JP2016160124A - Method for production of cupric oxide particulate, and cupric oxide particulate - Google Patents

Method for production of cupric oxide particulate, and cupric oxide particulate Download PDF

Info

Publication number
JP2016160124A
JP2016160124A JP2015039094A JP2015039094A JP2016160124A JP 2016160124 A JP2016160124 A JP 2016160124A JP 2015039094 A JP2015039094 A JP 2015039094A JP 2015039094 A JP2015039094 A JP 2015039094A JP 2016160124 A JP2016160124 A JP 2016160124A
Authority
JP
Japan
Prior art keywords
copper
cupric oxide
basic compound
solution
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015039094A
Other languages
Japanese (ja)
Other versions
JP6488152B2 (en
Inventor
秀樹 松本
Hideki Matsumoto
秀樹 松本
和田 健二
Kenji Wada
健二 和田
一憲 高橋
Kazunori Takahashi
一憲 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2015039094A priority Critical patent/JP6488152B2/en
Publication of JP2016160124A publication Critical patent/JP2016160124A/en
Application granted granted Critical
Publication of JP6488152B2 publication Critical patent/JP6488152B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for production of a cupric oxide particulate capable of continuously producing the nano-sized cupric oxide particulate in a desired more uniform shape, and to provide a flow type reaction system suitable for the above production method.SOLUTION: There is provided a method for production of a cupric oxide particulate by a flow type reaction, comprising: introducing a copper(II) salt solution into a first flow path 1 and a basic compound solution into a second flow path 2; carrying out the confluence 3 of the copper(II) salt solution and the basic compound solution while circulating respective solutions in respective flow paths; reacting the copper(II) salt and the basic compound during circulation of the confluence liquid to a downstream 4 to produce the cupric oxide particulate. In the above production method, the reaction molar ratio of the basic compound to the copper(II) salt in the confluence 3 is made to be 1.5 or more, preferably 2.5 or more. A flow type reaction system 100 has the confluence 3 in which the first and second flow paths 1 and 2 converge, and a reaction path 4 connecting to the downstream of the confluence 3.SELECTED DRAWING: Figure 1

Description

本発明は、酸化第二銅微粒子の製造方法及び酸化第二銅微粒子に関する。   The present invention relates to a method for producing cupric oxide fine particles and cupric oxide fine particles.

半導体回路の基板配線は、従来、スパッタリング、イオンプレーティング、化学気相成長(CVD)等の気相法により形成されてきた。しかしこれらの方法では、基板配線の大面積化やコスト低減に対する要求を十分に満たすことができない。
半導体回路の微細化や、その構造の多様化が進む中、プリンテッドエレクトロニクス(PE)と呼ばれる、プリント技術を利用した基板配線の形成方法が注目されている。PE技術により、オンデマンドに、効率的に配線を形成することができ、また、半導体製造プロセスで従来必要とされた露光処理やエッチング処理を必要とせず、製造コストや環境負荷を抑えることができる。
Conventionally, a substrate wiring of a semiconductor circuit has been formed by a vapor phase method such as sputtering, ion plating, chemical vapor deposition (CVD) or the like. However, these methods cannot sufficiently satisfy the demands for increasing the area of substrate wiring and reducing costs.
As semiconductor circuits are miniaturized and their structures are diversifying, a method for forming a substrate wiring called a printed electronics (PE) using a printing technique has attracted attention. With PE technology, wiring can be efficiently formed on demand, and exposure and etching processes conventionally required in the semiconductor manufacturing process are not required, thereby reducing manufacturing costs and environmental burdens. .

PEに用いるメタルインクとしては、金微粒子や銀微粒子を用いたナノメタルインクが主流であるが、コスト面で制約があり、より安価で高い導電性が得られる銅の利用が求められている。しかし、銅微粒子は酸化しやすく取扱いの上で問題となる。この問題を解決するために、酸化銅微粒子を含むインクをプリントし、これを還元して配線を形成することが検討されている。   As the metal ink used for PE, nano metal ink using gold fine particles or silver fine particles is the mainstream, but there are restrictions in terms of cost, and there is a demand for the use of copper that can be obtained at lower cost and higher conductivity. However, copper fine particles are easily oxidized and cause a problem in handling. In order to solve this problem, it has been studied to print an ink containing copper oxide fine particles and reduce it to form a wiring.

ナノメートルサイズの酸化銅微粒子を狭い粒子径分布で製造する方法として、フロー式反応(フローリアクター)を用いて酸化銅を製造する方法が報告されている。例えば特許文献1には、2価の銅塩溶液及び還元剤溶液を送液しながら接触させ、酸化第1銅(CuO)微粒子を得ることが記載されている。
また、特許文献2には、特定形状の酸化第二銅(CuO)を含む酸化銅ペーストが記載され、この酸化銅ペーストを用いることにより、高精細で導電性の高い金属銅層を精度よく形成できることが記載されている。
As a method for producing nanometer-sized copper oxide fine particles with a narrow particle size distribution, a method for producing copper oxide using a flow reaction (flow reactor) has been reported. For example, Patent Document 1 describes that a divalent copper salt solution and a reducing agent solution are brought into contact with each other to send cuprous oxide (Cu 2 O) fine particles.
Patent Document 2 describes a copper oxide paste containing cupric oxide (CuO) having a specific shape. By using this copper oxide paste, a highly precise and highly conductive metal copper layer can be accurately formed. It describes what you can do.

特開2006−96569号公報JP 2006-96569 A 特開2013−109966号公報JP 2013-109966 A

本発明は、ナノメートルサイズの酸化第二銅微粒子を、所望の形状に、且つより均一な形状で、連続的に製造することができる酸化第二銅微粒子の製造方法を提供することを課題とする。また本発明は、上記製造方法の実施に好適なフロー式反応システムを提供することを課題とする。   It is an object of the present invention to provide a method for producing cupric oxide fine particles capable of continuously producing nanometer-sized cupric oxide fine particles in a desired shape and in a more uniform shape. To do. Moreover, this invention makes it a subject to provide the flow type reaction system suitable for implementation of the said manufacturing method.

本発明者らは上記課題に鑑み鋭意検討を重ねた結果、フロー式反応系(典型的には、いわゆるマイクロリアクター)において、銅塩溶液と塩基性化合物溶液とをそれぞれ異なる流路に導入し、各流路内に各溶液を流通させながら、各溶液を合流し、合流液をその下流の反応流路内へと流通させながら銅塩と塩基性化合物とを反応させることにより、ナノメートルサイズの均質な形状の酸化第二銅微粒子を連続的に得ることができ、さらに合流液における銅塩と塩基性化合物のモル比を調節することにより、得られる酸化第二銅微粒子の形状を球状、棒状ないしは板状に調節できることを見い出した。本発明はこれらの知見に基づきさらに検討を重ね、完成されるに至ったものである。   As a result of intensive studies in view of the above problems, the present inventors have introduced a copper salt solution and a basic compound solution into different flow paths in a flow reaction system (typically, a so-called microreactor), While each solution is circulated in each channel, each solution is merged, and the copper salt and the basic compound are reacted while the merging solution is circulated into the reaction channel downstream of the solution. Uniform cupric oxide fine particles can be obtained continuously, and by adjusting the molar ratio of the copper salt to the basic compound in the combined liquid, the shape of the resulting cupric oxide fine particles can be spherical or rod-shaped. It was found that it can be adjusted to a plate shape. The present invention has been further studied based on these findings and has been completed.

すなわち本発明の上記課題は以下の手段により解決される。
〔1〕
第1流路に銅(II)塩溶液を、第2流路に塩基性化合物溶液をそれぞれ導入して各流路内に各溶液を流通させ、第1流路内を流通する銅塩溶液と、第2流路内を流通する塩基性化合物溶液とを合流し、合流した液が下流へ流通中に銅(II)塩と塩基性化合物とを反応させ、反応生成物から酸化第二銅微粒子を製造することを含む、フロー式反応による酸化第二銅微粒子の製造方法であって、
第1流路内を流通する銅(II)塩溶液と第2流路内を流通する塩基性化合物溶液とが合流する合流部において、上記銅(II)塩に対する上記塩基性化合物の反応モル比を、[塩基性化合物]/[銅塩]≧1.5とする、製造方法。
〔2〕
第1流路内を流通する銅塩溶液と第2流路内を流通する塩基性化合物溶液とが合流する合流部において、上記銅(II)塩に対する上記塩基性化合物の反応モル比を、[塩基性化合物]/[銅塩]≧2.5とする、〔1〕記載の製造方法。
〔3〕
80℃以上の温度下で銅(II)塩と塩基性化合物とを反応させる、〔1〕又は〔2〕記載の製造方法。
〔4〕
上記製造方法により、上記酸化第二銅微粒子が、酸化第二銅微粒子を0.1〜14質量%含有する酸化第二銅微粒子分散液として得られる、〔1〕〜〔3〕のいずれか1つに記載の製造方法。
〔5〕
上記銅(II)塩溶液と上記塩基性化合物溶液とを多層筒型ミキサーを用いて合流する、〔1〕〜〔4〕のいずれか1つに記載の製造方法。
〔6〕
上記多層筒型ミキサーの最小筒の等価直径が0.1mm〜50mmである、〔5〕記載の製造方法。
〔7〕
上記多層筒型ミキサーの最小筒を流通する溶液の線速度a1と、最小筒以外の筒を流通する溶液の線速度b1の比が、a1/b1=0.005〜200である、〔5〕又は〔6〕記載の製造方法。
〔8〕
上記多層筒型ミキサーが2層筒型ミキサーである、〔5〕〜〔7〕のいずれか1つに記載の製造方法。
〔9〕
2層筒型ミキサーの内管の線速度a2と、外管の線速度b2の比が、a2/b2=0.02〜50である、〔8〕記載の製造方法。
〔10〕
上記銅(II)塩溶液と上記塩基性化合物溶液とをT字型ミキサーを用いて合流する、〔1〕〜〔4〕のいずれか1つに記載の製造方法。
〔11〕
上記T字型ミキサーの開口部の等価直径が0.1〜5mmである、〔10〕に記載の製造方法。
〔12〕
上記製造方法により得られる酸化第二銅微粒子が、一次粒子の3次元形状において、長径の平均値と短径の平均値との比が、長径/短径≧20である、〔1〕〜〔11〕のいずれか1つに記載の製造方法。
〔13〕
酸化第二銅微粒子を製造するフロー式反応システムであって、
銅(II)塩溶液が流通する第1流路と、塩基性化合物溶液が流通する第2流路と、第1流路と第2流路が合流する合流部と、合流部の下流に繋がる反応流路とを有する、フロー式反応システム。
That is, the said subject of this invention is solved by the following means.
[1]
A copper (II) salt solution is introduced into the first channel, a basic compound solution is introduced into the second channel, each solution is circulated in each channel, and a copper salt solution that circulates in the first channel; Then, the basic compound solution flowing in the second flow path is merged, and the combined liquid reacts with the copper (II) salt and the basic compound while flowing downstream, and the reaction product produces cupric oxide fine particles. A method for producing cupric oxide fine particles by a flow-type reaction, comprising:
The reaction molar ratio of the basic compound to the copper (II) salt at the junction where the copper (II) salt solution flowing in the first flow path and the basic compound solution flowing in the second flow path merge. Wherein [basic compound] / [copper salt] ≧ 1.5.
[2]
In the junction where the copper salt solution flowing in the first flow path and the basic compound solution flowing in the second flow path merge, the reaction molar ratio of the basic compound to the copper (II) salt is [ [1] The production method according to [1], wherein [basic compound] / [copper salt] ≧ 2.5.
[3]
[1] or [2], wherein the copper (II) salt is reacted with a basic compound at a temperature of 80 ° C. or higher.
[4]
Any one of [1] to [3], wherein the cupric oxide fine particles are obtained as a cupric oxide fine particle dispersion containing 0.1 to 14% by mass of cupric oxide fine particles by the production method. The manufacturing method as described in one.
[5]
The manufacturing method according to any one of [1] to [4], wherein the copper (II) salt solution and the basic compound solution are joined together using a multilayer cylindrical mixer.
[6]
[5] The production method according to [5], wherein an equivalent diameter of a minimum cylinder of the multilayer cylindrical mixer is 0.1 mm to 50 mm.
[7]
The ratio of the linear velocity a1 of the solution flowing through the smallest cylinder of the multilayer cylindrical mixer and the linear velocity b1 of the solution flowing through a cylinder other than the smallest cylinder is a1 / b1 = 0.005 to 200 [5] Or the manufacturing method of [6] description.
[8]
The manufacturing method according to any one of [5] to [7], wherein the multilayer cylindrical mixer is a two-layer cylindrical mixer.
[9]
[8] The production method according to [8], wherein the ratio of the linear velocity a2 of the inner tube and the linear velocity b2 of the outer tube of the two-layer cylindrical mixer is a2 / b2 = 0.02-50.
[10]
The production method according to any one of [1] to [4], wherein the copper (II) salt solution and the basic compound solution are joined together using a T-shaped mixer.
[11]
[10] The production method according to [10], wherein the equivalent diameter of the opening of the T-shaped mixer is 0.1 to 5 mm.
[12]
In the three-dimensional shape of the primary particles of the cupric oxide fine particles obtained by the above production method, the ratio of the average value of the major axis to the average value of the minor axis is: major axis / minor axis ≧ 20 [1] to [ 11]. The production method according to any one of 11).
[13]
A flow reaction system for producing cupric oxide fine particles,
The first channel through which the copper (II) salt solution circulates, the second channel through which the basic compound solution circulates, the junction where the first channel and the second channel merge, and the downstream of the junction. A flow reaction system having a reaction channel.

本明細書において「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
本明細書において「上流」及び「下流」との用語は、溶液が流れる方向に対して用いられ、液体が導入される側(図1、3及び6の導入手段(5)、(6)及び(11)の側)が上流であり、その逆側(回収容器(7)側)が下流である。
本明細書において、単に「銅塩」という場合、特に断りのない限り「銅(II)塩」を意味する。
本明細書において「微粒子」との用語は、球状に限らず、棒状、板状等、種々の形状の微細構造物を包含する意味に用いる。
In the present specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
In this specification, the terms “upstream” and “downstream” are used in the direction in which the solution flows, and the side on which the liquid is introduced (introduction means (5), (6) and FIGS. 1, 3 and 6). (11) side is upstream, and the opposite side (collection container (7) side) is downstream.
In the present specification, the term “copper salt” means “copper (II) salt” unless otherwise specified.
In the present specification, the term “fine particles” is not limited to a spherical shape, but is used to include fine structures having various shapes such as a rod shape and a plate shape.

本発明の製造方法によれば、ナノメートルサイズの酸化第二銅微粒子を、所望の形状に、より均一な形状で、連続的に製造することができる。
本発明のフロー式反応システムは、上記本発明の製造方法の実施に好適な反応システムである。
According to the production method of the present invention, nanometer-sized cupric oxide fine particles can be continuously produced in a desired shape and in a more uniform shape.
The flow reaction system of the present invention is a reaction system suitable for carrying out the production method of the present invention.

本発明の製造方法の好ましい実施形態を示すフロー図である。It is a flowchart which shows preferable embodiment of the manufacturing method of this invention. 図1の実施形態において合流領域に設置するT字型ミキサーの断面図である。It is sectional drawing of the T-shaped mixer installed in a confluence | merging area | region in embodiment of FIG. 本発明の製造方法の別の好ましい実施形態を示すフロー図である。It is a flowchart which shows another preferable embodiment of the manufacturing method of this invention. 図3の実施形態において合流領域に設置する2層筒型ミキサーの断面図である。FIG. 4 is a cross-sectional view of a two-layer cylindrical mixer installed in a merge area in the embodiment of FIG. 3. 図4の2層筒型ミキサーの合流部JをO側からみた図である。It is the figure which looked at the confluence | merging part J of the two layer cylindrical mixer of FIG. 4 from the O side. 本発明の製造方法のさらに別の好ましい実施形態を示すフロー図である。It is a flowchart which shows another preferable embodiment of the manufacturing method of this invention. 図6の実施形態において合流領域に設置する3層筒型ミキサーの断面図である。FIG. 7 is a cross-sectional view of a three-layer cylindrical mixer installed in a merge area in the embodiment of FIG. 6. 図7の3層筒型ミキサーの合流部JをO側からみた図である。It is the figure which looked at the confluence | merging part J of the 3 layer cylindrical mixer of FIG. 7 from the O side.

本発明の製造方法は、フロー式反応により、酸化第二銅微粒子を所望の形状に、且つより均一な形状で、連続的に製造することが可能な酸化第二銅微粒子の製造方法である。本発明の製造方法の好ましい実施態様について図面を用いて以下に説明する。なお、本発明は、本発明で規定する事項以外は、図面に示された形態に何ら限定されるものではない。   The production method of the present invention is a production method of cupric oxide fine particles capable of continuously producing cupric oxide fine particles in a desired shape and in a more uniform shape by a flow reaction. A preferred embodiment of the production method of the present invention will be described below with reference to the drawings. In addition, this invention is not limited to the form shown by drawing except the matter prescribed | regulated by this invention.

本発明の製造方法を実施するための好ましいフロー式反応システム(100)を図1に示す。図1に示されるフロー式反応システム(100)は、銅塩溶液が流通する第1流路(1)と、塩基性化合物溶液が流通する第2流路(2)と、第1流路(1)と第2流路(2)とが合流する合流領域(3)と、合流領域(3)の下流に繋がる反応流路(4)とを有する。
図1の実施形態において、第1流路(1)の上流には、銅塩溶液を第1流路(1)内に導入する銅塩溶液導入手段(5)が配設され、第2流路(2)の上流には、塩基性化合物溶液を第2流路(2)内に導入する塩基性化合物溶液導入手段(6)が配設されている。銅塩溶液導入手段(5)及び塩基性化合物溶液導入手段(6)に特に制限はなく、種々のポンプを用いることができる。なかでも流速を高精度に制御する観点からシリンジポンプを好適に用いることができる。これは、後述する第三液導入手段(11)についても同様である。
A preferred flow reaction system (100) for carrying out the production method of the present invention is shown in FIG. A flow reaction system (100) shown in FIG. 1 includes a first channel (1) through which a copper salt solution flows, a second channel (2) through which a basic compound solution flows, and a first channel ( 1) and the 2nd flow path (2) have a confluence | merging area | region (3) and the reaction flow path (4) connected downstream of a confluence | merging area | region (3).
In the embodiment of FIG. 1, a copper salt solution introducing means (5) for introducing a copper salt solution into the first flow path (1) is disposed upstream of the first flow path (1), and the second flow A basic compound solution introduction means (6) for introducing a basic compound solution into the second flow path (2) is disposed upstream of the path (2). There are no particular limitations on the copper salt solution introduction means (5) and the basic compound solution introduction means (6), and various pumps can be used. Among these, a syringe pump can be suitably used from the viewpoint of controlling the flow rate with high accuracy. This is the same also about the 3rd liquid introduction means (11) mentioned later.

