JP2016157505A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2016157505A
JP2016157505A JP2015036743A JP2015036743A JP2016157505A JP 2016157505 A JP2016157505 A JP 2016157505A JP 2015036743 A JP2015036743 A JP 2015036743A JP 2015036743 A JP2015036743 A JP 2015036743A JP 2016157505 A JP2016157505 A JP 2016157505A
Authority
JP
Japan
Prior art keywords
current
voltage
circuit
node
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015036743A
Other languages
English (en)
Inventor
一明 加藤
Kazuaki Kato
一明 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2015036743A priority Critical patent/JP2016157505A/ja
Priority to US14/957,389 priority patent/US9558832B2/en
Priority to CN201610034578.8A priority patent/CN105931669A/zh
Priority to KR1020160021424A priority patent/KR20160104563A/ko
Publication of JP2016157505A publication Critical patent/JP2016157505A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0408Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors
    • G11C16/0425Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors comprising cells containing a merged floating gate and select transistor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/26Sensing or reading circuits; Data output circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/30Power supply circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
    • G11C5/145Applications of charge pumps; Boosted voltage circuits; Clamp circuits therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/04Arrangements for writing information into, or reading information out from, a digital store with means for avoiding disturbances due to temperature effects

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Read Only Memory (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)

Abstract

【課題】不揮発性メモリのプログラム電流が増大した場合でも、昇圧回路の出力電圧を一定に維持する。
【解決手段】半導体装置に設けられた昇圧電圧供給回路400では、分圧回路102によってチャージポンプ201の出力電圧が検出され、検出された出力電圧が一定になるように、チャージポンプ201を駆動する発振回路202がオンオフ制御される。さらに、チャージポンプ201の出力電流Ioutが検出され、検出された出力電流Ioutの大きさに応じた制御電流Icntlが生成される。この制御電流Icntlは、分圧回路102を構成する複数の直列抵抗素子R401,R402の接続ノード610に流し込まれるか又はこの接続ノードから引き抜かれる。
【選択図】図6

