JPH08159377A - Vacuum heat insulator - Google Patents

Vacuum heat insulator

Info

Publication number
JPH08159377A
JPH08159377A JP6299477A JP29947794A JPH08159377A JP H08159377 A JPH08159377 A JP H08159377A JP 6299477 A JP6299477 A JP 6299477A JP 29947794 A JP29947794 A JP 29947794A JP H08159377 A JPH08159377 A JP H08159377A
Authority
JP
Japan
Prior art keywords
vacuum heat
heat insulator
adsorbent
getter material
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6299477A
Other languages
Japanese (ja)
Inventor
Yasuaki Tanimoto
康明 谷本
Noriyuki Miyaji
法幸 宮地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP6299477A priority Critical patent/JPH08159377A/en
Priority to EP95118872A priority patent/EP0715138A3/en
Priority to CN95121883A priority patent/CN1143740A/en
Priority to KR1019950046132A priority patent/KR100188443B1/en
Publication of JPH08159377A publication Critical patent/JPH08159377A/en
Priority to US09/106,301 priority patent/US5885682A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/062Walls defining a cabinet
    • F25D23/063Walls defining a cabinet formed by an assembly of panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/14Insulation with respect to heat using subatmospheric pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/23Sheet including cover or casing
    • Y10T428/231Filled with gas other than air; or under vacuum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/23Sheet including cover or casing
    • Y10T428/233Foamed or expanded material encased

Abstract

PURPOSE: To keep the performance of a vacuum heat insulator over a long period in the vacuum heat insulator formed of a facing material, a core material and an adsorbent which is usable as a heat insulating material for refrigerator by using, as the adsorbent, a one having at least a non-evaporation type getter material. CONSTITUTION: This vacuum heat insulator 1 is manufactured by filling a core material 2 consisting of a hard urethane foam of open cell structure and a getter material 3 consisting of an alloy containing barium and lithium into a facing material 4 consisting of a metal-plastic laminated film followed by sealing under reduced pressure. The surface of the getter material 3 is preferably covered with a moisture adsorbent, and a powdery one is used as the adsorbent. Since the getter material 3 is of non-evaporation type, it need not be evaporated in vacuum atmosphere, and the handling at ordinary temperature is facilitated. Thus, it can be applied to the vacuum heat insulator 1 using plastic material as the facing material, and the heat insulating performance can be kept at high level.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷蔵庫などの断熱材と
して使用可能な真空断熱体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum heat insulator which can be used as a heat insulator for refrigerators and the like.

【0002】[0002]

【従来の技術】近年、地球環境保護の観点から、冷蔵庫
の断熱材の発泡剤として使用されているCFC−11に
よるオゾン層破壊が世界的規模で注目されている。
2. Description of the Related Art In recent years, from the viewpoint of protecting the global environment, ozone layer depletion due to CFC-11, which is used as a foaming agent for a heat insulating material of a refrigerator, has been attracting attention on a global scale.

【0003】このような背景から新規発泡剤を用いた断
熱材の研究が行われており、代替フロンとしてはHCF
C−141b、非フロン系ではシクロペンタンなどが適
用されている。しかしながら、これらの新規発泡剤はい
ずれもCFC−11より気体熱伝導率が大きく、冷蔵庫
の断熱性能の低下は避けられない状況である。
From such a background, research on a heat insulating material using a new foaming agent has been conducted, and as an alternative CFC, HCF is used.
C-141b, cyclopentane and the like are applied in the non-CFC system. However, all of these new foaming agents have a higher gas thermal conductivity than CFC-11, and a decrease in the heat insulation performance of the refrigerator is inevitable.

【0004】一方、将来のエネルギー規制などに対し、
冷蔵庫の省エネ化は避けられない問題であり断熱性能を
向上させることが重要である。以上のように、代替フロ
ン対応による断熱性能の低下と省エネ化達成のための断
熱性能の向上という相反する課題を現状の冷蔵庫は抱え
ている。
On the other hand, for future energy regulations,
Energy saving in refrigerators is an unavoidable problem, and it is important to improve heat insulation performance. As described above, the current refrigerators have the contradictory problems of lowering the heat insulation performance due to the use of alternative CFCs and improving the heat insulation performance to achieve energy saving.

【0005】このような相反する課題を解決する一手段
として、特開平6ー11247号公報に炭酸イオンを分
子構造中に有するアルミナ化合物からなる吸着剤を用い
た真空断熱体が記載されている。
As a means for solving such conflicting problems, Japanese Patent Application Laid-Open No. 6-11247 discloses a vacuum heat insulator using an adsorbent made of an alumina compound having a carbonate ion in its molecular structure.

【0006】その内容は、芯材として連続気泡構造の硬
質ウレタンフォームまたはパーライトなどの粉末と炭酸
イオンを分子構造中に有するアルミナ化合物からなる吸
着剤とを外被材に充填し、内部を減圧密閉して真空断熱
体を得ようとするものである。
[0006] The contents are as follows. A core material is filled with powder of hard urethane foam or perlite having an open cell structure and an adsorbent made of an alumina compound having a carbonate ion in the molecular structure, and the inside material is sealed under reduced pressure. To obtain a vacuum heat insulator.

【0007】特に、吸着剤が炭酸イオンを分子構造中に
有するアルミナ化合物であるので炭酸ガスに対する選択
吸着能力が高く、真空度を長期に亘って保持できること
を特徴としている。
In particular, since the adsorbent is an alumina compound having a carbonate ion in its molecular structure, it has a high selective adsorption ability for carbon dioxide gas, and can maintain a vacuum degree for a long period of time.

【0008】[0008]

【発明が解決しようとする課題】真空断熱体の断熱原理
は、熱を伝える空気を排除することである。しかしなが
ら、工業的レベルで高真空にすることは困難であり、実
用的に達成可能な真空度は0.1〜10mmHgであ
る。したがって、この真空度で目的とする断熱特性が得
られなければならない。
The adiabatic principle of a vacuum insulation is to eliminate the heat-conducting air. However, it is difficult to make a high vacuum on an industrial level, and the degree of vacuum that can be practically achieved is 0.1 to 10 mmHg. Therefore, the desired degree of heat insulation must be obtained at this degree of vacuum.

