the vacuum heat insulation performance can be guaranteed for a long time.

(実施の形態5)
図33は、本発明の実施の形態5における真空断熱筐体を備えた冷蔵庫の冷却室壁体の正面斜視図、図34は、同冷却室壁体の封止例を示す断面図である。
(Embodiment 5)
FIG. 33 is a front perspective view of a cooling chamber wall body of a refrigerator provided with a vacuum heat insulating housing according to Embodiment 5 of the present invention, and FIG. 34 is a cross-sectional view showing a sealing example of the cooling chamber wall body.

以下、実施の形態1と説明が重複する部分は省略して説明する。なお、図示はしないが、冷却室壁体19の低温側である冷却室側は内箱に該当する樹脂製の化粧部材が、高温側である野菜室側は外箱に該当する結露防止用のヒーターを固定する高ガスバリア性のアルミ箔樹脂ラミネートフィルムや、或いは、ガスバリア性樹脂の風路部材が密着して配置されている。   In the following description, the description overlapping with that of the first embodiment is omitted. Although not shown in the drawing, a resin-made decorative member corresponding to the inner box is provided on the cooling chamber side, which is the low temperature side of the cooling chamber wall 19, and a condensation prevention member corresponding to the outer box is provided on the vegetable room side, which is the high temperature side. A high gas barrier aluminum foil resin laminate film or a gas barrier resin air passage member for fixing the heater is disposed in close contact.

図33、図34において、冷蔵庫本体2の冷却室壁体19は、真空断熱体からなり、ガスバリア容器19aと、芯部材19bと吸着部材19cと、真空穴19dと、真空穴封止部材19eと、空気逃穴19gと、空気逃穴封止部材19hを配置した構成としている。   33 and 34, the cooling chamber wall 19 of the refrigerator body 2 is made of a vacuum heat insulator, and includes a gas barrier container 19a, a core member 19b, a suction member 19c, a vacuum hole 19d, and a vacuum hole sealing member 19e. The air escape hole 19g and the air escape hole sealing member 19h are arranged.

真空穴19dは真空穴封止部材19eに、空気逃穴19gは空気逃穴封止部材19hにより確実に熱加熱手段により、溶着封止されるので、空気や、水などのガス透過度を防止することができる。また、ガスバリア容器19aの真空引き時の封止口の真空穴19dと真空穴封止部材19eは、低温側となる冷却室側に配置したことで、ガスバリア性が悪い封止口のガスバリア樹脂のガスバリア性を向上できることや、ガスバリア容器19a内部に吸着部材19cを配置しているので、芯部材19cの内外部から発生した空気や水などのガス吸着できるので、設定真空度は保たれ断熱性能が低下する恐れがなく、真空断熱性能を長期保証できる。   The vacuum hole 19d is securely welded and sealed by heat heating means by the vacuum hole sealing member 19e and the air escape hole 19g by the air escape hole sealing member 19h, thereby preventing the permeability of gases such as air and water. can do. Further, the vacuum hole 19d and the vacuum hole sealing member 19e of the sealing port at the time of evacuation of the gas barrier container 19a are disposed on the cooling chamber side which is the low temperature side, so that the gas barrier resin of the sealing port having a poor gas barrier property is provided. Since the gas barrier property can be improved and the adsorption member 19c is arranged inside the gas barrier container 19a, gas such as air and water generated from the inside and outside of the core member 19c can be adsorbed, so that the set vacuum is maintained and the heat insulation performance is maintained. There is no risk of deterioration, and the vacuum insulation performance can be guaranteed for a long time.

以上のように、本発明に真空断熱筐体は、冷蔵庫、自動車、ヒートポンプ式給湯機、電気式湯沸かし器、炊飯器、浴槽、住宅の外壁や屋根などの断熱構造体にも適用できる。   As described above, the vacuum heat insulating casing of the present invention can also be applied to heat insulating structures such as refrigerators, automobiles, heat pump water heaters, electric water heaters, rice cookers, bathtubs, outer walls of houses, roofs, and the like.

