JPH11159693A - Vacuum heat insulating panel and manufacture therefor and heat insulating box body using it - Google Patents

Vacuum heat insulating panel and manufacture therefor and heat insulating box body using it

Info

Publication number
JPH11159693A
JPH11159693A JP9327291A JP32729197A JPH11159693A JP H11159693 A JPH11159693 A JP H11159693A JP 9327291 A JP9327291 A JP 9327291A JP 32729197 A JP32729197 A JP 32729197A JP H11159693 A JPH11159693 A JP H11159693A
Authority
JP
Japan
Prior art keywords
core material
heat insulating
vacuum
holes
packaging material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9327291A
Other languages
Japanese (ja)
Inventor
Shuichi Iwata
修一 岩田
Yoshio Nishimoto
芳夫 西本
Masanori Tsujihara
雅法 辻原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP9327291A priority Critical patent/JPH11159693A/en
Publication of JPH11159693A publication Critical patent/JPH11159693A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)

Abstract

PROBLEM TO BE SOLVED: To exhaust gas existing in a pore of a core material in a short time by bringing a wrapping material into close contact with the core material so as not to form the excess end side, by arranging plural holes extending to the core material inside on an end surface of the core material positioned in a part being a gas sucking port at wrapping material sealing time. SOLUTION: Plural holes 1a extending up to an opposed end surface from one end surface are bored in a single plate-like foaming urethane mold 1 by using a drill. In the size of the holes, a diameter or a height is desirably set not more than 1/3 of a plate thickness. Here, a minimum thickness remaining in a bored core material part is desirably set not less than 5 mm. The ratio d/L of the diameter (d) of the holes to the length L of the holes is desirably set not less than 1/100. A core material is arranged in a wrapping material so that an end surface having the holes comes to a part being a gas sucking port when sealing this core material by the wrapping material 2. Next, the inside of the wrapping material is put in a vacuum state by using the gas sucking port. Various gases existing in a continuous pore can be efficiently exhausted by this operation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば冷蔵庫など
の断熱壁の内部にあって断熱のために用いる真空断熱パ
ネルに関するものであり、さらに詳しくは真空断熱パネ
ルの形状を保持するためにガスバリヤ性のあるシートで
ある包材の内部にあって、空気などのガスを容易に排除
できる芯材の構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum heat insulating panel used for heat insulation inside a heat insulating wall of a refrigerator or the like, and more particularly to a gas heat insulating panel for maintaining the shape of the vacuum heat insulating panel. The present invention relates to a structure of a core material inside a wrapping material which is a sheet having a shape and capable of easily removing gas such as air.

【0002】[0002]

【従来の技術】第7図は、例えば特開昭59−1469
93号公報に示された従来の真空断熱パネルの断面構造
図であり、図中において、8はガスバリヤ性を有するシ
ートから成る包材、9は真空状態にあってもその形状を
保持する芯材であり、10は芯材を挿入した包材を融着
などの方法によって接着した端辺、11はゲッター剤で
ある。
2. Description of the Related Art FIG.
FIG. 1 is a cross-sectional structural view of a conventional vacuum heat insulating panel disclosed in Japanese Patent Publication No. 93, where 8 is a packaging material made of a sheet having gas barrier properties, and 9 is a core material that retains its shape even in a vacuum state. Reference numeral 10 denotes an end edge of a package material into which a core material is inserted, which is bonded by a method such as fusion, and reference numeral 11 denotes a getter agent.

【0003】このうち、包材8にはガスバリヤー性のあ
るプラスチックシートを用いており、内部の真空を保持
するためのアルミ箔を、表面の保護を目的としたナイロ
ンやポリエチレンテレフタレートなどの耐傷性に優れた
樹脂と包材同士の接着を目的としたポリエチレンなどの
融着が可能な樹脂とでサンドイッチした構造を有する。
さらに、包材8の内部には連続した気孔を有する多孔質
物質から成る芯材9があり、これによって、内部が真空
であっても大気圧の負荷から真空断熱パネルの形状が維
持出来る。
[0003] Among them, a plastic sheet having a gas barrier property is used for the packaging material 8, and an aluminum foil for maintaining the inner vacuum is replaced with a scratch-resistant material such as nylon or polyethylene terephthalate for the purpose of surface protection. It has a structure sandwiched between a resin having excellent heat resistance and a fusible resin such as polyethylene for the purpose of bonding packaging materials.
Furthermore, a core material 9 made of a porous material having continuous pores is provided inside the packaging material 8, so that the shape of the vacuum heat insulating panel can be maintained from a load of atmospheric pressure even when the inside is vacuum.

【0004】また、芯材には、特開昭59−27760
8号公報等により、連続気泡構造の発泡ウレタンを芯材
に用いることが提案されている。
The core material is disclosed in JP-A-59-27760.
No. 8 proposes to use urethane foam having an open-cell structure as a core material.

【0005】一般に、多孔質物質の伝熱要素は、多孔質
を形成する固体の伝熱、気孔内にあるガスの伝熱、さら
に物体を貫通する輻射による伝熱から構成されるが、真
空断熱パネルには、このうち、芯材の気孔内にガスが存
在しないので、固体の伝熱と輻射の伝熱の和のみにより
成り立つ。従って、通常の断熱箱体に用いられる独立気
泡の発泡ウレタンと比較して、多孔質体の80〜95%
もの体積を占めるガスの伝熱量に相当する断熱性能の向
上が期待できる。
In general, a heat transfer element of a porous substance is constituted by heat transfer of a solid forming a porous material, heat transfer of gas in pores, and heat transfer by radiation passing through an object. Since no gas is present in the pores of the core material, the panel is formed only by the sum of the heat transfer of the solid and the heat of the radiation. Therefore, 80 to 95% of the porous body is compared with the closed-cell urethane foam used for the ordinary heat-insulating box.
It can be expected to improve the heat insulation performance corresponding to the heat transfer amount of the gas occupying the volume.

【0006】一方、断熱性能の悪化には、真空断熱パネ
ルを構成する各部材から発生する水分や低分子量の有機
ガスによるものと、外部にある空気や水蒸気などの侵入
によるものがあるが、これらは内部に保有するゲッター
剤11によって吸着されて、影響を及ぼすことはない。
[0006] On the other hand, the deterioration of the heat insulating performance is caused by moisture or low molecular weight organic gas generated from each member constituting the vacuum heat insulating panel, and by the invasion of air or water vapor outside. Is absorbed by the getter agent 11 held therein and has no influence.

【0007】この真空断熱パネルの製造方法は、図8の
工程図に示されている。すなわち、予め三方向が接着さ
れ芯材挿入開口部を有した包材に、芯材を必要に応じて
各種ガスを吸着するゲッター剤とともに挿入し、真空度
が100 〜10-4torr程度を確保できかつ包材の端部を
融着できる機能を有する真空融着機を用い、所定の真空
雰囲気中で、芯材の挿入口及びガス吸引口である包材の
シール部を融着し、その後、槽内を大気状態に戻すこと
により得られる。
[0007] A method of manufacturing the vacuum insulation panel is shown in the process chart of FIG. That is, the packing material in advance three-way had a core insertion opening is bonded, and inserted with a getter agent for adsorbing various gases as necessary core, the degree of vacuum of about 10 0 to 10 -4 torr Using a vacuum fusing machine having a function of securing and fusing the ends of the packaging material, in a predetermined vacuum atmosphere, fusing the sealing portion of the packaging material, which is a core material insertion port and a gas suction port, Then, it is obtained by returning the inside of the tank to the atmospheric state.