【0009】空気が介在して熱伝導が行なわれる場合、
断熱特性に影響をおよぼす物性として平均自由行程があ
る。平均自由行程とは、空気を構成する分子の一つが別
の分子と衝突するまでに進む距離のことで、平均自由行
程よりも形成されている空隙が大きい場合は空隙内にお
いて分子同士が衝突し、空気による熱伝導が生じるため
真空断熱体の熱伝導率は大きくなる。逆に平均自由行程
よりも空隙が小さい場合は真空断熱体の熱伝導率は小さ
くなる。これは、空気の衝突による熱伝導がほとんどな
くなるためである。
When heat conduction is performed by the presence of air,
There is a mean free path as a physical property that affects the heat insulation characteristics. The mean free path is the distance traveled by one of the molecules that make up the air until it collides with another molecule.If the formed void is larger than the mean free path, the molecules collide with each other in the void. Since heat conduction occurs due to air, the heat conductivity of the vacuum heat insulator increases. On the contrary, when the void is smaller than the mean free path, the thermal conductivity of the vacuum heat insulator becomes small. This is because heat conduction due to air collision is almost eliminated.

【0010】したがって、真空断熱体の性能を長期間維
持するためには空気の平均自由行程を一定に保つことが
必要となる。このためには、いかにして真空度を保つか
が重要であり、芯材から発生するガスや外部から真空断
熱体に透過侵入してくるガスを吸着除去する必要があ
る。芯材からガスが発生するのは有機材の場合のみであ
り殆どが炭酸ガスである。外部から透過侵入してくるガ
スについてはさまざまであり、窒素、酸素、炭酸ガスな
どがある。
Therefore, in order to maintain the performance of the vacuum heat insulator for a long time, it is necessary to keep the mean free path of air constant. For this purpose, how to maintain the degree of vacuum is important, and it is necessary to adsorb and remove the gas generated from the core material and the gas that permeates and enters the vacuum heat insulator from the outside. Gas is generated from the core material only in the case of an organic material, and most of it is carbon dioxide gas. There are various kinds of gases that permeate and enter from the outside, such as nitrogen, oxygen, and carbon dioxide.

【0011】以上のように、真空断熱体の真空度を一定
に保ち断熱性能を長期間維持するためには、炭酸ガスの
他に窒素や酸素といったガスも同時に吸着除去する必要
がある。しかし、前記引例特許では限定しているものが
炭酸ガスに対する吸着剤のみであるので、酸素や窒素な
どが透過侵入してきた場合などは真空度の悪化を招き、
断熱性能が悪くなってしまう。
As described above, in order to maintain the vacuum degree of the vacuum heat insulating material constant and maintain the heat insulating performance for a long time, it is necessary to simultaneously adsorb and remove gases such as nitrogen and oxygen in addition to carbon dioxide. However, since only the adsorbent for carbon dioxide gas is limited in the above cited patent, the vacuum degree is deteriorated when oxygen, nitrogen, etc. permeate and enter,
Insulation performance deteriorates.

【0012】一方、酸素や窒素に対し吸着能力を示すも
のとしてバリウムゲッターやジルコニウムーバナジウム
ー鉄の三元系合金からなるゲッター材がある。前者は真
空管などに後者は魔法瓶などに使われており、広く一般
に知られている。
On the other hand, there are barium getters and getter materials made of ternary alloys of zirconium-vanadium-iron as those exhibiting adsorption ability for oxygen and nitrogen. The former is used for vacuum tubes and the latter is used for thermos bottles, and is widely known.

【0013】しかしながら、前記バリウムゲッターにお
いては蒸発型ゲッターであるので真空雰囲気中で加熱さ
せる必要があり、プラスチック材料を用いた真空断熱体
には適用できない。また、ジルコニウムーバナジウムー
鉄からなるゲッターは常温で不活性であり450℃以上
の温度で活性化させる必要がある。活性化処理を行う雰
囲気が大気中の場合、活性化されたと同時に大気中のガ
スを吸着してしまうため、やはり真空雰囲気中で行うこ
とが望ましい。したがって、前記ゲッター材のいずれも
プラスチック材料を用いた真空断熱体には適用できず、
断熱性能を長期間に亘って維持することは困難である。
However, since the barium getter is an evaporation type getter, it needs to be heated in a vacuum atmosphere and cannot be applied to a vacuum heat insulator using a plastic material. A getter made of zirconium-vanadium-iron is inactive at room temperature and needs to be activated at a temperature of 450 ° C or higher. When the atmosphere in which the activation process is performed is in the atmosphere, the gas in the atmosphere is adsorbed at the same time as the activation, so that it is desirable to perform it in a vacuum atmosphere. Therefore, none of the getter materials can be applied to a vacuum heat insulator using a plastic material,
It is difficult to maintain the heat insulation performance for a long period of time.

【0014】本発明は、プラスチック材料を用いた真空
断熱材の断熱性能を長期間に亘って維持することを目的
とし、常温において窒素や酸素に対する吸着能力を有す
るゲッター材を適用したものである。
The present invention aims to maintain the heat insulating performance of a vacuum heat insulating material using a plastic material for a long period of time, and to which a getter material having an adsorption ability for nitrogen and oxygen at room temperature is applied.

【0015】[0015]

【課題を解決するための手段】従来の課題を解決するた
め本発明の真空断熱体は、外被材と芯材と吸着剤とから
なる真空断熱体において、前記吸着剤が少なくとも非蒸
発型のゲッター材を有することを特徴とする。
In order to solve the conventional problems, the vacuum heat insulator of the present invention is a vacuum heat insulator consisting of an outer jacket material, a core material and an adsorbent, wherein the adsorbent is at least a non-evaporable type. It is characterized by having a getter material.