1 冷蔵庫
2 冷蔵庫本体
3 冷蔵室蓋体
4 製氷室蓋体
4a 外箱部材
4b 接着部材
4c 内箱部材
5 野菜室蓋体
6 冷凍室蓋体
7 ダクト
8 圧縮器
9 蒸発器
10 蒸発皿
11 冷蔵室空間部
12 製氷室空間部
13 野菜室空間部
14 冷凍室空間部
15 冷蔵室製氷室間仕切体
16 製氷室野菜室間仕切体
16a ガスバリア容器
16b 芯部材
16c 吸着部材
16d ダクト逃部
16e 真空穴
16f 真空穴封止部材
16g 空気逃穴
16h 空気逃穴封止部材
17 野菜室冷凍室間仕切体
18 冷却室空間部
19 冷却室壁体
19a ガスバリア容器
19b 芯部材
19c 吸着部材
19d 真空穴
19e 真空穴封止部材
19g 空気逃穴
19h 空気逃穴封止部材
20 真空断熱体
20a ガスバリア容器
20b 芯部材
20c 吸着部材
20d 真空穴
20e 真空穴封止部材
20f 空気逃穴
20g 空気逃穴封止部材
30 外箱
31 接着部材
32 真空断熱体
33 ガスバリア容器
34 単層板材
35 高バリア層
36 空気バリア層
37 水バリア層
38 接着層
39 芯部材
40 真空穴
41 真空穴封止部材
42 空気逃穴
43 発泡断熱材
44 内箱
DESCRIPTION OF SYMBOLS 1 Refrigerator 2 Refrigerator main body 3 Refrigeration chamber lid 4 Ice making chamber lid 4a Outer box member 4b Adhesive member 4c Inner box member 5 Vegetable chamber lid 6 Freezer chamber lid 7 Duct 8 Compressor 9 Evaporator 10 Evaporating dish 11 Refrigeration chamber Space part 12 Ice making room space part 13 Vegetable room space part 14 Freezer room space part 15 Cold room ice making room partition 16 Ice making room vegetable room partition 16a Gas barrier container 16b Core member 16c Adsorption member 16d Duct relief part 16e Vacuum hole 16f Vacuum hole Sealing member 16g Air escape hole 16h Air escape hole sealing member 17 Vegetable room freezer compartment partition 18 Cooling chamber space 19 Cooling chamber wall 19a Gas barrier container 19b Core member 19c Adsorption member 19d Vacuum hole 19e Vacuum hole sealing member 19g Air escape hole 19h Air escape hole sealing member 20 Vacuum insulator 20a Gas barrier container 20b Core member 20c Adsorption member 20 d Vacuum hole 20e Vacuum hole sealing member 20f Air escape hole 20g Air escape hole sealing member 30 Outer box 31 Adhesive member 32 Vacuum insulator 33 Gas barrier container 34 Single layer plate material 35 High barrier layer 36 Air barrier layer 37 Water barrier layer 38 Adhesive layer 39 Core member 40 Vacuum hole 41 Vacuum hole sealing member 42 Air escape hole 43 Foam heat insulating material 44 Inner box

Claims (9)