図1の実施形態において、合流領域(3)にはT字型ミキサー(3a)が配設される。図2は、このT字型ミキサー(3a)を用いた溶液合流の状態を示す断面図である。第1流路(1)内を流通する銅塩溶液及び第2流路(2)内を流通する塩基性化合物溶液は、図2に示されるように、それぞれT字型ミキサー(3a)のA側(開口部A)及びB側(開口部B)からT字型ミキサー(3a)内へと導入される。T字型ミキサー(3a)内に導入された銅塩溶液と塩基性化合物溶液はT字型ミキサー(3a)内の合流部Jで合流し、この合流液がT字型ミキサーの(O)側に向けて流出し、反応流路(4)内へと導入される。   In the embodiment of FIG. 1, a T-shaped mixer (3a) is disposed in the merge area (3). FIG. 2 is a cross-sectional view showing a state of solution merging using the T-shaped mixer (3a). As shown in FIG. 2, the copper salt solution flowing through the first flow path (1) and the basic compound solution flowing through the second flow path (2) are respectively A of the T-shaped mixer (3a). It is introduced into the T-shaped mixer (3a) from the side (opening A) and the B side (opening B). The copper salt solution and the basic compound solution introduced into the T-shaped mixer (3a) merge at the junction J in the T-shaped mixer (3a), and this combined liquid is the (O) side of the T-shaped mixer. And flow into the reaction channel (4).

T字型ミキサー(3a)内で銅塩溶液と塩基性化合物溶液が合流すると銅塩と塩基性化合物とが反応して水酸化銅(Cu(OH))が生成する。次いでこの水酸化銅は加熱下で脱水され、酸化第二銅微粒子が生成する。これらの反応は、銅塩と塩基性化合物が接触した時点から反応流路(4)内を流通している間に進行する。上記反応ないし反応条件の詳細は後述する。 When the copper salt solution and the basic compound solution merge in the T-shaped mixer (3a), the copper salt and the basic compound react to generate copper hydroxide (Cu (OH) 2 ). Next, the copper hydroxide is dehydrated under heating to produce cupric oxide fine particles. These reactions proceed while flowing through the reaction channel (4) from the time when the copper salt and the basic compound contact. Details of the above reaction or reaction conditions will be described later.

反応流路内において生成した酸化第二銅微粒子は、酸化第二銅微粒子分散液として、回収容器7内に回収される。   The cupric oxide fine particles generated in the reaction channel are recovered in the recovery container 7 as a cupric oxide fine particle dispersion.

本発明の製造方法を実施するための別の好ましいフロー式反応システム(200)を図3に示す。図3に示されるフロー式反応システム(200)は、銅塩溶液が流通する第1流路(1)と、塩基性化合物溶液が流通する第2流路(2)と、第1流路(1)と第2流路(2)とが合流する合流領域(3)と、合流領域(3)の下流に繋がる反応流路(4)とを有する。
図3の実施形態において、第1流路(1)の上流には、銅塩溶液を第1流路(1)内に導入する銅塩溶液導入手段(5)が配設され、第2流路(2)の上流には、塩基性化合物溶液を第2流路内に導入する塩基性化合物溶液導入手段(6)が配設されている。
Another preferred flow reaction system (200) for carrying out the production method of the present invention is shown in FIG. A flow reaction system (200) shown in FIG. 3 includes a first flow path (1) through which a copper salt solution flows, a second flow path (2) through which a basic compound solution flows, and a first flow path ( 1) and the 2nd flow path (2) have a confluence | merging area | region (3) and the reaction flow path (4) connected downstream of a confluence | merging area | region (3).
In the embodiment of FIG. 3, a copper salt solution introduction means (5) for introducing a copper salt solution into the first flow path (1) is disposed upstream of the first flow path (1), and the second flow A basic compound solution introduction means (6) for introducing a basic compound solution into the second flow path is disposed upstream of the path (2).

図3の実施形態において、合流領域(3)には、2層筒型ミキサー(3b)が配設される。図4は、この2層筒型ミキサー(3b)を用いた溶液合流の状態を示す断面図である。第1流路(1)は、2層筒型ミキサー(3b)内を貫通する内管(T1)のA側(開口部A)と接続され、あるいは第1流路(1)自体が内管(T1)と一体となり、これにより、第1流路(1)内を流通する銅塩溶液は内管(T1)内をA側からO側に向けて流通する。
一方、第2流路(2)は、2層筒型ミキサー(3b)の導入部B(開口部B)と接続される。これにより、第2流路(2)内を流通してきた塩基性化合物溶液は、2層筒型ミキサー(3b)の外管(T2)と内管(T1)との間を満たし、O側に向かって流通する。
内管(T1)内をO側に向けて流通する銅塩溶液は、内管(T1)のO側末端部(合流部J)において、外管(T2)と内管(T1)の間をO側に向けて流通してきた塩基性化合物溶液と合流し、その下流に繋がる反応流路(4)内へと導入される。
図4における合流部JをO側から見た断面を図5に示す。図5において、内管T1内に銅塩溶液が、外管T2と内管T1との間には塩基性化合物溶液がそれぞれ流通している。
In the embodiment of FIG. 3, a two-layer cylindrical mixer (3b) is disposed in the merging region (3). FIG. 4 is a cross-sectional view showing a state of solution merging using the two-layer cylindrical mixer (3b). The first flow path (1) is connected to the A side (opening A) of the inner pipe (T1) penetrating the two-layer cylindrical mixer (3b), or the first flow path (1) itself is the inner pipe. Thus, the copper salt solution flowing through the first flow path (1) flows through the inner pipe (T1) from the A side toward the O side.
On the other hand, the second flow path (2) is connected to the introduction part B (opening part B) of the two-layer cylindrical mixer (3b). Thereby, the basic compound solution which has circulated through the second flow path (2) fills the space between the outer tube (T2) and the inner tube (T1) of the two-layer cylindrical mixer (3b), and on the O side. It circulates toward.
The copper salt solution that circulates in the inner pipe (T1) toward the O side is between the outer pipe (T2) and the inner pipe (T1) at the O-side end (junction J) of the inner pipe (T1). It joins with the basic compound solution that has circulated toward the O side, and is introduced into the reaction channel (4) connected downstream thereof.
FIG. 5 shows a cross section of the junction J in FIG. 4 as viewed from the O side. In FIG. 5, a copper salt solution is circulated in the inner tube T1, and a basic compound solution is circulated between the outer tube T2 and the inner tube T1.

2層筒型ミキサー(3b)により銅塩溶液と塩基性化合物溶液が合流すると銅塩と塩基性化合物とが反応して水酸化銅(Cu(OH))が生成する。次いでこの水酸化銅は加熱下で脱水され、酸化第二銅微粒子が生成する。これらの反応は、銅塩と塩基性化合物が接触した時点から反応流路(4)内を流通している間に進行する。上記反応ないし反応条件の詳細は後述する。 When the copper salt solution and the basic compound solution are joined by the two-layer cylindrical mixer (3b), the copper salt and the basic compound react to produce copper hydroxide (Cu (OH) 2 ). Next, the copper hydroxide is dehydrated under heating to produce cupric oxide fine particles. These reactions proceed while flowing through the reaction channel (4) from the time when the copper salt and the basic compound contact. Details of the above reaction or reaction conditions will be described later.

図4の形態において、合流部Jで合流した銅塩溶液と塩基性化合物溶液は、層流の状態で反応流路(4)へと導入されて反応流路内を流通してもよいし、反応流路(4)内を流通しながら徐々に混じり合う態様で合流してもよい。また、合流部Jで乱流を生じてすばやく混じり合い、反応流路(4)へと流れてもよい。図4に示されるように、2層筒型ミキサーを用いて2液を合流する場合、銅塩と塩基性化合物との接触がミキサー内の管外壁で生じないため、ミキサー内の管外壁に酸化銅が析出しない。そのため、フロー反応中の圧力上昇が生じにくく、連続的な酸化第二銅の製造を、より安定的に実施することが可能となる。   In the form of FIG. 4, the copper salt solution and the basic compound solution merged at the junction J may be introduced into the reaction channel (4) in a laminar state and circulate in the reaction channel. You may merge in the aspect mixed gradually, distribute | circulating the inside of the reaction flow path (4). Further, a turbulent flow may be generated at the junction J to quickly mix and flow to the reaction channel (4). As shown in FIG. 4, when two liquids are merged using a two-layer cylindrical mixer, contact between the copper salt and the basic compound does not occur on the outer wall of the tube in the mixer, so oxidation occurs on the outer wall of the tube in the mixer. Copper does not precipitate. Therefore, the pressure rise during the flow reaction hardly occurs, and continuous production of cupric oxide can be performed more stably.

なお、図3〜5に示す実施形態において、銅塩溶液を外管(T2)と内管(T1)との間に流通させ、塩基性化合物溶液を内管T1内に流通させてもよく、この形態も本発明の製造方法の実施形態として好ましい。   In addition, in embodiment shown in FIGS. 3-5, a copper salt solution may be distribute | circulated between an outer tube | pipe (T2) and an inner tube | pipe (T1), and a basic compound solution may be distribute | circulated in the inner tube | pipe T1, This form is also preferable as an embodiment of the production method of the present invention.

本発明の製造方法を実施するための別の好ましいフロー式反応システム(300)を図6に示す。図6に示されるフロー式反応システム(300)は、銅塩溶液が流通する第1流路(1)と、塩基性化合物溶液が流通する第2流路(2)と、後述する第三液が流通する第3流路(10)と、第1流路(1)と第2流路(2)と第3流路(10)が合流する合流領域(3)と、合流領域(3)の下流に繋がる反応流路(4)とを有する。
図6の実施形態において、第1流路(1)の上流には、銅塩溶液を第1流路(1)内に導入する銅塩溶液導入手段(5)が配設され、第2流路(2)の上流には、塩基性化合物溶液を第2流路内に導入する塩基性化合物溶液導入手段(6)が配設され、第3流路(10)の上流には、第三液を第3流路(10)内に導入する第三液導入手段(11)が配設されている。
Another preferred flow reaction system (300) for carrying out the production method of the present invention is shown in FIG. A flow reaction system (300) shown in FIG. 6 includes a first flow path (1) through which a copper salt solution flows, a second flow path (2) through which a basic compound solution flows, and a third liquid described later. A third flow path (10) through which the first flow path, a first flow path (1), a second flow path (2), and a third flow path (10) merge, and a merge area (3). And a reaction channel (4) connected downstream.
In the embodiment of FIG. 6, a copper salt solution introduction means (5) for introducing a copper salt solution into the first flow path (1) is disposed upstream of the first flow path (1), and the second flow A basic compound solution introduction means (6) for introducing a basic compound solution into the second flow path is disposed upstream of the path (2), and a third compound flow path is provided upstream of the third flow path (10). Third liquid introducing means (11) for introducing the liquid into the third flow path (10) is provided.

図6の実施形態において、合流領域(3)には、3層筒型ミキサー(3c)が配設される。図7は、この3層筒型ミキサー(3c)を用いた溶液合流を示す断面図である。第1流路(1)は、3層筒型ミキサー(3c)内を貫通する内管(T1)のA側(開口部A)と接続され、あるいは第1流路(1)自体が内管(T1)と一体となり、これにより、第1流路(1)内を流通する銅塩溶液は内管(T1)内をA側からO側に向かって流通する。
また、第3流路(10)は、3層筒型ミキサー(3c)の導入部C(開口部C)と接続される。これにより、第3流路(10)内を流通してきた第三液は、3層筒型ミキサー(3c)の中管(T3)と内管(T1)との間を満たし、O側に向かって流通する。
また、第2流路(2)は、3層筒型ミキサー(3c)の導入部B(開口部B)と接続される。これにより、第2流路(2)内を流通してきた塩基性化合物溶液は、3層筒型ミキサー(3c)の中管(T3)と外管(T2)との間を満たし、O側に向かって流通する。
In the embodiment of FIG. 6, a three-layer cylindrical mixer (3c) is disposed in the merge region (3). FIG. 7 is a cross-sectional view showing solution merging using this three-layer cylindrical mixer (3c). The first flow path (1) is connected to the A side (opening portion A) of the inner pipe (T1) passing through the three-layer cylindrical mixer (3c), or the first flow path (1) itself is the inner pipe. Thus, the copper salt solution flowing through the first flow path (1) flows through the inner tube (T1) from the A side toward the O side.
The third flow path (10) is connected to the introduction part C (opening part C) of the three-layer cylindrical mixer (3c). As a result, the third liquid flowing through the third flow path (10) fills the space between the middle pipe (T3) and the inner pipe (T1) of the three-layer cylindrical mixer (3c) and moves toward the O side. Circulate.
The second flow path (2) is connected to the introduction part B (opening part B) of the three-layer cylindrical mixer (3c). Thereby, the basic compound solution which has circulated in the second channel (2) fills the space between the middle tube (T3) and the outer tube (T2) of the three-layer cylindrical mixer (3c), and on the O side. It circulates toward.

内管(T1)内をO側に向けて流通する銅塩溶液は、内管(T1)のO側末端部(合流部J)において、中管(T3)と内管(T1)の間をO側に向けて流通してきた第三液、及び外管(T2)と中管(T3)の間をO側に向けて流通してきた塩基性化合物溶液と合流し、その下流に繋がる反応流路(4)内へと導入される。
図7における合流部JをO側から見た断面を図8に示す。図8において、内管(T1)内に銅塩溶液が、中管(T3)と内管(T1)との間に第三液が、外管(T2)と中管(T3)との間には塩基性化合物溶液がそれぞれ流通している。
The copper salt solution that circulates in the inner pipe (T1) toward the O side is between the middle pipe (T3) and the inner pipe (T1) at the O-side end (junction J) of the inner pipe (T1). The third liquid flowing toward the O side and the basic compound solution flowing toward the O side between the outer tube (T2) and the middle tube (T3), and the reaction channel connected downstream thereof (4) It is introduced into.
FIG. 8 shows a cross section of the junction J in FIG. 7 as viewed from the O side. In FIG. 8, the copper salt solution is in the inner pipe (T1), the third liquid is between the middle pipe (T3) and the inner pipe (T1), and the third pipe is between the outer pipe (T2) and the middle pipe (T3). Each has a basic compound solution in circulation.

図6に示す形態では、合流部Jにおいて、銅塩溶液と塩基性化合物溶液との間には第三液が存在する。第三液としては水、有機溶媒、酸性化合物溶液、銅塩溶液、塩基性化合物溶液、分散安定剤を含む溶液およびこれらの混合液が挙げられる。
第三液として水を用いた場合、銅と塩基とが高濃度で接触することを避けることができ、反応液の濃度ムラが緩和できる。
第三液として酸性溶液(例えば塩酸、硫酸、硝酸、あるいは酢酸等のカルボン酸化合物の溶液)を用いた場合には、反応液のpHを制御することが可能となる。
第三液として分散安定剤を含む溶液を使用した場合、生成する酸化第二銅の粒子成長を制御して形状を調節したり、粒子サイズや分散安定性を制御したりすることが可能となる。この分散安定剤としては特に制限はなく、分散安定剤として機能しうる公知の化合物を使用することができ、例えば、エチレングリコールなどのジオール、オレイン酸、オレイン酸塩などのカルボン酸、オレイルアミン、オレイルアミン塩などのアミン、チオールを持つ化合物、ゼラチンなどの高分子化合物、そのほか一般的な有機溶媒を使用することができる。
In the form shown in FIG. 6, a third liquid exists between the copper salt solution and the basic compound solution at the junction J. Examples of the third liquid include water, an organic solvent, an acidic compound solution, a copper salt solution, a basic compound solution, a solution containing a dispersion stabilizer, and a mixture thereof.
When water is used as the third liquid, it is possible to avoid contact between copper and the base at a high concentration, and the concentration unevenness of the reaction liquid can be alleviated.
When an acidic solution (for example, a solution of a carboxylic acid compound such as hydrochloric acid, sulfuric acid, nitric acid, or acetic acid) is used as the third liquid, the pH of the reaction liquid can be controlled.
When a solution containing a dispersion stabilizer is used as the third liquid, it is possible to adjust the shape by controlling the particle growth of the cupric oxide to be produced, and to control the particle size and dispersion stability. . The dispersion stabilizer is not particularly limited, and a known compound that can function as a dispersion stabilizer can be used. Examples thereof include diols such as ethylene glycol, carboxylic acids such as oleic acid and oleate, oleylamine, and oleylamine. An amine such as a salt, a compound having a thiol, a polymer compound such as gelatin, and other common organic solvents can be used.

図7の形態において、合流部Jで合流した銅塩溶液と水と塩基性化合物溶液は、層流の状態で反応流路(4)へと導入されて反応流路内を流通してもよいし、反応流路(4)内を流通しながら徐々に混じり合ってもよい。また、合流部Jで乱流を生じてすばやく混じり合い、反応流路(4)へと流れてもよい。
図7に示されるように、3層筒型ミキサーを用いて銅塩溶液と塩基性化合物溶液を合流する場合には、銅塩と塩基性化合物との接触がミキサー内の管外壁で生じないため、ミキサー内の管外壁には酸化銅が析出しない。そのため、フロー反応中の圧力上昇を抑えることができ、連続的な酸化第二銅の製造を、より安定的に実施することが可能となる。
In the form of FIG. 7, the copper salt solution, water, and basic compound solution merged at the junction J may be introduced into the reaction channel (4) in a laminar flow and flow through the reaction channel. However, it may be gradually mixed while circulating in the reaction channel (4). Further, a turbulent flow may be generated at the junction J to quickly mix and flow to the reaction channel (4).
As shown in FIG. 7, when the copper salt solution and the basic compound solution are merged using a three-layer cylindrical mixer, the contact between the copper salt and the basic compound does not occur on the outer wall of the tube in the mixer. Copper oxide does not precipitate on the outer wall of the tube in the mixer. Therefore, the pressure rise during the flow reaction can be suppressed, and continuous production of cupric oxide can be more stably performed.