【0016】また、本発明の真空断熱体は、非蒸発型ゲ
ッター材がバリウムとリチウムを含有する合金からなる
材料を、吸着剤の一つとして適用したことを特徴とす
る。
Further, the vacuum heat insulator of the present invention is characterized in that the non-evaporable getter material is made of an alloy containing barium and lithium as one of the adsorbents.

【0017】また、本発明の真空断熱体は、バリウムと
リチウムを含有する合金からなる非蒸発ゲッター材の表
面を水分吸着剤で被覆した材料を、吸着剤の一つとして
適用したことを特徴とする。
Further, the vacuum heat insulator of the present invention is characterized in that a material obtained by coating the surface of a non-evaporable getter material made of an alloy containing barium and lithium with a moisture adsorbent is applied as one of the adsorbents. To do.

【0018】また、本発明の真空断熱体は、バリウムと
リチウムを含有する合金からなる非蒸発ゲッター材の表
面を水分吸着剤で被覆し粉末状にした材料を、吸着剤の
一つとして適用しことを特徴とする。
In the vacuum heat insulator of the present invention, a material obtained by coating the surface of a non-evaporable getter material made of an alloy containing barium and lithium with a water adsorbent to form a powder is used as one of the adsorbents. It is characterized by

【0019】また、本発明の断熱箱体は箱体の空間部に
発泡断熱材と前記真空断熱体とを積層したことを特徴と
する。
Further, the heat insulating box of the present invention is characterized in that a foamed heat insulating material and the vacuum heat insulating body are laminated in the space of the box.

【0020】[0020]

【作用】本発明により、ゲッター材が非蒸発型であるの
で真空雰囲気中で加熱により蒸発させる必要がなく、常
温での取扱いが可能となる。よって、プラスチック材料
を外被材として用いた真空断熱体に適用でき、断熱性能
の維持が可能となる。
According to the present invention, since the getter material is a non-evaporable type, it is not necessary to evaporate it by heating in a vacuum atmosphere, and it can be handled at room temperature. Therefore, it can be applied to a vacuum heat insulator using a plastic material as an outer covering material, and the heat insulating performance can be maintained.

【0021】また、非蒸発型ゲッター材の材料構成につ
いてはバリウムとリチウムを合金化したことにより、常
温における吸着能力を著しく向上させた。バリウムやリ
チウムは酸素や窒素、炭酸ガス、水などに対して強い親
和力を有すことから、それぞれのガスに対して吸着能力
を示す。しかし、バリウムやリチウム単体での吸着は表
面に窒化バリウムや窒化リチウム、酸化バリウムや酸化
リチウムが形成されると不働態化するため微量のガスし
か吸着できない。
Regarding the material constitution of the non-evaporable getter material, the adsorption capacity at room temperature was remarkably improved by alloying barium and lithium. Since barium and lithium have a strong affinity for oxygen, nitrogen, carbon dioxide, water, etc., they show adsorption ability for each gas. However, when barium or lithium alone is adsorbed, when barium nitride, lithium nitride, barium oxide, or lithium oxide is formed on the surface, it becomes inactive, so that only a small amount of gas can be adsorbed.

【0022】本発明では、バリウムとリチウムを合金化
したことにより最密充填六方格子の結晶構造とバルクが
形成される。したがって、窒素や酸素などがバリウムと
リチウムを含有する合金からなるゲッター材に吸着され
ると一次的に表面に窒化層や酸化層などが形成される。
In the present invention, the barium and lithium are alloyed to form a crystal structure and a bulk of a close-packed hexagonal lattice. Therefore, when nitrogen or oxygen is adsorbed by the getter material made of an alloy containing barium and lithium, a nitride layer or an oxide layer is primarily formed on the surface.

【0023】しかし、合金化により最密充填六方格子の
結晶構造が形成されているため、窒素や酸素は原子状態
に解離しながら侵入型固溶元素として結晶構造内部に拡
散浸透していく。この結果、表面に形成された窒化層や
酸化層からなる不働態被膜が経時的に消滅し、ゲッター
材の表面が浄化されることにより高い吸着能力を示す。
このようなゲッター材を適用することにより、長期間の
性能維持が可能となる。
However, since the close-packed hexagonal lattice crystal structure is formed by alloying, nitrogen and oxygen diffuse into the crystal structure as an interstitial solid solution element while dissociating into atomic states. As a result, the passivation film composed of the nitride layer and the oxide layer formed on the surface disappears with time, and the surface of the getter material is purified, thereby exhibiting a high adsorption ability.
By applying such a getter material, the performance can be maintained for a long time.

【0024】バリウムとリチウムを含有する合金は水分
についても常温で高い吸着能力を示すことから大気中の
水分を吸着してしまい、真空断熱体に充填した時には吸
着能力が著しく低減してしまう。
Since the alloy containing barium and lithium also has a high adsorption capacity for moisture at room temperature, it absorbs moisture in the atmosphere, and when it is filled in the vacuum heat insulator, the adsorption capability is significantly reduced.

【0025】本発明では、バリウムとリチウムを含有す
る合金からなるゲッター材の表面に水分吸着剤を被覆し
ているので、大気中の水分を前記ゲッター材が吸着する
ことにより、吸着能力が低下するといった問題が解決さ
れる。このようなゲッター材を適用することで大気中で
の取扱いによる影響がなくなり、真空断熱体の性能を長
期に亘って維持することができる。
In the present invention, since the surface of the getter material made of an alloy containing barium and lithium is coated with the water adsorbent, the adsorbability is lowered by adsorbing water in the atmosphere by the getter material. Such problems are solved. By applying such a getter material, the influence of handling in the atmosphere is eliminated, and the performance of the vacuum heat insulator can be maintained for a long period of time.