Description

この発明は、半導体装置に関し、たとえば、電気的に書換え可能な不揮発性メモリを含む半導体装置に好適に用いられるものである。
フラッシュメモリなどの不揮発性メモリでは、プログラム時に書込み対象のメモリセルに書込み電流が流れる。この場合、同時にプログラムするメモリセルの個数が増加するとプログラム電圧の電圧レベルを一定に維持することが困難になる。
この問題に対処するため、特開2007−193936号公報(特許文献1)に記載のフラッシュメモリ装置は、フラッシュメモリセルアレイの他に、プログラム電流と同一な大きさのダミープログラム電流をそれぞれ流すことが可能な複数のダミープログラム電流発生素子を含む。そして、同時にプログラムされるメモリセルの個数に関係なく複数のプログラム電流及び複数のダミープログラム電流の和が一定となるように制御される。
特開2007−193936号公報
上記文献の技術では、同時にプログラムされるメモリセルの個数が少ない場合には、それに応じてダミープログラム電流の総和が増加する。このため、電流消費が大きくなるという問題がある。その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
一実施形態による半導体装置に設けられた昇圧電圧供給回路では、分圧回路によってチャージポンプの出力電圧が検出され、検出された出力電圧が一定になるように、チャージポンプを駆動する発振回路がオンオフ制御される。さらに、チャージポンプの出力電流が検出され、検出された出力電流の大きさに応じた制御電流が生成される。この制御電流は、上記の分圧回路を構成する複数の直列抵抗素子の接続ノードに流し込まれるか、又はこの接続ノードから引き抜かれる。
上記の実施形態によれば、プログラム電流が増大した場合でも、昇圧回路の出力電圧を一定に維持することができる。
第1の実施形態による半導体装置の構成を示すブロック図である。 メモリセルの構成および動作を説明するための図である(スプリット・ゲート型フラッシュメモリ素子の場合)。 メモリセルの構成および動作を説明するための図である(スタックド・ゲート型フラッシュメモリセルの場合)。 図1のフラッシュメモリモジュール16の構成を示すブロック図である。 図4のフラッシュメモリモジュールの一部の構成を示す図である。 図4および図5の昇圧電圧供給回路400の構成を示す回路図である。 図6の昇圧電圧供給回路の各トランジスタに流れる電流値を、書込みデータに対応付けて表形式で示した図である。 図6の分圧回路の抵抗素子R401に生じる電圧および書込み電圧の値を、書込みデータに対応付けて表形式で示した図である。 図6の昇圧電圧供給回路から出力される書込み電流IWと書込み電圧VWとの関係を示す図である。 図5の変形例を示す図である。 第2の実施形態の半導体装置において、昇圧電圧供給回路400Aの構成を示す図である。 図11の昇圧電圧供給回路の各トランジスタに流れる電流値を、書込みデータに対応付けて表形式で示した図である。 図11の分圧回路の抵抗素子R401に生じる電圧および書込み電圧の値を、書込みデータに対応付けて表形式で示した図である。 第3の実施形態の半導体装置において昇圧電圧供給回路500の構成を示す図である。 図14の昇圧電圧供給回路の各トランジスタに流れる電流値を、温度に対応付けて表形式で示した図である。 図14の分圧回路の抵抗素子R401に生じる電圧および書込み電圧の値を、温度に対応付けて表形式で示した図である。 第1の実施形態の場合における書込みスピードおよび書込み電圧と温度との関係を示す図である。 第3の実施形態の場合における書込みスピードおよび書込み電圧と温度との関係を示す図である。 第4の実施形態の半導体装置において昇圧電圧供給回路500Aの構成を示す図である。 図19の昇圧電圧供給回路の各トランジスタに流れる電流値を、温度に対応付けて表形式で示した図である。 図19の分圧回路の抵抗素子R401に生じる電圧および書込み電圧の値を、温度に対応付けて表形式で示した図である。
以下、各実施形態について図面を参照して詳しく説明する。なお、同一または相当する部分には同一の参照符号を付して、その説明を繰返さない。
<第1の実施形態>
[半導体装置の全体構成]
図1は、第1の実施形態による半導体装置の構成を示すブロック図である。図1では、半導体装置の一例としてフラッシュメモリモジュール16を内蔵したマイクロコンピュータ(MCU)1の構成を示す。なお、フラッシュメモリモジュール16のみが単一のシリコン基板上に搭載された半導体装置にも、この実施形態に記載した昇圧電圧供給回路400を適用することができる。
図1を参照して、マイクロコンピュータ1は、たとえばCMOS(Complementary Metal Oxide Semiconductor)集積回路製造技術などを用いることによって、単結晶シリコンのような1個の半導体チップに形成される。
図1に示すように、マイクロコンピュータ1は、中央処理装置(CPU:Central Processing Unit)2と、ランダムアクセスメモリ(RAM)5と、フラッシュメモリモジュール(FMDL)6とを備える。中央処理装置2は、命令制御部と実行部を備えて命令を実行する。ランダムアクセスメモリ5は、中央処理装置2のワーク領域などに利用される。フラッシュメモリモジュール6は、データおよびプログラムを格納する不揮発性メモリモジュールとして設けられる。
マイクロコンピュータ1は、さらに、ダイレクトメモリアクセスコントローラ(DMAC)3と、バスインタフェース回路(BIF)4と、フラッシュシーケンサ(FSQC)7と、外部入出力ポート(PRT)8,9と、タイマ(TMR)10と、クロックパルスジェネレータ(CPG)11と、高速バス(HBUS)12と、周辺バス(PBUS)13とを備える。
バスインタフェース回路4は、高速バス12と周辺バス13とのバスインタフェース制御もしくはバスブリッジ制御を行う。フラッシュシーケンサ7は、フラッシュメモリモジュール(FMDL)6に対するコマンドアクセス制御を行う。クロックパルスジェネレータ11は、マイクロコンピュータ1を制御するための内部クロックCLKを生成する。
マイクロコンピュータ1のバス構成は特に制限されないが、図1の場合には、高速バス(HBUS)12と周辺バス(PBUS)13とが設けられている。高速バス12および周辺バス13の各々は、特に制限されないが、データバス、アドレスバスおよびコントロールバスを有する。高速バス12および周辺バス13という2本のバスを設けることによって、共通のバスに全ての回路を共通接続する場合に比べてバスの負荷を軽くし、高速アクセス動作を保証することができる。
高速バス12には、中央処理装置2、ダイレクトメモリアクセスコントローラ3、バスインタフェース回路4、ランダムアクセスメモリ5、およびフラッシュメモリモジュール6が接続される。周辺バス13には、フラッシュシーケンサ7、外部入出力ポート8,9、タイマ10、およびクロックパルスジェネレータ11が接続される。
マイクロコンピュータ1は、さらに、発振子が接続されるかまたは外部クロックが供給されるクロック端子XTAL/EXTALと、スタンバイ状態を指示する外部ハードウェアスタンバイ端子STBY、リセットを指示する外部リセット端子RESと、外部電源端子VCCと、外部接地端子VSSとを備える。
図1では、ロジック回路としてのフラッシュシーケンサ7と、アレイ構成のフラッシュメモリモジュール6とは、別CADツールを用いて設計されているため、便宜上別々の回路ブロックとして図示されているが、双方併せて1つのフラッシュメモリモジュール16を構成すると考えることもできる。
フラッシュメモリモジュール6は、読出し専用の高速アクセスポート(HACSP)15を介して高速バス(HBUS)12に接続される。CPU2またはDMAC3は、高速バス12から高速アクセスポート15を介してフラッシュメモリモジュール6をリードアクセスすることができる。CPU2またはDMAC3は、フラッシュメモリモジュール6に対して書込みおよび初期化(消去)のアクセスを行うときは、バスインタフェース回路4を介して周辺バス(PBUS)13経由でフラッシュシーケンサ7にコマンドを発行する。このコマンドに応答して、フラッシュシーケンサ7は、周辺バスPBUSから低速アクセスポート(LACSP)を通じてフラッシュメモリモジュールの初期化や書込み動作の制御を行う。
[メモリセルの構成および動作]
図2および図3は、メモリセルの構成および動作を説明するための図である。図2は、スプリット・ゲート型フラッシュメモリ素子の場合を示し、図3は、スタックド・ゲート型フラッシュメモリセルの場合を示す。
図2(A)を参照して、スプリット・ゲート型フラッシュメモリ素子は、ソース領域とドレイン領域との間のチャネル形成領域の上にゲート絶縁膜を介して配置されたコントロールゲートCGとメモリゲートMGとを含む。メモリゲートMGとゲート絶縁膜の間にはシリコンナイトライドなどの電荷トラップ領域(SiN)が配置される。コントロールゲートCGはワード線WLに接続され、メモリゲートMGはメモリゲート選択線MGLに接続される。コントロールゲートCG側のドレイン領域(またはソース領域)はビット線BLに接続され、メモリゲートMG側のソース領域(またはドレイン領域)はソース線SLに接続される。
図2(B)には、スプリット・ゲート型フラッシュメモリ素子の読出し(リード)時および書込み(プログラム)/消去時におけるビット線BL、コントロールゲートCG、メモリゲートMG、ソース線SL、およびウェル領域(WELL)の電圧設定の例が示されている。
具体的に、データ消去対象のメモリセルの閾値電圧Vthを下げるには、たとえば、BL=Hi−Z(ハイ・インピーダンス)、CG=0.0V、MG=−10V、SL=6V、WELL=0Vに設定される。これによって、ウェル領域(WELL)とメモリゲートMGとの間の高電界によって発生した電子と正孔のうち正孔が、ウェル領域(WELL)から電荷トラップ領域(SiN)に注入される。この処理はメモリゲートを共有する複数のメモリセルを単位として実行される。
データ書込み対象のメモリセルの閾値電圧Vthを上げるには、たとえば、BL=0V、CG=1.5V、MG=10V、SL=6V、WELL=0Vに設定される。この場合、ソース線SLからビット線に書込み電流が流れることによって、コントロールゲートとメモリゲートとの境界部分でホットエレクトロンが発生し、発生したホットエレクトロンが電荷トラップ領域(SiN)に注入される。電子の注入はビット線電流を流すか否かによって決まるので、この処理はビット単位で制御される。
読出し時には、たとえば、BL=1.5V、CG=1.5V,MG=0V、SL=0V、WELL=0Vに設定される。メモリセルの閾値電圧Vthが低ければメモリセルの抵抗は小さくなり(オン状態)、閾値電圧Vthが高ければメモリセルの抵抗は大きくなる(オフ状態)。
図3(A)に示されたスタックド・ゲート型フラッシュメモリ素子は、ソース領域とドレイン領域との間のチャネル形成領域の上にゲート絶縁膜を介してフローティングゲートFGとコントロールゲートCGがスタックされることによって構成される。コントロールゲートCGはワード線WLに接続される。ドレイン領域はビット線BLに接続され、ソース領域はソース線SLに接続される。
図3(B)および(C)には、スタックド・ゲート型フラッシュメモリ素子の読出しおよび書込み/消去時におけるビット線BL、ワード線WL、ソース線SL、およびウェル領域(WELL)の電圧設定の例が示されている。図3(B)は、ホットキャリア書込み方式によって閾値電圧Vthを上げ、ウェル領域WELLへの電子の放出によって閾値電圧Vthを下げる場合の電圧設定例が示されている。図3(C)はFNトンネル書込み方式によって閾値電圧Vthを上げ、ソース線SLへの電子の放出によって閾値電圧Vthを下げる場合の電圧設定例が示されている。
[フラッシュメモリモジュールの構成および動作]
図4は、図1のフラッシュメモリモジュール16の構成を示すブロック図である。図4および次図5では、紙面の左右方向を行方向またはX方向と称し、紙面の上下方向を列方向またはY方向と称する。