なお、図6〜8に示す実施形態において、銅塩溶液を外管(T2)と中管(T3)との間に流通させ、塩基性化合物溶液を内管(T1)内に流通させてもよく、この形態も本発明の製造方法の実施形態として好ましい。また、銅塩溶液を外管(T2)と中管(T3)との間に流通させ、塩基性化合物溶液を中管(T3)と内管(T1)との間に流通させ、且つ、銅塩溶液を内管に流通させる形態にしたり、塩基性化合物溶液を外管(T2)と中管(T3)との間に流通させ、銅塩溶液を中管(T3)と内管(T1)との間に流通させ、且つ、塩基性化合物溶液を内管に流通させる形態にすれば、銅塩溶液と塩基性化合物溶液との接触界面を大きくでき、合流後の拡散混合効率をより高めることができる。   In addition, in embodiment shown to FIGS. 6-8, even if it distribute | circulates a copper salt solution between an outer tube | pipe (T2) and a middle tube | pipe (T3), and distribute | circulates a basic compound solution in an inner tube | pipe (T1). This form is also preferable as an embodiment of the production method of the present invention. Further, the copper salt solution is circulated between the outer tube (T2) and the middle tube (T3), the basic compound solution is circulated between the middle tube (T3) and the inner tube (T1), and copper The salt solution is circulated through the inner tube, the basic compound solution is circulated between the outer tube (T2) and the middle tube (T3), and the copper salt solution is circulated between the middle tube (T3) and the inner tube (T1). If the basic compound solution is distributed in the inner tube, the contact interface between the copper salt solution and the basic compound solution can be increased, and the diffusion mixing efficiency after the merging can be further increased. Can do.

続いて、上述した実施形態における各部材の構成、及び酸化第二銅微粒子を生成する反応について順に説明する。   Subsequently, the structure of each member in the above-described embodiment and the reaction for generating cupric oxide fine particles will be described in order.

[合流領域の上流側流路]
本発明において、合流領域(3)の上流側に配設される流路(図1、3、6に示す実施形態においては第1流路(1)、第2流路(2)及び第3流路(10))の形状に特に制限はなく、通常は等価直径が0.1mm〜5cm程度(好ましくは0.1mm〜1cm)、長さが20cm〜50m程度のチューブが使用される。流路の断面形状に特に制限はなく、円形、楕円形の他、矩形、正方形等の多角形状であってもよい。配管内部に液溜りを生じにくくする観点から、流路の断面形状は円形であることがより好ましい。
本明細書において「等価直径(equivalent diameter)」は、相当(直)径とも呼ばれ、機械工学の分野で用いられる用語である。任意の管内断面形状の配管ないし流路に対し等価な円管を想定するとき、その等価円管の管内断面の直径を等価直径という。等価直径(deq)は、A:配管の管内断面積、p:配管のぬれぶち長さ(内周長)を用いて、deq=4A/pと定義される。円管に適用した場合、この等価直径は円管の管内断面の直径に一致する。等価直径は等価円管のデータを基に、その配管の流動あるいは熱伝達特性を推定するのに用いられ、現象の空間的スケール(代表的長さ)を表す。等価直径は、管内断面が一辺aの正四角形管ではdeq=4a/4a=a、一辺aの正三角形管ではdeq=a/31/2、流路高さhの平行平板間の流れではdeq=2hとなる(例えば、(社)日本機械学会編「機械工学事典」1997年、丸善(株)参照)。
流路を構成するチューブの材質も特に制限はなく、例えば、パーフルオロアルコキシアルカン(PFA)、テフロン(登録商標)、芳香族ポリエーテルケトン系樹脂、ステンレス、銅(又はその合金)、ニッケル(又はその合金)、チタン(又はその合金)、石英ガラス、ライムソーダガラスなどが挙げられる。可撓性、耐薬品性の観点からチューブの材質はPFA、テフロン(登録商標)、ステンレス、ニッケル合金(ハステロイ)又はチタンが好ましい。
[Upstream flow path of merging area]
In the present invention, the flow path (in the embodiment shown in FIGS. 1, 3 and 6, the first flow path (1), the second flow path (2), and the third flow path disposed on the upstream side of the merging region (3). The shape of the flow path (10) is not particularly limited, and a tube having an equivalent diameter of about 0.1 mm to 5 cm (preferably 0.1 mm to 1 cm) and a length of about 20 cm to 50 m is usually used. The cross-sectional shape of the channel is not particularly limited, and may be a polygonal shape such as a rectangle or a square in addition to a circle or an ellipse. From the viewpoint of making it difficult for a liquid pool to occur inside the pipe, the cross-sectional shape of the flow path is more preferably circular.
In this specification, “equivalent diameter” is also referred to as equivalent diameter and is a term used in the field of mechanical engineering. When an equivalent circular pipe is assumed for a pipe or flow passage having an arbitrary cross-sectional shape in the pipe, the diameter of the cross-section in the pipe of the equivalent circular pipe is called an equivalent diameter. The equivalent diameter (d eq ) is defined as d eq = 4 A / p using A: pipe cross-sectional area of the pipe and p: wetting length (inner peripheral length) of the pipe. When applied to a circular pipe, this equivalent diameter corresponds to the diameter of the cross-section of the circular pipe. The equivalent diameter is used to estimate the flow or heat transfer characteristics of the pipe based on the data of the equivalent circular pipe, and represents the spatial scale (typical length) of the phenomenon. The equivalent diameter is d eq = 4a 2 / 4a = a for a regular square tube with one side a in the tube cross section, d eq = a / 3 1/2 for a regular triangle tube with one side a, and between parallel plates with a channel height h In this flow, d eq = 2h (for example, see “Mechanical Engineering Encyclopedia” edited by the Japan Society of Mechanical Engineers, 1997, Maruzen Co., Ltd.).
The material of the tube constituting the flow path is not particularly limited. For example, perfluoroalkoxyalkane (PFA), Teflon (registered trademark), aromatic polyetherketone resin, stainless steel, copper (or an alloy thereof), nickel (or Alloy thereof), titanium (or alloy thereof), quartz glass, lime soda glass, and the like. From the viewpoint of flexibility and chemical resistance, the material of the tube is preferably PFA, Teflon (registered trademark), stainless steel, nickel alloy (Hastelloy) or titanium.

[T字型ミキサー]
T字型ミキサー(3a)は、T字管の構造体である。T字型ミキサーは上述したように、図1の実施形態において用いられる。T字型ミキサーにおいて、T字型ミキサーが有する3つの開口部(図2のA、B、O)のうち、第1流路が接続される開口部は任意の1つである。また、第2流路が接続される接続部は、第1流路が接続される開口部を除く2つの開口部のうちいずれでもよい。好ましくは、第1流路と第2流路は、それぞれ、T字ミキサーの互いに対向する開口部(すなわち図2における開口部A及びB)に接続されることが好ましい。
[T-shaped mixer]
The T-shaped mixer (3a) is a T-tube structure. The T-shaped mixer is used in the embodiment of FIG. 1 as described above. In the T-shaped mixer, among the three openings (A, B, and O in FIG. 2) of the T-shaped mixer, the opening to which the first flow path is connected is an arbitrary one. Moreover, the connection part to which the second flow path is connected may be any of the two opening parts excluding the opening part to which the first flow path is connected. Preferably, each of the first flow path and the second flow path is preferably connected to openings facing each other of the T-shaped mixer (that is, openings A and B in FIG. 2).

T字型ミキサーの材質に特に制限はなく、例えば、パーフルオロアルコキシアルカン(PFA)、テフロン(登録商標)、芳香族ポリエーテルケトン系樹脂、ステンレス、銅(又はその合金)、ニッケル(又はその合金)、チタン(又はその合金)、石英ガラス、ライムソーダガラスなどの材質からなるものを用いることができる。
T字ミキサーの開口部の断面形状に特に制限はなく、円形、楕円形の他、矩形、正方形等の多角形状であってもよい。ミキサー内部で液の滞留を生じにくくする観点から、T字ミキサーの管の断面形状は円形であることがより好ましい。
The material of the T-shaped mixer is not particularly limited. For example, perfluoroalkoxyalkane (PFA), Teflon (registered trademark), aromatic polyether ketone resin, stainless steel, copper (or an alloy thereof), nickel (or an alloy thereof) ), Titanium (or an alloy thereof), quartz glass, lime soda glass, or the like can be used.
The cross-sectional shape of the opening of the T-shaped mixer is not particularly limited, and may be a polygonal shape such as a rectangle or a square in addition to a circle or an ellipse. From the viewpoint of making it difficult for liquid to stay inside the mixer, it is more preferable that the cross-sectional shape of the tube of the T-shaped mixer is circular.

T字型ミキサーの開口部の等価直径は、混合性能、圧損等の観点から0.1mm〜5mmが好ましく、0.2mm〜2mmがより好ましい。T字ミキサーの3つの開口部の等価直径は同一でも異なっていてもよい。   The equivalent diameter of the opening of the T-shaped mixer is preferably 0.1 mm to 5 mm, more preferably 0.2 mm to 2 mm from the viewpoint of mixing performance, pressure loss, and the like. The equivalent diameters of the three openings of the T-shaped mixer may be the same or different.

本発明に用いうるT字型ミキサーの市販品としては、例えば、ユニオン・ティー(Swagelok社製)、ロー・デット・ボリューム型ユニオン・ティー(Swagelok社製)、ティーユニオン(Upchurch社製)、3方ジョイント(東京理化機械株式社製)、マイクロボリュームコネクタ(VICI社製)、及びナノボリュームフィッティング(VICI社製)を挙げることができる。   Examples of commercially available T-shaped mixers that can be used in the present invention include union tee (manufactured by Swagelok), low dead volume union tee (manufactured by Swagelok), tea union (manufactured by Upchurch), 3 One way joint (Tokyo Rika Machine Co., Ltd.), micro volume connector (VICI company), and nanovolume fitting (VICI company) can be mentioned.

[多層筒型ミキサー]
本発明において、銅塩溶液と塩基性化合物溶液とを合流する合流領域(3)には、多層筒型ミキサーを用いることができる。図3〜8には、上述したように多層筒型ミキサーとして2層筒型ミキサー(3b)及び3層筒型ミキサー(3c)を用いた実施形態を示す。本発明の製造方法において、合流領域(3)には、4層以上の多層筒型ミキサーを用いてもよい。図4及び7に示されるように、多層筒型ミキサーは、管と管との間に流路が形成される態様の多層構造の管と、最小管(内管)よりも外側の流路(内管と外管との間の流路)に液を導入するための導入口を備えた構造体である。多層筒型ミキサーにおいて、銅塩溶液を流通させる流路と塩基性化合物溶液を流通させる流路は隣接していてもよいし、銅塩溶液を流通させる流路と塩基性化合物溶液を流通させる流路との間の流路に、混合、反応および生成粒子の分散状態を調整する役割をする第三液(水、有機溶媒、酸などのpH調整剤、分散剤溶液、第二の銅塩溶液、第二の塩基性化合物溶液等)を流通させてもよい。
多層筒型ミキサーを用いることにより、図4及び7に示すように、ミキサー内に導入された各溶液を、ミキサーの下流に向けて層流として合流させることができる。層流となって合流した各溶液は、そのまま層流の状態で反応流路内をと流れてもよいし、合流後すぐに、あるいは徐々に、乱流により混じり合って反応流路内を流れてもよい。
[Multi-layer cylindrical mixer]
In the present invention, a multi-layer cylindrical mixer can be used in the merge region (3) where the copper salt solution and the basic compound solution are merged. 3 to 8 show an embodiment in which the two-layer cylindrical mixer (3b) and the three-layer cylindrical mixer (3c) are used as the multilayer cylindrical mixer as described above. In the production method of the present invention, a multi-layered cylindrical mixer having four or more layers may be used for the merge region (3). As shown in FIGS. 4 and 7, the multi-layer cylindrical mixer includes a tube having a multilayer structure in which a flow path is formed between the pipes and a flow path (outer than the smallest pipe (inner pipe)) ( It is a structure provided with an inlet for introducing a liquid into the flow path between the inner tube and the outer tube. In the multilayer cylindrical mixer, the flow path for circulating the copper salt solution and the flow path for flowing the basic compound solution may be adjacent to each other, or the flow path for circulating the basic compound solution and the flow path for circulating the copper salt solution. Third liquid (water, organic solvent, pH adjuster such as acid, dispersant solution, second copper salt solution that plays a role in adjusting the mixing, reaction and dispersion state of the generated particles in the flow path between the two , A second basic compound solution, etc.) may be circulated.
By using a multilayer cylindrical mixer, as shown in FIGS. 4 and 7, the solutions introduced into the mixer can be combined as a laminar flow toward the downstream of the mixer. The solutions that have joined together in a laminar flow may flow in the reaction channel in a laminar state as they are, or immediately after merging or gradually mixed by turbulent flow and flow in the reaction channel. May be.

多層筒型ミキサーの材質に特に制限はなく、例えば、パーフルオロアルコキシアルカン(PFA)、テフロン(登録商標)、芳香族ポリエーテルケトン系樹脂、ステンレス、銅(又はその合金)、ニッケル(又はその合金)、チタン(又はその合金)、石英ガラス、ライムソーダガラスなどの材質からなるものを用いることができる。
多層筒型ミキサーの管ないし開口部の断面形状に特に制限はなく、円形、楕円形の他、矩形、正方形等の多角形状であってもよい。ミキサー内部で液の滞留が起こりにくいという観点から、多層筒型ミキサーの管の断面形状は円形であることがより好ましい。
There are no particular restrictions on the material of the multilayer cylindrical mixer, for example, perfluoroalkoxyalkane (PFA), Teflon (registered trademark), aromatic polyetherketone resin, stainless steel, copper (or an alloy thereof), nickel (or an alloy thereof) ), Titanium (or an alloy thereof), quartz glass, lime soda glass, or the like can be used.
There is no particular limitation on the cross-sectional shape of the pipe or opening of the multilayer cylindrical mixer, and it may be a polygonal shape such as a rectangle or a square in addition to a circle or an ellipse. From the standpoint that liquid does not easily stay inside the mixer, the cross-sectional shape of the tube of the multilayer cylindrical mixer is more preferably circular.

多層筒型ミキサーの最小筒(内管)の等価直径は0.1mm〜50mmが好ましく、0.2mm〜10mmがより好ましい。また、最外筒(外管)の等価直径は、層構成の数にもよるが、通常は1mm〜100mmであり、3mm〜30mmとすることが好ましい。最小筒と最外筒の間の中管の等価直径は、内管と外管の等価直径に基づき適宜に調節することができる。   The equivalent diameter of the smallest cylinder (inner pipe) of the multilayer cylindrical mixer is preferably 0.1 mm to 50 mm, more preferably 0.2 mm to 10 mm. The equivalent diameter of the outermost cylinder (outer tube) is usually 1 mm to 100 mm, preferably 3 mm to 30 mm, although it depends on the number of layer structures. The equivalent diameter of the middle tube between the smallest tube and the outermost tube can be appropriately adjusted based on the equivalent diameter of the inner tube and the outer tube.

本発明に用いうる多層筒型ミキサーは、例えば、ボアード・スルー・ユニオンティー(Swagelok社製)等の継ぎ手と、任意の内径および外形の配管を組み合わせて製造することができる。また、特開2006−96569号公報に記載の構造物など、公知の構造物を多層筒型ミキサーとして用いることができる。   The multi-layer cylindrical mixer that can be used in the present invention can be manufactured by combining a joint such as bored through union tee (manufactured by Swagelok) and a pipe having an arbitrary inner diameter and outer shape. In addition, a known structure such as the structure described in JP-A-2006-96569 can be used as a multilayer cylindrical mixer.

[反応流路]
合流領域(3)で合流した溶液は、反応流路(4)内を流通する。合流後から反応流路内流通時に、銅塩と塩基性化合物が反応して水酸化銅が生成し、続く加熱下での脱水反応により酸化第二銅が微粒子状に析出する。
反応流路(4)はチューブ状であることが好ましい。反応流路(4)として、通常は等価直径が0.1mm〜5cm程度(好ましくは0.1mm〜1cm)、長さが20cm〜50m程度のチューブが使用される。反応流路(4)の断面形状に特に制限はなく、円形、楕円形、矩形、正方形等のいずれの形状であってもよい。配管内部の液溜りが生じにくくする観点から、T字ミキサーの管の断面形状は円形であることがより好ましい。
反応流路(4)を構成するチューブの材質も特に制限はなく、例えば、パーフルオロアルコキシアルカン(PFA)、テフロン(登録商標)、芳香族ポリエーテルケトン系樹脂、ステンレス、銅(又はその合金)、ニッケル(又はその合金)、チタン(又はその合金)、石英ガラス、ライムソーダガラスなどが挙げられる。可撓性、耐薬品性の観点からチューブの材質はPFA、テフロン(登録商標)、ステンレス、ニッケル合金(ハステロイ)又はチタンが好ましい。
[Reaction channel]
The solution merged in the merge region (3) flows through the reaction channel (4). The copper salt and the basic compound react to form copper hydroxide during the circulation in the reaction channel after the merge, and cupric oxide precipitates in the form of fine particles by the subsequent dehydration reaction under heating.
The reaction channel (4) is preferably tubular. As the reaction channel (4), a tube having an equivalent diameter of about 0.1 mm to 5 cm (preferably 0.1 mm to 1 cm) and a length of about 20 cm to 50 m is usually used. The cross-sectional shape of the reaction channel (4) is not particularly limited, and may be any shape such as a circle, an ellipse, a rectangle, and a square. From the viewpoint of making it difficult for liquid accumulation inside the pipe to occur, the cross-sectional shape of the pipe of the T-shaped mixer is more preferably circular.
The material of the tube constituting the reaction channel (4) is not particularly limited. For example, perfluoroalkoxyalkane (PFA), Teflon (registered trademark), aromatic polyetherketone resin, stainless steel, copper (or an alloy thereof). Nickel (or an alloy thereof), titanium (or an alloy thereof), quartz glass, lime soda glass, and the like. From the viewpoint of flexibility and chemical resistance, the material of the tube is preferably PFA, Teflon (registered trademark), stainless steel, nickel alloy (Hastelloy) or titanium.