【0008】[0008]

【発明が解決しようとする課題】従来の真空断熱パネル
の製造において、芯材内部にある空気などの連続した気
孔内にあるをガスを排出するためには、芯材の上面およ
び下面に空間を設けて真空雰囲気中で端部を融着するの
が効率的であるが、その場合、空間を設けるための包材
の過剰分が真空断熱パネルの端部に張り出す。このた
め、完成した真空断熱パネルを断熱箱体の内箱と外箱の
間隙に配設した後に、発泡ウレタンを充填すして断熱箱
体を作る際の障害になるという問題があった。
In manufacturing a conventional vacuum insulation panel, in order to discharge gas in continuous pores such as air inside the core material, a space is required on the upper and lower surfaces of the core material. It is efficient to provide and fuse the ends in a vacuum atmosphere, in which case excess packaging material to make room will overhang the ends of the vacuum insulation panel. For this reason, there is a problem that the completed vacuum heat insulating panel is disposed in the gap between the inner box and the outer box of the heat insulating box, and then becomes an obstacle in filling the urethane foam to form the heat insulating box.

【0009】一方、包材の内寸と芯材の外寸を同じにし
て、包材が芯材に密着する構成とすれば、包材の過剰分
が端部に張り出すことが少なくなる反面、芯材の挿入口
に位置する端面のみからの真空排気になるので、気孔内
にあるガスの排出を、連続した気孔を通じてのみ行うに
は抵抗が大きくなり過ぎ、十分な排気を行うには長時間
を要するという問題がある。この場合に、短時間で排気
を完了して端辺を融着すると、芯材内部に残存するガス
量が増えて、所望する真空度を確保することが困難とな
り、断熱性能の悪化を招くことになる。
On the other hand, if the inner dimensions of the packaging material and the outer dimensions of the core material are the same and the packaging material is in close contact with the core material, the excess of the packaging material is less likely to protrude to the end. Since the vacuum is exhausted only from the end face located at the insertion opening of the core material, the resistance is too large to exhaust the gas inside the pores only through the continuous pores, and it takes a long time to exhaust the gas sufficiently. There is a problem that it takes time. In this case, if the evacuation is completed in a short time and the edges are fused, the amount of gas remaining inside the core material increases, making it difficult to secure a desired degree of vacuum, resulting in deterioration of heat insulation performance. become.

【0010】本発明は上記の課題を解決するために成さ
れたものであり、余分な端辺を形成させないように包材
を芯材に密着させた構成とし、かつ、芯材の気孔内にあ
るガスを容易に短時間で排出できる様にした真空断熱パ
ネル及びその製造方法を得ることを目的とする。
The present invention has been made to solve the above-mentioned problems, and has a structure in which a packaging material is adhered to a core material so as not to form an extra edge, and is provided in a pore of the core material. An object of the present invention is to provide a vacuum insulation panel capable of easily discharging a certain gas in a short time and a method for manufacturing the same.

【0011】[0011]

【課題を解決するための手段】この発明による真空断熱
パネルは、芯材と該芯材を包む包材とを備えた真空断熱
パネルであって、前記包材をシールする際のガス吸引口
となる部分に位置する前記芯材の端面に、該端面から芯
材内部に延びる複数の孔を設ける。
SUMMARY OF THE INVENTION A vacuum heat insulating panel according to the present invention is a vacuum heat insulating panel having a core material and a packaging material for wrapping the core material, wherein a gas suction port for sealing the packaging material is provided. A plurality of holes extending from the end face to the inside of the core material are provided on the end face of the core material located at the portion.

【0012】また、前記孔を芯材の対向端面まで貫通さ
せる。
Further, the hole is made to penetrate to the opposite end face of the core material.

【0013】この発明による真空断熱パネルの製造方法
は、連続した気孔を有する多孔質物質に複数の孔を設け
て芯材を形成する工程と、包材をシールする際のガス吸
引口となる部分に、前記孔を有する端面が来るように前
記芯材を該包材内に配置する工程と、前記ガス吸引口を
利用して前記包材内部を真空状態にする工程とを備え
る。
According to the method of manufacturing a vacuum insulation panel according to the present invention, a step of forming a core material by providing a plurality of holes in a porous material having continuous pores, and a portion serving as a gas suction port when sealing a packaging material And a step of arranging the core material in the packaging material so that the end face having the hole comes, and a step of evacuating the interior of the packaging material using the gas suction port.

【0014】また、表面に複数の溝を設けた多孔質物質
板の上に、別の多孔質物質板を載置することにより、前
記孔を形成する。
Further, the hole is formed by placing another porous material plate on a porous material plate provided with a plurality of grooves on the surface.

【0015】さらに、この発明による真空断熱パネル
を、断熱壁に用いた断熱箱体を構成する。
Further, a vacuum heat insulating panel according to the present invention is used as a heat insulating wall.

【0016】[0016]

【発明の実施の形態】実施の形態1 (1)芯材の作製 連続する気泡構造を有した多孔質物質板である発泡ウレ
タン成形品を用いて、孔を備えた構造の芯材を形成する
方法について述べる。孔を備えた構造の芯材を形成する
一つの方法は、図1に示すように、一枚の板状発泡ウレ
タン成形品1に、一つの端面から対向端面まで延びる複
数の孔1aをドリルなどを用いてあけるものである。ま
た、2枚の板状発泡ウレタン成形品を使う図2の方法も
ある。すなわち、第一の板状発泡ウレタン成形品5と、
第一の板状発泡ウレタン成形品5の厚みと得ようとする
孔の高さ分を加えた厚みを有する第二の板状発泡ウレタ
ン成形品4を用意する。第二の板状発泡ウレタン成形品
4には、一つの端面から対向端面まで延びる複数の角溝
を形成する。この溝の形成には、例えば、棒状の凸部を
設けたプレスを用いて押し潰しても、切削加工しても良
い。この角溝の付いた第二の板状発泡ウレタン成形品4
上に第一の板状発泡ウレタン成形品5を載置すれば、角
形の孔4aを備えた芯材が得られる。いずれの方法にお
いても、本発明の目的の観点からは同様の効果を生む芯
材が得られるが、図1に示す方法の場合には、図2に示
す方法に比べ、量産性に優れている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1 (1) Manufacture of core material A core material having a structure with holes is formed by using a foamed urethane molded product which is a porous material plate having a continuous cell structure. The method is described. As shown in FIG. 1, one method for forming a core material having a structure having holes is to drill a plurality of holes 1a extending from one end face to an opposite end face in one sheet-like urethane molded article 1. It is opened by using. In addition, there is also a method shown in FIG. 2 using two sheet-like urethane foam molded products. That is, the first plate-shaped urethane foam molded article 5,
A second plate-shaped urethane foam molded article 4 having a thickness obtained by adding the thickness of the first plate-shaped urethane foam molded article 5 and the height of the hole to be obtained is prepared. A plurality of square grooves extending from one end face to the opposite end face are formed in the second plate-shaped urethane foam molded article 4. For forming the groove, for example, the groove may be crushed using a press provided with a bar-shaped convex portion, or may be cut. The second plate-shaped urethane foamed article 4 having the square groove 4
If the first plate-shaped urethane foam molded article 5 is placed on the top, a core material having a square hole 4a can be obtained. In either method, a core material having the same effect can be obtained from the viewpoint of the object of the present invention. However, the method shown in FIG. 1 is superior in mass productivity as compared with the method shown in FIG. .