図4を参照して、フラッシュメモリモジュール16は、フラッシュメモリアレイ301と、Y−デコーダ回路306と、Y−セレクタ303と、読出し回路304と、書込み回路302と、X−デコーダ回路305と、高電圧印加回路307と、昇圧電圧供給回路400とを含む。
フラッシュメモリアレイ301は、行列状に配列された複数のフラッシュメモリセルを含む。複数のフラッシュメモリセルとして、図2のスプリット・ゲート型を用いることもできるし、図3のスタックド・ゲート型を用いることもできる。
Y−デコーダ回路306は、Y−アドレス信号をデコードする。Y−セレクタ303は、Y−アドレス信号のデコード結果に基づいて、フラッシュメモリアレイ301内の読出しおよび書込みの対象となる列を選択する。具体的に、Y−セレクタ303は、データ読出し時には読出し対象列のビット線を読出し回路304と接続し、データ書込み時には書込み対象列のビット線を書込み回路302と接続する。
読出し回路304は、Y−セレクタ303によって選択されたメモリセル列から読出された信号を参照信号と比較することによって、読出しデータを出力する。書込み回路302は、Y−セレクタ303によって選択された選択列のビット線に、書込みデータに従って書込み電流(プログラム電流とも称する)を流す。
X−デコーダ回路305は、X−アドレス信号をデコードすることにより、フラッシュメモリアレイ301内の読出し、書込み、および消去の対象となる行を選択する。具体的に、X−デコーダ回路305は、選択行のワード線(スプリット・ゲート型のメモリセルの場合にはワード線およびメモリゲート選択線)に、読出し、書込み、および消去の各動作モードに応じた電圧を印加する。
高電圧印加回路307は、データ書込みおよびデータ消去時にソース線に対して(スタックド・ゲート型のメモリセルのデータ消去時の場合には、さらにウェル領域にも)高電圧を印加する。この場合の高電圧の印加はブロック単位で行われる。
昇圧電圧供給回路400は、書込みおよび消去時に使用する正または負の高電圧を生成し、Xデコーダ回路305および高電圧印加回路307に供給する。
図5は、図4のフラッシュメモリモジュールの一部の構成を示す図である。図5では、図4のフラッシュメモリアレイ301およびY−セレクタ303の構成を簡略化して示している。図解を容易にするために、フラッシュメモリアレイ301では16個のメモリセルMC[0,0]〜MC[3,3]が代表的に示されている。第i行(i=0〜3)、第j列(j=0〜3)のメモリセルをMC[i,j]と記載する。複数のメモリセルを総称する場合または不特定のメモリセルを示す場合、メモリセルMCと記載する。図5では、各メモリセルにはスタックド・ゲート型のメモリ素子が用いられる。
図5を参照して、ビット線BL0〜BL3は、フラッシュメモリアレイ301の列にそれぞれ対応して、Y方向に延在して配置される。各ビット線BLは、対応する行の各メモリセルMCのドレイン領域と接続される。
ワード線WL0〜WL3は、フラッシュメモリアレイ301の行にそれぞれ対応して、X方向に延在して配置される。各ワード線WLは、対応する行の各メモリセルMCのコントロールゲートと接続される。
ソース線SL0,SL1は、フラッシュメモリアレイ301の行方向(X方向)に延在して設けられる。図5の場合、ソース線SLは、フラッシュメモリアレイ301の2行ごとに1本ずつ配置され、対応する行に設けられた各メモリセルMCのソース領域と接続される。さらに、ソース線SL0,SL1は、図示しない高電圧印加回路307を介して、昇圧電圧供給回路400の出力ノード602と接続される。
Y−セレクタ303は、ビット線BL0〜BL3にそれぞれ対応するNMOS(N-channel MOS)トランジスタQ300〜Q303を含む。各NMOSトランジスタは対応するビット線BLの端部と接地ノードGNDとの間に接続され、接続/非接続を切替えるスイッチとして用いられる。書込み回路302は、書込みデータ信号D0〜D4に基づいて、トランジスタQ300〜Q303のゲートに制御信号W0〜W3をそれぞれ供給する。以下では、書込みデータ信号が「0」のとき、対応するトランジスタのゲートにはハイレベル(Hレベル)の制御信号が供給され、書込みデータ信号が「1」のとき、対応する選択用トランジスタのゲートにはローレベル(Lレベル)の制御信号が供給されるものとする。
以下、図5を参照して、書込み動作の例について説明する。ワード線WL0が選択され、選択されたワード線WL0に高電圧(たとえば、10V)が印加されているとする。他のワード線WL1〜WL3は、非選択状態(Lレベル)であるとする。
たとえば、書込みデータ信号D0〜D3が全て「0」の場合、書込み回路302から出力された制御信号W0〜W3は全て「H」となり、NMOSトランジスタQ300〜Q303が全てオン(ON)となる。この結果、選択されたメモリセルMC[0,0]〜MC[0,3]へ電流I0〜I3の書込み電流がそれぞれ流れ、書込みが行われる。
書込みデータ信号D0〜D3が全て「1」の場合、書込み回路302から出力された制御信号W0〜W3は全て「L」となり、NMOSトランジスタQ300〜Q303が全てオフ(OFF)となる。この結果、選択されたメモリセルMC[0,0]〜MC[0,3]へ書込み電流は流れず、書込みは発生しない。
書込みデータ信号D0〜D3が「0、1、0、1」の場合、書込み回路302から出力された制御信号W0,W2は「H」となり、制御信号W1,W3は「L」となる。これにより、NMOSトランジスタQ300,Q302はオンし、NMOSトランジスタQ301、Q303はオフする。この結果、メモリセルMC[0,0]およびMC[0,2]へ書込み電流が流れ、これらのメモリセルで書込みが行われる。一方、メモリセルMC[0,1]およびMC[0,3]へは書込み電流が流れないため、これらのメモリセルで書込みは行われない。
このように、書込みデータに応じて(すなわち、「1」か「0」かによって)、選択されたメモリセルへ書込み電流が流れるか否かが決まる。書込み時に、選択された1個のメモリセルへ流れる書込み電流はおよそ10μAである。したがって、図5の選択行のメモリセルMC[0,0]〜MC[0,3]の全てが書込みの状態になった場合、昇圧電圧供給回路400の出力ノード602から各メモリセルへ流れる合計の書込み電流は、10μA×4=40μAとなる。
昇圧電圧供給回路400は、出力電圧を所定の書込み電圧(たとえば、10V)に維持した状態で、選択メモリセルの全てに書込み電流(図5の場合、40μA)が供給可能なように構成されている。なお、フラッシュメモリセルの特性は、書込み電圧(プログラム電圧)の影響を受ける。書込み電圧が高すぎると、書込み時間は短くなるがメモリセルへのダメージが増大する。逆に書込み電圧が低すぎるとメモリセルへのダメージは低減されるが書込み時間が長くなる。このため、書込み電圧を一定値に維持する必要がある。
[昇圧電圧供給回路の構成]
図6は、図4および図5の昇圧電圧供給回路400の構成を示す回路図である。図6を参照して、昇圧電圧供給回路400は、昇圧電圧生成部101と昇圧電圧調整部401とを含む。
(1.昇圧電圧生成部)
昇圧電圧生成部101は、昇圧電圧を生成するチャージポンプ201と、発振回路202と、比較器203と、基準電圧回路204とを含む。発振回路202は、チャージポンく201を駆動するクロック信号N204を生成する。基準電圧回路204は、電源電圧、温度、および製造状態の影響をほとんど受けない一定の電圧レベルの基準電圧N202を出力する。比較器203は、昇圧電圧調整部401から、チャージポンプ201の出力電圧の分圧電圧N201を受ける。比較器203はこの分圧電圧N201と基準電圧N202とを比較する。
発振回路202の発振動作は、比較器203の比較結果N203に応じてオンまたはオフに切り替わる。具体的に、分圧電圧N201が基準電圧N202以上になると、発振回路202は発振動作を停止する。分圧電圧N201が基準電圧N202より小さくなると、発振回路202は発振動作を再開する。発振回路202が動作中のときにチャージポンプ201は昇圧動作を行うので、この発振回路202の間欠動作(オンオフ動作)によって、チャージポンプ201から出力される昇圧電圧をほぼ一定値に保つことができる。
(2.昇圧電圧調整部−分圧回路)
昇圧電圧調整部401は、分圧回路102と、電流検出回路103と、制御電流生成回路104とを含む。分圧回路102は、昇圧電圧供給回路400の出力ノード602と接地ノードGNDとの間に直列接続された複数の抵抗素子を含む。図6の場合、分圧回路102には、出力ノード602と分圧ノード610との間に接続された第1の抵抗素子R401と、分圧ノード610と接地ノードR402との間に接続された第2の抵抗素子R402とが設けられている。分圧ノード610は、比較器203の+端子に接続され、比較器203に分圧電圧N201を与える。
なお、抵抗素子の構成は特に限定されない。ポリシリコンを抵抗素子として用いてもよいし、拡散領域またはウェル領域を抵抗素子として用いてもよい。もしくは、MOSトランジスタを抵抗素子として用いてもよい。
(3.昇圧電圧調整部−電流検出回路)
電流検出回路103は、チャージポンプ201の出力電流Ioutを検出する。具体的に、電流検出回路103は、PMOS(N-channel MOS)トランジスタQ401,Q402を含む。
まず、電流検出回路103の接続関係について説明する。PMOSトランジスタQ401のソースはチャージポンプ201の出力ノード601に接続される。PMOSトランジスタQ401のドレインは、昇圧電圧供給回路400の出力ノード602に接続されるとともに、自身のゲートに接続される(すなわち、PMOSトランジスタQ401は、ダイオード接続されている)。PMOSトランジスタQ401のバックゲート(ウェル)は、PMOSトランジスタQ401のソースに接続される。PMOSトランジスタQ402のソースは、PMOSトランジスタQ401のソースに接続される。PMOSトランジスタQ402のゲートは、PMOSトランジスタQ402のゲートに接続される。PMOSトランジスタQ402のバックゲート(ウェル)は、PMOSトランジスタQ401のソースに接続される。
上記構成によれば、PMOSトランジスタQ401,Q402はカレントミラーを構成するので、PMOSトランジスタQ402のドレインからは、チャージポンプ201の出力電流Ioutに比例する検出電流Idetが出力される。すなわち、比例定数をk1とすると、
Idet=k1×Iout …(1)
が成り立つ。
(4.昇圧電圧調整部−制御電流生成回路)
制御電流生成回路104は、検出電流Idetに応じた大きさの制御電流Icntlを生成する。具体的に、制御電流生成回路104は、NMOSトランジスタQ405,Q406,Q407,Q408と、PMOSトランジスタQ403,Q404と、定電流源402とを含む。
まず、制御電流生成回路104の接続関係について説明する。NMOSトランジスタQ405,Q407およびPMOSトランジスタQ403の各々は、ダイオード接続されている。NMOSトランジスタQ405は、PMOSトランジスタQ402のソース(ノードN401)と接地ノードGNDとの間に接続される。PMOSトランジスタQ406,Q407は、定電流源402の出力ノードN403と接地ノードGNDとの間に互いに並列に接続される。NMOSトランジスタQ405,Q406のゲートは相互に接続される。PMOSトランジスタQ403およびNMOSトランジスタQ408は、この並び順で昇圧電圧供給回路400の出力ノード602と接地ノードGNDとの間に直列に接続される。NMOSトランジスタQ407,Q408のゲートは相互に接続される。PMOSトランジスタQ404は、昇圧電圧供給回路400の出力ノード602と、分圧回路102の分圧ノード610(抵抗素子R401,R402の接続ノード)との間に接続される。PMOSトランジスタQ403,Q404のゲートは相互に接続される。