【0026】また、本発明の真空断熱体は、バリウムと
リチウムを含有する合金の表面に水分吸着剤を被覆し粉
末化したゲッター材を用いているので、吸着速度の調整
が容易であり外被材のガス透過性に合わせたゲッター材
の選定が可能となる。その結果、ゲッター材の吸着負荷
が一定となり、真空断熱材の性能維持に対する信頼性が
向上する。
Further, since the vacuum heat insulator of the present invention uses the getter material in which the surface of the alloy containing barium and lithium is coated with a water adsorbent and is powdered, the adsorption rate can be easily adjusted and the jacket is coated. The getter material can be selected according to the gas permeability of the material. As a result, the adsorption load of the getter material becomes constant, and the reliability for maintaining the performance of the vacuum heat insulating material is improved.

【0027】[0027]

【実施例】以下に、本発明の一実施例を図1,2,3,
4,5を用いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to FIGS.
This will be described with reference to 4 and 5.

【0028】図において、1は真空断熱体であり、15
0℃で1時間乾燥した連続気泡構造の硬質ウレタンフォ
ームからなる芯材2とバリウムとリチウムを含有する合
金からなるゲッター材3とを金属ープラスチックラミネ
ートフィルムからなる外被材4内に充填後、内部を減圧
密閉して得たものである。
In the figure, 1 is a vacuum heat insulator, and 15
After filling the core material 2 made of hard urethane foam having an open-cell structure dried at 0 ° C. for 1 hour and the getter material 3 made of an alloy containing barium and lithium into the outer covering material 4 made of a metal-plastic laminate film, It was obtained by vacuum-sealing the inside.

【0029】[0029]

【表1】 [Table 1]

【0030】(表1)、図2は、前述のようにして得ら
れた真空断熱体における真空度の経時変化を示したもの
である。比較品1はゲッター材を使用しておらず、真空
断熱体の圧力変化がないことから芯材からのガス発生や
外被材から透過侵入してくるガスがないことがわかる。
また、比較品2はバリウム単体をゲッター材として用い
たものである。吸着能力が低く、大気中に2分放置した
ものでは既に吸着能力が認められない。
Table 1 and FIG. 2 show changes with time in the degree of vacuum in the vacuum heat insulator obtained as described above. Comparative product 1 does not use a getter material, and there is no change in the pressure of the vacuum heat insulator, so it can be seen that there is no gas generation from the core material and no gas penetrating and penetrating from the jacket material.
Comparative product 2 uses barium alone as a getter material. The adsorption capacity is low, and the one left to stand in the air for 2 minutes cannot already have the adsorption capacity.

【0031】一方、バリウムとリチウムを含有する合金
からなるゲッター材を適用したもの(実施例1)は大気
中に放置している時間によって程度が異なるが、明らか
に常温で酸素や窒素を吸着していることがわかる。表面
に水分吸着剤を被覆していないため、5分以上大気中に
放置しておくと吸着能力が激減しているが、2分以内で
あれば問題ない。バリウムとリチウムを合金化すること
による効果が現れている。
On the other hand, the one to which the getter material made of an alloy containing barium and lithium is applied (Example 1) obviously adsorbs oxygen and nitrogen at room temperature, although the degree varies depending on the time it is left in the atmosphere. You can see that Since the surface is not covered with a water adsorbent, if left in the atmosphere for 5 minutes or more, the adsorption capacity is drastically reduced, but there is no problem if it is within 2 minutes. The effect of alloying barium and lithium is shown.

【0032】[0032]

【表2】 [Table 2]

【0033】(表2)、図3は前記バリウムとリチウム
を含有する合金からなるゲッター材3の表面に水分吸着
剤として酸化バリウムを被覆した時の結果を示したもの
である(実施例2)。実施例1に比べ大気中の放置可能
時間が5倍以上長くなり、10分間大気中に放置してお
いても問題ない。これは前記ゲッター材3に水分吸着剤
を被覆したことによりゲッター材の活性度低減が防止さ
れたためであり、作業性の大幅な向上が図れる。また、
真空断熱体の性能を長期に亘って維持することができ
る。
(Table 2) and FIG. 3 show the results when the surface of the getter material 3 made of an alloy containing barium and lithium was coated with barium oxide as a moisture adsorbent (Example 2). . As compared with Example 1, the time allowed to be left in the air is five times or more longer, and there is no problem even if left in the air for 10 minutes. This is because the getter material 3 is covered with the water adsorbent to prevent the activity of the getter material from being reduced, and the workability can be greatly improved. Also,
The performance of the vacuum heat insulator can be maintained for a long time.

【0034】[0034]

【表3】 [Table 3]

【0035】(表3)、図4は前記バリウムとリチウム
を含有する合金からなるゲッター材3の表面に酸化バリ
ウムを被覆し5mmの粒径にした場合の結果を示したも
のである。実施例2のような塊状に比較して吸着速度が
速いことがわかる。これは、粉末状にしたことによりゲ
ッター材の比表面積が増大したためであり、粉末状にす
る場合の粒径を選択することにより外被材のガス透過性
に適した吸着速度の調整が可能となる。この結果ゲッタ
ー材の吸着負荷が一定となり、真空断熱材の性能維持に
対する信頼性が向上する。
Table 3 shows the results when the surface of the getter material 3 made of an alloy containing barium and lithium is coated with barium oxide to have a particle size of 5 mm. It can be seen that the adsorption rate is higher than that of the lump like Example 2. This is because the specific surface area of the getter material was increased by making it into a powder form, and it is possible to adjust the adsorption rate suitable for the gas permeability of the jacket material by selecting the particle size when making it into a powder form. Become. As a result, the adsorption load of the getter material becomes constant, and the reliability for maintaining the performance of the vacuum heat insulating material is improved.

【0036】なお、バリウムーリチウムの2元系合金以
外に、マグネシウムやストロンチウムなどの金属を添加
しても同様の効果が得られる。更に吸着能力を向上させ
たい場合には、炭酸ガス吸着剤や水分吸着剤、活性炭な
どを併用してもよい。
The same effect can be obtained by adding a metal such as magnesium or strontium in addition to the binary alloy of barium-lithium. When it is desired to further improve the adsorption capacity, a carbon dioxide gas adsorbent, a water adsorbent, activated carbon or the like may be used in combination.