【0017】孔の大きさは、直径または高さが板厚の1
/3以下となることが好ましく、板厚の1/5〜1/1
0が特に好ましい。但し、孔を空けた芯材部分に残る最
小厚さは、5mm以上であることが好ましい。また、孔
の長さ(L)に対する孔の直径(d)の比(d/L)
は、1/100以上が好ましく、1/50以上が特に好
ましい。もし、上記の両条件が成立しない場合には、孔
の直径または高さを重視して孔の形状を決定することが
好ましい。例えば、厚さが20mmの板状の発泡ウレタ
ン成形品に750mmの長さの方向に孔を設ける場合、
6.7mm以下の直径または高さを有する孔を設けるこ
とが好ましい。
The size of the hole is such that the diameter or height is 1 of the plate thickness.
/ 3 or less, preferably 1/5 to 1/1 of the plate thickness
0 is particularly preferred. However, it is preferable that the minimum thickness remaining in the core portion where the hole is formed is 5 mm or more. The ratio (d / L) of the hole diameter (d) to the hole length (L)
Is preferably 1/100 or more, particularly preferably 1/50 or more. If the above two conditions are not satisfied, it is preferable to determine the shape of the hole with emphasis on the diameter or height of the hole. For example, in the case of providing a hole in the length direction of 750 mm in a plate-shaped urethane foam molded product having a thickness of 20 mm,
Preferably, a hole having a diameter or height of 6.7 mm or less is provided.

【0018】(2)真空断熱パネルの成形 試料とする芯材は、任意の大きさを得るために裁断して
調整したものを用いる。断熱性を中心とした各種評価に
用いる試料は、この芯材を予め三方向が熱シールされた
包材内に挿入した後、真空融着機に装填して所定の真空
度の雰囲気を確保し、残った一方向を熱シールすること
によって得る。なお、包材は、シール面が熱融着の可能
な熱可塑性樹脂、中間層が外気の侵入を完全に遮断する
ためのアルミ箔などの金属箔、更に最外層が傷つきなど
に耐性のあるナイロンやポリエステルなどの樹脂を用い
た多層シートからできている。
(2) Formation of Vacuum Insulated Panel The core material used as a sample is cut and adjusted to obtain an arbitrary size. Samples used for various evaluations centering on heat insulation are inserted into a packaging material that has been heat-sealed in three directions in advance, and then loaded into a vacuum fusing machine to secure an atmosphere with a predetermined degree of vacuum. Obtained by heat sealing the remaining one direction. The packaging material is a thermoplastic resin whose sealing surface can be heat-sealed, a metal foil such as an aluminum foil for completely blocking the invasion of the outside air, and a nylon whose outermost layer is resistant to scratching. It is made of a multilayer sheet using a resin such as polyester or polyester.

【0019】熱シールの工程は、図1の芯材1と包材2
を用いて、図3の工程図により説明する。包材2の開口
部(ガス吸引口)2aから、芯材1を包材2内に挿入し
た後、この芯材1入り包材2を、上下融着ヒータ13間
に開口部2aが来るようにして、真空融着機12に装着
する。次に、排気能力が950L/min、到達真空度
が10-4torrの能力を有するロータリー型真空ポンプ1
5を用いて、真空融着機12の槽内の真空度を1×10
-1Torrに調整する。真空融着機12内が所定の真空度に
なれば、その時点で、シール用加圧装置14を用いて開
口部2aを熱シールした後、ヒータを切り、冷却後に真
空を解放して取り出せば、真空断熱パネルが得られる。
The heat sealing process is performed by the core material 1 and the packaging material 2 shown in FIG.
The process will be described with reference to FIG. After the core material 1 is inserted into the packaging material 2 from the opening (gas suction port) 2 a of the packaging material 2, the packaging material 2 containing the core material 1 is inserted so that the opening 2 a comes between the upper and lower fusion heaters 13. Then, it is mounted on the vacuum welding machine 12. Next, a rotary vacuum pump 1 having an evacuation capacity of 950 L / min and an ultimate vacuum of 10 -4 torr.
5, the degree of vacuum in the vessel of the vacuum welding machine 12 was 1 × 10
Adjust to -1 Torr. When the inside of the vacuum welding machine 12 reaches a predetermined degree of vacuum, at that time, the opening 2a is heat-sealed using the sealing pressurizing device 14, the heater is turned off, and after cooling, the vacuum is released and taken out. Thus, a vacuum insulation panel is obtained.

【0020】(3)評価の方法 芯材の評価は、得られた真空断熱パネルを用いて、所定
の真空度に到達する迄の時間で示す「真空引き時間」
と、断熱性能、さらに、形状の経時変化について行っ
た。断熱性能は、熱伝導率で評価を行い、その測定には
栄弘精機(株)社製の「オートラムダ」を用い、真空断
熱パネルを常態雰囲気にて12時間の放置後における熱
伝導率を求めた。形状の経時変化は、孔のある表面部分
における陥没様の収縮を判別するために、真空断熱パネ
ル表面の平滑性について目視観察を行った。
(3) Method of Evaluation The evaluation of the core material is performed by using the obtained vacuum insulation panel and indicating the time required to reach a predetermined degree of vacuum.
And the heat insulation performance, and the change with time of the shape. The thermal insulation performance was evaluated by the thermal conductivity, and the measurement was performed using “Auto Lambda” manufactured by Eiko Seiki Co., Ltd., and the thermal conductivity after leaving the vacuum thermal insulation panel in a normal atmosphere for 12 hours. I asked. With respect to the change with time of the shape, visual observation was performed on the smoothness of the surface of the vacuum heat-insulating panel in order to determine the depression-like shrinkage in the surface portion with holes.

【0021】実施例1 芯材には、第1図に示すような、厚さが20mm、一辺
の長さが200mmの正方形である連続気泡構造を有す
る板状の発泡ウレタン成形品を用いた。この芯材には、
厚さ方向の中心部に、一方の端面から相対する端面に貫
通する直径5mmの孔を20mmの間隔で複数設けた。
一方、包材の内寸は、開口部が222mm、奥行きが2
50mmであり、これに芯材を挿入すれば、側面および
上下面には殆ど隙間の無い状態となる。これらの芯材と
包材は、120℃の温度で2時間以上の乾燥を行った後
に使用した。これらの芯材と包材による真空断熱パネル
を、実施例1として、各種評価を行い、その結果を表1
に記す。
Example 1 As a core material, a plate-shaped urethane foam molded article having a square open cell structure having a thickness of 20 mm and a side length of 200 mm as shown in FIG. 1 was used. In this core material,
At the center in the thickness direction, a plurality of holes each having a diameter of 5 mm penetrating from one end face to the end face facing each other were provided at intervals of 20 mm.
On the other hand, the inner dimensions of the packaging material are 222 mm in the opening and 2 mm in depth.
It is 50 mm, and if a core material is inserted into it, there is almost no gap between the side surface and the upper and lower surfaces. These core material and packaging material were used after drying at a temperature of 120 ° C. for 2 hours or more. Various evaluations were performed on the vacuum insulation panel using the core material and the packaging material as Example 1 and the results were shown in Table 1.
It writes in.