中空形成された樹脂製のガスバリア容器に芯部材を内包して真空密閉した真空断熱体と、高温側に配置するガスバリア材料からなる外箱と、低温側に配置する内箱と、からなり、前記真空断熱体は前記外箱と密着して配置したことを特徴とする真空断熱筐体。 A vacuum heat insulating body that encloses a core member in a hollow resin gas barrier container and sealed in a vacuum, an outer box made of a gas barrier material arranged on the high temperature side, and an inner box arranged on the low temperature side, A vacuum heat insulating casing, wherein the vacuum heat insulating body is disposed in close contact with the outer box. 前記真空断熱体と前記外箱との密着面にガスバリア性の接着部剤を配置したこと特徴とする請求項1に記載の真空断熱筐体。 The vacuum heat insulating casing according to claim 1, wherein a gas barrier adhesive member is disposed on a contact surface between the vacuum heat insulating body and the outer box. 中空形成された樹脂製のガスバリア容器に芯部材を内包して真空密閉した真空断熱体と、高温側に配置する外箱と、低温側に配置する内箱と、からなり、前記真空断熱体は外箱側の材質を内箱側の材質よりガスバリア性の高い材質で構成したことを特徴とする真空断熱筐体。 A vacuum heat insulating body that encloses a core member in a hollow resin gas barrier container and vacuum-sealed, an outer box disposed on the high temperature side, and an inner box disposed on the low temperature side, the vacuum heat insulating body is A vacuum heat insulating housing characterized in that the material on the outer box side is made of a material having a higher gas barrier property than the material on the inner box side. 中空形成された樹脂製のガスバリア容器に芯部材を内包して真空密閉した真空断熱体と、高温側に配置する外箱と、低温側に配置する内箱と、からなり、前記真空断熱体は外箱側の厚みを内箱側の厚みより厚くしたことを特徴とする真空断熱筐体。 A vacuum heat insulating body that encloses a core member in a hollow resin gas barrier container and vacuum-sealed, an outer box disposed on the high temperature side, and an inner box disposed on the low temperature side, the vacuum heat insulating body is A vacuum heat insulating housing characterized in that the outer box side is thicker than the inner box side. 前記ガスバリア容器の真空引き時の封止口は低温側となる前記内箱側に配置したことを特徴とする請求項1〜4のいずれか1項に記載の真空断熱筐体。 The vacuum insulating case according to any one of claims 1 to 4, wherein a sealing port at the time of vacuuming the gas barrier container is disposed on the inner box side which is a low temperature side. 前記真空断熱体は、形状の難易度や、使用箇所や使用環境によって、前記ガスバリア容器の厚みや材質などの断熱構成を選択して構成されたこと特徴とする請求項1〜5のいずれか1項に記載の真空断熱筐体。 The vacuum insulator is configured by selecting a heat insulation configuration such as a thickness and a material of the gas barrier container according to a difficulty of shape, a use location and a use environment. The vacuum heat insulation housing | casing as described in a term. 前記ガスバリア容器は、単層部材或いは、多層部材或いは、異材質で形成された積層部材で形成されたことを特徴とする請求項1〜6のいずれか1項に記載の真空断熱筐体。 The vacuum insulating case according to any one of claims 1 to 6, wherein the gas barrier container is formed of a single layer member, a multilayer member, or a laminated member formed of different materials. 前記芯部材は、多孔性構造体で形成され、気泡ウレタンフォームを用いたことを特徴とする真空断熱体請求項1〜7のいずれか1項に記載の真空断熱筐体。 The vacuum heat insulating casing according to any one of claims 1 to 7, wherein the core member is formed of a porous structure and uses cellular urethane foam. 前記ガスバリア容器の中空成形時の空気挿入口をウレタン発泡充填時の空気抜き口としたことを特徴とする請求項8に記載の真空断熱筐体。 The vacuum heat insulating casing according to claim 8, wherein the air insertion port at the time of hollow molding of the gas barrier container is an air vent port at the time of urethane foam filling.
JP2015065880A 2015-03-27 2015-03-27 Vacuum insulation housing Pending JP2016186316A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015065880A JP2016186316A (en) 2015-03-27 2015-03-27 Vacuum insulation housing
DE112016001425.2T DE112016001425T5 (en) 2015-03-27 2016-03-10 Vacuum insulation housing
CN201680017559.2A CN107429964A (en) 2015-03-27 2016-03-10 Vacuum heat-insulation housing
PCT/JP2016/001332 WO2016157747A1 (en) 2015-03-27 2016-03-10 Vacuum insulation housing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015065880A JP2016186316A (en) 2015-03-27 2015-03-27 Vacuum insulation housing

Publications (1)

Publication Number Publication Date
JP2016186316A true JP2016186316A (en) 2016-10-27

Family

ID=57006901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015065880A Pending JP2016186316A (en) 2015-03-27 2015-03-27 Vacuum insulation housing

Country Status (4)

Country Link
JP (1) JP2016186316A (en)
CN (1) CN107429964A (en)
DE (1) DE112016001425T5 (en)
WO (1) WO2016157747A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019015472A (en) * 2017-07-10 2019-01-31 パナソニックIpマネジメント株式会社 Vacuum heat insulation housing and refrigerator
JP2022008299A (en) * 2017-03-30 2022-01-13 パナソニックIpマネジメント株式会社 Vacuum insulation housing and refrigerator

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3531004B1 (en) * 2016-10-20 2022-03-16 Panasonic Intellectual Property Management Co., Ltd. Vacuum heat insulator, and heat-insulating container and heat-insulating wall in which same is used
JP2019015475A (en) * 2017-07-10 2019-01-31 パナソニックIpマネジメント株式会社 Vacuum heat insulation housing and refrigerator
JP7244303B2 (en) * 2019-03-06 2023-03-22 東芝ライフスタイル株式会社 refrigerator