【0037】以上のように、本発明で限定されたゲッタ
ー材を用いることにより常温、大気圧下での取扱いが可
能となり、真空断熱体の性能を長期間に亘って保持する
ことが可能となる。
As described above, by using the getter material limited in the present invention, it is possible to handle at room temperature and atmospheric pressure, and it is possible to maintain the performance of the vacuum heat insulator for a long period of time. .

【0038】次に断熱箱体であるが、5は断熱箱体であ
り、外箱6と内箱7によって形成される空間部8に発泡
断熱材9と真空断熱体1が複層化されている。真空断熱
体1は内箱7に取り付けてあるが、外箱6に取り付けて
もよい。
Next, regarding the heat insulating box body, 5 is a heat insulating box body, in which a foam heat insulating material 9 and a vacuum heat insulating body 1 are laminated in a space portion 8 formed by the outer box 6 and the inner box 7. There is. The vacuum heat insulator 1 is attached to the inner box 7, but may be attached to the outer box 6.

【0039】このような構成からなる断熱箱体5は、真
空断熱体1にバリウムとリチウムを含有する合金からな
るゲッター材3がもうけられているので、外部から侵入
してくる窒素や酸素を吸着除去する。したがって、真空
断熱体の性能が急激に悪化することに起因して冷蔵庫の
コンプレッサーの運転率が過剰となり品質低下を招くと
いった問題が解決される。
In the heat-insulating box body 5 having such a structure, the vacuum heat-insulating body 1 is provided with the getter material 3 made of an alloy containing barium and lithium, so that nitrogen or oxygen invading from the outside is adsorbed. Remove. Therefore, the problem that the operating rate of the compressor of the refrigerator is excessive and the quality is deteriorated due to the sudden deterioration of the performance of the vacuum heat insulator is solved.

【0040】[0040]

【発明の効果】以上のように、本発明の真空断熱体は少
なくとも非蒸発型のゲッター材を有す吸着剤を用いてい
るので、常温大気圧下での取扱いが可能となり、プラス
チック材を用いた真空断熱材において適用可能となる。
As described above, since the vacuum heat insulator of the present invention uses the adsorbent having at least a non-evaporable getter material, it can be handled at room temperature and atmospheric pressure, and the plastic material is used. It can be applied to existing vacuum insulation materials.

【0041】また、本発明の真空断熱体は、非蒸発型ゲ
ッターとしてバリウムとリチウムを含有する合金を用い
ているので表面に不働態被膜が形成されることがなく、
吸着能力が長期に亘って保持でき、真空断熱体の性能低
下を防止できる。
Further, since the vacuum heat insulator of the present invention uses the alloy containing barium and lithium as the non-evaporable getter, the passive film is not formed on the surface,
The adsorption ability can be maintained for a long time, and the performance of the vacuum heat insulating material can be prevented from deteriorating.

【0042】また、本発明の真空断熱体は、バリウムと
リチウムを含有する合金の表面に水分吸着剤を被覆させ
たゲッター材を用いているので取扱い性が容易であり、
大気中での取扱いによる吸着能力の低下がなく、真空断
熱体の性能を長きに亘り維持することができる。
Further, since the vacuum heat insulator of the present invention uses the getter material in which the surface of the alloy containing barium and lithium is coated with the water adsorbent, it is easy to handle.
The performance of the vacuum heat insulating material can be maintained for a long time without any decrease in adsorption capacity due to handling in the atmosphere.

【0043】また、本発明の真空断熱体は、バリウムと
リチウムを含有する合金の表面に水分吸着剤を被覆し粉
末化したゲッター材を用いているので、吸着速度の調整
が容易であり外被材のガス透過性に合わせたゲッター材
の選定が可能となる。その結果、ゲッター材の吸着負荷
が一定となり、真空断熱材の性能維持に対する信頼性が
向上する。
Further, since the vacuum heat insulator of the present invention uses the getter material in which the surface of the alloy containing barium and lithium is coated with the water adsorbent and is powdered, the adsorption rate can be easily adjusted and the jacket is coated. The getter material can be selected according to the gas permeability of the material. As a result, the adsorption load of the getter material becomes constant, and the reliability for maintaining the performance of the vacuum heat insulating material is improved.

【0044】また、本発明の断熱箱体はバリウムとリチ
ウムを含有する合金からなるゲッター材を適用した真空
断熱体を用いているので、真空断熱体の性能が急激に悪
化することに起因して冷蔵庫のコンプレッサーの運転率
が過剰となり品質低下を招くといった問題が解決され
る。
Further, since the heat insulating box of the present invention uses the vacuum heat insulating body to which the getter material made of the alloy containing barium and lithium is applied, the performance of the vacuum heat insulating body deteriorates sharply. The problem that the operating rate of the compressor of the refrigerator becomes excessive and the quality deteriorates is solved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における真空断熱体の断面図FIG. 1 is a sectional view of a vacuum heat insulator according to an embodiment of the present invention.

【図2】本発明の他の実施例における経過日数と内圧と
の関係を示す特性図
FIG. 2 is a characteristic diagram showing the relationship between the elapsed days and the internal pressure in another embodiment of the present invention.

【図3】本発明の他の実施例におけると経過日数と内圧
との関係を示す特性図
FIG. 3 is a characteristic diagram showing a relationship between elapsed days and internal pressure in another example of the present invention.

【図4】本発明の他の実施例におけると経過日数と内圧
との関係を示す特性図
FIG. 4 is a characteristic diagram showing the relationship between the elapsed days and the internal pressure in another embodiment of the present invention.