【0022】比較例1、比較例2 厚さ及び一辺の長さを実施例1と同じにした連続気泡構
造を有する板状の発泡ウレタン成形品を用い、貫通孔の
直径が15mmとした芯材を使った真空断熱パネルを比
較例1とし、貫通孔を設けなかった芯材を使った真空断
熱パネルを比較例2とし、これらを実施例1と同じ方法
で真空断熱パネルに成形し、その評価を行い、結果を表
1に併記した。
Comparative Example 1 and Comparative Example 2 A core material having a through-hole diameter of 15 mm using a plate-shaped urethane foam molded article having an open-cell structure having the same thickness and one side length as in Example 1. A vacuum insulation panel using a core material without through holes was used as a comparative example 2, and a vacuum insulation panel using a core material without a through-hole was formed into a vacuum insulation panel in the same manner as in Example 1. And the results are shown in Table 1.

【0023】実施例2 厚さが13mm、一辺の長さが200mmの正方形であ
って、上面に、幅および深さ(高さ)が6mmの溝を2
0mmの間隔で複数形成した連続気泡構造を有する板状
の発泡ウレタン成形品の上に、厚さが7mm、一辺の長
さが200mmの正方形から成る連続気泡構造を有する
板状の発泡ウレタン成形品を載置して、図2に示すよう
な芯材を作る。また、包材の内寸は、開口部が222m
m、奥行きが250mmであり、これに先述の芯材を挿
入すれば、側面及び上下面には殆ど隙間の無い状態とな
る。これらの芯材及び包材は、120℃の温度で2時間
以上の乾燥を行った後に使用した。これらの芯材と包材
を用いて作製した真空断熱パネルを、実施例2として評
価を行い、その結果を表1に併記した。
Example 2 A groove having a thickness of 13 mm, a side length of 200 mm, and a groove having a width and a depth (height) of 6 mm was formed on the upper surface.
A plate-like urethane foam having an open-cell structure consisting of a square having a thickness of 7 mm and a side length of 200 mm on a plate-like urethane foam having an open-cell structure formed at intervals of 0 mm. To make a core material as shown in FIG. The inner dimensions of the packaging material are 222 m
m, the depth is 250 mm, and if the above-mentioned core material is inserted into this, there is almost no gap between the side surface and the upper and lower surfaces. These core material and packaging material were used after drying at a temperature of 120 ° C. for 2 hours or more. The vacuum insulation panel manufactured using these core materials and the packaging material was evaluated as Example 2, and the results are shown in Table 1.

【0024】比較例3 厚さ16mm、一辺の長さ200mmの正方形であっ
て、上面に幅が15mmで深さが12mmの溝を20m
m間隔で複数形成した連続気泡構造を有する板状の発泡
ウレタン成形品に、厚さ4mm、一辺の長さ200mm
の正方形である連続気泡構造を有する板状の発泡ウレタ
ン成形品を載置した構造の芯材を用いて作成した真空断
熱パネルを、比較例3として同じ評価を行い、その結果
を表1に併記した。
COMPARATIVE EXAMPLE 3 A square having a thickness of 16 mm and a side length of 200 mm and a groove having a width of 15 mm and a depth of 12 mm was formed on the upper surface by 20 m.
A plate-shaped urethane foam having an open cell structure formed at a plurality of m intervals has a thickness of 4 mm and a side length of 200 mm
The same evaluation was performed as Comparative Example 3 for a vacuum insulation panel made using a core material having a structure in which a plate-shaped urethane foam molded article having a square open cell structure was placed, and the results are also shown in Table 1. did.

【0025】真空断熱パネル製造工程における真空引き
時間は、真空引き開始から0.1torrに到達するのに要
する時間を測定して、その結果を表1に示した。真空引
き時間は、貫通孔を設けない比較例2が、貫通孔を設け
た実施例1と実施例2、および比較例1と比較例3に比
べて遅く、また、貫通孔を設けたものの間ではほとんど
差異を生じなかった。このことから、比較例2における
真空断熱パネルでは、包材と芯材との間に隙間がないの
で、包材の開口部にある端面のみからの排気となり、従
って、内部にあるガスの排出が遅れ、比較的長い真空引
き時間を必要とする。これに対し、貫通孔を設けた実施
例1と実施例2、および比較例1と比較例3では、貫通
孔を通じた気孔内にあるガスの排出が容易になって、真
空引き時間が短縮されたものと思われる。
The vacuum evacuation time in the vacuum insulation panel manufacturing process was measured by measuring the time required to reach 0.1 torr from the start of evacuation, and the results are shown in Table 1. The evacuation time was slower in Comparative Example 2 without the through-hole than in Examples 1 and 2 and Comparative Example 1 and Comparative Example 3 with the through-hole. Made little difference. From this, in the vacuum heat insulating panel in Comparative Example 2, since there is no gap between the packaging material and the core material, the exhaust gas is exhausted only from the end surface at the opening of the packaging material. Delayed, requiring a relatively long evacuation time. In contrast, in Examples 1 and 2 and Comparative Examples 1 and 3 in which the through holes were provided, the gas in the pores was easily discharged through the through holes, and the evacuation time was shortened. It seems to have been.

【0026】次に、熱伝導率について検討する。貫通孔
の設置により、その部分に多孔質物質である連通気泡の
発泡ウレタンが存在しないので、輻射熱の断熱に劣るこ
とから、一般に熱伝導率が高くなる。しかし、本結果に
おいては、貫通孔を設けない芯材を用いた方の真空断熱
パネルが高い熱伝導率を示した。このことから、貫通孔
を設けない芯材の場合には、真空融着機の槽内が所定の
真空度に到達しても、芯材の気孔内にある空気などのガ
スを、包材の開口部にある端面からのみでは十分に排出
できず、ガスが残存した状態になっていたものと予測さ
れる。
Next, the thermal conductivity will be discussed. By providing the through-hole, since urethane foam of the open cell, which is a porous substance, does not exist in that portion, the thermal conductivity is generally high because of poor heat insulation of radiant heat. However, in the present results, the vacuum heat insulating panel using the core material having no through hole showed higher thermal conductivity. For this reason, in the case of a core material having no through hole, even if the inside of the tank of the vacuum welding machine reaches a predetermined degree of vacuum, gas such as air in the pores of the core material is removed from the packaging material. It is estimated that the gas could not be sufficiently discharged only from the end face in the opening, and the gas remained.

【0027】さらに、外観の経時変化に関しては、直径
が15mmの孔を設けた比較例1及び幅15mmで深さ
12mmの角溝を設けた芯材を用いた比較例3の表面
に、陥没様の筋状のへこみ様の変形を観測した。この筋
状の変形は貫通孔の配設位置と一致しており、貫通孔上
にある連通気法の発泡ウレタン成形品が曲げ変形を来た
すことによるものと推測できる。この変形に対応するた
めには、貫通孔上にある連通気法の発泡ウレタンの厚さ
を、一定の厚さ以上にまで増すことが有効である。それ
は、貫通孔の大きさが芯材の厚さに対して比較的小さい
実施例1と実施例2では、変形が観測されなかったこと
からわかる。
Further, with respect to the change with time of the appearance, the surface of Comparative Example 1 provided with a hole having a diameter of 15 mm and Comparative Example 3 provided with a core material provided with a square groove having a width of 15 mm and a depth of 12 mm were observed. A streak-like dent-like deformation was observed. This streak-like deformation coincides with the arrangement position of the through-hole, and it can be assumed that the urethane foam molded article of the continuous ventilation method on the through-hole undergoes bending deformation. In order to cope with this deformation, it is effective to increase the thickness of the urethane foam on the through-hole by the continuous ventilation method to a certain thickness or more. This can be seen from the fact that no deformation was observed in Examples 1 and 2 in which the size of the through hole was relatively small with respect to the thickness of the core material.