上記構成によれば、NMOSトランジスタQ405,Q406はカレントミラーを構成し、NMOSトランジスタQ407,Q408はカレントミラーを構成し、さらに、PMOSトランジスタQ403,Q404はカレントミラーを構成する。したがって、比例定数をk2とすれば、NMOSトランジスタQ406を流れる電流は、k2×Idetで表される。NMOSトランジスタQ407を流れる電流は、定電流源402の出力電流IcnstからNMOSトランジスタQ406を流れる電流を減じたものに等しいので、Icnst−k2×Idetで表される。さらに、PMOSトランジスタQ404を流れる制御電流Icntlは、比例定数k3を用いて、
Icntl=k3×(Icnst−k2×Idet)
=k3×(Icnst−k2×k1×Iout) …(2)
で表される。この制御電流Icntlが分圧回路102の分圧ノード610に流れ込むので、分圧回路102を構成する抵抗素子R401,R402を流れる電流をそれぞれIR401,IR402とすれば、
IR401=IR402−Icntl
=IR402−k3×Icnst+k1×k2×k3×Iout …(3)
が成り立つ。
[昇圧電圧供給回路の動作]
次に、昇圧電圧供給回路400の動作について、具体的な数値例を用いて説明する。以下の説明では、チャージポンプ201の出力インピーダンスを10kΩとする。メモリセル1個当たりの書込み電流を10μAとする。基準電圧回路204から出力される基準電圧N202を1.0Vとする。分圧回路102を構成する抵抗素子R401の抵抗値を989kΩとし、抵抗素子R402の抵抗値を100kΩとする。PMOSトランジスタQ401とPMOSトランジスタQ402とのチャネル幅Wのサイズ比をW_Q401:W_Q402=50:1とする。NMOSトランジスタQ405とNMOSトランジスタQ406とのチャネル幅Wのサイズ比をW_Q405:W_Q406=2:1とする。NMOSトランジスタQ406,Q407,Q408のチャネル幅Wは互いに等しいとする。PMOSトランジスタQ403,Q404のチャネル幅Wは互いに等しいとする。定電流源402の出力電流Icnstを1μAとする。チャージポンプ201から出力される昇圧電圧の電圧レベルは、書込みが十分に行えるように10Vに設定されているものとする。
図7は、図6の昇圧電圧供給回路の各トランジスタに流れる電流値を、書込みデータに対応付けて表形式で示した図である。図8は、図6の分圧回路の抵抗素子R401に生じる電圧および書込み電圧の値を、書込みデータに対応付けて表形式で示した図である。図7および図8では、チャージポンプ201の出力インピーダンスによる電圧降下を考慮しない場合の計算例が示されている。以下、図6〜図8を参照して、書込みデータ信号D0〜D3が全て「0」の場合、すなわち、書込み回路302の出力信号W0〜W3が全てHレベルの場合について代表的に説明する。
まず、分圧回路102の分圧ノード610(抵抗素子R401,R402の接続ノード)の電圧レベルは、比較器203の出力がフィードバックされる結果、最終的に基準電圧回路204から出力される基準電圧N202である1.0Vに等しくなる。したがって、抵抗素子R402には、1.0V/100kΩ=10μAの電流が流れる。この10μAの電流は抵抗素子R401にも流れる(なお、後述するように、正確には、抵抗素子R401に流れる電流は、抵抗素子R402に流れる10μAから、分圧ノード610に流れ込む制御電流Icntlを差し引いた値になる)。
書込みデータ信号D0〜D3が全て「0」の場合、図5で説明したように、書込み回路302の出力信号W0〜W3は全て「H」となり、NMOSトランジスタQ300〜Q303が全てオンとなる。この場合、選択されたメモリセルMC[0,0]〜MC[0,3]へ流れる書込み電流I0〜I3はそれぞれ10μAに等しいので、合計40μAの書込み電流が流れる。このとき、電流検出回路103のPMOSトランジスタQ401には、分圧抵抗R402へ流れる10μAとメモリセルへ流れる40μAとの合計である50μAの電流が流れる。
PMOSトランジスタQ401とカレントミラーを構成するPMOSトランジスタQ402には、PMOSトランジスタQ401とQ402とのチェネル幅Wの比(50:1)に従って1μAの電流が流れる(上式(1)でk1=1/50)。PMOSトランジスタQ402と直列接続されたNMOSトランジスタQ405にも1μAの電流が流れる。
NMOSトランジスタQ405とカレントミラーを構成するNMOSトランジスタQ406には、NMOSトランジスタQ405とQ406とのチャネル幅Wの比(2:1)に従って500nAの電流が流れる(上式(2)でk2=1/2)。NMOSトランジスタQ407には、定電流源402の出力電流Icnstである1μAからNMOSトランジスタQ406に流れる電流500nAを差し引いた500nAの電流が流れる。
NMOSトランジスタQ407とカレントミラーを構成するNMOSトランジスタQ408には、NMOSトランジスタQ407とQ408とのチャネル幅の比(1:1)に従って500nAの電流が流れる(上式(2)でk3=1)。NMOSトランジスタQ408と直列接続されたPMOSトランジスタQ403にも500nAの電流が流れる。
PMOSトランジスタQ403とカレントミラーを構成するPMOSトランジスタQ404には、PMOSトランジスタQ403とQ404とのチャネル幅Wの比(1:1)に従って500nAの電流が流れる。したがって、分圧ノード610には、500nAの制御電流Icntlが流れ込むことになる(上式(2)を参照)。
分圧回路102を構成する抵抗素子R401を流れる電流IR401は、抵抗素子R402を流れる電流IR402(10μA)から、制御電流Icntl(500nA)を差し引いた値になる。すなわち、抵抗素子R401には9.5μAの電流が流れる。これによって、抵抗素子R401にかかる電圧は、9.5μA×989kΩ≒9.4Vとなる。したがって、昇圧電圧供給回路400の出力ノード602の電圧(すなわち、書込み電圧VW)は、抵抗素子R401にかかる電圧9.4Vと抵抗素子R402かかる電圧1Vとの和である10.4Vになる。
他の書込みデータの場合も同様の手順で、昇圧電圧供給回路400の出力ノード602の電圧(書込み電圧VW)を計算することができる。定性的には、書込み電流IWが増加するほど(すなわち、チャージポンプ201の出力電流Ioutが増加するほど)、電流検出回路103によって検出される検出電流Idetが増加する(上式(1)を参照)。この検出電流Idetの増加に伴って、分圧回路102の分圧ノード610に流れ込む制御電流Icntl(すなわち、PMOSトランジスタQ404を流れる電流)は減少するので(上式(2)を参照)、抵抗素子R401を流れる電流IR401は増加する(上式(3)を参照)。この結果、書込み電流IWが増加するほど、昇圧電圧供給回路400の出力ノード602の電圧(書込み電圧VW)は増加する。
上記の結果は、チャージポンプ201の出力インピーダンスによる電圧降下を考慮しない場合である。実際には、チャージポンプ201の出力電圧は、書込み電流IWが増加するほど出力インピーダンスによる電圧降下によって減少するので、上記の昇圧電圧調整部401による電圧増加効果を打ち消すことになる。この結果、実際の書込み電圧VWは、書込み電流IWの大きさによらずにほぼ一定に保たれる。
具体的に、チャージポンプ201の出力インピーダンスを10kΩとすると、書込み電流が10μA増加するごとに、チャージポンプ201の出力電圧は0.1V減少する。この結果、実際の書込み電圧VW(すなわち、昇圧電圧供給回路400の出力ノード602の電圧)は、10.0Vという一定値に保たれる。
図9は、図6の昇圧電圧供給回路から出力される書込み電流IWと書込み電圧VWとの関係を示す図である。図9のグラフb,cは、図7および図8の数値例に基づくものである。
グラフbは、本実施形態の場合であるが、チャージポンプ201の出力インピーダンスによる電圧降下を考慮しないものである。グラフbは図8の表に示す結果をそのままプロットしたものとなっている。
グラフcは、本実施形態の場合でありかつチャージポンプ201の出力インピーダンスによる電圧降下を考慮した場合である。前述のように、チャージポンプ201の出力インピーダンスを10kΩとすると、書込み電流が10μA増加するごとに出力インピーダンスによって0.1Vだけ電圧が降下する。この結果、書込み電圧VWは、書込みデータ(書込み電流の大きさ)によらずほぼ一定の電圧値に保たれる。
グラフaは、比較例の場合であり、図6の電流検出回路103および制御電流生成回路104が設けられていない場合である。この場合、書込み電流IWが増加するにつれてチャージポンプ201の出力インピーダンスによる電圧降下が増大するので、昇圧電圧供給回路400から出力される書込み電圧VWは減少する。
なお、グラフaの場合には、分圧回路102を構成する抵抗素子R401の抵抗値を900kΩとし、抵抗素子R402の抵抗値を100kΩとし、基準電圧回路204から出力される基準電圧N202を1.02Vとしている。この場合、分圧ノード610の電圧N201は1.02Vとなり、昇圧電圧供給回路400の出力ノード602の電圧VWは10.2Vとなる。さらに、チャージポンプ201の出力インピーダンスを10kΩとすると、書込み電流が10μA増加するごとに、チャージポンプ201の出力電圧は0.1V減少するので、図9のグラフaの特性が得られる。
[第1の実施形態の効果]
以上のとおり、第1の実施形態の半導体装置によれば、チャージポンプ201の出力電流Ioutを検出する電流検出回路103と、検出された出力電流Ioutが増加するにつれて減少するような制御電流Icntlを生成する制御電流生成回路104とが設けられる。生成された制御電流Icntlは、分圧回路102の分圧ノード610に流し込まれる。これによって、書込み電流IWによらずに、昇圧電圧供給回路400から出力される書込み電圧VWの大きさをほぼ一定に保つことができる。上記の制御電流Icntlの大きさは書込み電流IWの大きさに比べて無視できる程度であるので、本実施形態の半導体装置によれば消費電力を無駄に増大させることはない。
[第1の変形例]
図6では、分圧回路102において制御電流Icntlが流れ込むノード(以下、制御ノードと称する)は、分圧電圧N201が出力される分圧ノード610と一致していた。これに対して、制御ノードと分圧ノード610とが異なっていても、上記とほぼ同じ効果を奏することができる。より一般的には、分圧回路102を構成する直列接続された複数の抵抗素子のいずれかの接続ノードに、制御電流Icntlが流れ込むようにすればよい。
[第2の変形例]
上記の実施形態では、各メモリセルではスタックド・ゲート型のメモリ素子が用いられていた。これに対して、各メモリセルとしてスプリット・ゲート型のメモリ素子を用いた場合にも、上述したような昇圧電圧供給回路400を用いることができる。以下、この場合のメモリアレイ301と昇圧電圧供給回路400との接続について簡単に説明する。
図10は、図5の変形例を示す図である。図5と同様に、フラッシュメモリアレイ301では16個のメモリセルMC[0,0]〜MC[3,3]が代表的に示されている。ただし、図10では、各メモリセルには、スプリット・ゲート型のメモリ素子が用いられている。
図10を参照して、ビット線BL0〜BL3は、フラッシュメモリアレイ301の列にそれぞれ対応して、Y方向に延在して配置される。各ビット線BLは、対応する行の各メモリセルMCのコントロールゲート側のドレイン領域(またはソース領域)と接続される。
ワード線WL0〜WL3は、フラッシュメモリアレイ301の行にそれぞれ対応して、X方向に延在して配置される。各ワード線WLは、対応する行の各メモリセルMCのコントロールゲートと接続される。
メモリゲート選択線MGL0〜MGL3は、フラッシュメモリアレイ301の行にそれぞれ対応して、X方向に延在して配置される。各メモリゲート選択線MGLは、対応する行の各メモリセルMCのメモリゲートと接続される。
ソース線SL0,SL1は、フラッシュメモリアレイ301の行方向(X方向)に延在して設けられる。図5の場合、ソース線SLは、フラッシュメモリアレイ301の2行ごとに1本ずつ配置され、対応する行に設けられた各メモリセルMCのメモリゲート側のソース領域(またはドレイン領域)と接続される。さらに、ソース線SL0,SL1は、図示しない高電圧印加回路307を介して、昇圧電圧供給回路400の出力ノード602と接続される。
Y−セレクタ303および書込み回路302の接続関係は図5の場合と同じであるので、同一または相当する部分には同一の参照符号を付して説明を繰り返さない。
<第2の実施形態>
[昇圧電圧供給回路の構成]
図11は、第2の実施形態の半導体装置において、昇圧電圧供給回路400Aの構成を示す図である。図11の昇圧電圧供給回路400Aは、図6の昇圧電圧供給回路400を変形したものであり、図6に示す第1の実施形態の図6の場合の制御電流生成回路104に代えて制御電流生成回路105を設けたものである。
具体的に、図11を参照して、制御電流生成回路105は、NMOSトランジスタQ405,Q406を含む。NMOSトランジスタQ405は、ダイオード接続されており、PMOSトランジスタQ402のソース(ノードN401)と接地ノードGNDとの間に接続される。NMOSトランジスタQ406は、分圧回路102の分圧ノード610(抵抗素子R401,R402の接続ノード)と接地ノードGNDとの間に接続される(すなわち、抵抗素子R402と並列に接続される)。NMOSトランジスタQ405,Q406のゲートは相互に接続される。
図11のその他の構成は図6の場合と同じであるので、同一または相当する部分には同一の参照符号を付して説明を繰り返さない。
上記構成によれば、NMOSトランジスタQ405,Q406はカレントミラーを構成する。したがって、比例定数をk2とすれば、NMOSトランジスタQ406を流れる制御電流Icntlは、
Icntl=k2×Idet
=k2×k1×Iout …(4)
で表される。この制御電流Icntlが分圧回路102の分圧ノード610から取り出されるので、分圧回路102の抵抗素子R401を流れる電流IR401は、
IR401=IR402+Icntl
=IR402+k1×k2×Iout …(5)
で表される。
[昇圧電圧供給回路の動作]
次に、第2の実施形態の場合の昇圧電圧供給回路400Aの動作について、具体的な数値例を示しながら説明する。以下の説明では、分圧回路を構成する抵抗素子R401の抵抗値を890kΩとし、抵抗素子R402の抵抗値を100kΩとする。NMOSトランジスタQ405とNMOSトランジスタQ406とのチャネル幅Wのサイズ比をW_Q405:W_Q406=40:23とする。その他の数値は、第1の実施形態の場合と同じである。
図12は、図11の昇圧電圧供給回路の各トランジスタに流れる電流値を、書込みデータに対応付けて表形式で示した図である。図13は、図11の分圧回路の抵抗素子R401に生じる電圧および書込み電圧の値を、書込みデータに対応付けて表形式で示した図である。図12および図13では、チャージポンプ201の出力インピーダンスによる電圧降下を考慮しない場合の計算例が示されている。以下、図11〜図13を参照して、書込みデータ信号D0〜D3が全て「0」の場合、すなわち、書込み回路302の出力信号W0〜W3が全てHレベルの場合について代表的に説明する。
まず、分圧回路102の分圧ノード610(抵抗素子R401,R402の接続ノード)の電圧レベルは、比較器203の出力がフィードバックされる結果、最終的に基準電圧回路204から出力される基準電圧N202である1.0Vに等しくなる。したがって、抵抗素子R402には、1.0V/100kΩ=10μAの電流が流れる。この10μAの電流は抵抗素子R401にも流れる(なお、後述するように、正確には、抵抗素子R401に流れる電流は、抵抗素子R402に流れる10μAに、分圧ノード610に取り出される制御電流Icntlを加算した値になる)。
書込みデータ信号D0〜D3が全て「0」の場合、図5で説明したように、書込み回路302の出力信号W0〜W3は全て「H」となり、NMOSトランジスタQ300〜Q303が全てオンとなる。この場合、選択されたメモリセルMC[0,0]〜MC[0,3]へ流れる書込み電流I0〜I3はそれぞれ10μAに等しいので、合計40μAの書込み電流が流れる。このとき、電流検出回路103のPMOSトランジスタQ401には、分圧抵抗R402へ流れる10μAとメモリセルへ流れる40μAとの合計である50μAの電流が流れる。
PMOSトランジスタQ401とカレントミラーを構成するPMOSトランジスタQ402には、PMOSトランジスタQ401とQ402とのチェネル幅Wの比(50:1)に従って1μAの電流が流れる(上式(4)でk1=1/50)。PMOSトランジスタQ402と直列接続されたNMOSトランジスタQ405にも1μAの電流が流れる。
NMOSトランジスタQ405とカレントミラーを構成するNMOSトランジスタQ406には、NMOSトランジスタQ405とQ406とのチャネル幅Wの比(40:23)に従って575nAの電流が流れる(上式(4)でk2=23/40)。したがって、分圧ノード610からは、575nAの制御電流Icntlが取り出されることになる(上式(4)を参照)。
分圧回路102を構成する抵抗素子R401を流れる電流IR401は、抵抗素子R402を流れる電流IR402(10μA)に、制御電流Icntl(575nA)を加算した値になる。すなわち、抵抗素子R401には10.575μAの電流が流れる。これによって、抵抗素子R401にかかる電圧は、10.575μA×890kΩ≒9.4Vとなる。したがって、昇圧電圧供給回路400Aの出力ノード602の電圧(すなわち、書込み電圧VW)は、抵抗素子R401にかかる電圧9.4Vと抵抗素子R402かかる電圧1Vとの和である10.4Vになる。
他の書込みデータの場合も同様に昇圧電圧供給回路400Aの出力ノード602の電圧(書込み電圧VW)を計算することができる。定性的には、書込み電流IWが増加するほど(すなわち、チャージポンプ201の出力電流Ioutが増加するほど)、電流検出回路103によって検出される検出電流Idetが増加する(上式(1)を参照)。この検出電流Idetの増加に伴って、分圧回路102の分圧ノード610から取り出される制御電流Icntl(すなわち、NMOSトランジスタQ406を流れる電流)は増加するので(上式(4)を参照)、抵抗素子R401を流れる電流IR401は増加する(上式(5)を参照)。この結果、書込み電流IWが増加するほど、昇圧電圧供給回路400Aの出力ノード602の電圧(書込み電圧VW)は増加する。
上記の結果は、チャージポンプ201の出力インピーダンスによる電圧降下を考慮しない場合である。実際には、チャージポンプ201の出力電圧は書込み電流IWが増加するほど出力インピーダンスによる電圧降下によって減少するので、上記の昇圧電圧調整部401による電圧増加効果を打ち消すことになる。この結果、実際の書込み電圧VWは、書込み電流IWの大きさによらずにほぼ一定に保たれる。
具体的に、チャージポンプ201の出力インピーダンスを10kΩとすると、書込み電流が10μA増加するごとに、チャージポンプ201の出力電圧は0.1V減少する。この結果、実際の書込み電圧VW(すなわち、昇圧電圧供給回路400Aの出力ノード602の電圧)は、10.0Vという一定値に保たれる。
[第2の実施形態の効果]
以上のとおり、第2の実施形態の半導体装置によれば、チャージポンプ201の出力電流Ioutを検出する電流検出回路103と、検出された出力電流Ioutが増加するにつれて増加するような制御電流Icntlを生成する制御電流生成回路105とが設けられる。生成された制御電流Icntlは、分圧回路102の分圧ノード610から取り出される。これによって、書込み電流IWによらずに、昇圧電圧供給回路400Aから出力される書込み電圧VWの大きさをほぼ一定に保つことができる。上記の制御電流Icntlの大きさは書込み電流IWの大きさに比べて無視できる程度であるので、本実施形態の半導体装置によれば消費電力を無駄に増大させることはない。
なお、図11の昇圧電圧供給回路400Aは、図6の昇圧電圧供給回路400に比べて、その構成が簡単になっているというメリットがある。ただし、図6の昇圧電圧供給回路400では、出力電流Icnstをトリミング可能なように定電流源402を構成することによって、製造工程によるばらつきを抑えられるというメリットがある。
[変形例]
第1の実施形態の場合と同様に、分圧回路102において制御電流Icntlが取り出されるノードが分圧ノード610と異なっていても、上記とほぼ同じ効果を奏する。さらに、各メモリセルは、スタックド・ゲート型のメモリ素子であっても、スプリット・ゲート型のメモリ素子であってもよい。
<第3の実施形態>
[昇圧電圧供給回路の構成]
図14は、第3の実施形態の半導体装置において昇圧電圧供給回路500の構成を示す図である。図14の昇圧電圧供給回路500は、図6の昇圧電圧供給回路400を変形したものである。具体的に、図14の昇圧電圧供給回路500は、温度が増加するほど出力電流を増加させる温度依存電流源106をさらに含む点で図6の昇圧電圧供給回路400と異なる。
図14を参照して、温度依存電流源106は、定電圧回路501と、抵抗素子R501と、NMOSトランジスタQ501,Q502とを含む。定電圧回路501は、たとえば、BGR(Band Gap Reference)回路によって構成され、電源電圧および温度の変化によらない一定の電圧を出力する。抵抗素子R501は、たとえば、ポリシリコンによって形成され、温度依存性がほとんどない。抵抗素子R501の一端は、定電圧回路501の出力ノードN501と接続される。NMOSトランジスタQ501は、ダイオード接続され、抵抗素子R501の他端と接地ノードGNDとの間に接続される。NMOSトランジスタQ502は、定電流源402の出力ノードN403と接地ノードGNDとの間に接続される。NMOSトランジスタQ501,502は、そのゲートが相互に接続されることによってカレントミラーを構成する。
上記の温度依存電流源106の構成によれば、NMOSトランジスタQ501の閾値電圧は温度が増加するほど減少するので、温度依存電流源106の出力電流Itdepは温度が増加するほど増加する。この出力電流Itdepが定電流源402の出力ノードN403からさらに取り出されるので、式(2)の制御電流Icntlは、
Icntl=k3×(Icnst−Itdep−k2×k1×Iout) …(6)
のように書き直される。すなわち、温度が増加するほど制御電流Inctlが減少する。
図14のその他の点は図6の場合と同様であるので、同一または相当する部分には同一の参照符号を付して説明を繰り返さない。
[昇圧電圧供給回路の動作]
次に、第2の実施形態の場合の昇圧電圧供給回路500の動作について、具体的な数値例を示しながら説明する。以下の説明では、定電圧回路501の出力ノードN501の電圧を2Vとし、定電流源402の出力電流Icnstを2μAとする。抵抗素子R501の抵抗値を260kΩとする。NMOSトランジスタQ501,Q502のチャネル幅Wのサイズ比W_Q501:W_Q502を5:1とする。その他の数値は、第1の実施形態の場合と同じである。
図15は、図14の昇圧電圧供給回路の各トランジスタに流れる電流値を、温度に対応付けて表形式で示した図である。図16は、図14の分圧回路の抵抗素子R401に生じる電圧および書込み電圧の値を、温度に対応付けて表形式で示した図である。図15および図16では、書込みデータ信号D0〜D3が全て「0」の場合の計算例が示されている。また、チャージポンプ201の出力インピーダンスによる電圧降下を考慮していない。
図14〜図16を参照して、書込みデータ信号D0〜D3が全て「0」の場合、合計40μAの書込み電流IWが流れる。このとき、電流検出回路103のPMOSトランジスタQ401には、分圧抵抗R402へ流れる10μAとメモリセルへ流れる40μAとの合計である50μAの電流が流れる。
PMOSトランジスタQ401とカレントミラーを構成するPMOSトランジスタQ402には、PMOSトランジスタQ401とQ402とのチェネル幅Wの比(50:1)に従って1μAの電流が流れる(上式(6)でk1=1/50)。PMOSトランジスタQ402と直列接続されたNMOSトランジスタQ405にも1μAの電流が流れる。
NMOSトランジスタQ405とカレントミラーを構成するNMOSトランジスタQ406には、NMOSトランジスタQ405とQ406とのチャネル幅Wの比(2:1)に従って500nAの電流が流れる(上式(6)でk2=1/2)。
NMOSトランジスタQ501の閾値電圧を温度が25℃のとき0.7Vとし、閾値電圧の温度依存性を−0.3V/100℃と想定する。この想定の場合、−40℃のときの閾値電圧は0.7V+0.195V=0.895Vとなり、125℃のときの閾値電圧は0.7V−0.3V=0.4Vとなる。したがって、抵抗素子R501流れる電流は、−40℃のとき、(2V−0.895V)/260kΩ=4.2μAとなる。抵抗素子R501と直列に接続されたNMOSトランジスタQ501にも、この電流4.2μAの電流が流れる。温度が25℃および125℃の場合においてNMOSトランジスタQ501に流れる電流も、上記と同様に計算できる。以下、温度が−40℃の場合について説明する。
NMOSトランジスタQ501とカレントミラーを構成するNMOSトランジスタQ502には、NMOSトランジスタQ501,Q502のチャネル幅Wの比(5:1)に従って840nAの電流Itdepが流れる。したがって、NMOSトランジスタQ407には、定電流源402の出力電流Icnstである2μAから、NMOSトランジスタQ406に流れる電流500nAおよびNMOSトランジスタQ502に流れる電流Itdep(840nA)を差し引いた660nAの電流が流れる。
NMOSトランジスタQ407とカレントミラーを構成するNMOSトランジスタQ408には、NMOSトランジスタQ407とQ408とのチャネル幅の比(1:1)に従って660nAの電流が流れる(上式(6)でk3=1)。NMOSトランジスタQ408と直列接続されたPMOSトランジスタQ403にも660nAの電流が流れる。
PMOSトランジスタQ403とカレントミラーを構成するPMOSトランジスタQ404には、PMOSトランジスタQ403とQ404とのチャネル幅Wの比(1:1)に従って660nAの電流が流れる。したがって、分圧ノード610には、660nAの制御電流Icntlが流れ込むことになる(上式(6)を参照)。
分圧回路102を構成する抵抗素子R401を流れる電流IR401は、抵抗素子R402を流れる電流IR402(10μA)から、制御電流Icntl(660nA)を差し引いた値になる。すなわち、抵抗素子R401には9.34Aの電流が流れる。これによって、抵抗素子R401にかかる電圧は、9.34μA×989kΩ≒9.2Vとなる。したがって、昇圧電圧供給回路400の出力ノード602の電圧(すなわち、書込み電圧VW)は、抵抗素子R401にかかる電圧9.2Vと抵抗素子R402かかる電圧1Vとの和である10.2Vになる。
その他の温度25℃および125℃の場合は、図15および図16に示すとおりである。定性的には、温度が増加するほど、温度依存電流源の出力電流Itdepが増加するので、制御電流Icntlが減少する(上式(6)を参照)。この結果、温度が増加するほど、昇圧電圧供給回路500の出力ノード602の電圧(書込み電圧VW)はより増加する。
[第3の実施形態の効果]
第3の実施形態では、分圧回路102の分圧ノード610に流れ込む制御電流Icntlは、書込み電流IWに依存するだけでなく、温度にも依存する。具体的に、制御電流Inctlは、書込み電流IWが増加するほど減少し、温度が増加するほど減少する。この結果、昇圧電圧供給回路500の出力ノード602の電圧(書込み電圧VW)は、第1の実施形態で説明したように書込み電流IWの変化に対してはほぼ一定の値を保つが、温度変化に対しては温度が増加するほど増加する。このように書込み電圧VWに温度依存性を持たせた理由について以下に説明する。
図17は、第1の実施形態の場合における書込みスピードおよび書込み電圧と温度との関係を示す図である。図17では書込み電圧が温度によらず一定の場合を示す。この場合、書込みスピードは温度が高くなるにつれて遅くなる。
図18は、第3の実施形態の場合における書込みスピードおよび書込み電圧と温度との関係を示す図である。図18では、温度が増加するほど書込み電圧が増加する場合を示す。この場合、図17で説明した温度の増加に伴う書込みスピードの減少を、書込み電圧の増加によって補償することができるので、書込みスピードを温度によらずに一定に保つことが可能になる。このように、第3の実施形態では、第1の実施形態の場合の効果に加えて、書込みスピードを温度によらずに一定に保つことができるという効果を奏する。
[変形例]
第1の実施形態の場合と同様に、分圧回路102において制御電流Inctlが流れ込むノードが分圧ノード610と異なっていても、上記とほぼ同じ効果を奏する。さらに、各メモリセルは、スタックド・ゲート型のメモリ素子であっても、スプリット・ゲート型のメモリ素子であってもよい。
<第4の実施形態>
[昇圧電圧供給回路の構成]
図19は、第4の実施形態の半導体装置において昇圧電圧供給回路500Aの構成を示す図である。図19の昇圧電圧供給回路500Aは、図11の昇圧電圧供給回路400Aを変形したものである。具体的に、図19の昇圧電圧供給回路500Aは、温度が増加するほど出力電流を増加させる温度依存電流源106をさらに含む点で図11の昇圧電圧供給回路400Aと異なる。
温度依存電流源106の構成は図14の場合と同じであるので、同一または相当する部分には同一の参照符号を付して説明を繰り返さない。図19の場合、NMOSトランジスタQ502は、NMOSトランジスタQ406のドレイン(ノード612)と接地ノードGNDとの間に接続される。
前述の式(4)は、温度依存電流源106の出力電流Itdepを用いて、
Icntl=k2×k1×Iout+Itdep …(7)
のように書き直される。すなわち、分圧回路102の分圧ノード610から取り出される制御電流Icntlは、チャージポンプ201の出力電流Iout(書込み電流IW)が増加するほど増加し、温度依存電流源106の出力電流Itdepが増加するほど増加する。温度依存電流源106の出力電流Itdepは温度が増加するほど増加するので、分圧ノード610から取り出される制御電流Icntlは、温度が増加するほど増加することになる。
[昇圧電圧供給回路の動作]
次に、第4の実施形態の場合の昇圧電圧供給回路500Aの動作について、具体的な数値例を示しながら説明する。以下の説明では、定電圧回路501の出力ノードN501の電圧を2Vとし、定電流源402の出力電流Icnstを2μAとする。抵抗素子R501の抵抗値を260kΩとする。NMOSトランジスタQ501,Q502のチャネル幅Wのサイズ比W_Q501:W_Q502を4:1とする。分圧回路を構成する抵抗素子R401の抵抗値を793kΩとし、抵抗素子R402の抵抗値を100kΩとする。NMOSトランジスタQ405とNMOSトランジスタQ406とのチャネル幅Wのサイズ比をW_Q405:W_Q406=40:23とする。NMOSトランジスタQ501の閾値電圧を温度が25℃のとき0.7Vとし、閾値電圧の温度依存性を−0.3V/100℃と想定する(第3の実施形態の場合と同じである)。その他の数値は、第1の実施形態の場合と同じである。
図20は、図19の昇圧電圧供給回路の各トランジスタに流れる電流値を、温度に対応付けて表形式で示した図である。図21は、図19の分圧回路の抵抗素子R401に生じる電圧および書込み電圧の値を、温度に対応付けて表形式で示した図である。図20および図21では、書込みデータ信号D0〜D3が全て「0」の場合の計算例が示されている。また、チャージポンプ201の出力インピーダンスによる電圧降下を考慮していない。
図19〜図21を参照して、書込みデータ信号D0〜D3が全て「0」の場合、合計40μAの書込み電流IWが流れる。このとき、電流検出回路103のPMOSトランジスタQ401には、分圧抵抗R402へ流れる10μAとメモリセルへ流れる40μAとの合計である50μAの電流が流れる。
PMOSトランジスタQ401とカレントミラーを構成するPMOSトランジスタQ402には、PMOSトランジスタQ401とQ402とのチェネル幅Wの比(50:1)に従って1μAの電流が流れる(上式(7)でk1=1/50)。PMOSトランジスタQ402と直列接続されたNMOSトランジスタQ405にも1μAの電流が流れる。
NMOSトランジスタQ405とカレントミラーを構成するNMOSトランジスタQ406には、NMOSトランジスタQ405とQ406とのチャネル幅Wの比(40:23)に従って575nAの電流が流れる(上式(7)でk2=1/2)。
以下、温度が−40℃の場合について説明する。第3の実施形態で説明したように、抵抗素子R501と直列に接続されたNMOSトランジスタQ501には、電流4.2μAの電流が流れる。NMOSトランジスタQ501とカレントミラーを構成するNMOSトランジスタQ502には、NMOSトランジスタQ501,Q502のチャネル幅Wの比(4:1)に従って1.05μAの電流Itdepが流れる。したがって、分圧ノード610から取り出される制御電流Icntlは、NMOSトランジスタQ406を流れる575nAの電流と、NMOSトランジスタQ502を流れる1.05μAの電流Itdepとを加算した電流である1.625μAに等しい(上式(7)を参照)。
分圧回路102を構成する抵抗素子R401を流れる電流IR401は、抵抗素子R402を流れる電流IR402(10μA)に、制御電流Icntl(1.625μA)を加算した値になる。すなわち、抵抗素子R401には11.625μAの電流が流れる。これによって、抵抗素子R401にかかる電圧は、11.625μA×793kΩ≒9.2Vとなる。したがって、昇圧電圧供給回路400Aの出力ノード602の電圧(すなわち、書込み電圧VW)は、抵抗素子R401にかかる電圧9.2Vと抵抗素子R402かかる電圧1Vとの和である10.2Vになる。
その他の温度25℃および125℃の場合は、図20および図21に示すとおりである。定性的には、温度が増加するほど、温度依存電流源の出力電流Itdepが増加するので、制御電流Icntlが増加する(上式(7)を参照)。この結果、温度が増加するほど、昇圧電圧供給回路500の出力ノード602の電圧(書込み電圧VW)はより増加する。
[第4の実施形態の効果]
第4の実施形態では、分圧回路102の分圧ノード610から取り出される制御電流Icntlは、書込み電流IWだけでなく、温度にも依存する。すなわち、制御電流Inctlは、書込み電流IWが増加するほど増加し、温度が増加するほど増加する。この結果、昇圧電圧供給回路500の出力ノード602の電圧(書込み電圧VW)は、第2の実施形態で説明したように書込み電流IWの変化に対してはほぼ一定の値を保つが、温度変化に対しては温度が増加するほど増加する。このように書込み電圧VWに温度依存性を持たせることによって、第3の実施形態で説明したように、書込みスピードを温度によらずに一定に保つことができるという効果を奏する。
[変形例]
第2の実施形態の場合と同様に、分圧回路102において制御電流Inctlを取り出すノードが分圧ノード610と異なっていても、上記とほぼ同じ効果を奏する。さらに、各メモリセルは、スタックド・ゲート型のメモリ素子であっても、スプリット・ゲート型のメモリ素子であってもよい。
以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
1 マイクロコンピュータ、2 CPU(中央処理装置)、6,16 フラッシュメモリモジュール、7 フラッシュシーケンサ、101 昇圧電圧生成部、102 分圧回路、103 電流検出回路、104,105 制御電流生成回路、106 温度依存電流源、201 チャージポンプ、202 発振回路、203 比較器、204 基準電圧回路、301 メモリアレイ、307 高電圧印加回路、400,400A,500,500A 昇圧電圧供給回路、401 昇圧電圧調整部、402 定電流源、501 定電圧回路、610 分圧ノード、MC メモリセル、R401,R402,R501 抵抗素子、IW 書込み電流、VW 書込み電圧。

Claims (11)

  1. 電気的に書き換え可能なメモリセルが行列状に配列されたメモリアレイと、
    データ書込み時に書込み対象の複数のメモリセルに書込み電流を流すために、前記メモリアレイに昇圧電圧を供給する昇圧電圧供給回路とを備え、
    前記昇圧電圧供給回路は、
    前記昇圧電圧を生成するチャージポンプと、
    前記チャージポンプを駆動するためのクロック信号を生成する発振回路と、
    前記昇圧電圧の分圧電圧を出力する分圧回路と、
    前記分圧電圧と参照電圧とを比較し、比較結果に基づいて前記発振回路をオンオフ制御する比較器と、
    前記チャージポンプの出力電流を検出する電流検出回路と、
    前記検出された出力電流に応じた大きさの制御電流を生成する制御電流生成回路とを含み、
    前記制御電流生成回路は、生成した前記制御電流を、前記分圧回路を構成する直列接続された複数の抵抗素子のいずれかの接続ノードに流し込むか又は前記接続ノードから引き抜くように構成される、半導体装置。
  2. 前記制御電流生成回路は、前記制御電流を前記分圧回路の前記接続ノードから引き抜くように構成され、
    前記制御電流生成回路は、前記電流検出回路によって検出された出力電流が増加するほど、生成する前記制御電流を増加させる、請求項1に記載の半導体装置。
  3. 前記電流検出回路は、カレントミラーを用いることによって前記チャージポンプの出力電流に比例する検出電流を生成し、
    前記分圧回路は、
    前記チャージポンプの出力ノードと前記分圧回路の前記接続ノードとの間に接続された第1の抵抗素子と、
    前記分圧回路の前記接続ノードと接地ノードとの間に接続された第2の抵抗素子とを含み、
    前記制御電流生成回路は、前記第2の抵抗素子と並列に接続された第1のトランジスタを含み、カレントミラーを用いることによって前記電流検出回路の検出電流に等しい電流または比例する電流を前記制御電流として前記第1のトランジスタに流すように構成される、請求項2に記載の半導体装置。
  4. 前記制御電流生成回路は、温度が増加するほど、生成する前記制御電流を増加させる、請求項2に記載の半導体装置。
  5. 前記制御電流生成回路は、前記第1のトランジスタおよび前記第2の抵抗素子と並列に接続された第2のトランジスタをさらに含み、
    前記昇圧電圧供給回路は、温度が増加するほど出力電流を増加させる温度依存電流源をさらに含み、
    前記温度依存電流源は、カレントミラーを用いることによって、前記第2のトランジスタに、前記制御電流の一部として前記温度依存電流源の出力電流に等しい電流または比例する電流を流すように構成される、請求項3に記載の半導体装置。
  6. 前記制御電流生成回路は、前記制御電流を前記分圧回路の前記接続ノードに流し込むように構成され、
    前記制御電流生成回路は、前記電流検出回路によって検出された出力電流が増加するほど、生成する前記制御電流を減少させる、請求項1に記載の半導体装置。
  7. 前記電流検出回路は、カレントミラーを用いることによって前記チャージポンプの出力電流に比例する検出電流を生成し、
    前記分圧回路は、
    前記チャージポンプの出力ノードと前記接続ノードとの間に接続された第1の抵抗素子と、
    前記接続ノードと接地ノードとの間に接続された第2の抵抗素子とを含み、
    前記制御電流生成回路は、
    前記第1の抵抗素子と並列に接続された第1のトランジスタと、
    定電流源と、
    前記定電流源の出力ノードと前記接地ノードとの間に接続された第2のトランジスタと、
    前記第2のトランジスタと並列に接続された第3のトランジスタとを含み、
    前記電流検出回路は、カレントミラーを用いることによって、前記電流検出回路の検出電流に等しい電流または比例する電流を前記第2のトランジスタに流し、さらに、前記第3のトランジスタを流れる電流に等しい電流または比例する電流を前記制御電流として前記第1のトランジスタに流すように構成される、請求項2に記載の半導体装置。
  8. 前記制御電流生成回路は、温度が増加するほど、生成する前記制御電流を減少させる、請求項6に記載の半導体装置。
  9. 前記制御電流生成回路は、前記第2および第3のトランジスタと並列に接続された第4のトランジスタをさらに含み、
    前記昇圧電圧供給回路は、温度が増加するほど出力電流を増加させる温度依存電流源をさらに含み、
    前記温度依存電流源は、カレントミラーを用いることによって、前記第4のトランジスタに、前記制御電流の一部として前記温度依存電流源の出力電流に等しい電流または比例する電流を流すように構成される、請求項7に記載の半導体装置。
  10. 電気的に書き換え可能なメモリセルが行列状に配列されたメモリアレイと、
    データ書込み時に書込み対象の複数のメモリセルに書込み電流を流すために、前記メモリアレイに昇圧電圧を供給する昇圧電圧供給回路とを備え、
    前記昇圧電圧供給回路は、
    前記昇圧電圧を生成するチャージポンプと、
    前記チャージポンプを駆動するためのクロック信号を生成する発振回路と、
    分圧ノードから前記昇圧電圧の分圧電圧を出力する分圧回路とを含み、
    前記分圧回路は、
    前記チャージポンプの出力ノードと前記分圧ノードとの間に接続された第1の抵抗素子と、
    前記分圧ノードと接地ノードとの間に接続された第2の抵抗素子とを含み、
    前記昇圧電圧供給回路は、
    前記分圧電圧と参照電圧とを比較し、比較結果に基づいて前記発振回路をオンオフ制御する比較器と、
    カレントミラーを用いることによって前記チャージポンプの出力電流に比例する検出電流を生成する電流検出回路と、
    制御電流を生成する制御電流生成回路とをさらに含み、
    前記制御電流生成回路は、前記第2の抵抗素子と並列に接続された第1のトランジスタを含み、
    前記制御電流生成回路は、カレントミラーを用いることによって前記検出電流に等しい電流または比例した電流を前記制御電流として前記第1のトランジスタに流すように構成される、半導体装置。
  11. 電気的に書き換え可能なメモリセルが行列状に配列されたメモリアレイと、
    データ書込み時に書込み対象の複数のメモリセルに書込み電流を流すために、前記メモリアレイに昇圧電圧を供給する昇圧電圧供給回路とを備え、
    前記昇圧電圧供給回路は、
    前記昇圧電圧を生成するチャージポンプと、
    前記チャージポンプを駆動するためのクロック信号を生成する発振回路と、
    分圧ノードから前記昇圧電圧の分圧電圧を出力する分圧回路とを含み、
    前記分圧回路は、
    前記チャージポンプの出力ノードと前記分圧ノードとの間に接続された第1の抵抗素子と、
    前記分圧ノードと接地ノードとの間に接続された第2の抵抗素子とを含み、
    前記昇圧電圧供給回路は、
    前記分圧電圧と参照電圧とを比較し、比較結果に基づいて前記発振回路をオンオフ制御する比較器と、
    カレントミラーを用いることによって前記チャージポンプの出力電流に比例する検出電流を生成する電流検出回路と、
    制御電流を生成する制御電流生成回路とをさらに含み、
    前記制御電流生成回路は、
    前記第1の抵抗素子と並列に接続された第1のトランジスタと、
    定電流源と、
    前記定電流源の出力ノードと前記接地ノードとの間に接続された第2のトランジスタと、
    前記第2のトランジスタと並列に接続された第3のトランジスタとを含み、
    前記電流検出回路は、カレントミラーを用いることによって、前記電流検出回路の検出電流に等しい電流または比例する電流を前記第2のトランジスタに流すとともに、前記第3のトランジスタを流れる電流に等しい電流または比例する電流を前記制御電流として前記第1のトランジスタに流すように構成される、半導体装置。
JP2015036743A 2015-02-26 2015-02-26 半導体装置 Pending JP2016157505A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015036743A JP2016157505A (ja) 2015-02-26 2015-02-26 半導体装置
US14/957,389 US9558832B2 (en) 2015-02-26 2015-12-02 Semiconductor device including boosted voltage supply circuit for supplying boosted voltage to memory array
CN201610034578.8A CN105931669A (zh) 2015-02-26 2016-01-19 半导体器件
KR1020160021424A KR20160104563A (ko) 2015-02-26 2016-02-23 반도체 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015036743A JP2016157505A (ja) 2015-02-26 2015-02-26 半導体装置

Publications (1)

Publication Number Publication Date
JP2016157505A true JP2016157505A (ja) 2016-09-01

Family

ID=56799146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015036743A Pending JP2016157505A (ja) 2015-02-26 2015-02-26 半導体装置

Country Status (4)

Country Link
US (1) US9558832B2 (ja)
JP (1) JP2016157505A (ja)
KR (1) KR20160104563A (ja)
CN (1) CN105931669A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7389276B2 (ja) 2020-08-27 2023-11-29 チャンシン メモリー テクノロジーズ インコーポレイテッド メモリの調整方法、調整システム及び半導体デバイス

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6842271B2 (ja) * 2016-10-07 2021-03-17 ラピスセミコンダクタ株式会社 電源回路及び半導体記憶装置
KR102435906B1 (ko) 2017-06-26 2022-08-24 삼성전자주식회사 메모리 장치 및 메모리 장치의 동작 방법
US10360948B2 (en) 2017-06-26 2019-07-23 Samsung Electronics Co., Ltd. Memory device and operating method of memory device
JP6501325B1 (ja) * 2018-01-30 2019-04-17 ウィンボンド エレクトロニクス コーポレーション 半導体記憶装置
CN109801661B (zh) * 2019-01-22 2021-04-02 上海华虹宏力半导体制造有限公司 一种闪存编程电流产生电路及其方法
JP6908762B1 (ja) 2020-07-02 2021-07-28 ウィンボンド エレクトロニクス コーポレーション パワーダウン検出回路および半導体記憶装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006164089A (ja) * 2004-12-10 2006-06-22 Sharp Corp 直流安定化電源装置
US20070183205A1 (en) * 2006-02-03 2007-08-09 Samsung Electronics Co., Ltd. Semiconductor memory device controlling program voltage according to the number of cells to be programmed and method of programming the same
US20070201283A1 (en) * 2006-02-25 2007-08-30 Samsung Electronics Co., Ltd. Boost voltage generating circuit and method thereof
US20080273383A1 (en) * 2007-05-03 2008-11-06 Samsung Electronics Co., Ltd. High voltage generator circuit and flash memory device including the same
US20110002173A1 (en) * 2009-07-03 2011-01-06 Nec Electronics Corporation Nonvolatile semiconductor memory device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3519547B2 (ja) * 1996-06-24 2004-04-19 株式会社東芝 中間電圧発生回路及びこれを有する不揮発性半導体メモリ
JP3696125B2 (ja) * 2000-05-24 2005-09-14 株式会社東芝 電位検出回路及び半導体集積回路
JP2004055012A (ja) * 2002-07-18 2004-02-19 Renesas Technology Corp 不揮発性半導体メモリ
US6801454B2 (en) * 2002-10-01 2004-10-05 Sandisk Corporation Voltage generation circuitry having temperature compensation
KR100699872B1 (ko) * 2005-11-02 2007-03-28 삼성전자주식회사 전압 펌프의 수를 조절할 수 있는 상 변화 메모리 장치 및기입 구동 전압 발생 방법
KR100725373B1 (ko) 2006-01-20 2007-06-07 삼성전자주식회사 플래쉬 메모리 장치
JP4505766B2 (ja) * 2008-06-30 2010-07-21 ルネサスエレクトロニクス株式会社 データ処理装置及びトリミングデータ読み出し方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006164089A (ja) * 2004-12-10 2006-06-22 Sharp Corp 直流安定化電源装置
US20070183205A1 (en) * 2006-02-03 2007-08-09 Samsung Electronics Co., Ltd. Semiconductor memory device controlling program voltage according to the number of cells to be programmed and method of programming the same
JP2007207418A (ja) * 2006-02-03 2007-08-16 Samsung Electronics Co Ltd プログラムセルの数によってプログラム電圧を調節する半導体メモリ装置及びそのプログラム方法
US20070201283A1 (en) * 2006-02-25 2007-08-30 Samsung Electronics Co., Ltd. Boost voltage generating circuit and method thereof
US20080273383A1 (en) * 2007-05-03 2008-11-06 Samsung Electronics Co., Ltd. High voltage generator circuit and flash memory device including the same
US20110002173A1 (en) * 2009-07-03 2011-01-06 Nec Electronics Corporation Nonvolatile semiconductor memory device
JP2011014205A (ja) * 2009-07-03 2011-01-20 Renesas Electronics Corp 不揮発性半導体記憶装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7389276B2 (ja) 2020-08-27 2023-11-29 チャンシン メモリー テクノロジーズ インコーポレイテッド メモリの調整方法、調整システム及び半導体デバイス

Also Published As

Publication number Publication date
US9558832B2 (en) 2017-01-31
KR20160104563A (ko) 2016-09-05
US20160254057A1 (en) 2016-09-01
CN105931669A (zh) 2016-09-07

Similar Documents

Publication Publication Date Title
US6600692B2 (en) Semiconductor device with a voltage regulator
JP2016157505A (ja) 半導体装置
US7512007B2 (en) Data processing device
US8363466B2 (en) Nonvolatile semiconductor memory device and method of reading data from nonvolatile semiconductor memory device
US6438034B1 (en) Semiconductor device
JP3743453B2 (ja) 不揮発性半導体記憶装置
US7928710B2 (en) Voltage protection circuit for thin oxide transistors, and memory device and processor-based system using same
US20060239072A1 (en) Nonvolatile memory device and semiconductor device
JP2001229687A (ja) 電圧レギュレータ回路および半導体メモリ装置
US10216242B2 (en) Power sequencing for embedded flash memory devices
JP2011014205A (ja) 不揮発性半導体記憶装置
KR100735010B1 (ko) 플래시 메모리 장치 및 그것을 위한 전압 발생회로
JP5829337B2 (ja) 半導体装置
TW201711041A (zh) 電壓產生電路及半導體記憶裝置
US10083755B2 (en) Discharge circuit and semiconductor memory device
TWI685839B (zh) 半導體記憶裝置以及電壓產生電路
JP2011003275A (ja) 半導体集積回路
JP2007058972A (ja) 半導体集積回路
JP2011118982A (ja) フラッシュメモリ
JP2003203489A (ja) 半導体記憶装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190305