【図5】本発明の他の実施例における断熱箱体の断面図FIG. 5 is a sectional view of a heat insulation box in another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 真空断熱体 2 芯材 3 ゲッター材 4 外被材 1 vacuum heat insulator 2 core material 3 getter material 4 jacket material

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 外被材と芯材と吸着剤からなる真空断熱
体において、前記吸着剤が少なくとも非蒸発型のゲッタ
ー材を有する真空断熱体。
1. A vacuum heat insulator comprising a jacket material, a core material and an adsorbent, wherein the adsorbent has at least a non-evaporable getter material.
【請求項2】 非蒸発型ゲッター材がバリウムとリチウ
ムを含有する合金からなる請求項1記載の真空断熱体。
2. The vacuum heat insulator according to claim 1, wherein the non-evaporable getter material is made of an alloy containing barium and lithium.
【請求項3】 バリウムとリチウムを含有する合金から
なる非蒸発型ゲッター材の表面を水分吸着剤で被覆した
請求項1記載の真空断熱体。
3. The vacuum heat insulator according to claim 1, wherein the surface of a non-evaporable getter material made of an alloy containing barium and lithium is coated with a moisture adsorbent.
【請求項4】 表面が水分吸着剤で被覆されたバリウム
とリチウムを含有する合金からなるゲッター材におい
て、前記ゲッター材が粉末状である請求項1記載の真空
断熱体。
4. The vacuum heat insulator according to claim 1, wherein the getter material is made of an alloy containing barium and lithium, the surface of which is coated with a moisture adsorbent, and the getter material is powdery.
【請求項5】 箱体の空間部に発泡断熱材と請求項4記
載の真空断熱材を複層した断熱箱体。
5. A heat insulating box in which a foamed heat insulating material and the vacuum heat insulating material according to claim 4 are laminated in a space portion of the box.
JP6299477A 1994-12-02 1994-12-02 Vacuum heat insulator Pending JPH08159377A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP6299477A JPH08159377A (en) 1994-12-02 1994-12-02 Vacuum heat insulator
EP95118872A EP0715138A3 (en) 1994-12-02 1995-11-30 Vacuum heat insulation panel
CN95121883A CN1143740A (en) 1994-12-02 1995-12-01 Vacuum insulation panel
KR1019950046132A KR100188443B1 (en) 1994-12-02 1995-12-02 Vaccum heat insulation panel
US09/106,301 US5885682A (en) 1994-12-02 1998-06-29 Vacuum heat insulation panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6299477A JPH08159377A (en) 1994-12-02 1994-12-02 Vacuum heat insulator

Publications (1)

Publication Number Publication Date
JPH08159377A true JPH08159377A (en) 1996-06-21

Family

ID=17873084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6299477A Pending JPH08159377A (en) 1994-12-02 1994-12-02 Vacuum heat insulator

Country Status (5)

Country Link
US (1) US5885682A (en)
EP (1) EP0715138A3 (en)
JP (1) JPH08159377A (en)
KR (1) KR100188443B1 (en)
CN (1) CN1143740A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11201378A (en) * 1998-01-13 1999-07-30 Mitsubishi Electric Corp Cartridge, and vacuum heat insulation body equipped therewith
JP2006102295A (en) * 2004-10-07 2006-04-20 Matsushita Electric Ind Co Ltd Heat insulated bathtub
JP2006125600A (en) * 2004-11-01 2006-05-18 Matsushita Electric Ind Co Ltd Vacuum maintaining device and vacuum insulation material
JP2006207701A (en) * 2005-01-28 2006-08-10 Matsushita Electric Ind Co Ltd Insulator, and freezing/refrigerating device or cryogenic device
JP2006234028A (en) * 2005-02-23 2006-09-07 Matsushita Electric Ind Co Ltd Heat insulation structure
JP2006307995A (en) * 2005-04-28 2006-11-09 Matsushita Electric Ind Co Ltd Heat insulating body
JP2006308078A (en) * 2005-04-01 2006-11-09 Matsushita Electric Ind Co Ltd Heat insulator
JP2007016929A (en) * 2005-07-08 2007-01-25 Matsushita Electric Ind Co Ltd Heat insulating body
JP2007155123A (en) * 2005-11-10 2007-06-21 Matsushita Electric Ind Co Ltd Heat insulator
JP2009541673A (en) * 2006-06-22 2009-11-26 ビーエーエスエフ ソシエタス・ヨーロピア Insulation element
WO2012026715A2 (en) * 2010-08-23 2012-03-01 Lg Electronics Inc. Vacuum insulation material
WO2012043990A2 (en) * 2010-09-29 2012-04-05 Lg Electronics Inc. Vacuum insulation material and insulation structure for refrigerator cabinet having the same
WO2013100492A1 (en) * 2011-12-26 2013-07-04 (주)엘지하우시스 Vacuum insulation material comprising a large specific surface area getter material
JP2013543087A (en) * 2010-09-29 2013-11-28 エルジー・ハウシス・リミテッド Vacuum heat insulating material, apparatus for evaluating degree of vacuum inside vacuum heat insulating material using frequency response method, and method thereof
US10421059B2 (en) 2014-10-24 2019-09-24 Samsung Electronics Co., Ltd. Gas-adsorbing material and vacuum insulation material including the same
US10549257B2 (en) 2016-06-01 2020-02-04 Samsung Electronics Co., Ltd. Gas adsorbing material particle, gas adsorbing material body, making method of the same and vacuum insulation material including the same