【0028】[0028]

【表1】 [Table 1]

【0029】この結果から、貫通孔を設けた芯材を用い
ることによって、芯材と包材間の側面および上下面に殆
ど隙間の無い状態で作製した真空断熱パネルであって
も、芯材内部のガスを十分に排出できたことがわかる。
また、これによれば、その排気時間も短縮できる。
From these results, it can be seen that the use of a core material having a through-hole makes it possible to produce a vacuum insulation panel having little gap between the side and upper and lower surfaces between the core material and the packaging material. It can be seen that the gas was sufficiently discharged.
According to this, the evacuation time can be shortened.

【0030】さらに、貫通孔の上下部に適度な厚さを残
すことにより、大気圧が加わっても、貫通孔部分が陥没
して筋状の変形が生じたりすることのない、変形に強い
真空断熱パネルを得ることができる。
Further, by leaving an appropriate thickness at the upper and lower portions of the through hole, even if atmospheric pressure is applied, the through hole portion is not depressed and a streak-like deformation does not occur. Insulated panels can be obtained.

【0031】実施の形態2 (1)本発明の真空断熱パネルを壁内に配設した冷蔵庫
の製造 本発明の真空断熱パネルを壁内に配設した図4に示す断
熱箱体の製造方法を、図5の工程図を用いて説明する。
まず、薄鋼板の折り曲げ加工によって得られた外箱24
上に接着剤25を介して真空断熱パネル23を配設し
(S1)、ABS樹脂の真空成形品である内箱26を外
箱24と嵌合させ(S2)、残りの箱体外殻を成す部品
および冷媒回路部品、さらに内装品の取り付け部品など
を所定の位置に取り付けて、断熱箱体の外殻を形成する
(S3)。
Embodiment 2 (1) Manufacture of a refrigerator in which the vacuum heat insulating panel of the present invention is arranged in a wall The method of manufacturing a heat insulating box shown in FIG. 4 in which the vacuum heat insulating panel of the present invention is arranged in a wall is described. This will be described with reference to the process chart of FIG.
First, the outer box 24 obtained by bending a thin steel plate
A vacuum heat insulating panel 23 is disposed on the upper side via an adhesive 25 (S1), and an inner box 26, which is a vacuum molded product of ABS resin, is fitted to the outer box 24 (S2), and the remaining outer shell of the box body is removed. The components to be formed, the refrigerant circuit components, and the components for mounting the interior components are attached at predetermined positions to form the outer shell of the heat insulating box (S3).

【0032】次に、外箱24、内箱26および真空断熱
パネル3の間隙に断熱材27を充填して空隙を埋める。
最も好ましい断熱材は、独立気泡を有する発泡ウレタン
フォームである(S4)。この充填方法は、まず、発泡
ウレタンフォームの発泡を伴う充填によって外殻が変形
を来さないように、断熱箱体の外殻を発泡ジグに挿入固
定した後、内箱26と外箱24の間隙に、独立気泡を有
する発泡ウレタンフォーム27を注入し、発泡による樹
脂の膨張によって間隙内の隅々にまで充填させる。発泡
ウレタンフォーム27の硬化に要する時間を経過したな
らば、ジグを開放して取り出せば、図4に示す壁構造を
備えた断熱箱体が得られる。
Next, the gap between the outer box 24, the inner box 26 and the vacuum heat insulating panel 3 is filled with a heat insulating material 27 to fill the gap.
The most preferable heat insulating material is urethane foam having closed cells (S4). In this filling method, first, the outer shell of the heat insulating box is inserted and fixed in the foam jig so that the outer shell is not deformed by the filling accompanied by foaming of the urethane foam. Urethane foam 27 having closed cells is injected into the gap, and is filled to every corner in the gap by expansion of the resin due to foaming. When the time required for curing the urethane foam 27 has elapsed, the jig is opened and taken out, and the heat insulating box having the wall structure shown in FIG. 4 is obtained.

【0033】このようにして得られた断熱箱体には、圧
縮機を含む冷媒回路を配設し、さらに庫内部品と扉を装
着すれば(S5)、検査を経て(S6)、冷蔵庫が完成
する(S7)。
A refrigerant circuit including a compressor is disposed on the heat-insulating box thus obtained, and if components and doors in the refrigerator are attached (S5), the refrigerator is inspected (S6), and the refrigerator is operated. It is completed (S7).

【0034】(2)評価の方法 これらの冷蔵庫の断熱性の向上効果を、JIS−C96
07における消費電力測定法のB法に準拠した消費電力
量を求めることによって確認した。
(2) Evaluation method The effect of improving the heat insulating properties of these refrigerators was measured in accordance with JIS-C96.
It was confirmed by obtaining the power consumption in accordance with the power consumption measurement method B in 07.

【0035】実施例3 実施の形態1において、実施例2として示した真空断熱
パネルを、第6図の様に配設した断熱箱体を用い、さら
に冷媒と圧縮機を含む冷媒回路などを配設して、内容積
が400Lである冷蔵庫を組み立て、これを実施例3と
した。なお、図6は展開図であり、30は天井、31は
冷凍室左、32は冷凍室右、33は冷蔵室左、34は冷
蔵室右、35は冷凍室背面、36は冷蔵室背面に、それ
ぞれ相当する。
Example 3 In the first embodiment, the vacuum insulation panel shown in Example 2 is replaced by a heat insulating box body arranged as shown in FIG. 6, and a refrigerant circuit including a refrigerant and a compressor. Then, a refrigerator having an internal volume of 400 L was assembled, and this was designated as Example 3. 6 is an exploded view, in which 30 is a ceiling, 31 is a freezer compartment left, 32 is a freezer compartment right, 33 is a refrigerator compartment left, 34 is a refrigerator compartment right, 35 is a refrigerator compartment rear, and 36 is a refrigerator compartment rear. , Respectively.

【0036】比較例4、比較例5 真空断熱パネルを用いずに外箱と内箱の空隙すべてを独
立気泡の硬質ポリウレタンフォームのみで充填した断熱
箱体を比較例4と、貫通孔を設けない芯材を用いた従来
の真空断熱パネルを第6図の位置に配設した断熱箱体を
比較例5とし、これらに全く同じ冷却性能を有する冷媒
と圧縮機を含む冷媒回路を備えた。
Comparative Example 4 and Comparative Example 5 A heat insulating box in which all the gaps between the outer box and the inner box were filled only with closed-cell hard polyurethane foam without using a vacuum heat insulating panel and Comparative Example 4 without a through hole. A heat insulating box in which a conventional vacuum heat insulating panel using a core material was disposed at the position shown in FIG. 6 was used as Comparative Example 5, which was provided with a refrigerant circuit including a refrigerant having exactly the same cooling performance and a compressor.

【0037】これらの各冷蔵庫の消費電力量の測定結果
を表2に示す。本発明に基づいた真空断熱パネルを備え
た実施例3の冷蔵庫の消費電力は、従来の硬質ポリウレ
タンフォームのみの箱体を用いた比較例4に比べてかな
り少なく、断熱箱体の断熱性能に優れていることを確認
した。また、内部に貫通孔を設けない芯材を有する従来
の真空断熱パネルを用いた冷蔵庫である比較例5に比べ
ても、同等以上の消費電力量を有していることも確認で
きた。
Table 2 shows the measurement results of the power consumption of each of these refrigerators. The power consumption of the refrigerator of Example 3 provided with the vacuum insulation panel based on the present invention is considerably less than that of Comparative Example 4 using a conventional box made of only rigid polyurethane foam, and the heat insulation performance of the insulation box is excellent. Confirmed that. In addition, it was confirmed that the power consumption was equal to or higher than that of Comparative Example 5 which is a refrigerator using a conventional vacuum heat insulating panel having a core material having no through hole therein.

【0038】[0038]

【表2】 [Table 2]

【0039】以上、ここでは冷蔵庫への応用について説
明したが、本発明はこれに限定されるものではなく、同
様の効果を目的とする他の用途にも応用できる。例え
ば、車載用小型冷蔵庫やプレハブ式簡易冷蔵庫、保冷車
やパイプ、建築物の保温材などの保温および保冷用製
品、断熱用部品としての応用も可能であり、その要旨を
脱し得ない範囲で、種々変形して実施することができ
る。
Although the application to the refrigerator has been described above, the present invention is not limited to this, and can be applied to other uses for the same effect. For example, compact refrigerators for vehicles and simple prefabricated refrigerators, insulated vehicles and pipes, products for heat insulation and cold insulation such as heat insulating materials for buildings, and applications as heat insulation parts are also possible. Various modifications can be made.

【0040】[0040]

【発明の効果】請求項1の発明に係る真空断熱パネルに
よれば、包材のガス吸引口に芯材の孔を有する端面が来
るため、連続した気孔の中にある各種ガスの排出を効率
よく行える。
According to the vacuum insulation panel of the first aspect of the present invention, since the end face having the hole of the core material comes to the gas suction port of the packaging material, the discharge of various gases in the continuous pores can be efficiently performed. Well done.

【0041】請求項2の発明に係る真空断熱パネルによ
れば、孔を芯材の端からその対向端まで貫通させたの
で、各種ガスの排出を一層効率よく行える。また、芯材
の強さが比較的均一になり、真空断熱パネルの変形が生
じにくくなる。
According to the vacuum heat insulating panel of the second aspect of the present invention, since the holes penetrate from the end of the core material to the opposite end thereof, various gases can be discharged more efficiently. Further, the strength of the core material becomes relatively uniform, and the vacuum insulation panel is less likely to be deformed.

【0042】請求項3の発明に係る真空断熱パネルの製
造方法によれば、真空引き時間が短縮されて、生産性の
向上が達成できる。
According to the method for manufacturing a vacuum heat insulating panel according to the third aspect of the present invention, the evacuation time is shortened, and an improvement in productivity can be achieved.

【0043】請求項4の発明に係る真空断熱パネルの製
造方法によれば、任意の大きさの孔を容易に形成するこ
とができ、製造の簡素化が達成される。
According to the method for manufacturing a vacuum heat insulating panel according to the fourth aspect of the present invention, a hole having an arbitrary size can be easily formed, and simplification of manufacturing can be achieved.

【0044】請求項5の発明に係る断熱箱体によれば、
壁内に使用される真空断熱パネル内部のガスが十分に抜
かれているため、断熱性能及び信頼性の向上が期待でき
る。
According to the heat insulating box of the fifth aspect,
Since the gas inside the vacuum heat insulating panel used in the wall is sufficiently evacuated, improvement in heat insulating performance and reliability can be expected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る円形の貫通孔を有する芯材とそ
れを包む包材の構成を説明する斜視図である。
FIG. 1 is a perspective view illustrating a configuration of a core material having a circular through-hole according to the present invention and a packaging material that wraps the core material.

【図2】 本発明に係る角形の貫通孔を有する芯材とそ
れを包む包材の構成を説明する斜視図である。
FIG. 2 is a perspective view illustrating a configuration of a core material having a rectangular through hole according to the present invention and a packaging material that wraps the core material.

【図3】 真空断熱パネル製造時における包材のシール
の工程図である。
FIG. 3 is a process diagram of sealing a packaging material during production of a vacuum insulation panel.

【図4】 本発明の真空断熱パネルを利用した断熱箱体
の断面図である。
FIG. 4 is a cross-sectional view of a heat insulating box using the vacuum heat insulating panel of the present invention.

【図5】 本発明の真空断熱パネルを用いた冷蔵庫の組
立工程図である。
FIG. 5 is an assembly process diagram of a refrigerator using the vacuum insulation panel of the present invention.

【図6】 冷蔵庫における真空断熱パネルの配設を示す
展開図である。
FIG. 6 is a developed view showing an arrangement of a vacuum heat insulating panel in the refrigerator.

【図7】 従来の真空断熱パネルの断面構造を示す概念
図である。
FIG. 7 is a conceptual diagram showing a cross-sectional structure of a conventional vacuum heat insulating panel.

【図8】 真空断熱パネルの製造工程図である。FIG. 8 is a manufacturing process diagram of the vacuum insulation panel.

【符号の説明】[Explanation of symbols]

1 芯材、1a 円形孔、2 包材、2a 開口部、4
第二の板状ウレタン成形品、4a 角形孔、5 第一
の板状ウレタン成形品、6 包材、6a 開口部、12
真空融着機、13 ヒーター、14 シール用加圧装
置、15 真空ポンプ、23 真空断熱パネル、24
外箱、25 接着剤、26 内箱、27独立気泡のポリ
ウレタンフォーム。
1 core material, 1a circular hole, 2 packaging material, 2a opening, 4
Second plate-shaped urethane molded product, 4a square hole, 5th plate-shaped urethane molded product, 6 packaging material, 6a opening, 12
Vacuum fusion machine, 13 Heater, 14 Sealing press, 15 Vacuum pump, 23 Vacuum insulation panel, 24
Outer box, 25 adhesive, 26 inner box, 27 closed cell polyurethane foam.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 芯材と該芯材を包む包材とを備えた真空
断熱パネルであって、前記包材をシールする際のガス吸
引口となる部分に位置する前記芯材の端面に、該端面か
ら芯材内部に延びる複数の孔を設けることを特徴とする
真空断熱パネル。
1. A vacuum heat insulating panel comprising a core material and a packaging material for wrapping the core material, wherein an end surface of the core material located at a portion serving as a gas suction port when sealing the packaging material is provided. A vacuum insulation panel comprising a plurality of holes extending from the end face into the core material.
【請求項2】 前記孔が前記芯材の対向端面まで貫通し
ていることを特徴とする請求項1記載の真空断熱パネ
ル。
2. The vacuum heat insulating panel according to claim 1, wherein said hole penetrates to an opposing end surface of said core material.
【請求項3】 連続した気孔を有する多孔質物質に複数
の孔を設けて芯材を形成する工程と、 包材をシールする際のガス吸引口となる部分に、前記孔
を有する端面が来るように前記芯材を該包材内に配置す
る工程と、 前記ガス吸引口を利用して前記包材内部を真空状態にす
る工程とを、備えた真空断熱パネルの製造方法。
3. A step of forming a core material by providing a plurality of holes in a porous material having continuous pores, and an end face having the holes comes to a portion serving as a gas suction port when sealing a packaging material. A method for manufacturing a vacuum heat insulating panel, comprising: a step of disposing the core material in the packaging material; and a step of making the interior of the packaging material vacuum using the gas suction port.
【請求項4】 表面に複数の溝を設けた多孔質物質板の
上に、別の多孔質物質板を載置することにより、前記孔
を形成するようにしたことを特徴とする請求項3に記載
の真空断熱パネルの製造方法。
4. The hole is formed by placing another porous material plate on a porous material plate having a plurality of grooves on its surface. The method for producing a vacuum heat-insulated panel according to item 1.
【請求項5】 端面から内部に延びる複数の孔を有した
芯材を、該芯材を包む包材をシールする際のガス吸引口
となる部分に前記端面が位置するように配置してなる真
空断熱パネルを、断熱壁に用いたことを特徴とする断熱
箱体。
5. A core material having a plurality of holes extending inward from an end face is arranged such that the end face is located at a portion serving as a gas suction port when sealing a packaging material wrapping the core material. A heat insulating box, wherein a vacuum heat insulating panel is used for a heat insulating wall.
JP9327291A 1997-11-28 1997-11-28 Vacuum heat insulating panel and manufacture therefor and heat insulating box body using it Pending JPH11159693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9327291A JPH11159693A (en) 1997-11-28 1997-11-28 Vacuum heat insulating panel and manufacture therefor and heat insulating box body using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9327291A JPH11159693A (en) 1997-11-28 1997-11-28 Vacuum heat insulating panel and manufacture therefor and heat insulating box body using it

Publications (1)

Publication Number Publication Date
JPH11159693A true JPH11159693A (en) 1999-06-15

Family

ID=18197495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9327291A Pending JPH11159693A (en) 1997-11-28 1997-11-28 Vacuum heat insulating panel and manufacture therefor and heat insulating box body using it

Country Status (1)

Country Link
JP (1) JPH11159693A (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014047874A (en) * 2012-09-03 2014-03-17 Hitachi Appliances Inc Vacuum heat insulating material and equipment using the same
WO2016163074A1 (en) * 2015-04-06 2016-10-13 パナソニックIpマネジメント株式会社 Vacuum heat insulation body
JP2016200232A (en) * 2015-04-13 2016-12-01 パナソニックIpマネジメント株式会社 Vacuum heat insulation body and heat insulation container and heat insulation wall using the same
KR101845899B1 (en) * 2016-02-01 2018-04-05 주식회사 케이씨씨 Method and apparatus for manufacturing vacuum insulation panel
WO2018063275A1 (en) * 2016-09-30 2018-04-05 Whirlpool Corporation Method for forming a vacuum insulated structure
US10018406B2 (en) 2015-12-28 2018-07-10 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US10030905B2 (en) 2015-12-29 2018-07-24 Whirlpool Corporation Method of fabricating a vacuum insulated appliance structure
US10041724B2 (en) 2015-12-08 2018-08-07 Whirlpool Corporation Methods for dispensing and compacting insulation materials into a vacuum sealed structure
US10052819B2 (en) 2014-02-24 2018-08-21 Whirlpool Corporation Vacuum packaged 3D vacuum insulated door structure and method therefor using a tooling fixture
US10105931B2 (en) 2014-02-24 2018-10-23 Whirlpool Corporation Multi-section core vacuum insulation panels with hybrid barrier film envelope
US10161669B2 (en) 2015-03-05 2018-12-25 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US10222116B2 (en) 2015-12-08 2019-03-05 Whirlpool Corporation Method and apparatus for forming a vacuum insulated structure for an appliance having a pressing mechanism incorporated within an insulation delivery system
US10345031B2 (en) 2015-07-01 2019-07-09 Whirlpool Corporation Split hybrid insulation structure for an appliance
US10350817B2 (en) 2012-04-11 2019-07-16 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
US10365030B2 (en) 2015-03-02 2019-07-30 Whirlpool Corporation 3D vacuum panel and a folding approach to create the 3D vacuum panel from a 2D vacuum panel of non-uniform thickness
US10422569B2 (en) 2015-12-21 2019-09-24 Whirlpool Corporation Vacuum insulated door construction
US10422573B2 (en) 2015-12-08 2019-09-24 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10429125B2 (en) 2015-12-08 2019-10-01 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10610985B2 (en) 2015-12-28 2020-04-07 Whirlpool Corporation Multilayer barrier materials with PVD or plasma coating for vacuum insulated structure
US10663217B2 (en) 2012-04-02 2020-05-26 Whirlpool Corporation Vacuum insulated structure tubular cabinet construction
US10712080B2 (en) 2016-04-15 2020-07-14 Whirlpool Corporation Vacuum insulated refrigerator cabinet
US10731915B2 (en) 2015-03-11 2020-08-04 Whirlpool Corporation Self-contained pantry box system for insertion into an appliance
US10807298B2 (en) 2015-12-29 2020-10-20 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US10808987B2 (en) 2015-12-09 2020-10-20 Whirlpool Corporation Vacuum insulation structures with multiple insulators
US10907891B2 (en) 2019-02-18 2021-02-02 Whirlpool Corporation Trim breaker for a structural cabinet that incorporates a structural glass contact surface
US10907888B2 (en) 2018-06-25 2021-02-02 Whirlpool Corporation Hybrid pigmented hot stitched color liner system
US11009284B2 (en) 2016-04-15 2021-05-18 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
US11052579B2 (en) 2015-12-08 2021-07-06 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US11175090B2 (en) 2016-12-05 2021-11-16 Whirlpool Corporation Pigmented monolayer liner for appliances and methods of making the same
US11247369B2 (en) 2015-12-30 2022-02-15 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
US11320193B2 (en) 2016-07-26 2022-05-03 Whirlpool Corporation Vacuum insulated structure trim breaker
US11391506B2 (en) 2016-08-18 2022-07-19 Whirlpool Corporation Machine compartment for a vacuum insulated structure
US11994336B2 (en) 2015-12-09 2024-05-28 Whirlpool Corporation Vacuum insulated structure with thermal bridge breaker with heat loop

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10697697B2 (en) 2012-04-02 2020-06-30 Whirlpool Corporation Vacuum insulated door structure and method for the creation thereof
US10663217B2 (en) 2012-04-02 2020-05-26 Whirlpool Corporation Vacuum insulated structure tubular cabinet construction
US10746458B2 (en) 2012-04-02 2020-08-18 Whirlpool Corporation Method of making a folded vacuum insulated structure
US10350817B2 (en) 2012-04-11 2019-07-16 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
JP2014047874A (en) * 2012-09-03 2014-03-17 Hitachi Appliances Inc Vacuum heat insulating material and equipment using the same
US10052819B2 (en) 2014-02-24 2018-08-21 Whirlpool Corporation Vacuum packaged 3D vacuum insulated door structure and method therefor using a tooling fixture
US10105931B2 (en) 2014-02-24 2018-10-23 Whirlpool Corporation Multi-section core vacuum insulation panels with hybrid barrier film envelope
US10828844B2 (en) 2014-02-24 2020-11-10 Whirlpool Corporation Vacuum packaged 3D vacuum insulated door structure and method therefor using a tooling fixture
US10365030B2 (en) 2015-03-02 2019-07-30 Whirlpool Corporation 3D vacuum panel and a folding approach to create the 3D vacuum panel from a 2D vacuum panel of non-uniform thickness
US10161669B2 (en) 2015-03-05 2018-12-25 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US11243021B2 (en) 2015-03-05 2022-02-08 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US11713916B2 (en) 2015-03-05 2023-08-01 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US10731915B2 (en) 2015-03-11 2020-08-04 Whirlpool Corporation Self-contained pantry box system for insertion into an appliance
CN107250649A (en) * 2015-04-06 2017-10-13 松下知识产权经营株式会社 vacuum heat insulator
US10253919B2 (en) 2015-04-06 2019-04-09 Panasonic Intellectual Property Management Co., Ltd. Vacuum heat insulation body
JP2016196933A (en) * 2015-04-06 2016-11-24 パナソニックIpマネジメント株式会社 Vacuum insulator
WO2016163074A1 (en) * 2015-04-06 2016-10-13 パナソニックIpマネジメント株式会社 Vacuum heat insulation body
JP2016200232A (en) * 2015-04-13 2016-12-01 パナソニックIpマネジメント株式会社 Vacuum heat insulation body and heat insulation container and heat insulation wall using the same
US10345031B2 (en) 2015-07-01 2019-07-09 Whirlpool Corporation Split hybrid insulation structure for an appliance
US10222116B2 (en) 2015-12-08 2019-03-05 Whirlpool Corporation Method and apparatus for forming a vacuum insulated structure for an appliance having a pressing mechanism incorporated within an insulation delivery system
US10041724B2 (en) 2015-12-08 2018-08-07 Whirlpool Corporation Methods for dispensing and compacting insulation materials into a vacuum sealed structure
US11691318B2 (en) 2015-12-08 2023-07-04 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US10605519B2 (en) 2015-12-08 2020-03-31 Whirlpool Corporation Methods for dispensing and compacting insulation materials into a vacuum sealed structure
US11009288B2 (en) 2015-12-08 2021-05-18 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10907886B2 (en) 2015-12-08 2021-02-02 Whirlpool Corporation Methods for dispensing and compacting insulation materials into a vacuum sealed structure
US10429125B2 (en) 2015-12-08 2019-10-01 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US11052579B2 (en) 2015-12-08 2021-07-06 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US10422573B2 (en) 2015-12-08 2019-09-24 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US11555643B2 (en) 2015-12-09 2023-01-17 Whirlpool Corporation Vacuum insulation structures with multiple insulators
US11994336B2 (en) 2015-12-09 2024-05-28 Whirlpool Corporation Vacuum insulated structure with thermal bridge breaker with heat loop
US10808987B2 (en) 2015-12-09 2020-10-20 Whirlpool Corporation Vacuum insulation structures with multiple insulators
US11994337B2 (en) 2015-12-09 2024-05-28 Whirlpool Corporation Vacuum insulation structures with multiple insulators
US10422569B2 (en) 2015-12-21 2019-09-24 Whirlpool Corporation Vacuum insulated door construction
US10914505B2 (en) 2015-12-21 2021-02-09 Whirlpool Corporation Vacuum insulated door construction
US10610985B2 (en) 2015-12-28 2020-04-07 Whirlpool Corporation Multilayer barrier materials with PVD or plasma coating for vacuum insulated structure
US10018406B2 (en) 2015-12-28 2018-07-10 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US10514198B2 (en) 2015-12-28 2019-12-24 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US10030905B2 (en) 2015-12-29 2018-07-24 Whirlpool Corporation Method of fabricating a vacuum insulated appliance structure
US11577446B2 (en) 2015-12-29 2023-02-14 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US10807298B2 (en) 2015-12-29 2020-10-20 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US11752669B2 (en) 2015-12-30 2023-09-12 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
US11247369B2 (en) 2015-12-30 2022-02-15 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
KR101845899B1 (en) * 2016-02-01 2018-04-05 주식회사 케이씨씨 Method and apparatus for manufacturing vacuum insulation panel
US10712080B2 (en) 2016-04-15 2020-07-14 Whirlpool Corporation Vacuum insulated refrigerator cabinet
US11009284B2 (en) 2016-04-15 2021-05-18 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
US11609037B2 (en) 2016-04-15 2023-03-21 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
US11320193B2 (en) 2016-07-26 2022-05-03 Whirlpool Corporation Vacuum insulated structure trim breaker
US11391506B2 (en) 2016-08-18 2022-07-19 Whirlpool Corporation Machine compartment for a vacuum insulated structure
US10906231B2 (en) 2016-09-30 2021-02-02 Whirlpool Corporation Method for forming a vacuum insulated structure
US11433590B2 (en) 2016-09-30 2022-09-06 Whirlpool Corporation Insulated structural cabinet for an appliance
WO2018063275A1 (en) * 2016-09-30 2018-04-05 Whirlpool Corporation Method for forming a vacuum insulated structure
US11911950B2 (en) 2016-09-30 2024-02-27 Whirlpool Corporation Method for forming a vacuum insulated structure
US11867452B2 (en) 2016-12-05 2024-01-09 Whirlpool Corporation Pigmented monolayer liner for appliances and methods of making the same
US11175090B2 (en) 2016-12-05 2021-11-16 Whirlpool Corporation Pigmented monolayer liner for appliances and methods of making the same
US10907888B2 (en) 2018-06-25 2021-02-02 Whirlpool Corporation Hybrid pigmented hot stitched color liner system
US10907891B2 (en) 2019-02-18 2021-02-02 Whirlpool Corporation Trim breaker for a structural cabinet that incorporates a structural glass contact surface
US11543172B2 (en) 2019-02-18 2023-01-03 Whirlpool Corporation Trim breaker for a structural cabinet that incorporates a structural glass contact surface

Similar Documents

Publication Publication Date Title
JPH11159693A (en) Vacuum heat insulating panel and manufacture therefor and heat insulating box body using it
EP2622292B1 (en) Vacuum insulation panel and a refrigerator with a vacuum insulation panel
EP2462393B1 (en) Vacuum insulation member and refrigerator having a vacuum insulation member
US8765247B2 (en) Vacuum insulation panel
EP2462391B1 (en) Vacuum insulation member and method for fabricating an vacuum insulation member
US5252408A (en) Vacuum insulated panel and method of forming a vacuum insulated panel
US6164030A (en) Fixed vacuum insulation panel
EP1344008B1 (en) An insulated unit
US5792539A (en) Insulation barrier
US5500305A (en) Vacuum insulated panel and method of making a vacuum insulated panel
JP3045543B2 (en) Improved compact vacuum insulation
KR101495127B1 (en) Vacuum heat insulation member and refrigerator using same
KR100617666B1 (en) Refrigerator
WO2010137081A1 (en) Refrigerator equipped with vacuum insulation material
WO2003089729A1 (en) Flexible vacuum insulation panel and method of manufacture
JPH11287549A (en) Refrigeration and freezer cabinet
US20180339490A1 (en) Vacuum insulation material, vacuum insulation material manufacturing method, and refrigerator including vacuum insulation material
JP2012225389A (en) Method of manufacturing vacuum heat insulator, vacuum heat insulator, and refrigerator equipped with the same
JP3852537B2 (en) Heat insulation box
JP3204817B2 (en) Refrigerator-freezer and its heat-insulating structure
JPH0763469A (en) Vacuum heat insulating member
WO2015186345A1 (en) Vacuum heat insulating body, and heat insulating container and heat insulating wall employing same
JPH11159950A (en) Heat insulating box body for refrigerator
JP3255689B2 (en) Manufacturing method of heat insulation box
JP2948764B2 (en) Method for manufacturing heat insulating box and heat insulating structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080122