JPH08189982A - Production of ceramic fuel particle - Google Patents

Production of ceramic fuel particle

Info

Publication number
JPH08189982A
JPH08189982A JP7000356A JP35695A JPH08189982A JP H08189982 A JPH08189982 A JP H08189982A JP 7000356 A JP7000356 A JP 7000356A JP 35695 A JP35695 A JP 35695A JP H08189982 A JPH08189982 A JP H08189982A
Authority
JP
Japan
Prior art keywords
solution
ceramic
gelling
gelled
internal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7000356A
Other languages
Japanese (ja)
Other versions
JP3015696B2 (en
Inventor
Shigeru Yamagishi
滋 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP7000356A priority Critical patent/JP3015696B2/en
Publication of JPH08189982A publication Critical patent/JPH08189982A/en
Application granted granted Critical
Publication of JP3015696B2 publication Critical patent/JP3015696B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE: To provide preparation and supply method for a stock solution for internal gelation used for producing microsphere ceramic particles such as ceramic fuel particles for reactor fuel and the like comprized of ceramics constituting metals selected from among uranium, thorium and transuranium elements by using internal gelation method. CONSTITUTION: A ceramic constituting metal-containing solution of a material to be gelled and a solution containing hexamethylene tetramine of gelating agent are stored in different vessels without cooling. They are supplied to a mixing part of ambient temperature with different pumps, and mixed to form droplets in an uncooled nozzle part 2 in a very short time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ウラン、トリウム、超
ウラン元素から選択されたセラミックス構成金属からな
る原子炉用セラミックス燃料粒子等の微小球状セラミッ
クス粒子を調製する方法の一つである内部ゲル化法にお
いて使用される内部ゲル化原液の調製・供給方法に関す
るものである。
The present invention relates to an internal gel which is one of the methods for preparing fine spherical ceramic particles such as ceramics fuel particles for nuclear reactors which are composed of ceramic constituent metals selected from uranium, thorium and transuranium elements. The present invention relates to a method for preparing and supplying an internal gelling stock solution used in a chemical method.

【0002】[0002]

【従来の技術】従来、原子炉用セラミックス燃料粒子の
分野において利用されている燃料ゲル粒子の製造方法の
一つである内部ゲル化法においては、ウラン等の燃料金
属を含む被ゲル化液とゲル化液とを予め冷却・混合した
内部ゲル化原液の液滴を何等かの方法で造り、それを加
熱して液滴内部のヘキサメチレンテトラミン(HMT
A)の熱分解で発生するアンモニアを被ゲル化物に作用
させてゲル粒子を得ている。
2. Description of the Related Art In the internal gelation method, which is one of the methods for producing fuel gel particles conventionally used in the field of ceramics fuel particles for nuclear reactors, a gelling liquid containing a fuel metal such as uranium is used. A droplet of the internal gelling stock solution prepared by previously cooling and mixing with the gelling solution is prepared by some method, and heated to heat hexamethylenetetramine (HMT) inside the droplet.
Ammonia generated by the thermal decomposition of A) is caused to act on the substance to be gelled to obtain gel particles.

【0003】[0003]

【発明が解決しようとする課題】従来技術では、被ゲル
化液とゲル化液とを予め冷却・混合した内部ゲル化原液
をノズル部に供給して液滴を形成をするので、原液タン
ク、供給ポンプ、ノズル部等の原液供給ライン全体を冷
却することが不可欠であった。しかし、この冷却は、ゲ
ル化装置全体の構造を複雑にするのみならず、大気中の
湿気がノズル部で凝縮し、そこでできた水滴がノズル先
端で内部ゲル化原液と合流して液滴が不均質になるとい
う不利に加えて、滴下方向が鉛直方向からずれる場合が
あるという問題点があった。このずれは、ゲル化のため
の加熱方法に高速誘電加熱法[特願平6−75789
号]を適用する場合においては特にトラブルの原因とな
る。
In the prior art, since the internal gelling stock solution in which the liquid to be gelled and the gelling solution are cooled and mixed in advance is supplied to the nozzle portion to form droplets, the stock solution tank, It was essential to cool the entire stock solution supply line such as the supply pump and nozzle. However, this cooling not only complicates the entire structure of the gelling apparatus, but moisture in the atmosphere condenses at the nozzle portion, and water droplets formed there merge with the internal gelled stock solution at the nozzle tip to form droplets. In addition to the disadvantage of becoming inhomogeneous, there is a problem that the dropping direction may deviate from the vertical direction. This deviation is caused by a high-speed dielectric heating method as a heating method for gelation [Japanese Patent Application No. 6-75789].
No.] will cause trouble especially.