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69619424T2 (en) * 1995-04-14 2002-07-11 Mitsubishi Gas Chemical Co Vacuum heat insulation
IT1277457B1 (en) 1995-08-07 1997-11-10 Getters Spa COMBINATION OF GETTER MATERIALS AND RELATED DEVICE
DE29613093U1 (en) * 1996-07-29 1997-11-27 Bayer Ag Fixed vacuum insulation panel as well as a refrigeration cabinet element containing this fixed vacuum insulation panel
US5877100A (en) * 1996-09-27 1999-03-02 Cabot Corporation Compositions and insulation bodies having low thermal conductivity
US6714278B2 (en) 1996-11-25 2004-03-30 Nikon Corporation Exposure apparatus
WO1998029702A1 (en) * 1996-12-27 1998-07-09 Sankryo M & A Treuhandvermittlung-Consult Gmbh & Co. Technologie Kg Device for refrigerated storage
SE9700612D0 (en) * 1997-02-20 1997-02-20 Cecap Ab Sensor element with integrated reference pressure
JPH10300330A (en) * 1997-04-25 1998-11-13 Sanyo Electric Co Ltd Low temperature storage cabinet
US5858501A (en) * 1997-12-18 1999-01-12 The Dow Chemical Company Evacuated insulation panel having non-wrinkled surfaces
US20040099061A1 (en) * 1997-12-22 2004-05-27 Mks Instruments Pressure sensor for detecting small pressure differences and low pressures
DE19801324A1 (en) * 1998-01-16 1999-07-22 Basf Ag Sorbents for vacuum isolation units
US6077046A (en) * 1998-01-20 2000-06-20 Raytheon Company Getter assembly having porous metallic support and its use in a vacuum apparatus
JP3544653B2 (en) * 2000-04-21 2004-07-21 松下冷機株式会社 refrigerator
EP1344008B1 (en) 2000-12-22 2006-09-27 Arçelik A.S. An insulated unit
FR2818676B1 (en) * 2000-12-27 2003-03-07 Freyssinet Int Stup METHOD FOR DISASSEMBLING A PRE-STRESS CABLE AND DEVICE FOR IMPLEMENTING THE SAME
US6992442B2 (en) * 2001-12-11 2006-01-31 Honeywell International Inc. Restricted getter
US20050138891A1 (en) * 2003-10-17 2005-06-30 Wool Richard P. Monolithic hurricane resistant structural panels made from low density composites
US7201057B2 (en) * 2004-09-30 2007-04-10 Mks Instruments, Inc. High-temperature reduced size manometer
US7137301B2 (en) * 2004-10-07 2006-11-21 Mks Instruments, Inc. Method and apparatus for forming a reference pressure within a chamber of a capacitance sensor
US7141447B2 (en) * 2004-10-07 2006-11-28 Mks Instruments, Inc. Method of forming a seal between a housing and a diaphragm of a capacitance sensor
US8211202B2 (en) * 2005-01-14 2012-07-03 Panasonic Corporation Gas-absorbing substance, gas-absorbing alloy and gas-absorbing material
JP5061289B2 (en) * 2005-03-25 2012-10-31 パナソニック株式会社 Gas-adsorbing substances and gas-adsorbing materials
TW200632245A (en) * 2005-01-28 2006-09-16 Matsushita Electric Ind Co Ltd A thermal insulator
JP4215745B2 (en) * 2005-05-20 2009-01-28 日立アプライアンス株式会社 Vacuum heat insulating material, refrigerator using vacuum heat insulating material, and manufacturing method of vacuum heat insulating material
ITMI20051502A1 (en) * 2005-07-29 2007-01-30 Getters Spa GETTER SYSTEMS INCLUDING ONE OR MORE DEPOSITS OF GETTER MATERIAL AND A LAYER OF MATERIAL FOR H02O TRANSPORT
US20090094920A1 (en) * 2007-10-12 2009-04-16 Weir Charles R Fibrous insulation building products having reduced gaseous emissions
KR101068459B1 (en) 2010-07-29 2011-09-28 주식회사엑스엘 Vacuum Insulation Panel
US9095805B2 (en) 2010-12-15 2015-08-04 Reactive Metals Ltd. Sorption apparatuses for the production of pure gases
CN103370587B (en) * 2011-08-31 2016-01-20 松下电器产业株式会社 The vacuum heat insulation material of freezer and freezer
EP2798261B1 (en) * 2011-10-14 2019-01-02 Arçelik Anonim Sirketi A vacuum insulation panel
DE102012201107A1 (en) * 2012-01-26 2013-08-01 BSH Bosch und Siemens Hausgeräte GmbH The refrigerator
CN104203372B (en) * 2012-03-21 2017-09-26 松下电器产业株式会社 Gas absorption device and its ducted body of storage
CN104870919B (en) * 2012-12-25 2017-11-21 东芝生活电器株式会社 The manufacture method and refrigerator of refrigerator heat insulating box
FR3029227B1 (en) * 2014-11-28 2018-02-16 Saint-Gobain Isover KIT AND THERMAL INSULATION SYSTEM AND METHOD FOR ITS INSTALLATION
KR102487261B1 (en) 2015-02-09 2023-01-13 삼성전자주식회사 Vacuum heat insulating material, the method of manufacturing the same and refrigerator including the same
JP2016186316A (en) * 2015-03-27 2016-10-27 パナソニックIpマネジメント株式会社 Vacuum insulation housing
US9957098B2 (en) 2016-04-01 2018-05-01 Vericool, Inc. Shipping container with compostable insulation
JP6986332B2 (en) * 2016-04-28 2021-12-22 三星電子株式会社Samsung Electronics Co., Ltd. Insulation materials, vacuum heat insulating materials, their manufacturing methods and refrigerators equipped with them

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2768046A (en) * 1952-07-09 1956-10-23 Gen Electric Insulating structures
US3114469A (en) * 1963-02-20 1963-12-17 Union Carbide Corp Means for improving thermal insulation space
US4745015A (en) * 1981-09-30 1988-05-17 The Dow Chemical Company Thermal insulating panel
US4668555A (en) * 1984-12-27 1987-05-26 Matsushita Refrigeration Co. Heat insulating body
JP2543041B2 (en) * 1986-06-20 1996-10-16 松下冷機株式会社 Insulation
US5018328A (en) * 1989-12-18 1991-05-28 Whirlpool Corporation Multi-compartment vacuum insulation panels
US5312606A (en) 1991-04-16 1994-05-17 Saes Getters Spa Process for the sorption of residual gas by means of a non-evaporated barium getter alloy
US5273801A (en) * 1991-12-31 1993-12-28 Whirlpool Corporation Thermoformed vacuum insulation container
IT1258958B (en) * 1992-06-08 1996-03-11 Getters Spa PROCESS PERFECTED FOR THE CREATION OF THERMALLY INSULATING INSULATION THROUGH VACUUM AND INSULATING MATERIALS
WO1993025843A1 (en) 1992-06-08 1993-12-23 Saes Getters S.P.A. Process for evacuating a thermally insulating jacket, in particular the jacket of a dewar or of another cryogenic device
CA2161336A1 (en) * 1993-04-28 1994-11-10 John A. Bridges Vacuum insulated panel and method of making a vacuum insulated panel
JPH0763469A (en) * 1993-08-30 1995-03-10 Hitachi Ltd Vacuum heat insulating member
IT1265269B1 (en) * 1993-12-10 1996-10-31 Getters Spa DEVICE FOR THE STABILIZATION OF THE VACUUM AND METHOD FOR ITS PRODUCTION.
IT1271207B (en) 1994-07-07 1997-05-27 Getters Spa DEVICE FOR THE MAINTENANCE OF THE VACUUM IN THERMALLY INSULATING SPACES AND PROCEDURE FOR ITS PRODUCTION

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11201378A (en) * 1998-01-13 1999-07-30 Mitsubishi Electric Corp Cartridge, and vacuum heat insulation body equipped therewith
JP2006102295A (en) * 2004-10-07 2006-04-20 Matsushita Electric Ind Co Ltd Heat insulated bathtub
JP4649953B2 (en) * 2004-11-01 2011-03-16 パナソニック株式会社 Vacuum insulation
JP2006125600A (en) * 2004-11-01 2006-05-18 Matsushita Electric Ind Co Ltd Vacuum maintaining device and vacuum insulation material
JP2006207701A (en) * 2005-01-28 2006-08-10 Matsushita Electric Ind Co Ltd Insulator, and freezing/refrigerating device or cryogenic device
JP2006234028A (en) * 2005-02-23 2006-09-07 Matsushita Electric Ind Co Ltd Heat insulation structure
JP2006308078A (en) * 2005-04-01 2006-11-09 Matsushita Electric Ind Co Ltd Heat insulator
JP2006307995A (en) * 2005-04-28 2006-11-09 Matsushita Electric Ind Co Ltd Heat insulating body
JP2007016929A (en) * 2005-07-08 2007-01-25 Matsushita Electric Ind Co Ltd Heat insulating body
JP2007155123A (en) * 2005-11-10 2007-06-21 Matsushita Electric Ind Co Ltd Heat insulator
JP2009541673A (en) * 2006-06-22 2009-11-26 ビーエーエスエフ ソシエタス・ヨーロピア Insulation element
WO2012026715A3 (en) * 2010-08-23 2012-06-28 Lg Electronics Inc. Vacuum insulation material
WO2012026715A2 (en) * 2010-08-23 2012-03-01 Lg Electronics Inc. Vacuum insulation material
WO2012043990A2 (en) * 2010-09-29 2012-04-05 Lg Electronics Inc. Vacuum insulation material and insulation structure for refrigerator cabinet having the same
WO2012043990A3 (en) * 2010-09-29 2012-06-21 Lg Electronics Inc. Vacuum insulation material and insulation structure for refrigerator cabinet having the same
JP2013543087A (en) * 2010-09-29 2013-11-28 エルジー・ハウシス・リミテッド Vacuum heat insulating material, apparatus for evaluating degree of vacuum inside vacuum heat insulating material using frequency response method, and method thereof
US9194782B2 (en) 2010-09-29 2015-11-24 Lg Hausys, Ltd. Vacuum thermal-insulation material, and a device and method for assessing the degree of vacuum in the vacuum insulation material by using the frequency response method
WO2013100492A1 (en) * 2011-12-26 2013-07-04 (주)엘지하우시스 Vacuum insulation material comprising a large specific surface area getter material
US10421059B2 (en) 2014-10-24 2019-09-24 Samsung Electronics Co., Ltd. Gas-adsorbing material and vacuum insulation material including the same
US10875009B2 (en) 2014-10-24 2020-12-29 Samsung Electronics Co., Ltd. Gas-adsorbing material and vacuum insulation material including the same
US10549257B2 (en) 2016-06-01 2020-02-04 Samsung Electronics Co., Ltd. Gas adsorbing material particle, gas adsorbing material body, making method of the same and vacuum insulation material including the same

Also Published As

Publication number Publication date
KR960021511A (en) 1996-07-18
EP0715138A3 (en) 1996-12-04
CN1143740A (en) 1997-02-26
KR100188443B1 (en) 1999-06-01
US5885682A (en) 1999-03-23
EP0715138A2 (en) 1996-06-05

Similar Documents

Publication Publication Date Title
JPH08159377A (en) Vacuum heat insulator
CA2030580C (en) Getter structure for vacuum insulation panels
KR20070089252A (en) Thermal insulator
JP2007238141A (en) Vacuum container
JP4862569B2 (en) Glass panel
JP4797387B2 (en) Insulator and refrigeration / refrigeration equipment or refrigeration equipment
JP3792802B2 (en) Vacuum insulation
US5399397A (en) Calcium silicate insulation structure
JPS59225275A (en) Vacuum heat-insulating material
JP2007017053A (en) Refrigerator
JPH10253245A (en) Heat insulating box
JP4797614B2 (en) Insulation
JP2006046512A (en) Heat insulating body
JP2006075756A (en) Gas adsorbent and heat insulator
JP4449630B2 (en) VACUUM INSULATOR AND REFRIGERATOR HAVING VACUUM INSULATOR
JPS61103089A (en) Vacuum heat-insulating structure
JP4613557B2 (en) VACUUM INSULATOR AND REFRIGERATOR HAVING VACUUM INSULATOR
JP2008056317A (en) Vacuum heat insulator and container including gas adsorbent
JP2007155087A (en) Vacuum heat insulating material
JPH08291965A (en) Vacuum thermal insulating material
JP2007016929A (en) Heat insulating body
JP6660871B2 (en) Vacuum insulation and thermal insulation
JPS61103090A (en) Vacuum heat-insulating structure
JP2006153077A (en) Vacuum heat insulating material and heat insulating box using the same
JP4872211B2 (en) Gas adsorbent and insulation