[酸化第二銅微粒子の生成反応]
上記合流領域(3)で合流した銅塩溶液中の銅塩と塩基性化合物溶液中の塩基性化合物は、反応流路(4)内を流通しながら反応して水酸化銅を生じ、次いで加熱下で脱水されて酸化第二銅を生成する。この酸化第二銅は反応流路内の溶液中に微粒子状に析出する。反応流路内において生成した酸化第二銅微粒子は、酸化第二銅微粒子分散液として、回収容器7内に回収される。
[Production reaction of cupric oxide fine particles]
The copper salt in the copper salt solution and the basic compound in the basic compound solution merged in the merging region (3) react while flowing through the reaction channel (4) to produce copper hydroxide, and then heated. Dehydrated below to form cupric oxide. The cupric oxide is deposited in the form of fine particles in the solution in the reaction channel. The cupric oxide fine particles generated in the reaction channel are recovered in the recovery container 7 as a cupric oxide fine particle dispersion.

本発明に用いる銅塩としては、銅塩溶液の溶媒に溶解すれば特に制限はない。例えば、硝酸銅(II)、塩化銅(II)、臭化銅(II)、ヨウ化銅(II)、硫酸銅(II)、ギ酸銅(II)、酢酸銅(II)、プロピオン酸銅(II)、イソ酪酸銅(II)、オレイン酸銅(II)、クエン酸銅(II)、フタル酸銅(II)、シュウ酸銅(II)、酒石酸銅(II)、塩基性炭酸銅、及び塩基性硫酸銅、これら銅塩の水和物、銅の無機化合物錯体(例えばテトラアンミン銅錯体)、並びに銅の有機化合物錯体(例えば銅アセチルアセトナート)から選ばれる銅塩を使用することができる。中でも水に対する溶解度の高い銅塩が好ましく、硝酸銅(II)及び硝酸銅(II)3水和物から選ばれる銅塩を用いることがより好ましい。   There is no restriction | limiting in particular as a copper salt used for this invention, if it melt | dissolves in the solvent of a copper salt solution. For example, copper nitrate (II), copper chloride (II), copper bromide (II), copper iodide (II), copper sulfate (II), copper formate (II), copper acetate (II), copper propionate ( II), copper (II) isobutyrate, copper (II) oleate, copper (II) citrate, copper (II) phthalate, copper (II) oxalate, copper (II) tartrate, basic copper carbonate, and Copper salts selected from basic copper sulfate, hydrates of these copper salts, copper inorganic compound complexes (for example, tetraammine copper complexes), and copper organic compound complexes (for example, copper acetylacetonate) can be used. Among them, a copper salt having high solubility in water is preferable, and a copper salt selected from copper nitrate (II) and copper nitrate (II) trihydrate is more preferable.

本発明に用いる塩基性化合物としては、銅塩と塩交換を行い、水酸化銅を生成することが出来れば特段の限定は無く、例えば、水酸化リチウム(LiOH)、水酸化ナトリウム(NaOH)、水酸化カリウム(KOH)、アンモニア、メチルアミン、ジメチルアミン、トリメチルアミン、テトラメチルアミンヒドロキシド、エチルアミン、ジエチルアミン、トリエチルアミン、及びテトラエチルアミンヒドロキシドから選ばれる塩基性化合物を使用することが出来る。   The basic compound used in the present invention is not particularly limited as long as it can exchange salt with a copper salt to produce copper hydroxide, such as lithium hydroxide (LiOH), sodium hydroxide (NaOH), A basic compound selected from potassium hydroxide (KOH), ammonia, methylamine, dimethylamine, trimethylamine, tetramethylamine hydroxide, ethylamine, diethylamine, triethylamine, and tetraethylamine hydroxide can be used.

上記銅塩溶液及び塩基性化合物溶液に用いる溶媒は、銅塩および塩基性化合物を溶解することが出来れば特に限定されず、水、有機溶媒、あるいは水と有機溶媒の混合物を用いることが出来る。
有機溶媒は水溶性有機溶媒が好ましく、具体例として、メタノール、エタノールなどのアルコール、アセトン、メチルエチルケトンなどのケトン、テトラヒドロフランが挙げられる。
また、分子中に2個以上の水酸基を持つエチレングリコール、ジエチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、ペンタンジオール、ヘキサンジオール、オクタンジオール、ポリエチレングリコール、グリセロールなども使用できる。
上記銅塩溶液及び塩基性化合物溶液に用いる溶媒は、水又はジオール水溶液が好ましく、水がより好ましい。すなわち、銅塩溶液及び塩基性化合物溶液は、それぞれ銅塩水溶液及び塩基性化合物水溶液であることが好ましい。上記銅塩水溶液及び塩基性化合物水溶液に用いる水は、抵抗値18MΩ以上の超純水が好ましい。
The solvent used for the copper salt solution and the basic compound solution is not particularly limited as long as it can dissolve the copper salt and the basic compound, and water, an organic solvent, or a mixture of water and an organic solvent can be used.
The organic solvent is preferably a water-soluble organic solvent, and specific examples thereof include alcohols such as methanol and ethanol, ketones such as acetone and methyl ethyl ketone, and tetrahydrofuran.
In addition, ethylene glycol, diethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butane having two or more hydroxyl groups in the molecule Diol, 2,3-butanediol, pentanediol, hexanediol, octanediol, polyethylene glycol, glycerol and the like can also be used.
The solvent used for the copper salt solution and the basic compound solution is preferably water or an aqueous diol solution, and more preferably water. That is, the copper salt solution and the basic compound solution are preferably a copper salt aqueous solution and a basic compound aqueous solution, respectively. The water used for the copper salt aqueous solution and the basic compound aqueous solution is preferably ultrapure water having a resistance value of 18 MΩ or more.

銅塩と塩基性化合物とが反応すると水酸化銅が生成する。この反応は、銅塩として硝酸銅(II)、塩基性化合物として水酸化ナトリウムを用いた場合を例にとると下記式(i)で表される。
Cu(NO+2NaOH → Cu(OH)+2NaNO 式(i)
When the copper salt reacts with the basic compound, copper hydroxide is generated. This reaction is represented by the following formula (i) when copper (II) nitrate is used as the copper salt and sodium hydroxide is used as the basic compound.
Cu (NO 3 ) 2 + 2NaOH → Cu (OH) 2 + 2NaNO 3 formula (i)

上記で生成した水酸化銅は、続いて加熱下で脱水され、酸化第二銅が微粒子状に析出する。この反応は下記式(ii)で表される。
Cu(OH) → CuO+HO 式(ii)
The copper hydroxide produced above is subsequently dehydrated under heating, and cupric oxide is deposited in the form of fine particles. This reaction is represented by the following formula (ii).
Cu (OH) 2 → CuO + H 2 O Formula (ii)

上記式(ii)の脱水反応は、高温下で効率的に進行する。そのため本発明の製造方法では、銅塩と塩基性化合物との反応(すなわち、銅塩と塩基性化合物との接触から酸化第二銅の生成までの反応)を70℃以上(より好ましくは80℃以上、さらに好ましくは90℃以上、さらに好ましくは90〜100℃)で実施することが好ましい。すなわち、図1、3及び6に示されるように合流部(3)から反応流路にかけて、加熱領域(8)を設けることが好ましい。加熱領域(8)は、ウォーターバス、オイルバス、恒温槽等を用いて設けることができる。反応温度を80℃以上とすることで、得られる酸化第二銅微粒子による2次凝集塊の形成を抑えることができる。   The dehydration reaction of the above formula (ii) proceeds efficiently at high temperatures. Therefore, in the production method of the present invention, the reaction between the copper salt and the basic compound (that is, the reaction from the contact between the copper salt and the basic compound to the production of cupric oxide) is 70 ° C. or higher (more preferably 80 ° C.). As described above, it is preferable to carry out at 90 ° C. or higher, more preferably 90 to 100 ° C. That is, as shown in FIGS. 1, 3 and 6, it is preferable to provide a heating region (8) from the junction (3) to the reaction channel. A heating area | region (8) can be provided using a water bath, an oil bath, a thermostat, etc. By setting the reaction temperature to 80 ° C. or higher, formation of secondary agglomerates due to the obtained cupric oxide fine particles can be suppressed.

上記式(i)で生成するCu(OH)はゲル化しやすいため、Cu(OH)が生成する反応をフロー式反応系に適用すると流路が閉塞しやすくなることが考えられる。しかし、本発明者らが実際に上記反応をフロー式反応系に適用してみると、生成したCu(OH)を素早く脱水して酸化第二銅へと変換することができ、酸化第二銅を安定的に、連続的に製造する反応系を構築できることがわかった。 Since Cu (OH) 2 produced by the above formula (i) is easily gelled, it is conceivable that the flow path is likely to be blocked when the reaction produced by Cu (OH) 2 is applied to a flow reaction system. However, when the present inventors actually applied the above reaction to a flow reaction system, the produced Cu (OH) 2 can be quickly dehydrated and converted into cupric oxide. It was found that a reaction system capable of stably and continuously producing copper can be constructed.

また、得られる酸化第二銅微粒子分散物の熟成(粒子成長)を抑制するために、加熱領域(8)の下流側に位置する反応流路を冷却領域(9)内に設置することが好ましい。冷却領域の温度は0〜30℃とすることが好ましい。冷却領域(9)は、例えば反応流路を水冷する領域とすることができる。   Moreover, in order to suppress the aging (particle growth) of the obtained cupric oxide fine particle dispersion, it is preferable to install a reaction channel located downstream of the heating region (8) in the cooling region (9). . The temperature in the cooling region is preferably 0 to 30 ° C. The cooling region (9) can be, for example, a region for cooling the reaction channel with water.

本発明の製造方法では、第1流路内を流通する銅塩溶液と第2流路内を流通する塩基性化合物溶液とが合流する合流部(合流部J)において、銅塩に対する塩基性化合物の反応モル比を、[塩基性化合物]/[銅塩]≧1.5とする。
ここで合流部Jにおける銅塩に対する塩基性化合物の反応モル比とは、単位時間当たりに第1流路を流通してきた銅塩溶液と、同じく単位時間当たりに第2流路を流通してきた塩基性化合物溶液とが均質に混じり合った状態を想定し、この均質に混じり合った状態の溶液中における、銅塩のモル量に対する塩基性化合物のモル量の比を意味する。上記モル比は以下に示す式によって得られる。なお、銅塩溶液および塩基性化合物溶液が2以上の複数の流路に導入され流通する場合は、銅塩溶液が流通する各流路の合算値と、塩基性化合物溶液が流通する各流路の合算値を用いる。

[Y×Z×V]/[W×X]≧1.5

W:第1流路内を流通する銅(II)塩溶液濃度(mol/L)
X:第1流路内を流通する銅(II)塩溶液の流速(mL/min)
Y:第2流路内を流通する塩基性化合物溶液濃度(mol/L)
Z:第2流路内を流通する塩基性化合物溶液の流速(mL/min)
V:第2流路内を流通する塩基性化合物の価数

「塩基性化合物の価数」とは塩基性化合物溶液の溶質である塩基性化合物1分子が受容できるプロトンの数、または1分子が放出できる水酸化物イオンの数である。例えば、水酸化ナトリウムやアンモニアは1価(価数1)、水酸化カルシウムやエチレンジアミンは2価(価数2)である。
In the production method of the present invention, the basic compound for the copper salt at the junction (junction J) where the copper salt solution flowing in the first flow path and the basic compound solution flowing in the second flow path merge. The reaction molar ratio is [basic compound] / [copper salt] ≧ 1.5.
Here, the reaction molar ratio of the basic compound to the copper salt at the junction J is the copper salt solution that has circulated through the first channel per unit time, and the base that has also circulated through the second channel per unit time. Assuming a state in which the organic compound solution is homogeneously mixed, it means the ratio of the molar amount of the basic compound to the molar amount of the copper salt in the homogeneously mixed solution. The molar ratio is obtained by the following formula. When the copper salt solution and the basic compound solution are introduced and circulated into two or more flow paths, the total value of each flow path through which the copper salt solution circulates and each flow path through which the basic compound solution circulates. The total value of is used.

[Y × Z × V] / [W × X] ≧ 1.5

W: Concentration of copper (II) salt solution flowing in the first flow path (mol / L)
X: Flow rate of the copper (II) salt solution flowing in the first flow path (mL / min)
Y: Concentration of basic compound solution flowing in second channel (mol / L)
Z: Flow rate of basic compound solution flowing in second channel (mL / min)
V: Valency of basic compound flowing in second channel

The “valence of the basic compound” is the number of protons that can be accepted by one molecule of the basic compound that is the solute of the basic compound solution, or the number of hydroxide ions that can be released by one molecule. For example, sodium hydroxide and ammonia are monovalent (valence 1), and calcium hydroxide and ethylenediamine are divalent (valence 2).

本発明の製造方法では、合流部Jにおける塩基性化合物と銅塩とのモル比を調節することにより、得られる酸化第二銅微粒子の形状を所望の形状に制御することができる。例えば、合流部Jにおける塩基性化合物と銅塩とのモル比([塩基性化合物]/[銅塩])が小さければ、球状の酸化第二銅微粒子が得られ、上記モル比を大きくすることにより、棒状の酸化第二銅微粒子が得られ、上記モル比をさらに大きくすることにより、板状の酸化第二銅微粒子を得ることができる。通常、合流部Jにおける塩基性化合物と銅塩とのモル比を、[塩基性化合物]/[銅塩]≧2.5とすることにより、得られる酸化第二銅微粒子の形状を棒状ないし板状とすることができる。
また、合流部Jにおける塩基性化合物と銅塩とのモル比([塩基性化合物]/[銅塩])の上限に特に制限はないが、[塩基性化合物]/[銅塩]≦30が好ましく、[塩基性化合物]/[銅塩]≦20がより好ましく、[塩基性化合物]/[銅塩]≦12がさらに好ましい。
In the production method of the present invention, the shape of the obtained cupric oxide fine particles can be controlled to a desired shape by adjusting the molar ratio of the basic compound and the copper salt in the junction J. For example, if the molar ratio ([basic compound] / [copper salt]) between the basic compound and the copper salt at the junction J is small, spherical cupric oxide fine particles are obtained, and the molar ratio is increased. Thus, rod-shaped cupric oxide fine particles can be obtained, and plate-shaped cupric oxide fine particles can be obtained by further increasing the molar ratio. Usually, by setting the molar ratio of the basic compound and the copper salt at the junction J to [basic compound] / [copper salt] ≧ 2.5, the shape of the cupric oxide fine particles obtained is a rod or plate. Can be used.
Moreover, there is no particular limitation on the upper limit of the molar ratio of the basic compound and the copper salt ([basic compound] / [copper salt]) at the junction J, but [basic compound] / [copper salt] ≦ 30. Preferably, [basic compound] / [copper salt] ≦ 20 is more preferable, and [basic compound] / [copper salt] ≦ 12 is more preferable.

本発明の製造方法において、合流部の上流側の流路を流通する液の流速、及び反応流路を流通する溶液の流速に特に制限はなく、流路の等価直径、長さ等により適宜に調節される。例えば、上記各流路に流通する液の流速を1mL/min〜1000mL/minとすることができ、2mL/min〜400mL/minとすることが好ましい。また、上記流速を3mL/min〜200mL/minとすることも好ましく、4mL/min〜100mL/minとすることも好ましく、4mL〜50mL/minとすることも好ましく、5mL/min〜30mL/minとしてもよい。また、合流部の上流側の各流路に流通する液の流速は、各流路の間で同じであってもよいし、流路毎に異なる流速としてもよい。   In the production method of the present invention, there is no particular limitation on the flow rate of the liquid flowing through the flow channel upstream of the junction and the flow rate of the solution flowing through the reaction flow channel, and may be appropriately determined according to the equivalent diameter, length, etc. of the flow channel. Adjusted. For example, the flow rate of the liquid flowing through each of the flow paths can be 1 mL / min to 1000 mL / min, and preferably 2 mL / min to 400 mL / min. The flow rate is preferably 3 mL / min to 200 mL / min, preferably 4 mL / min to 100 mL / min, more preferably 4 mL to 50 mL / min, and 5 mL / min to 30 mL / min. Also good. In addition, the flow rate of the liquid flowing through each flow channel on the upstream side of the merging portion may be the same among the flow channels, or may be different for each flow channel.

合流部の上流側の流路を流通する液の線速度、及び反応流路を流通する溶液の線速度は、2〜10000mm/secとすることが好ましく、20〜500mm/secとすることがより好ましい。
また、合流領域(3)に多層筒型ミキサーを配設した場合、この多層筒型ミキサーの最小筒(内管)を流通する溶液の線速度a1と、最小筒以外の筒を流通する溶液(すなわち、最小筒以外の筒と、この最小筒以外の筒と隣接する内側の筒との間を流通する溶液)の線速度b1の比が、a1/b1=0.005〜200を満たすことが好ましく、a1/b1=0.01〜100を満たすことがより好ましく、a1/b1=0.02〜50を満たすことがさらに好ましい。各筒を流通する溶液の線速度を上記好ましい範囲内とすることで、送液時の圧力損失が低減でき、各液を安定的に流通させることが出来る。
また、合流領域(3)に2層筒型ミキサーを配設した場合、この2層筒型ミキサーの最小筒(内管)を流通する溶液の線速度a2と、最小筒以外の筒(外管)を流通する溶液(すなわち、外管と内管との間を流通する溶液)の線速度b2の比が、a2/b2=0.02〜50を満たすことが好ましく、a2/b2=0.05〜20を満たすことがより好ましく、a2/b2=0.1〜10を満たすことがさらに好ましい。各筒を流通する溶液の線速度を上記好ましい範囲内とすることで、送液時の圧力損失が低減でき、それぞれの液を安定して流通させることができる。
The linear velocity of the liquid flowing through the flow path upstream of the junction and the linear velocity of the solution flowing through the reaction flow path are preferably 2 to 10000 mm / sec, more preferably 20 to 500 mm / sec. preferable.
In addition, when a multilayer cylindrical mixer is disposed in the merging region (3), the linear velocity a1 of the solution flowing through the minimum cylinder (inner pipe) of the multilayer cylindrical mixer and the solution flowing through the cylinders other than the minimum cylinder ( That is, the ratio of the linear velocity b1 between the cylinder other than the minimum cylinder and the inner cylinder adjacent to the cylinder other than the minimum cylinder satisfies a1 / b1 = 0.005 to 200. Preferably, it is more preferable to satisfy a1 / b1 = 0.01-100, and it is further more preferable to satisfy a1 / b1 = 0.02-50. By setting the linear velocity of the solution flowing through each cylinder within the above preferable range, the pressure loss at the time of liquid feeding can be reduced, and each liquid can be distributed stably.
Further, when a two-layer cylindrical mixer is disposed in the merging region (3), the linear velocity a2 of the solution flowing through the minimum cylinder (inner pipe) of the two-layer cylindrical mixer and a cylinder other than the minimum cylinder (outer pipe) ) (That is, a solution flowing between the outer tube and the inner tube) preferably satisfies a2 / b2 = 0.02 to 50, and a2 / b2 = 0. It is more preferable to satisfy | fill 05-20, and it is still more preferable to satisfy | fill a2 / b2 = 0.1-10. By setting the linear velocity of the solution flowing through each cylinder within the above preferable range, the pressure loss at the time of liquid feeding can be reduced, and each liquid can be stably distributed.

本発明の製造方法において、第1流路内を流通させる銅塩溶液の濃度に特に制限はないが、希薄である場合、生成する酸化銅(II)の含有量が低下し、粒子の濃縮回収プロセスの負荷が増大するおそれがあり、一方濃厚である場合には、液の粘度が上昇し、ミキサーでの混合性が悪化する場合がある。したがって、上記銅塩溶液の濃度は10〜5000mMが好ましく、20〜1000mMがより好ましい。
また、同様の観点から、第2流路内を流通させる塩基性化合物溶液の濃度は、20〜10000mMが好ましく、40〜4000mMがより好ましい。
In the production method of the present invention, there is no particular limitation on the concentration of the copper salt solution that circulates in the first flow path, but when it is dilute, the content of the produced copper (II) oxide is reduced and the particles are concentrated and recovered. The process load may increase. On the other hand, when the concentration is high, the viscosity of the liquid increases and the mixing property in the mixer may deteriorate. Therefore, the concentration of the copper salt solution is preferably 10 to 5000 mM, and more preferably 20 to 1000 mM.
Further, from the same viewpoint, the concentration of the basic compound solution that circulates in the second flow path is preferably 20 to 10,000 mM, and more preferably 40 to 4000 mM.

本発明の製造方法で得られる酸化第二銅微粒子は、その一次粒子の三次元形状において、酸化第二銅微粒子に外接する平行二平面のうち、その距離が最大になる平行二平面の距離を長径とし、長径を与える平行二平面に直交し且つ酸化第二銅粒子に外接する平行二平面のうち、その距離が最小となる平行二平面の距離及び最大となる平行二平面の距離をそれぞれ短径及び中径とした場合、長径の平均値は5〜5000nmが好ましく、20〜1000nmがより好ましい。なお、酸化第二銅微粒子が球状の場合には、酸化第二銅微粒子に外接する平行二平面の距離はすべて同じであるため、長径、短径、中径との概念が当てはまらないが、後述する実施例では、酸化第二銅微粒子が球状の場合に、外接する平行二平面の距離を「長径」として表現している。
酸化第二銅微粒子の三次元形状は、透過型電子顕微鏡(TEM)によって観察し、これに基づき上記長径、短径ないし中径を測定し、その平均値を算出する。酸化第二銅粒子の三次元形状の観察は、TEMの倍率を20,000倍とし、観察される酸化第二銅粒子がそれぞれ独立した粒子(一次粒子)として識別可能な条件で行う。
本明細書において、長径の平均値とは、得られた酸化第二銅微粒子のTEM画像から一次粒子を無作為に20個選び、各一次粒子の長径を測定し、その総加平均値とする。また、短径の平均値とは、得られた酸化第二銅微粒子から一次粒子を任意に20個選び、各一次粒子の短径を測定し、その総加平均値とする。また、中径の平均値とは、得られた酸化第二銅微粒子から一次粒子を任意に20個選び、各一次粒子の中径を測定し、その総加平均値とする。
また、本発明の製造方法で得られる酸化第二銅微粒子の長径の平均値と短径の平均値の比([長径の平均値]/[短径の平均値])の値に特に制限はない。つまり、上述したように、合流部Jにおける銅塩のモル量と塩基性化合物のモル量を調節することにより、[長径の平均値]/[短径の平均値]が所望の値となる酸化第二銅微粒子を得ることができる。
酸化第二銅を基板配線の形成に用いる場合、酸化第二銅微粒子は球状であるよりも、棒状ないし板状であった方が、粒子同士の接触面積が増えて、得られる銅配線が導通しやすくなり有利である。この観点から、本発明の製造方法で得られる酸化第二銅微粒子の長径の平均値と短径の平均値の比は、[長径の平均値]/[短径の平均値]≧20が好ましく、[長径の平均値]/[短径の平均値]=30〜200がより好ましい。また、同様の観点から、[中径の平均値]/[短径の平均値]=1〜30が好ましく、[中径の平均値]/[短径の平均値]=2〜5がより好ましい。
In the three-dimensional shape of the primary particles, the cupric oxide fine particles obtained by the production method of the present invention have a parallel two-plane distance that maximizes the distance among the parallel two planes circumscribing the cupric oxide fine particles. Among the parallel two planes orthogonal to the parallel two planes that give the major axis and circumscribing the cupric oxide particles, the distance between the parallel two planes that minimizes the distance and the distance between the two parallel planes that maximize the distance are short. When it is set as a diameter and a medium diameter, 5-5000 nm is preferable and, as for the average value of a long diameter, 20-1000 nm is more preferable. In addition, when the cupric oxide fine particles are spherical, the distance between the parallel two planes circumscribing the cupric oxide fine particles is the same, so the concept of major axis, minor axis, and medium diameter does not apply. In this embodiment, when the cupric oxide fine particles are spherical, the distance between two parallel parallel planes is expressed as “major axis”.
The three-dimensional shape of the cupric oxide fine particles is observed with a transmission electron microscope (TEM), and based on this, the major axis, minor axis, or medium diameter is measured, and the average value is calculated. Observation of the three-dimensional shape of the cupric oxide particles is performed under the condition that the magnification of TEM is 20,000 times and the observed cupric oxide particles can be identified as independent particles (primary particles).
In this specification, the average value of the major axis means that 20 primary particles are randomly selected from the obtained TEM image of the cupric oxide fine particles, the major axis of each primary particle is measured, and the total average value thereof is obtained. . In addition, the average value of the short diameter is arbitrarily selected from 20 primary particles from the obtained cupric oxide fine particles, the short diameter of each primary particle is measured, and the total average value is obtained. In addition, the average value of the median diameter is arbitrarily selected from the obtained cupric oxide fine particles, and the median diameter of each primary particle is measured to obtain the total average value.
The ratio of the average value of the major axis and the average value of the minor axis of the cupric oxide fine particles obtained by the production method of the present invention ([average value of major axis] / [average value of minor axis]) is not particularly limited. Absent. That is, as described above, by adjusting the molar amount of the copper salt and the molar amount of the basic compound in the junction J, the [average value of major axis] / [average value of minor axis] becomes a desired value. Cupric fine particles can be obtained.
When cupric oxide is used to form the substrate wiring, the contact area between the particles increases when the cupric oxide fine particles are rod-shaped or plate-shaped rather than spherical, and the resulting copper wiring is conductive. It is easy to do and is advantageous. From this viewpoint, the ratio of the average value of the major axis to the average value of the minor axis of the cupric oxide fine particles obtained by the production method of the present invention is preferably [average value of major axis] / [average value of minor axis] ≧ 20. [Average value of major axis] / [Average value of minor axis] = 30 to 200 is more preferable. From the same viewpoint, [average value of medium diameter] / [average value of short diameter] = 1 to 30 is preferable, and [average value of medium diameter] / [average value of short diameter] = 2 to 5 is more preferable. preferable.

本発明の製造方法において、反応流路を通過してきた酸化第二銅微粒子の分散液(懸濁液)は酸化第二銅微粒子を0.1〜14質量%含有する形態とすることが好ましい。こうすることで、その後の精製、濃縮操作等の作業負担を減らすことができる。   In the production method of the present invention, it is preferable that the dispersion (suspension) of cupric oxide fine particles that have passed through the reaction channel contains 0.1 to 14% by mass of cupric oxide fine particles. By doing so, it is possible to reduce the work load of subsequent purification and concentration operations.

本発明の製造方法で得られる酸化第二銅微粒子の用途に特に制限はなく、例えば、基板配線形成用のメタルインク、無電解めっきの銅供給源、超伝導体などのセラミックス原料、顔料、着色剤、釉薬等、種々の用途に用いることができる。   There are no particular restrictions on the use of the cupric oxide fine particles obtained by the production method of the present invention, for example, metal ink for forming substrate wiring, copper source for electroless plating, ceramic raw materials such as superconductors, pigments, coloring It can be used for various applications such as agents and glazes.

以下に実施例に基づき本発明を更に詳細に説明するが、本発明はこれらの実施例により限定されるものではない。   The present invention will be described below in more detail based on examples, but the present invention is not limited to these examples.

[実施例1] フロー式反応による球状酸化第二銅微粒子の製造
<フロー式反応システムの構築>
図1に示す構成のフロー式反応システムを構築した。第1流路(1)、第2流路(2)、反応流路(4)として、SUS316製チューブを用いた。銅塩溶液導入手段(5)及び塩基性化合物溶液導入手段(6)として、シリンジポンプ(HARVARD社製 PHD ULTRA)を用い、各シリンジポンプに、銅塩水溶液が入ったシリンジ(容積100mL)及び塩基性化合物水溶液が入ったシリンジ(容積100mL)をそれぞれ装着する構成とした。
[Example 1] Production of spherical cupric oxide fine particles by flow-type reaction <Construction of flow-type reaction system>
A flow reaction system having the configuration shown in FIG. 1 was constructed. As the first channel (1), the second channel (2), and the reaction channel (4), SUS316 tubes were used. As the copper salt solution introduction means (5) and the basic compound solution introduction means (6), a syringe pump (PHD ULTRA manufactured by HARVARD) was used, and each syringe pump contained a syringe (volume 100 mL) containing a copper salt aqueous solution and a base. Each of the syringes (volume 100 mL) containing the aqueous solution of the active compound was mounted.

銅塩溶液が入ったシリンジの先端を、外径1/8In(3.18mm)、内径2.17mmの第1流路に接続した。また、塩基性化合物溶液が入ったシリンジの先端を、外径1/8In(3.18mm)、内径2.17mmの第2流路に接続した。第2流路には圧力計を設置し、送液中の流路内の圧力を測定できるようにした。
第1流路(1)のうち下流側領域は、長さ50cm、外径1/16In(1.59mm)、内径1mmの管をコイル状に巻いた構造とし、加熱領域(8、オイルバス)内に配設した。また、第2流路(2)のうち下流側領域も同様に、長さ50cm、外径1/16In(1.59mm)、内径1mmの管をコイル状に巻いた構造とし、加熱領域(8)内に配設した。
第1流路(1)及び第2流路(2)の下流側末端に内径0.5mmのT字型ミキサー(Upchrch社製)を設置し、銅塩溶液および塩基性化合物溶液が正面衝突するように、各流路とT字型ミキサー(商品名:ティーユニオン、Upchurch社製)の開口部(A及びB)とを接続した。T字型ミキサー残りの開口部Oを、コイル状に巻いた長さ2m、外径1/8In(3.18mm)、内径2.17mmの流路に接続してこの流路を加熱領域(8、ウォーターバス(20℃))内に設置し、さらにその下流に、コイル状に巻いた長さ1m、外径1/8In(3.18mm)、内径2.17mmの流路を接続し、冷却領域(9)内に設置した。冷却領域9の下流に回収容器(7)を設置し、反応液を回収する構成とした。
The tip of the syringe containing the copper salt solution was connected to a first channel having an outer diameter of 1/8 In (3.18 mm) and an inner diameter of 2.17 mm. In addition, the tip of the syringe containing the basic compound solution was connected to a second channel having an outer diameter of 1/8 In (3.18 mm) and an inner diameter of 2.17 mm. A pressure gauge was installed in the second flow path so that the pressure in the flow path during liquid feeding could be measured.
The downstream region of the first channel (1) has a structure in which a tube having a length of 50 cm, an outer diameter of 1 / 16In (1.59 mm) and an inner diameter of 1 mm is wound in a coil shape, and a heating region (8, oil bath) Arranged inside. Similarly, the downstream region of the second flow path (2) has a structure in which a tube having a length of 50 cm, an outer diameter of 1 / 16In (1.59 mm) and an inner diameter of 1 mm is wound in a coil shape, and the heating region (8 ).
A T-shaped mixer (manufactured by Upchrch) having an inner diameter of 0.5 mm is installed at the downstream end of the first channel (1) and the second channel (2), and the copper salt solution and the basic compound solution collide head-on. Thus, each flow path and the opening (A and B) of a T-shaped mixer (trade name: T Union, manufactured by Upchurch) were connected. The remaining opening O of the T-shaped mixer is connected to a flow channel having a length of 2 m, an outer diameter of 1/8 In (3.18 mm) and an inner diameter of 2.17 mm wound in a coil shape. , Installed in a water bath (20 ° C.), and further downstream is connected with a coiled length 1 m, outer diameter 1/8 In (3.18 mm), inner diameter 2.17 mm and cooling Installed in area (9). A collection container (7) was installed downstream of the cooling region 9 to collect the reaction solution.

<酸化第二銅微粒子の製造>
硝酸銅(II)3水和物0.73gを水に溶解させ、全量が100mlになるように水で希釈して硝酸銅水溶液(濃度28.6mM)を調製した。50%(質量/体積)水酸化ナトリウム水溶液の0.457mlを、全量が100mlになるように水で希釈して水酸化ナトリウム水溶液(濃度57.1mM)を調製した。
上記硝酸銅水溶液100mL及び水酸化ナトリウム水溶液100mLを、それぞれガラス製シリンジ(容積100mL)に充填し、上記フロー式反応システムのシリンジポンプにセットした。各液をそれぞれ5ml/minで送液した。このフロー式反応系において、加熱領域(8)の温度は90℃とした。反応流路を通過してきた液(黒色の微粒子懸濁液(分散液))を回収容器(容積250mlのポリエチレン容器)に100mL回収した。
<Production of cupric oxide fine particles>
Copper nitrate (II) trihydrate (0.73 g) was dissolved in water and diluted with water so that the total amount became 100 ml to prepare an aqueous copper nitrate solution (concentration: 28.6 mM). A sodium hydroxide aqueous solution (concentration 57.1 mM) was prepared by diluting 0.457 ml of 50% (mass / volume) sodium hydroxide aqueous solution with water so that the total amount became 100 ml.
100 mL of the copper nitrate aqueous solution and 100 mL of the sodium hydroxide aqueous solution were filled in glass syringes (volume: 100 mL), respectively, and set in the syringe pump of the flow reaction system. Each solution was fed at 5 ml / min. In this flow type reaction system, the temperature of the heating region (8) was 90 ° C. 100 mL of the liquid (black fine particle suspension (dispersion)) that had passed through the reaction flow path was recovered in a recovery container (a polyethylene container having a volume of 250 ml).

<微粒子の観察および物性>
得られた黒色の微粒子懸濁液を少量採取し、透過型電子顕微鏡(日本電子株式会社製、JEM−1010、以下TEM)で粒子を観察した(倍率:20,000倍)。その結果、一次粒子の粒径9nmの球状粒子(すなわち長径の平均値が9nmの球状粒子)が生成していることが分かった。粒子懸濁液30mLを約10000Gで遠心分離して微粒子を沈降させ、得られたペーストを40℃、5時間真空乾燥させることで乾燥粉末を得た。この乾燥粉末をXRD(RIGAKU製、Miniflex)で測定した結果、酸化第二銅に由来する回折パターンのみが検出され、酸化第二銅が生成したことを確認した。
また、上記長径の平均値の算出の際に測定した20個の一次粒子について、その長径の変動係数(標準偏差/平均値、以下同様)は0.15であった。
また、上記黒色の微粒子懸濁液中、酸化第二銅微粒子の含有量は0.11質量%であった。
<Observation and physical properties of fine particles>
A small amount of the obtained black fine particle suspension was collected, and particles were observed with a transmission electron microscope (JEM-1010, manufactured by JEOL Ltd., hereinafter TEM) (magnification: 20,000 times). As a result, it was found that spherical particles having a primary particle size of 9 nm (that is, spherical particles having an average major axis of 9 nm) were generated. Centrifugation of 30 mL of the particle suspension was performed at about 10,000 G to precipitate fine particles, and the obtained paste was vacuum-dried at 40 ° C. for 5 hours to obtain a dry powder. As a result of measuring this dry powder with XRD (manufactured by RIGAKU, Miniflex), only the diffraction pattern derived from cupric oxide was detected, and it was confirmed that cupric oxide was produced.
Further, for the 20 primary particles measured at the time of calculating the average value of the major axis, the coefficient of variation of the major axis (standard deviation / average value, the same applies hereinafter) was 0.15.
Further, the content of cupric oxide fine particles in the black fine particle suspension was 0.11% by mass.

[比較例1] バッチ方式による球状酸化第二銅微粒子の製造
容積300mlの3口フラスコに冷却管を取り付け、水100mlを加えスリーワンモーターで撹拌しながら、内温が90℃になるようにオイルバスで加熱した。硝酸銅(II)3水和物0.49gを水に溶解させ、全量が20mlになるように水で希釈した硝酸銅水溶液(濃度100mM)を調製しフラスコに添加した。50%(質量/体積)水酸化ナトリウム水溶液0.16mlをとり、全量が20mlになるように水で希釈して水酸化ナトリウム水溶液(濃度200mM)を調製した。フラスコの内温が再び90℃に上昇したところで、水酸化ナトリウム水溶液を、滴下漏斗を使用して約5分かけて緩やかに滴下した。滴下終了後、10分間90℃を維持したまま撹拌を継続し、その後放冷し、黒色の微粒子懸濁液を得た。
この黒色の微粒子懸濁液を上記と同様にしてTEM観察した結果、一次粒子の粒径18nmの球状粒子(すなわち長径の平均値が18nmの球状粒子)が生成していることが分かった。XRD測定の結果、酸化第二銅に由来する回折パターンのみが検出され、酸化第二銅が生成したことを確認した。
また、上記長径の平均値の算出の際に測定した20個の一次粒子について、その長径の変動係数は0.35であった。
また、上記黒色の微粒子懸濁液中、酸化第二銅微粒子の含有量は0.11質量%であった。
[Comparative Example 1] Production of spherical cupric oxide fine particles by batch system Attach a cooling tube to a 300 ml three-necked flask, add 100 ml of water and stir with a three-one motor so that the internal temperature becomes 90 ° C. And heated. Copper nitrate (II) trihydrate (0.49 g) was dissolved in water, and an aqueous copper nitrate solution (concentration: 100 mM) diluted with water so that the total amount was 20 ml was prepared and added to the flask. A 50% (mass / volume) aqueous solution of sodium hydroxide (0.16 ml) was taken and diluted with water to a total volume of 20 ml to prepare an aqueous solution of sodium hydroxide (concentration 200 mM). When the internal temperature of the flask rose to 90 ° C. again, an aqueous sodium hydroxide solution was slowly dropped over about 5 minutes using a dropping funnel. After completion of the dropping, stirring was continued while maintaining 90 ° C. for 10 minutes, and then allowed to cool to obtain a black fine particle suspension.
As a result of TEM observation of this black fine particle suspension in the same manner as described above, it was found that spherical particles having a primary particle diameter of 18 nm (that is, spherical particles having an average major axis of 18 nm) were generated. As a result of XRD measurement, only the diffraction pattern derived from cupric oxide was detected, and it was confirmed that cupric oxide was produced.
The coefficient of variation of the major axis of the 20 primary particles measured when calculating the average value of the major axis was 0.35.
Further, the content of cupric oxide fine particles in the black fine particle suspension was 0.11% by mass.

上記実施例1と比較例1の比較から、酸化第二銅の球状微粒子の製造において、フロー式反応を採用することにより、より小粒径且つ粒径の揃った酸化第二銅微粒子が得られることがわかった。   From the comparison between Example 1 and Comparative Example 1, cupric oxide fine particles having a smaller particle size and a uniform particle size can be obtained by employing a flow reaction in the production of cupric oxide spherical fine particles. I understood it.

[実施例2] フロー式反応による棒状酸化第二銅微粒子の製造
水酸化ナトリウム水溶液の濃度を実施例1に対して2倍(114mM)にしたものを100ml調製したこと以外は実施例1と同様にして、フロー式反応システムにより黒色の粒子懸濁液を得た。
この黒色の微粒子懸濁液を上記と同様にしてTEM観察した結果、一次粒子の長径の平均値が216nm、中径の平均値が12nm、短径の平均値が4nmの棒状微粒子であった。XRD測定の結果、酸化第二銅に由来するピークのみが観察され、酸化第二銅が生成したことを確認した。
また、上記長径の平均値の算出の際に測定した20個の一次粒子について、その長径の変動係数は0.32であった。
また、上記黒色の微粒子懸濁液中、酸化第二銅微粒子の含有量は0.11質量%であった。
[Example 2] Production of rod-shaped cupric oxide fine particles by flow-type reaction The same as Example 1 except that 100 ml of a sodium hydroxide aqueous solution with a concentration twice that of Example 1 (114 mM) was prepared. Thus, a black particle suspension was obtained by a flow reaction system.
As a result of TEM observation of the black fine particle suspension in the same manner as described above, the fine particles were rod-shaped fine particles having an average value of the major axis of 216 nm, an average value of the medium diameter of 12 nm, and an average value of the minor axis of 4 nm. As a result of XRD measurement, only the peak derived from cupric oxide was observed, and it was confirmed that cupric oxide was produced.
The coefficient of variation of the major axis of the 20 primary particles measured at the time of calculating the average value of the major axis was 0.32.
Further, the content of cupric oxide fine particles in the black fine particle suspension was 0.11% by mass.

[比較例2] バッチ方式による棒状酸化第二銅微粒子の製造
28.6mM硝酸銅水溶液70mLと114mM水酸化ナトリウム水溶液70mLを調製し、それぞれ別々に、シリンジに充填した。オイルバスで加熱した空の3口フラスコに、撹拌翼を設置し、撹拌の予備動作としてスリーワンモーターで撹拌翼を空転させた。上記硝酸銅水溶液と水酸化ナトリウム水溶液をシリンジポンプで同時にフラスコ内に滴下した。このときの送液速度はいずれも14ml/min、送液時間は5分間とした。送液完了時の内温は90℃であった。その後10分間内温を90℃のまま維持して撹拌を継続し、放冷して黒色の微粒子懸濁液を得た。
この黒色の微粒子懸濁液を上記と同様にしてTEM観察した結果、一次粒子の長径の平均値が39nm、中径の平均値が12nm、短径の平均値が10nmの棒状微粒子であった。XRD測定の結果、酸化第二銅に由来するピークのみが観察され、酸化第二銅が生成したことを確認した。
また、上記長径の平均値の算出の際に測定した20個の一次粒子について、その長径の変動係数は1.12であった。
また、上記黒色の微粒子懸濁液中、酸化第二銅微粒子の含有量は0.11質量%であった。
Comparative Example 2 Production of Rod-shaped Cupric Oxide Fine Particles by Batch Method 28.6 mM aqueous solution of copper nitrate and 70 mL of 114 mM aqueous solution of sodium hydroxide were prepared and filled into syringes separately. A stirring blade was installed in an empty three-necked flask heated in an oil bath, and the stirring blade was idled by a three-one motor as a preliminary operation for stirring. The copper nitrate aqueous solution and the sodium hydroxide aqueous solution were simultaneously dropped into the flask with a syringe pump. At this time, the liquid feeding speed was 14 ml / min in all cases, and the liquid feeding time was 5 minutes. The internal temperature at the completion of liquid feeding was 90 ° C. Thereafter, the internal temperature was maintained at 90 ° C. for 10 minutes, stirring was continued, and the mixture was allowed to cool to obtain a black fine particle suspension.
As a result of TEM observation of the black fine particle suspension in the same manner as described above, the fine particles were rod-shaped fine particles having an average value of the major axis of 39 nm, an average value of the medium diameter of 12 nm, and an average value of the minor axis of 10 nm. As a result of XRD measurement, only the peak derived from cupric oxide was observed, and it was confirmed that cupric oxide was produced.
Moreover, the coefficient of variation of the major axis of the 20 primary particles measured at the time of calculating the average value of the major axis was 1.12.
Further, the content of cupric oxide fine particles in the black fine particle suspension was 0.11% by mass.

[実施例3] フロー式反応による平板状酸化第二銅微粒子の製造
水酸化ナトリウム水溶液の濃度を実施例1に対して4倍(濃度228mM)にしたものを100ml調製し、硝酸銅水溶液および水酸化ナトリウム水溶液の送液速度を15ml/minにしたこと以外は実施例1と同様にして、フロー式反応システムにより黒色の微粒子懸濁液を得た。
この黒色の微粒子懸濁液を上記と同様にしてTEM観察の結果、一次粒子の長径の平均値が415nm、中径の平均値が86nm、短径の平均値が4nmの平板状粒子であった。XRD測定の結果、酸化第二銅に由来するピークのみが観察され、酸化第二銅が生成したことを確認した。
また、上記長径の平均値の算出の際に測定した20個の一次粒子について、その長径の変動係数は0.22であった。
また、上記黒色の微粒子懸濁液中、酸化第二銅微粒子の含有量は0.11質量%であった。
[Example 3] Production of tabular cupric oxide fine particles by flow reaction 100 ml of a sodium hydroxide aqueous solution having a concentration four times that of Example 1 (concentration 228 mM) was prepared. A black fine particle suspension was obtained by a flow reaction system in the same manner as in Example 1 except that the feeding rate of the aqueous sodium oxide solution was 15 ml / min.
As a result of TEM observation of the black fine particle suspension in the same manner as described above, it was a tabular particle having an average value of the major axis of 415 nm, an average value of the medium diameter of 86 nm, and an average value of the minor axis of 4 nm. . As a result of XRD measurement, only the peak derived from cupric oxide was observed, and it was confirmed that cupric oxide was produced.
Further, the variation coefficient of the major axis of the 20 primary particles measured at the time of calculating the average value of the major axis was 0.22.
Further, the content of cupric oxide fine particles in the black fine particle suspension was 0.11% by mass.

[比較例3] バッチ方式による棒状酸化第二銅微粒子の製造
容積300mlの3口フラスコに冷却管を取り付け、水100mLを加えスリーワンモーターで撹拌しながら、内温が90℃になるようにオイルバスで加熱した。硝酸銅水溶液(濃度100mM、20mL)と水酸化ナトリウム水溶液(濃度800mM、20mL)をシリンジポンプで同時にフラスコ内に滴下した。このときの送液速度は4ml/min、送液時間は5分間とした。送液完了時の内温は90℃であった。その後10分間内温を90℃に維持して撹拌を継続し、放冷して黒色の粒子懸濁液を得た。
この黒色の微粒子懸濁液を上記と同様にしてTEM観察した結果、一次粒子の長径の平均値が51nm、中径の平均値が12nm、短径の平均値が7nmの棒状粒子であった。XRD測定の結果、酸化第二銅に由来するピークのみが観察され、酸化第二銅が生成したことを確認した。
また、上記長径の平均値の算出の際に測定した20個の一次粒子について、その長径の変動係数は1.08であった。
また、上記黒色の微粒子懸濁液中、酸化第二銅微粒子の含有量は0.11質量%であった。
なお、上記実施例3と比較例3の結果から、フロー式反応を採用することにより、球状、棒状の酸化第二銅微粒子に加え、バッチ式では得られない平板状の酸化第二銅微粒子の製造も可能となることがわかる。
[Comparative Example 3] Manufacture of rod-shaped cupric oxide fine particles by batch method Attaching a cooling tube to a 300 ml three-necked flask, adding 100 mL of water and stirring with a three-one motor, an oil bath so that the internal temperature becomes 90 ° C And heated. A copper nitrate aqueous solution (concentration 100 mM, 20 mL) and a sodium hydroxide aqueous solution (concentration 800 mM, 20 mL) were simultaneously dropped into the flask with a syringe pump. The liquid feeding speed at this time was 4 ml / min, and the liquid feeding time was 5 minutes. The internal temperature at the completion of liquid feeding was 90 ° C. Thereafter, the internal temperature was maintained at 90 ° C. for 10 minutes, stirring was continued, and the mixture was allowed to cool to obtain a black particle suspension.
As a result of TEM observation of this black fine particle suspension in the same manner as described above, it was a rod-like particle having an average value of the major axis of the primary particles of 51 nm, an average value of the medium diameter of 12 nm, and an average value of the minor axis of 7 nm. As a result of XRD measurement, only the peak derived from cupric oxide was observed, and it was confirmed that cupric oxide was produced.
Further, the variation coefficient of the major axis of the 20 primary particles measured at the time of calculating the average value of the major axis was 1.08.
Further, the content of cupric oxide fine particles in the black fine particle suspension was 0.11% by mass.
From the results of Example 3 and Comparative Example 3, by adopting a flow-type reaction, in addition to spherical and rod-shaped cupric oxide fine particles, plate-shaped cupric oxide fine particles that cannot be obtained in a batch type. It can be seen that manufacturing is also possible.

[比較例4]
使用する水酸化ナトリウム水溶液の濃度を28.6mM、液量を100mLに変更したこと以外は実施例1と同様にしてフロー式反応を実施した。
その結果、水色に白濁した懸濁液が得られ、酸化第二銅粒子は得られなかった。
[Comparative Example 4]
A flow reaction was carried out in the same manner as in Example 1 except that the concentration of the aqueous sodium hydroxide solution used was changed to 28.6 mM and the liquid volume was changed to 100 mL.
As a result, a light blue cloudy suspension was obtained, and cupric oxide particles were not obtained.

[実施例4] フロー式反応による球状酸化第二銅微粒子の製造
使用する水酸化ナトリウム水溶液の濃度を42.9mM、液量を100mLに変更したこと以外は実施例1と同様にして、フロー式反応システムにより黒色の粒子懸濁液を得た。
この黒色の微粒子懸濁液を上記と同様にしてTEM観察した結果、一次粒子の粒径7nmの球状粒子(すなわち長径の平均値が7nmの球状粒子)が生成していることを確認した。XRD測定の結果、酸化第二銅に由来するピークのみが観察され、酸化第二銅が生成したことを確認した。
また、上記長径の平均値の算出の際に測定した20個の一次粒子について、その長径の変動係数は0.14であった。
また、上記黒色の微粒子懸濁液中、酸化第二銅微粒子の含有量は0.10質量%であった。
[Example 4] Manufacture of spherical cupric oxide fine particles by flow type reaction The flow type was the same as Example 1 except that the concentration of the sodium hydroxide aqueous solution used was changed to 42.9 mM and the amount of liquid was changed to 100 mL. A black particle suspension was obtained by the reaction system.
As a result of TEM observation of this black fine particle suspension in the same manner as described above, it was confirmed that spherical particles having a primary particle diameter of 7 nm (that is, spherical particles having an average major axis of 7 nm) were generated. As a result of XRD measurement, only the peak derived from cupric oxide was observed, and it was confirmed that cupric oxide was produced.
Further, the variation coefficient of the major axis of the 20 primary particles measured at the time of calculating the average value of the major axis was 0.14.
The content of cupric oxide fine particles in the black fine particle suspension was 0.10% by mass.

[実施例5] フロー式反応による棒状酸化第二銅微粒子の製造
使用する水酸化ナトリウム水溶液の濃度を71.5mM、液量を100mLに変更したこと以外は実施例1と同様にして、フロー式反応システムにより黒色の粒子懸濁液を得た。
この黒色の微粒子懸濁液を上記と同様にしてTEM観察した結果、一次粒子の長径の平均値が113nm、中径の平均値が8nm、短径の平均値が3nmの棒状粒子であった。XRD測定の結果、酸化第二銅に由来するピークのみが観察され、酸化第二銅が生成したことを確認した。
また、上記長径の平均値の算出の際に測定した20個の一次粒子について、その長径の変動係数は0.23であった。
また、上記黒色の微粒子懸濁液中、酸化第二銅微粒子の含有量は0.11質量%であった。
[Example 5] Production of rod-shaped cupric oxide fine particles by flow-type reaction The flow-type reaction was performed in the same manner as in Example 1 except that the concentration of the aqueous sodium hydroxide solution used was changed to 71.5 mM and the amount of liquid was changed to 100 mL. A black particle suspension was obtained by the reaction system.
As a result of TEM observation of this black fine particle suspension in the same manner as described above, it was a rod-like particle having an average value of the major axis of 113 nm, an average value of the medium diameter of 8 nm, and an average value of the minor axis of 3 nm. As a result of XRD measurement, only the peak derived from cupric oxide was observed, and it was confirmed that cupric oxide was produced.
Further, the coefficient of variation of the major axis of the 20 primary particles measured when calculating the average value of the major axis was 0.23.
Further, the content of cupric oxide fine particles in the black fine particle suspension was 0.11% by mass.

[実施例6] フロー式反応による球状酸化第二銅微粒子の製造
オイルバスの温度を80℃に設定したこと以外は実施例1と同様にして、フロー式反応システムにより黒色の粒子懸濁液を得た。
この黒色の微粒子懸濁液を上記と同様にしてTEM観察した結果、一次粒子の粒径8nmの球状微粒子(すなわち長径の平均値が8nmの球状粒子)が生成していることが分かった。XRD測定の結果、酸化第二銅に由来する回折パターンのみが検出され、酸化第二銅が生成したことを確認した。
また、上記長径の平均値の算出の際に測定した20個の一次粒子について、その長径の変動係数は0.15であった。
また、上記黒色の微粒子懸濁液中、酸化第二銅微粒子の含有量は0.11質量%であった。
[Example 6] Production of spherical cupric oxide fine particles by flow-type reaction A black particle suspension was prepared by a flow-type reaction system in the same manner as in Example 1 except that the temperature of the oil bath was set to 80 ° C. Obtained.
As a result of TEM observation of the black fine particle suspension in the same manner as described above, it was found that spherical fine particles having a primary particle diameter of 8 nm (that is, spherical particles having an average major axis of 8 nm) were generated. As a result of XRD measurement, only the diffraction pattern derived from cupric oxide was detected, and it was confirmed that cupric oxide was produced.
Further, the variation coefficient of the major axis of the 20 primary particles measured at the time of calculating the average value of the major axis was 0.15.
Further, the content of cupric oxide fine particles in the black fine particle suspension was 0.11% by mass.

[実施例7] フロー式反応による球状酸化第二銅微粒子の製造
オイルバスの温度を70℃に設定したこと以外は実施例1と同様にして、フロー式反応システムにより黒色の粒子懸濁液を得た。
この黒色の微粒子懸濁液を上記と同様にしてTEM観察した結果、一次粒子の粒径7nmの球状微粒子(すなわち長径の平均値が7nmの球状粒子)が生成していることが分かった。しかし、球状微粒子数20個程度が2次凝集塊を形成した粒子が多く観察された(オイルバスの温度を80℃以上に設定した実施例よりも2次凝集塊の量が明らかに多かった)。また、XRD測定の結果、酸化第二銅に由来するピークのみが観察され、酸化第二銅が生成したことを確認した。
また、上記長径の平均値の算出の際に測定した20個の一次粒子について、その長径の変動係数は0.14であった。
また、上記黒色の微粒子懸濁液中、酸化第二銅微粒子の含有量は0.11質量%であった。
[Example 7] Manufacture of spherical cupric oxide fine particles by flow type reaction A black particle suspension was prepared by a flow type reaction system in the same manner as in Example 1 except that the temperature of the oil bath was set to 70 ° C. Obtained.
As a result of TEM observation of the black fine particle suspension in the same manner as described above, it was found that spherical fine particles having a primary particle diameter of 7 nm (that is, spherical particles having an average major axis of 7 nm) were generated. However, many particles in which the number of spherical fine particles was about 20 formed secondary agglomerates were observed (the amount of secondary agglomerates was clearly larger than that in Examples in which the temperature of the oil bath was set to 80 ° C. or higher). . Moreover, as a result of the XRD measurement, only a peak derived from cupric oxide was observed, and it was confirmed that cupric oxide was generated.
Further, the variation coefficient of the major axis of the 20 primary particles measured at the time of calculating the average value of the major axis was 0.14.
Further, the content of cupric oxide fine particles in the black fine particle suspension was 0.11% by mass.

[実施例8] フロー式反応による球状酸化第二銅微粒子の製造
銅塩溶液として酢酸銅水溶液(濃度28.1mM)、塩基性化合物水溶液としてアンモニア水(濃度57.1mM)を使用したこと以外は実施例1と同様にして、フロー式反応システムにより黒色の粒子懸濁液を得た。
この黒色の微粒子懸濁液を上記と同様にしてTEM観察した結果、一次粒子の粒径9nmの球状微粒子(すなわち長径の平均値が9nmの球状粒子)が生成していることが分かった。XRD測定の結果、酸化第二銅に由来するピークのみが観察され、酸化第二銅が生成したことを確認した。
また、上記長径の平均値の算出の際に測定した20個の一次粒子について、その長径の変動係数は0.15であった。
また、上記黒色の微粒子懸濁液中、酸化第二銅微粒子の含有量は0.11質量%であった。
[Example 8] Production of spherical cupric oxide fine particles by flow-type reaction Except for using copper acetate aqueous solution (concentration 28.1 mM) as a copper salt solution and ammonia water (concentration 57.1 mM) as a basic compound aqueous solution. In the same manner as in Example 1, a black particle suspension was obtained by a flow reaction system.
As a result of TEM observation of this black fine particle suspension in the same manner as described above, it was found that spherical fine particles having a primary particle diameter of 9 nm (that is, spherical particles having an average major axis of 9 nm) were generated. As a result of XRD measurement, only the peak derived from cupric oxide was observed, and it was confirmed that cupric oxide was produced.
Further, the variation coefficient of the major axis of the 20 primary particles measured at the time of calculating the average value of the major axis was 0.15.
Further, the content of cupric oxide fine particles in the black fine particle suspension was 0.11% by mass.

[実施例9] フロー式反応による球状酸化第二銅微粒子の製造
銅塩溶液として酢酸銅水溶液(濃度28.1mM)、塩基性化合物水溶液としてテトラエチルアンモニウムヒドロキシド(濃度57.1mM)を使用したこと以外は実施例1と同様にして、フロー式反応システムにより黒色の粒子懸濁液を得た。
この黒色の微粒子懸濁液を上記と同様にしてTEM観察した結果、一次粒子の粒径9nmの球状微粒子(すなわち長径の平均値が9nmの球状粒子)が生成していることが分かった。XRD測定の結果、酸化第二銅に由来するピークのみが観察され、酸化第二銅が生成したことを確認した。
また、上記長径の平均値の算出の際に測定した20個の一次粒子について、その長径の変動係数は0.16であった。
また、上記黒色の微粒子懸濁液中、酸化第二銅微粒子の含有量は0.11質量%であった。
[Example 9] Production of spherical cupric oxide fine particles by flow-type reaction Copper acetate aqueous solution (concentration 28.1 mM) was used as the copper salt solution, and tetraethylammonium hydroxide (concentration 57.1 mM) was used as the basic compound aqueous solution. Except for the above, a black particle suspension was obtained by the flow reaction system in the same manner as in Example 1.
As a result of TEM observation of this black fine particle suspension in the same manner as described above, it was found that spherical fine particles having a primary particle diameter of 9 nm (that is, spherical particles having an average major axis of 9 nm) were generated. As a result of XRD measurement, only the peak derived from cupric oxide was observed, and it was confirmed that cupric oxide was produced.
Further, the coefficient of variation of the major axis of the 20 primary particles measured at the time of calculating the average value of the major axis was 0.16.
Further, the content of cupric oxide fine particles in the black fine particle suspension was 0.11% by mass.

[実施例10] フロー式反応による球状酸化第二銅微粒子の製造
実施例1を下記の通りに変更したこと以外は、実施例1と同様にして、フロー式反応システムにより黒色の粒子懸濁液を得た。
(変更内容)
硝酸銅水溶液の濃度を57.1mM、液量を400mLとし、また、水酸化ナトリウム水溶液の濃度を114mM、液量を400mLとし、送液装置としてシリンジポンプ(古江サイエンス株式会社製、MICRFEEDER、model JP−H)を使用することで、送液速度5ml/minで最大80分間送液できるようにした。また、T字型ミキサー下流の加熱領域(8)内に設置される反応流路の長さを5mとした。
[Example 10] Production of spherical cupric oxide fine particles by flow-type reaction A black particle suspension was obtained by a flow-type reaction system in the same manner as in Example 1 except that Example 1 was changed as follows. Got.
(Changes)
The concentration of the copper nitrate aqueous solution is 57.1 mM, the liquid volume is 400 mL, the concentration of the sodium hydroxide aqueous solution is 114 mM, the liquid volume is 400 mL, and a syringe pump (Furue Science Co., Ltd., MICRFEEDER, model JP) is used as the liquid feeder. -H) was used so that the solution could be fed at a rate of 5 ml / min for a maximum of 80 minutes. Moreover, the length of the reaction flow path installed in the heating area | region (8) downstream of a T-shaped mixer was 5 m.

この実施例10では、送液中の圧力は送液開始から約2分で上昇しはじめ、5分から7分にかけて急上昇し、送液不能となった。T字型ミキサー内部が酸化銅と推定される黒色の析出物で閉塞していることを確認した。
得られた黒色の微粒子懸濁液を上記と同様にしてTEM観察した結果、一次粒子の粒径9nmの球状微粒子(すなわち長径の平均値が9nmの球状粒子)が生成していることが分かった。XRD測定の結果、酸化第二銅に由来するピークのみが観察され、酸化第二銅が生成したことを確認した。
また、上記長径の平均値の算出の際に測定した20個の一次粒子について、その長径の変動係数は0.14であった。
また、上記黒色の微粒子懸濁液中、酸化第二銅微粒子の含有量は0.22質量%であった。
In Example 10, the pressure during liquid feeding began to increase in about 2 minutes from the start of liquid feeding, and increased rapidly from 5 minutes to 7 minutes, making liquid feeding impossible. It was confirmed that the inside of the T-shaped mixer was clogged with black deposits presumed to be copper oxide.
As a result of TEM observation of the obtained black fine particle suspension in the same manner as described above, it was found that spherical fine particles having a primary particle diameter of 9 nm (that is, spherical particles having an average major axis of 9 nm) were generated. . As a result of XRD measurement, only the peak derived from cupric oxide was observed, and it was confirmed that cupric oxide was produced.
Further, the variation coefficient of the major axis of the 20 primary particles measured at the time of calculating the average value of the major axis was 0.14.
The content of cupric oxide fine particles in the black fine particle suspension was 0.22% by mass.

[実施例11] フロー式反応による球状酸化第二銅微粒子の製造
T字型ミキサーに替えて2層円筒型ミキサーを使用したこと以外は実施例10と同様にして、フロー式反応システムにより黒色の粒子懸濁液を得た(すなわち、図3に記載のフロー式反応システムを用いたこと以外は、実施例10と同様にして黒色の粒子懸濁液を得た)。
なお、2層円筒型ミキサーは、サイズの異なる外管と内管を同心円状に配置し、内管の下流側末端で、内管を流れる硝酸銅水溶液と外管と内管との間を流れる水酸化ナトリウム水溶液が並行に合流する構造とした。2層円筒型ミキサーは、外管の外径を1/8In(3.18mm)、内径を2.17mmとし、内管の外径を1/16In(1.59mm)、内径を0.25mmとした。内管を流れる硝酸銅水溶液の線速度は1700mm/secとなり、外管と内管との間を流れる水酸化ナトリウム水溶液の線速度は49mm/secとなる。
この実施例11では、送液中の圧力上昇が抑えられ、50分間以上もの間、安定して送液することができた。得られた黒色の微粒子懸濁液を上記と同様にしてTEM観察した結果、一次粒子の粒径8nmの球状微粒子(すなわち長径の平均値が8nmの球状粒子)が生成していることが分かった。XRD測定の結果、酸化第二銅に由来するピークのみが観察され、酸化第二銅が生成したことを確認した。
また、上記長径の平均値の算出の際に測定した20個の一次粒子について、その長径の変動係数は0.15であった。
また、上記黒色の微粒子懸濁液中、酸化第二銅微粒子の含有量は0.22質量%であった。
このように、合流領域において2層円筒型ミキサーを使用することにより、第1流路に流通させる銅塩溶液の濃度を高めても安定的に酸化第二銅を製造することができ、その結果、得られる酸化第二銅懸濁液中の酸化第二銅の含有量を高められることがわかった。
[Example 11] Manufacture of spherical cupric oxide fine particles by flow-type reaction In the same manner as in Example 10 except that a two-layer cylindrical mixer was used instead of the T-shaped mixer, A particle suspension was obtained (that is, a black particle suspension was obtained in the same manner as in Example 10 except that the flow reaction system shown in FIG. 3 was used).
In the two-layer cylindrical mixer, outer pipes and inner pipes having different sizes are arranged concentrically, and flow between the copper nitrate aqueous solution flowing through the inner pipe and the outer pipe and the inner pipe at the downstream end of the inner pipe. It was set as the structure where sodium hydroxide aqueous solution merges in parallel. In the two-layer cylindrical mixer, the outer diameter of the outer tube is 1/8 In (3.18 mm), the inner diameter is 2.17 mm, the outer diameter of the inner tube is 1/16 In (1.59 mm), and the inner diameter is 0.25 mm. did. The linear velocity of the aqueous copper nitrate solution flowing through the inner tube is 1700 mm / sec, and the linear velocity of the aqueous sodium hydroxide solution flowing between the outer tube and the inner tube is 49 mm / sec.
In Example 11, the pressure increase during the liquid feeding was suppressed, and the liquid could be stably fed for 50 minutes or more. As a result of TEM observation of the obtained black fine particle suspension in the same manner as described above, it was found that spherical fine particles having a primary particle diameter of 8 nm (that is, spherical particles having an average major axis of 8 nm) were generated. . As a result of XRD measurement, only the peak derived from cupric oxide was observed, and it was confirmed that cupric oxide was produced.
Further, the variation coefficient of the major axis of the 20 primary particles measured at the time of calculating the average value of the major axis was 0.15.
The content of cupric oxide fine particles in the black fine particle suspension was 0.22% by mass.
Thus, by using a two-layer cylindrical mixer in the merging region, cupric oxide can be stably produced even when the concentration of the copper salt solution to be circulated through the first flow path is increased. It has been found that the content of cupric oxide in the obtained cupric oxide suspension can be increased.

[実施例12] フロー式反応による棒状酸化第二銅微粒子の製造
実施例11において、2層円筒型ミキサーの外管と内管との間を流れる水酸化ナトリウム水溶液の濃度を実施例11に対して2倍(濃度228mM)にしたこと以外は、実施例10と同様にして、フロー式反応システムにより黒色の粒子懸濁液を得た。
この黒色の微粒子懸濁液を上記と同様にしてTEM観察の結果、一次粒子の長径の平均値が230nm、中径の平均値が17nm、短径の平均値が4nmの棒状微粒子であった。XRD測定の結果、酸化第二銅に由来するピークのみが観察され、酸化第二銅が生成したことを確認した。
また、上記長径の平均値の算出の際に測定した20個の一次粒子について、その長径の変動係数は0.24であった。
また、上記黒色の微粒子懸濁液中、酸化第二銅微粒子の含有量は0.22質量%であった。
Example 12 Production of Rod-shaped Cupric Oxide Fine Particles by Flow Reaction In Example 11, the concentration of the aqueous sodium hydroxide solution flowing between the outer tube and the inner tube of the two-layer cylindrical mixer was compared with Example 11. A black particle suspension was obtained by a flow reaction system in the same manner as in Example 10 except that it was doubled (concentration 228 mM).
As a result of TEM observation of the black fine particle suspension in the same manner as described above, the fine particles were rod-shaped fine particles having an average value of major axis of 230 nm, an average value of medium diameter of 17 nm, and an average value of minor axis of 4 nm. As a result of XRD measurement, only the peak derived from cupric oxide was observed, and it was confirmed that cupric oxide was produced.
Further, the variation coefficient of the major axis of the 20 primary particles measured at the time of calculating the average value of the major axis was 0.24.
The content of cupric oxide fine particles in the black fine particle suspension was 0.22% by mass.

[実施例13] フロー式反応による平板状酸化第二銅微粒子の製造
2層円筒型ミキサーの外管と内管との間を流れる水酸化ナトリウム水溶液の濃度を実施例11に対して4倍(濃度457mM)にし、硝酸銅水溶液および水酸化ナトリウム水溶液の送液速度を15ml/minにしたこと以外は、実施例11と同様にして、フロー式反応システムにより黒色の粒子懸濁液を得た。
この黒色の微粒子懸濁液を上記と同様にしてTEM観察の結果、一次粒子の長径の平均値が457nm、中径の平均値が59nm、短径の平均値が7nmの平板状微粒子であった。XRD測定の結果、酸化第二銅に由来するピークのみが観察され、酸化第二銅が生成したことを確認した。
また、上記長径の平均値の算出の際に測定した20個の一次粒子について、その長径の変動係数は0.21であった。
また、上記黒色の微粒子懸濁液中、酸化第二銅微粒子の含有量は0.22質量%であった。
[Example 13] Production of tabular cupric oxide fine particles by flow reaction The concentration of an aqueous sodium hydroxide solution flowing between an outer tube and an inner tube of a two-layer cylindrical mixer was four times that of Example 11 ( A black particle suspension was obtained by a flow reaction system in the same manner as in Example 11 except that the concentration was 457 mM) and the feeding speed of the aqueous copper nitrate solution and the aqueous sodium hydroxide solution was 15 ml / min.
As a result of TEM observation of the black fine particle suspension in the same manner as described above, the fine particles were tabular fine particles having an average value of the major axis of 457 nm, an average value of the medium diameter of 59 nm, and an average value of the minor axis of 7 nm. . As a result of XRD measurement, only the peak derived from cupric oxide was observed, and it was confirmed that cupric oxide was produced.
Further, the variation coefficient of the major axis of the 20 primary particles measured at the time of calculating the average value of the major axis was 0.21.
The content of cupric oxide fine particles in the black fine particle suspension was 0.22% by mass.

[実施例14] フロー式反応による球状酸化第二銅微粒子の製造
図7に示されるように、内管、中管、外管のサイズの異なる3種類の円管を同心円状に配置し、内管と中管の下流側末端の位置をそろえて、3液を並行に流しながら合流させる構造の3層円筒型ミキサーを、合流領域(3)内に設置したフロー式反応システム(図6に示すフロー式反応システム)を構築した。送液には容積100mlのシリンジとシリンジポンプ(HARVARD社製 PHD ULTRA)を使用し、内管には硝酸銅水溶液(濃度57.1mM)を送液速度15ml/minで送液し、中管と内管との間には水を送液速度5ml/minで送液し、外管と中管との間には水酸化ナトリウム水溶液(濃度114mM)を送液速度15ml/minで送液した。それ以外の条件は実施例10と同一とし、黒色の粒子懸濁液を得た。
なお、3層円筒型ミキサーは、外管の外径を1/4In(6.35mm)、内径を4.35mmとし、中管の外径を1/8In(3.18mm)、内径を2.17mmとし、内管の外径を1/16In(1.59mm)、内径を0.25mmとした。内管を流れる硝酸銅水溶液の線速度は5090mm/secとなり、中管と内管との間を流れる水の線速度は4.9mm/secとなり、外管と中管との間を流れる水酸化ナトリウム水溶液の線速度は3.6mm/secとなる。
[Example 14] Production of spherical cupric oxide fine particles by flow-type reaction As shown in Fig. 7, three types of circular tubes having different sizes of the inner tube, the middle tube, and the outer tube are arranged concentrically. A flow-type reaction system (shown in FIG. 6) in which a three-layer cylindrical mixer having a structure in which the downstream ends of the pipe and the middle pipe are aligned and the three liquids are joined while flowing in parallel is installed in the joining area (3). A flow reaction system was constructed. A syringe with a volume of 100 ml and a syringe pump (PHD ULTRA manufactured by HARVARD) were used for liquid feeding, and an aqueous copper nitrate solution (concentration 57.1 mM) was fed to the inner pipe at a liquid feeding speed of 15 ml / min. Water was fed between the inner tube and the inner tube at a liquid feed rate of 5 ml / min, and an aqueous sodium hydroxide solution (concentration 114 mM) was fed between the outer tube and the middle tube at a liquid feed rate of 15 ml / min. The other conditions were the same as in Example 10, and a black particle suspension was obtained.
In the three-layer cylindrical mixer, the outer diameter of the outer tube is 1/4 In (6.35 mm), the inner diameter is 4.35 mm, the outer diameter of the middle tube is 1/8 In (3.18 mm), and the inner diameter is 2. The outer diameter of the inner tube was 1/16 In (1.59 mm), and the inner diameter was 0.25 mm. The linear velocity of the aqueous copper nitrate solution flowing through the inner tube is 5090 mm / sec, the linear velocity of water flowing between the inner tube and the inner tube is 4.9 mm / sec, and the hydroxylation flowing between the outer tube and the intermediate tube. The linear velocity of the aqueous sodium solution is 3.6 mm / sec.