【0004】そこで、本発明の目的は、被ゲル化液とゲ
ル化液のいずれをも冷却することなく、ゲル化原液の液
滴形成・滴下が可能になる方法を提供することにある。
Therefore, an object of the present invention is to provide a method capable of forming and dropping liquid droplets of a gelled stock solution without cooling both the liquid to be gelled and the gelled liquid.

【0005】[0005]

【課題を解決するための手段】本願発明者が鋭意研究の
結果、目的とする課題の解決のために採用した手段は次
のとおりである。
Means for Solving the Problems As a result of earnest research by the inventor of the present application, the means adopted for solving the intended problems are as follows.

【0006】第1は、被ゲル化液とゲル化液の混合部か
らノズル先端までの内部ゲル化原液供給ラインの容積を
可能な限り小さくすることによって、混合後液滴滴下ま
での所要時間を可能な限り短縮し、その滴下前に内部ゲ
ル化が始まらないようにしたことである。
First, the volume of the internal gelled stock solution supply line from the mixing part of the liquid to be gelled and the gelled liquid to the tip of the nozzle is made as small as possible, so that the time required for dropping liquid drops after mixing is reduced. It is as short as possible so that internal gelation does not start before the dropping.

【0007】第2は、上記の小容積の部分を被ゲル化液
とゲル化液を混合した粘性の高い内部ゲル化原液が通過
する極く短時間の間に、実用上問題のない程度にまで両
液を均一に混合するために、上記の小容積の一部として
極く細長い管を配置したことである。
Second, within a very short period of time during which a highly viscous internal gelling stock solution, which is a mixture of the gelling solution and the gelling solution, passes through the above-mentioned small volume portion, to the extent that there is no practical problem. In order to uniformly mix both liquids up to this point, an extremely elongated tube is arranged as a part of the above small volume.

【0008】[0008]

【実施例】実施例について本発明を具体的に説明する。
ただし、本発明は実施例によって限定されるものではな
い。
EXAMPLES The present invention will be specifically described with reference to examples.
However, the present invention is not limited to the examples.

【0009】[0009]

【実施例1】被ゲル化液とゲル化液の混合部は、内径
0.5mmのテフロン製T型ジョイントの相対する方向
から両液を正面衝突させ双方に垂直のもう一つの方向に
設けたノズル部に供給する構造とした。ノズル部は、そ
の先端は外径0.7mm内径0.4mmのステンレス管と
し、途中に内径0.1mm長さ50mmのテフロン管を
配置し、混合部からノズル先端までの全容積を0.00
41mlとした。
[Example 1] The mixing portion of the liquid to be gelled and the gelling liquid was provided in the other direction in which both liquids collide head-on from opposite directions of a Teflon T-joint having an inner diameter of 0.5 mm and are perpendicular to both. The structure is such that it is supplied to the nozzle portion. The tip of the nozzle is a stainless steel tube with an outer diameter of 0.7 mm and an inner diameter of 0.4 mm, and a Teflon tube with an inner diameter of 0.1 mm and a length of 50 mm is placed in the middle, and the total volume from the mixing section to the nozzle tip is 0.00.
It was 41 ml.

【0010】被ゲル化液として酸不足型硝酸ウラニル溶
液(U濃度=2.5mol/l、NO3 -/Uモル比=1.
55)を1.2ml/分、ゲル化液としてHMTA−尿
素混合溶液(濃度各3mol/l)を1.8ml/分の
速度で前記の混合部で合流させ、ノズル部に供給した結
果、ノズル先端までにゲル化が開始せずトラブルなく滴
下できた。これを前記の高速誘電加熱法で加熱・ゲル化
し、希アンモニア水(0.5mol/l)中に問題なく
健全なゲル微小球として回収できた。
An acid-deficient uranyl nitrate solution as the liquid to be gelled (U concentration = 2.5 mol / l, NO 3 / U molar ratio = 1.
55 ml) and 1.2 ml / min of HMTA-urea mixed solution (concentration 3 mol / l each) as a gelling liquid were merged at the mixing part at a rate of 1.8 ml / min, and the result was supplied to the nozzle part. Gelation did not start up to the tip, and it was possible to drop without trouble. This was heated and gelled by the high-speed dielectric heating method described above, and could be recovered as healthy gel microspheres in dilute aqueous ammonia (0.5 mol / l) without any problem.