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59120896U (en) * 1983-02-04 1984-08-15 株式会社日立製作所 Vacuum insulation material arrangement structure
JPH04309779A (en) * 1991-04-09 1992-11-02 Sharp Corp Manufacture of vacuum heat insulating material
JPH05256563A (en) * 1992-03-11 1993-10-05 Matsushita Refrig Co Ltd Heat insulating box body
JPH06194030A (en) * 1992-12-25 1994-07-15 Matsushita Refrig Co Ltd Thermal insulating box
JPH06297466A (en) * 1993-04-12 1994-10-25 Mitsui Eng & Shipbuild Co Ltd Manufacture of sand mold with surface coating layer
JPH08271137A (en) * 1995-03-31 1996-10-18 Toshiba Corp Vacuum heat insulation material, heat insulation box body, and manufacture thereof
JP2004028349A (en) * 2002-06-20 2004-01-29 Matsushita Refrig Co Ltd Refrigerator
JP2005106094A (en) * 2003-09-29 2005-04-21 Hitachi Home & Life Solutions Inc Vacuum heat insulating material, its manufacturing method and apparatus using vacuum heat insulating material
JP2013139981A (en) * 2011-12-06 2013-07-18 Toshiba Corp Refrigerator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08159377A (en) * 1994-12-02 1996-06-21 Matsushita Refrig Co Ltd Vacuum heat insulator
IT236949Y1 (en) * 1995-06-08 2000-08-31 Devi Spa CONTAINER COMPARTMENT PERFECTED IN PARTICULAR FOR REFRIGERATED APPLIANCES
CN2330951Y (en) * 1998-06-03 1999-07-28 长岭(集团)股份有限公司 Case body or door body for fridge
TW470837B (en) * 2000-04-21 2002-01-01 Matsushita Refrigeration Vacuum heat insulator
JP3833971B2 (en) * 2002-06-20 2006-10-18 松下冷機株式会社 Method for manufacturing heat insulation box and refrigerator

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59120896U (en) * 1983-02-04 1984-08-15 株式会社日立製作所 Vacuum insulation material arrangement structure
JPH04309779A (en) * 1991-04-09 1992-11-02 Sharp Corp Manufacture of vacuum heat insulating material
JPH05256563A (en) * 1992-03-11 1993-10-05 Matsushita Refrig Co Ltd Heat insulating box body
JPH06194030A (en) * 1992-12-25 1994-07-15 Matsushita Refrig Co Ltd Thermal insulating box
JPH06297466A (en) * 1993-04-12 1994-10-25 Mitsui Eng & Shipbuild Co Ltd Manufacture of sand mold with surface coating layer
JPH08271137A (en) * 1995-03-31 1996-10-18 Toshiba Corp Vacuum heat insulation material, heat insulation box body, and manufacture thereof
JP2004028349A (en) * 2002-06-20 2004-01-29 Matsushita Refrig Co Ltd Refrigerator
JP2005106094A (en) * 2003-09-29 2005-04-21 Hitachi Home & Life Solutions Inc Vacuum heat insulating material, its manufacturing method and apparatus using vacuum heat insulating material
JP2013139981A (en) * 2011-12-06 2013-07-18 Toshiba Corp Refrigerator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022008299A (en) * 2017-03-30 2022-01-13 パナソニックIpマネジメント株式会社 Vacuum insulation housing and refrigerator
JP7182040B2 (en) 2017-03-30 2022-12-02 パナソニックIpマネジメント株式会社 Vacuum Insulated Enclosures and Refrigerators
JP2019015472A (en) * 2017-07-10 2019-01-31 パナソニックIpマネジメント株式会社 Vacuum heat insulation housing and refrigerator

Also Published As

Publication number Publication date
CN107429964A (en) 2017-12-01
DE112016001425T5 (en) 2017-12-21
WO2016157747A1 (en) 2016-10-06

Similar Documents

Publication Publication Date Title
US8881398B2 (en) Method and apparatus for insulating a refrigeration appliance
WO2016157747A1 (en) Vacuum insulation housing
RU2443951C2 (en) Refrigerating device
JP6427675B2 (en) Vacuum vessel
KR101597554B1 (en) Vacuum insulation panel and refrigerator with vacuum insulation panel
KR101714570B1 (en) Refrigerator with vacuum insulation panel
US20120285971A1 (en) Integrated vacuum insulation panel
JP5337681B2 (en) refrigerator
US20170176092A1 (en) Umbilical for pass through in vacuum insulated refrigerator structures
US20200033049A1 (en) Pass-through solutions for vacuum insulated structures
US9840042B2 (en) Adhesively secured vacuum insulated panels for refrigerators
JPH11287549A (en) Refrigeration and freezer cabinet
JPH11159693A (en) Vacuum heat insulating panel and manufacture therefor and heat insulating box body using it
EP2789952B1 (en) Refrigerator
EP2789948B1 (en) Refrigerator
RU2699708C2 (en) Refrigeration and/or freezer manufacturing method
JP6653743B2 (en) Vacuum container
JPH11159950A (en) Heat insulating box body for refrigerator
CN105627036A (en) Vacuum isolation panel and refrigerator using the same
US20100275640A1 (en) Refrigerator
JP7474918B2 (en) refrigerator
JP6970933B2 (en) Vacuum insulated housing
JP2019023536A (en) refrigerator
JP2018013198A (en) Vacuum heat insulation material and refrigerator using the same
JP2021124260A (en) refrigerator

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180208

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200303