得られた黒色の微粒子懸濁液を上記と同様にしてTEM観察した結果、一次粒子の粒径8nmの球状微粒子(すなわち長径の平均値が8nmの球状粒子)が生成していることが分かった。XRD測定の結果、酸化第二銅に由来するピークのみが観察され、酸化第二銅が生成したことを確認した。
また、上記長径の平均値の算出の際に測定した20個の一次粒子について、その長径の変動係数は0.14であった。
また、上記黒色の微粒子懸濁液中、酸化第二銅微粒子の含有量は0.22質量%であった。
As a result of TEM observation of the obtained black fine particle suspension in the same manner as described above, it was found that spherical fine particles having a primary particle diameter of 8 nm (that is, spherical particles having an average major axis of 8 nm) were generated. . As a result of XRD measurement, only the peak derived from cupric oxide was observed, and it was confirmed that cupric oxide was produced.
Further, the variation coefficient of the major axis of the 20 primary particles measured at the time of calculating the average value of the major axis was 0.14.
The content of cupric oxide fine particles in the black fine particle suspension was 0.22% by mass.

[実施例15] フロー式反応による棒状酸化第二銅微粒子の製造
3層円筒状ミキサーの外管と中管との間に流す水酸化ナトリウム水溶液の濃度を実施例14に対して2倍(濃度228mM)に変更したこと以外は、実施例14と同様にして、フロー式反応システムにより黒色の粒子懸濁液を得た。
この黒色の微粒子懸濁液を上記と同様にしてTEM観察の結果、一次粒子の長径の平均値が35nm、中径の平均値が7nm、短径の平均値が7nmの棒状微粒子であった。XRD測定の結果、酸化第二銅に由来するピークのみが観察され、酸化第二銅が生成したことを確認した。
また、上記長径の平均値の算出の際に測定した20個の一次粒子について、その長径の変動係数は0.25であった。
また、上記黒色の微粒子懸濁液中、酸化第二銅微粒子の含有量は0.22質量%であった。
[Example 15] Production of rod-shaped cupric oxide fine particles by flow reaction The concentration of the aqueous sodium hydroxide solution flowing between the outer tube and the middle tube of the three-layer cylindrical mixer was doubled compared to Example 14 (concentration) A black particle suspension was obtained by a flow reaction system in the same manner as in Example 14 except that the change was changed to 228 mM.
As a result of TEM observation of the black fine particle suspension in the same manner as described above, the fine particles were rod-shaped fine particles having an average value of the major axis of 35 nm, an average value of the medium diameter of 7 nm, and an average value of the minor axis of 7 nm. As a result of XRD measurement, only the peak derived from cupric oxide was observed, and it was confirmed that cupric oxide was produced.
Further, the coefficient of variation of the major axis of the 20 primary particles measured at the time of calculating the average value of the major axis was 0.25.
The content of cupric oxide fine particles in the black fine particle suspension was 0.22% by mass.

上記各実施例及び比較例の結果を下表にまとめて示す。   The results of the above examples and comparative examples are summarized in the table below.

Figure 2016160124
Figure 2016160124
Figure 2016160124
Figure 2016160124

このように、本発明の製造方法により、ナノメートルサイズの酸化第二銅微粒子を、所望の形状(球状、棒状、平板状)に、より均一な形状で、連続的に製造することができることがわかった。   As described above, by the production method of the present invention, the nanometer-sized cupric oxide fine particles can be continuously produced in a desired shape (spherical, rod-like, flat plate-like) in a more uniform shape. all right.

100、200、300 フロー式反応システム
1 第1流路
2 第2流路
3 合流領域
3a T字型ミキサー
3b 2層筒型ミキサー(多層筒型ミキサー)
3c 3層筒型ミキサー(多層筒型ミキサー)
4 反応流路
5 銅塩溶液導入手段(シリンジポンプ)
6 塩基性化合物溶液導入手段(シリンジポンプ)
7 回収容器
8 加熱領域
9 冷却領域
P 圧力計
J 合流部
T1 内管
T2 外管
T3 中管
10 第3流路
11 第三液導入手段(シリンジポンプ)
100, 200, 300 Flow type reaction system 1 1st flow path 2 2nd flow path 3 Merge area 3a T-shaped mixer 3b 2 layer cylindrical mixer (multilayer cylindrical mixer)
3c 3 layer cylindrical mixer (multilayer cylindrical mixer)
4 Reaction flow path 5 Copper salt solution introduction means (syringe pump)
6 Basic compound solution introduction means (syringe pump)
7 Recovery Container 8 Heating Area 9 Cooling Area P Pressure Gauge J Junction T1 Inner Tube T2 Outer Tube T3 Middle Tube 10 Third Channel 11 Third Liquid Introducing Unit (Syringe Pump)

Claims (13)

第1流路に銅(II)塩溶液を、第2流路に塩基性化合物溶液をそれぞれ導入して各流路内に各溶液を流通させ、第1流路内を流通する銅塩溶液と、第2流路内を流通する塩基性化合物溶液とを合流し、合流した液が下流へ流通中に銅(II)塩と塩基性化合物とを反応させ、反応生成物から酸化第二銅微粒子を製造することを含む、フロー式反応による酸化第二銅微粒子の製造方法であって、
第1流路内を流通する銅(II)塩溶液と第2流路内を流通する塩基性化合物溶液とが合流する合流部において、前記銅(II)塩に対する前記塩基性化合物の反応モル比を、[塩基性化合物]/[銅塩]≧1.5とする、製造方法。
A copper (II) salt solution is introduced into the first channel, a basic compound solution is introduced into the second channel, each solution is circulated in each channel, and a copper salt solution that circulates in the first channel; Then, the basic compound solution flowing in the second flow path is merged, and the combined liquid reacts with the copper (II) salt and the basic compound while flowing downstream, and the reaction product produces cupric oxide fine particles. A method for producing cupric oxide fine particles by a flow-type reaction, comprising:
The reaction molar ratio of the basic compound to the copper (II) salt at the junction where the copper (II) salt solution flowing in the first flow path and the basic compound solution flowing in the second flow path merge. Wherein [basic compound] / [copper salt] ≧ 1.5.
第1流路内を流通する銅塩溶液と第2流路内を流通する塩基性化合物溶液とが合流する合流部において、前記銅(II)塩に対する前記塩基性化合物の反応モル比を、[塩基性化合物]/[銅塩]≧2.5とする、請求項1記載の製造方法。   In the junction where the copper salt solution flowing in the first flow path and the basic compound solution flowing in the second flow path merge, the reaction molar ratio of the basic compound to the copper (II) salt is [ The production method according to claim 1, wherein the basic compound] / [copper salt] ≧ 2.5. 80℃以上の温度下で銅(II)塩と塩基性化合物とを反応させる、請求項1又は2記載の製造方法。   The manufacturing method of Claim 1 or 2 with which a copper (II) salt and a basic compound are made to react under the temperature of 80 degreeC or more. 前記製造方法により、前記酸化第二銅微粒子が、酸化第二銅微粒子を0.1〜14質量%含有する酸化第二銅微粒子分散液として得られる、請求項1〜3のいずれか1項記載の製造方法。   The cupric oxide fine particles are obtained as a cupric oxide fine particle dispersion containing 0.1 to 14% by mass of cupric oxide fine particles by the production method. Manufacturing method. 前記銅(II)塩溶液と前記塩基性化合物溶液とを多層筒型ミキサーを用いて合流する、請求項1〜4のいずれか1項記載の製造方法。   The manufacturing method of any one of Claims 1-4 which joins the said copper (II) salt solution and the said basic compound solution using a multilayer cylinder mixer. 前記多層筒型ミキサーの最小筒の等価直径が0.1mm〜50mmである、請求項5記載の製造方法。   The manufacturing method of Claim 5 whose equivalent diameter of the minimum cylinder of the said multilayer cylinder mixer is 0.1 mm-50 mm. 前記多層筒型ミキサーの最小筒を流通する溶液の線速度a1と、最小筒以外の筒を流通する溶液の線速度b1の比が、a1/b1=0.005〜200である、請求項5又は6記載の製造方法。   The ratio of the linear velocity a1 of the solution flowing through the smallest cylinder of the multilayer cylindrical mixer and the linear velocity b1 of the solution flowing through a cylinder other than the smallest cylinder is a1 / b1 = 0.005 to 200. Or the manufacturing method of 6. 前記多層筒型ミキサーが2層筒型ミキサーである、請求項5〜7のいずれか1項記載の製造方法。   The manufacturing method according to claim 5, wherein the multilayer cylindrical mixer is a two-layer cylindrical mixer. 2層筒型ミキサーの内管の線速度a2と、外管の線速度b2の比が、a2/b2=0.02〜50である、請求項8記載の製造方法。   The manufacturing method according to claim 8, wherein the ratio of the linear velocity a2 of the inner tube and the linear velocity b2 of the outer tube of the two-layer cylindrical mixer is a2 / b2 = 0.02-50. 前記銅(II)塩溶液と前記塩基性化合物溶液とをT字型ミキサーを用いて合流する、請求項1〜4のいずれか1項記載の製造方法。   The manufacturing method of any one of Claims 1-4 which joins the said copper (II) salt solution and the said basic compound solution using a T-shaped mixer. 前記T字型ミキサーの開口部の等価直径が0.1〜5mmである、請求項10に記載の製造方法。   The manufacturing method of Claim 10 whose equivalent diameter of the opening part of the said T-shaped mixer is 0.1-5 mm. 前記製造方法により得られる酸化第二銅微粒子が、一次粒子の3次元形状において、長径の平均値と短径の平均値との比が、長径/短径≧20である、請求項1〜11のいずれか1項記載の製造方法。   The cupric oxide fine particles obtained by the production method have a three-dimensional shape of primary particles, wherein the ratio of the average value of the major axis to the average value of the minor axis is: major axis / minor axis ≧ 20. The manufacturing method of any one of these. 酸化第二銅微粒子を製造するフロー式反応システムであって、
銅(II)塩溶液が流通する第1流路と、塩基性化合物溶液が流通する第2流路と、第1流路と第2流路が合流する合流部と、合流部の下流に繋がる反応流路とを有する、フロー式反応システム。
A flow reaction system for producing cupric oxide fine particles,
The first channel through which the copper (II) salt solution circulates, the second channel through which the basic compound solution circulates, the junction where the first channel and the second channel merge, and the downstream of the junction. A flow reaction system having a reaction channel.
JP2015039094A 2015-02-27 2015-02-27 Method for producing cupric oxide fine particles and cupric oxide fine particles Active JP6488152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015039094A JP6488152B2 (en) 2015-02-27 2015-02-27 Method for producing cupric oxide fine particles and cupric oxide fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015039094A JP6488152B2 (en) 2015-02-27 2015-02-27 Method for producing cupric oxide fine particles and cupric oxide fine particles

Publications (2)

Publication Number Publication Date
JP2016160124A true JP2016160124A (en) 2016-09-05
JP6488152B2 JP6488152B2 (en) 2019-03-20

Family

ID=56846077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015039094A Active JP6488152B2 (en) 2015-02-27 2015-02-27 Method for producing cupric oxide fine particles and cupric oxide fine particles

Country Status (1)

Country Link
JP (1) JP6488152B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107837770A (en) * 2017-12-08 2018-03-27 中国科学院大连化学物理研究所 A kind of production method of full-automatic single channel precipitation method continuous production nano-powder
WO2018083996A1 (en) * 2016-11-02 2018-05-11 富士フイルム株式会社 Microparticles, dispersion liquid, and deodorizer
JPWO2018016445A1 (en) * 2016-07-22 2019-03-28 富士フイルム株式会社 Method for producing copper oxide fine particles and dispersion
WO2019065709A1 (en) * 2017-09-28 2019-04-04 富士フイルム株式会社 Method for producing polymer, and flow reaction system for producing polymer
WO2019065134A1 (en) * 2017-09-29 2019-04-04 富士フイルム株式会社 Deodorant composition
JP2021507020A (en) * 2017-12-22 2021-02-22 センシエント・カラーズ・ユーケー・リミテッド Nanoparticle dispersion containing dye

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08189982A (en) * 1995-01-05 1996-07-23 Japan Atom Energy Res Inst Production of ceramic fuel particle
JP2006096569A (en) * 2004-09-28 2006-04-13 Fuji Photo Film Co Ltd Method for producing copper oxide fine particle
JP2006104448A (en) * 2004-09-10 2006-04-20 Canon Inc Method for producing coloring agent dispersion
US20060247322A1 (en) * 2004-12-15 2006-11-02 Industrial Technology Research Institute Process for preparing nanofluids with rotating packed bed reactor
JP2007526113A (en) * 2004-02-11 2007-09-13 ザ ユニバーシティ オブ ノッティンガム Countercurrent mixing reactor
JP2012099384A (en) * 2010-11-04 2012-05-24 Hitachi Ltd Sinter bonding agent, method for producing the same, and bonding method using the same
JP2013107799A (en) * 2011-11-21 2013-06-06 Hitachi Chemical Co Ltd Copper oxide particle and production method thereof
JP2013109966A (en) * 2011-11-21 2013-06-06 Hitachi Chemical Co Ltd Copper oxide paste and method for producing metal copper layer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08189982A (en) * 1995-01-05 1996-07-23 Japan Atom Energy Res Inst Production of ceramic fuel particle
JP2007526113A (en) * 2004-02-11 2007-09-13 ザ ユニバーシティ オブ ノッティンガム Countercurrent mixing reactor
JP2006104448A (en) * 2004-09-10 2006-04-20 Canon Inc Method for producing coloring agent dispersion
JP2006096569A (en) * 2004-09-28 2006-04-13 Fuji Photo Film Co Ltd Method for producing copper oxide fine particle
US20060247322A1 (en) * 2004-12-15 2006-11-02 Industrial Technology Research Institute Process for preparing nanofluids with rotating packed bed reactor
JP2012099384A (en) * 2010-11-04 2012-05-24 Hitachi Ltd Sinter bonding agent, method for producing the same, and bonding method using the same
JP2013107799A (en) * 2011-11-21 2013-06-06 Hitachi Chemical Co Ltd Copper oxide particle and production method thereof
JP2013109966A (en) * 2011-11-21 2013-06-06 Hitachi Chemical Co Ltd Copper oxide paste and method for producing metal copper layer

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018016445A1 (en) * 2016-07-22 2019-03-28 富士フイルム株式会社 Method for producing copper oxide fine particles and dispersion
WO2018083996A1 (en) * 2016-11-02 2018-05-11 富士フイルム株式会社 Microparticles, dispersion liquid, and deodorizer
JPWO2018083996A1 (en) * 2016-11-02 2019-09-19 富士フイルム株式会社 Fine particles, dispersions, and deodorants
US10981799B2 (en) 2016-11-02 2021-04-20 Fujifilm Corporation Fine particles, dispersion liquid, and deodorizer
WO2019065709A1 (en) * 2017-09-28 2019-04-04 富士フイルム株式会社 Method for producing polymer, and flow reaction system for producing polymer
JPWO2019065709A1 (en) * 2017-09-28 2019-11-21 富士フイルム株式会社 Polymer production method and flow reaction system for producing polymer
US11332551B2 (en) 2017-09-28 2022-05-17 Fujifilm Corporation Method for manufacturing polymer and flow-type reaction system for manufacturing polymer
WO2019065134A1 (en) * 2017-09-29 2019-04-04 富士フイルム株式会社 Deodorant composition
JPWO2019065134A1 (en) * 2017-09-29 2020-04-02 富士フイルム株式会社 Deodorant composition
CN107837770A (en) * 2017-12-08 2018-03-27 中国科学院大连化学物理研究所 A kind of production method of full-automatic single channel precipitation method continuous production nano-powder
JP2021507020A (en) * 2017-12-22 2021-02-22 センシエント・カラーズ・ユーケー・リミテッド Nanoparticle dispersion containing dye

Also Published As

Publication number Publication date
JP6488152B2 (en) 2019-03-20

Similar Documents

Publication Publication Date Title
JP6488152B2 (en) Method for producing cupric oxide fine particles and cupric oxide fine particles
JP5355007B2 (en) Method for producing spherical silver powder
KR100954425B1 (en) Method for preparation of silver powder by continuous solution reduction
US8293144B2 (en) Composition containing fine silver particles, production method thereof, method for producing fine silver particles, and paste having fine silver particles
JP4047304B2 (en) Fine silver particle-attached silver powder and method for producing the fine silver particle-attached silver powder
CN104209529B (en) A kind of method of continuous production super fine silver powder based on microchannel hybrid reaction system
US20120118105A1 (en) Reactor and continuous process for producing silver powders
CN104014808B (en) Crystal seeding growth prepares the method for monodisperse superfine nickel powder and micro-reaction system thereof
JP2009252507A (en) Conductive paste containing micro silver particles, and hardened film
JP2012051762A (en) Method for producing tin oxide ultrafine particle
CN105324337A (en) Process for producing fine cuprous oxide particles, fine cuprous oxide particles, and process for producing conductor film
CN102153129B (en) Method and device for continuously synthesizing spherical micro-nano cuprous oxide powder
JP6726745B2 (en) Method for producing copper oxide fine particles and dispersion
JP2006096569A (en) Method for producing copper oxide fine particle
JP6745350B2 (en) Fine particles, dispersion liquid, and deodorant
JP2013108121A (en) Method for producing metal nanoparticle
Singh 3D-printed device for synthesis of magnetic and metallic nanoparticles
Bari et al. Surfactant assisted reactive crystallization of cobalt oxide nanoparticles in a tubular microreactor: effects of precursor concentrations and type of surfactants
KR20090128380A (en) Fine silver particle, process for producing fine silver particle, and apparatus for producing fine silver particle
US20220203438A1 (en) Method and apparatus for magnetic nanoparticles development with ultra-small size, uniformity and monodispersity
WO2018180456A1 (en) Method for producing group iii-v semiconductor nanoparticle, method for producing group iii-v semiconductor quantum dot, and flow reaction system
Schülein et al. Continuous-flow synthesis of Ni (0) nanoparticles using a cone channel nozzle or a micro coaxial-injection mixer
JP6407640B2 (en) Chain metal particles and method for producing the same
JP2005254179A (en) Synthetic method and synthetic apparatus
JP7054138B2 (en) Method for manufacturing precious metal nanoparticles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171003

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171130

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20171130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190225

R150 Certificate of patent or registration of utility model

Ref document number: 6488152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250