【0011】[0011]

【実施例2】実施例1と同一の混合部ノズル部を用い
て、被ゲル化液として酸不足型硝酸ウラニル溶液(U濃
度=1.36mol/l、NO3 -/Uモル比=1.55)
を1.5ml/分、ゲル化液としてHMTA−尿素混合
溶液(濃度各3mol/l)を1.5ml/分の速度で
前記の混合部で合流させ、ノズル部に供給した結果、ゲ
ル化する前にノズル先端よりトラブルなく滴下できた。
これを実施例1と同様にして加熱・ゲル化し、問題なく
健全なゲル微小球として回収できた。
Example 2 Using the same mixing section nozzle section as in Example 1, an acid-deficient uranyl nitrate solution (U concentration = 1.36 mol / l, NO 3 / U molar ratio = 1. 55)
Of 1.5 ml / min, and an HMTA-urea mixed solution (concentration: 3 mol / l) as a gelling solution were merged at the mixing part at a rate of 1.5 ml / min and supplied to the nozzle part, resulting in gelation. I was able to drip from the tip of the nozzle without any trouble.
This was heated and gelated in the same manner as in Example 1 and could be recovered as sound gel microspheres without any problem.

【0012】[0012]

【発明の効果】第1に、従来の内部ゲル化法の技術で
は、ゲル化原液を室温より低い零度近くに冷却する冷却
装置とゲル化のための加熱装置という相反する機能を有
する二つの主要装置が必要であった。しかし、本発明の
結果、冷却装置が不要となり、全体の装置のスリム化を
可能とした。
First, in the technique of the conventional internal gelation method, there are two main functions having contradictory functions, that is, a cooling device for cooling the undiluted gelling solution to near zero below room temperature and a heating device for gelation. Equipment was needed. However, as a result of the present invention, the cooling device is not required, and the entire device can be made slim.

【0013】第2に、冷却の結果生ずるノズル部での湿
気の凝縮に基づくトラブルからの解放を可能とした。
Secondly, it is possible to eliminate the trouble caused by the condensation of moisture in the nozzle portion resulting from the cooling.

【0014】第3に、ゲル化に必要な温度までの温度上
昇程度の軽減を可能とした。加熱に前記の高速誘電加熱
法を採用する場合には、マイクロ波電力を約3/4に軽
減でき、それに伴う加熱用共振器内の電界強度の低減を
可能とし、放電発生限界に対する余裕度の増大を可能と
した。また、加熱に通常の高温の油カラムを用いる場合
には、カラムの長さを短縮でき、その面での装置のスリ
ム化をも可能とした。
Third, it is possible to reduce the temperature rise up to the temperature required for gelation. When the above-mentioned high-speed dielectric heating method is used for heating, the microwave power can be reduced to about 3/4, the electric field strength in the heating resonator can be reduced accordingly, and the margin for the discharge generation limit can be reduced. Made possible. In addition, when using a normal high temperature oil column for heating, the length of the column can be shortened, and the device can be slimmed in that respect.

【図面の簡単な説明】[Brief description of drawings]

【図1】被ゲル化液とゲル化液の混合部及びノズル部を
備えたセラミックス燃料粒子の製造装置を示した図であ
る。
FIG. 1 is a view showing an apparatus for producing ceramics fuel particles, which is provided with a mixing part of a liquid to be gelled and a gelling liquid and a nozzle part.

【符号の説明】[Explanation of symbols]

1:被ゲル化液とゲル化液の混合部、2:ノズル部、
3:内部ゲル化原液供給ライン
1: a mixing part of a liquid to be gelled and a gelling liquid, 2: a nozzle part,
3: Internal gelled stock solution supply line

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 セラミックス粒子をゲル粒子経由で製造
するための内部ゲル化法において、被ゲル化物であるセ
ラミックス構成金属含有溶液(以下、被ゲル化液とす
る)とゲル化剤であるヘキサメチレンテトラミンを含む
溶液(以下、ゲル化液と略記する)とを冷却することな
く別々の容器に蓄え、そこから別々のポンプで室温の混
合部に供給・混合した後、冷却していないノズル部で極
短時間に液滴を形成することを特徴とする内部ゲル化原
液の調製・供給方法。
1. In an internal gelation method for producing ceramic particles via gel particles, a ceramic-containing metal-containing solution (hereinafter referred to as a gelled liquid) which is a gelled substance and hexamethylene which is a gelling agent. A solution containing tetramine (hereinafter abbreviated as gelling solution) is stored in different containers without cooling, and from there, supplied and mixed by a separate pump to the mixing section at room temperature, and then in the uncooled nozzle section. A method for preparing and supplying an undiluted solution for internal gelation, which comprises forming droplets in an extremely short time.
【請求項2】 該セラミックス構成金属がウラン、トリ
ウム、超ウラン元素の群から成る選ばれた1種またはそ
れ以上の核燃料物質である請求項1記載の内部ゲル化原
液の調製・供給方法。
2. The method for preparing and supplying an internal gelling stock solution according to claim 1, wherein the ceramic constituent metal is one or more nuclear fuel substances selected from the group consisting of uranium, thorium and transuranium elements.
JP7000356A 1995-01-05 1995-01-05 Method for producing ceramic fuel particles Expired - Fee Related JP3015696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7000356A JP3015696B2 (en) 1995-01-05 1995-01-05 Method for producing ceramic fuel particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7000356A JP3015696B2 (en) 1995-01-05 1995-01-05 Method for producing ceramic fuel particles

Publications (2)

Publication Number Publication Date
JPH08189982A true JPH08189982A (en) 1996-07-23
JP3015696B2 JP3015696B2 (en) 2000-03-06

Family

ID=11471546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7000356A Expired - Fee Related JP3015696B2 (en) 1995-01-05 1995-01-05 Method for producing ceramic fuel particles

Country Status (1)

Country Link
JP (1) JP3015696B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016160124A (en) * 2015-02-27 2016-09-05 富士フイルム株式会社 Method for production of cupric oxide particulate, and cupric oxide particulate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016160124A (en) * 2015-02-27 2016-09-05 富士フイルム株式会社 Method for production of cupric oxide particulate, and cupric oxide particulate

Also Published As

Publication number Publication date
JP3015696B2 (en) 2000-03-06

Similar Documents

Publication Publication Date Title
US4459145A (en) Fabrication of glass microspheres with conducting surfaces
US3873651A (en) Freeze drying method for preparing radiation source material
EP4159345A1 (en) Reactive metal powders in-flight heat treatment processes
EP0571513A1 (en) Method of microencapsulation of hyperbaric gas.
US4257799A (en) Method for producing small hollow spheres
CN104671797B (en) Internal gelation method for ceramic microspheres capable of keeping gel solution steady at normal temperature
US4063856A (en) Particulate product of self supporting spheres containing inorganic material and apparatus for producing same
Jang et al. Study of sol–gel processing for fabrication of hollow silica–aerogel spheres
CN111243770A (en) Method for preparing monodisperse uranium dioxide microspheres
US3313602A (en) Method for making metal oxide microspheres
CN111039326A (en) Method for preparing uranium dioxide microspheres at normal temperature
US3312632A (en) Method for making metal oxide microspheres
JPH08189982A (en) Production of ceramic fuel particle
US3312631A (en) Method for making metal oxide microspheres
US3384687A (en) Microsphere forming process for aqueous salt soultions using dissolved ammonia in a dehydrating solvent
EP3020493B1 (en) Nanoparticle production method, production device and automatic production device
JPS5839776Y2 (en) spray equipment
US4193953A (en) Hydrosol droplet casting process for production of nuclear fuel and breeder material granules
Sproson et al. Ceramic Powder Synthesis by Thermal Reaction of Atomized Solutions.(Retroactive Coverage)
US5464593A (en) Process for producing spherical zeolite catalyst and apparatus for producing the same
JPH0327484B2 (en)
JPH10265222A (en) Production of lithium titanate fine sintered particle
US4439404A (en) Separation of uranium isotopes
US4011289A (en) Manufacture of microglobules
US4384990A (en) Uranyl nitrate pouring solution for producing nuclear fuel particles and a method for its preparation

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees