JP2016115767A - 半導体レーザユニット及び半導体レーザ装置 - Google Patents

半導体レーザユニット及び半導体レーザ装置 Download PDF

Info

Publication number
JP2016115767A
JP2016115767A JP2014252030A JP2014252030A JP2016115767A JP 2016115767 A JP2016115767 A JP 2016115767A JP 2014252030 A JP2014252030 A JP 2014252030A JP 2014252030 A JP2014252030 A JP 2014252030A JP 2016115767 A JP2016115767 A JP 2016115767A
Authority
JP
Japan
Prior art keywords
semiconductor laser
heat sink
laser bar
submount
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014252030A
Other languages
English (en)
Other versions
JP6573451B2 (ja
Inventor
進人 影山
Nobuto Kageyama
進人 影山
治正 吉田
Harumasa Yoshida
治正 吉田
前田 純也
Junya Maeda
純也 前田
剛徳 森田
Takenori Morita
剛徳 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2014252030A priority Critical patent/JP6573451B2/ja
Publication of JP2016115767A publication Critical patent/JP2016115767A/ja
Application granted granted Critical
Publication of JP6573451B2 publication Critical patent/JP6573451B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

【課題】半導体レーザバーの光軸方向の湾曲を抑制できる半導体レーザユニット及び半導体レーザ装置を提供する。【解決手段】半導体レーザユニット2は、内部に流体通路が形成された板状のヒートシンク11と、複数の発光領域を有する出射端面23aが設けられた半導体レーザバー23と、を備え、半導体レーザバー23は、出射端面23aがヒートシンク11の一端面11b側を向くように、第1のサブマウント21を介してヒートシンク11の一面11a側の縁部に配置され、第1のサブマウント21には、半導体レーザバー23の基板よりも線膨張係数が小さく且つヤング率が大きい材料によって形成された支持部材24が、出射端面23aと反対側の位置に配置されている。【選択図】図4

Description

本発明は、半導体レーザユニット及び半導体レーザ装置に関する。
この種の分野の技術として、例えば特許文献1に記載の半導体レーザ装置がある。この半導体レーザ装置は、スペーサを介して複数の半導体レーザユニットを積層してなる。半導体レーザユニットは、内部に流体通路が形成された液体冷却式のヒートシンクと、多数の発光領域を有する出射端面を備え、ヒートシンクの一面側の縁部に固定された半導体レーザバーとによって構成されている。
また、ヒートシンクの他面側には、半導体レーザバーと対向する位置に、ヒートシンクよりも小さい線膨張係数を有するモリブデン補強体が設けられている。このモリブデン補強体により、半導体レーザユニットの全体の剛性が向上し、ヒートシンクと半導体レーザバーとの線膨張係数の差に起因する半導体レーザバーの厚み方向の湾曲が抑制されるようになっている。
特開2012−89584号公報
これまで、ヒートシンクと半導体レーザバーとの線膨張係数の差に起因する半導体レーザバーの湾曲の抑制は、厚み方向について検討されてきた。しかしながら、近年では、半導体レーザバーの高出力化に伴い、半導体レーザバーとヒートシンクとの接合に高融点ハンダが用いられるようになってきている。このような高温での接合条件下では、半導体レーザバーとヒートシンクとの接合の際に半導体レーザバーが光軸方向に湾曲することが看過できない新規の課題となっている。
本発明は、上記課題の解決のためになされたものであり、半導体レーザバーの光軸方向の湾曲を抑制できる半導体レーザユニット及び半導体レーザ装置を提供することを目的とする。
一側面に係る半導体レーザユニットは、内部に流体通路が形成された板状のヒートシンクと、複数の発光領域を有する出射端面が設けられた半導体レーザバーと、を備え、半導体レーザバーは、出射端面がヒートシンクの一端面側を向くように、サブマウントを介してヒートシンクの一面側の縁部に配置され、サブマウントには、半導体レーザバーの基板よりも線膨張係数が小さく且つヤング率が大きい材料によって形成された支持部材が、出射端面と反対側の位置に配置されている。
この半導体レーザユニットでは、半導体レーザバーが配置されたサブマウントにおいて、半導体レーザバーの出射端面と反対側の位置に、半導体レーザバーの基板よりも線膨張係数が小さく且つヤング率が大きい材料によって形成された支持部材が配置されている。この支持部材の配置により、半導体レーザバーをサブマウントに接合する際、ヒートシンクと半導体レーザバーとの線膨張係数の差に起因する半導体レーザバーの光軸方向の湾曲と反対向きの変形が半導体レーザバーに作用する。このため、半導体レーザバーをヒートシンクに接合する際の半導体レーザバーの光軸方向の湾曲が抑制され、出射端面の平坦化を実現できる。したがって、出射端面の発光領域を設計通りに位置させることが可能となる。
また、支持部材は、半導体レーザバーから離間して配置されていてもよい。この場合、ヒートシンクと半導体レーザバーとの線膨張係数の差に起因する半導体レーザバーの光軸方向の湾曲と反対向きの変形を半導体レーザバーにより確実に作用させることができる。
また、サブマウントは、半導体レーザバーと支持部材とを挟み込むように複数配置されていてもよい。この場合、使用時に半導体レーザバーで発生する熱を、サブマウントを介して効率良く放熱できる。
また、半導体レーザバーとサブマウントとは、金錫ハンダを用いて接合されていてもよい。低融点ハンダでは、使用時にハンダのマイグレーションが発生することが考えられる。この場合、ハンダが半導体レーザバーの出射端面に移動してくると、発光特性が劣化して半導体レーザユニットの信頼性が低下するおそれがある。したがって、高融点ハンダである金錫ハンダを用いることで、半導体レーザユニットの信頼性を確保できる。
また、ヒートシンクの他面側には、半導体レーザバー及び支持部材と対向する位置に、ヒートシンクよりも線膨張係数が小さい材料によって形成された補強部材が配置されていてもよい。これにより、半導体レーザバーをヒートシンクに接合する際、ヒートシンクと半導体レーザバーとの線膨張係数の差に起因する半導体レーザバーの厚さ方向の湾曲を抑制できる。
また、一側面に係る半導体レーザ装置は、上記半導体レーザユニットをヒートシンクの厚さ方向に複数積層してなる。
この半導体レーザ装置では、半導体レーザバーが配置されたサブマウントにおいて、半導体レーザバーの出射端面と反対側の位置に、半導体レーザバーの基板よりも線膨張係数が小さく且つヤング率が大きい材料によって形成された支持部材が配置されている。この支持部材の配置により、半導体レーザバーをサブマウントに接合する際、ヒートシンクと半導体レーザバーとの線膨張係数の差に起因する半導体レーザバーの光軸方向の湾曲と反対向きの変形が半導体レーザバーに作用する。このため、半導体レーザバーをヒートシンクに接合する際の半導体レーザバーの光軸方向の湾曲が抑制され、出射端面の平坦化を実現できる。したがって、出射端面の発光領域を設計通りに位置させることが可能となる。
この半導体レーザユニット及び半導体レーザ装置によれば、半導体レーザバーの光軸方向の湾曲を抑制できる。
半導体レーザ装置の一実施形態を示す斜視図である。 図1に示した半導体レーザ装置を構成する半導体レーザユニットの斜視図である。 図2に示した半導体レーザユニットの平面図である。 図2に示した半導体レーザユニットの側面図である。 比較例に係る半導体レーザユニットを示す図であり、(a)はその構成を示す側面図であり、(b)は半導体レーザバーの湾曲の様子を示す図である。 実施例に係る半導体レーザユニットにおけるレーザモジュールの形成工程を示す図であり、(a)は側面図、(b)は平面図である。 実施例に係る半導体レーザユニットにおけるレーザモジュール及び補強部材の組立工程を示す図であり、(a)は要部拡大側面図、(b)は要部拡大平面図である。 レーザモジュールの形成工程における半導体レーザバーの形状計測結果を示す図であり、(a)は比較例、(b)及び(c)は実施例である。 レーザモジュール及び補強部材の組立工程における半導体レーザバーの形状計測結果を示す図であり、(a)は比較例、(b)及び(c)は実施例である。
以下、図面を参照しながら、本発明に係る半導体レーザユニット及び半導体レーザ装置の好適な実施形態について詳細に説明する。
図1は、半導体レーザ装置の一実施形態を示す斜視図である。同図に示すように、半導体レーザ装置1は、複数の半導体レーザユニット2を後述するヒートシンク11の厚さ方向に積層することによって構成されている。図1では、3体の半導体レーザユニット2によって半導体レーザ装置1が構成されているが、半導体レーザユニット2の積層数は任意に変更可能である。
半導体レーザユニット2の積層には、スペーサ3が用いられている。スペーサ3は、銅(Cu)などの金属、或いはガラスやセラミックなどの絶縁体によって板状に形成されている。スペーサ3には、ヒートシンク11の複数の貫通孔14a,14b、及びヒートシンク11の内部の流体通路と連通する複数の貫通孔(不図示)が厚さ方向に設けられている。スペーサ3は、半導体レーザユニット2,2間において、後述のレーザモジュール12と補強部材13とによって形成される隙間を埋めるように、レーザモジュール12及び補強部材13から離間した状態でヒートシンク11,11間に介在している。
図2は、図1に示した半導体レーザ装置を構成する半導体レーザユニットの斜視図である。また、図3は半導体レーザユニットの平面図、図4はその側面図である。図2〜図4に示すように、半導体レーザユニット2は、ヒートシンク11と、レーザモジュール12と、補強部材13とによって構成されている。
ヒートシンク11は、内部に流体通路が形成された液体冷却式のヒートシンクである。ヒートシンク11は、例えば銅(Cu)などの高い熱伝導性を有する材料によって、スペーサ3と同程度の厚さの板状に形成されている。ヒートシンク11には、図3に示すように、スペーサ3の貫通孔に対応する一対の貫通孔14a,14bが設けられている。一方(レーザモジュール12側)の貫通孔14aから流入した冷却媒体は、ヒートシンク11の内部の流体通路を流通してレーザモジュール12側に供給され、他方の貫通孔14bから排出されるようになっている。
なお、貫通孔14a,14bの周りには、必要に応じてOリングを配置してもよい。また、一対の貫通孔14a,14bの間には、これらの貫通孔14a,14bよりも小径の貫通孔14cが設けられている。この中央の貫通孔14cは、半導体レーザユニット2の積層に用いられる貫通孔となっている。貫通孔14cには、例えば半導体レーザユニット2を位置決めする支柱が挿通される。
レーザモジュール12は、図4に示すように、第1のサブマウント21と、第2のサブマウント22と、半導体レーザバー23と、支持部材24とを積層することによって構成され、ヒートシンク11の一面11a側の縁部において、ヒートシンク11の長手方向の一端面11bと面一に配置されている。レーザモジュール12の幅は、ヒートシンク11の幅と等幅、若しくは僅かに小さい幅となっている。
第1のサブマウント21及び第2のサブマウント22は、例えば銅タングステン(CuW)などの高い通電性及び耐熱性を有する材料によって板状に形成されている。第1のサブマウント21は、例えば金錫(AuSn)ハンダによってヒートシンク11の一面11aの縁部に固定されている。また、第2のサブマウント22は、第1のサブマウント21との間で半導体レーザバー23及び支持部材24を挟むように配置されている。第2のサブマウント22は、例えば金錫ハンダによって半導体レーザバー23及び支持部材24に固定されている。第1のサブマウント21及び第2のサブマウント22の他の形成材料としては、モリブデン(Mo)、タングステン(W)、銅(Cu)、銅モリブデン(MoCu)、炭化珪素(SiC)、窒化アルミニウム(AlN)などが挙げられる。
半導体レーザバー23は、板状をなしている。半導体レーザバー23の一端面側は、複数の発光領域を有する出射端面23aとなっている。出射端面23aは、ヒートシンクの一端面11b側を向くように一端面11bと面一になっている。半導体レーザバー23は、化合物半導体からなる基板を有しており、発光領域に対応する位置に活性層が位置し、活性層の両側にクラッド層が位置している。基板の材料としては、GaAs、GaN、AlGaAs,GaP、AlGaN、InPなどが挙げられる。本実施形態では、例えば基板の主成分はGaAsであり、活性層には更にInが含まれ、クラッド層には更にAlが含まれている。
半導体レーザバー23を駆動する場合、第1のサブマウント21と第2のサブマウント22との間に駆動電流が供給される。上下に隣接する半導体レーザユニット2,2は、レーザモジュール12における第2のサブマウント22と補強部材13とが当接するように積層されており(図1参照)、各半導体レーザユニット2における第1のサブマウント21及び第2のサブマウント22は、補強部材13を介して互いに電気的に接続されている。
したがって、最上層の半導体レーザユニット2における第2のサブマウント22と、最下層の半導体レーザユニット2における第1のサブマウント21との間に駆動電圧を印加することで、全ての半導体レーザバー23に駆動電流が供給され、出射端面23aの複数の発光領域からそれぞれレーザ光を出射させることができる。
支持部材24は、半導体レーザバー23の基板よりも線膨張係数が小さく且つヤング率が大きい材料によって板状に形成されている。また、支持部材24の形成材料は、電気絶縁性を有する材料から選択される。このような材料としては、窒化珪素(SiN)、炭化珪素(SiC)、コージライト(2MgO−2Al−5SiO)、石英(SiO)などが挙げられる。支持部材24は、図3及び図4に示すように、出射端面23aと反対側の位置に配置され、半導体レーザバー23の他端面23bから離間した状態で第1のサブマウント21に固定されている。なお、第1のサブマウント21に対する半導体レーザバー23及び支持部材24の固定には、いずれも金錫ハンダが用いられている。
補強部材13は、ヒートシンク11よりも線膨張係数が小さい材料によって板状に形成されている。このような材料としては、モリブデン(Mo)が挙げられる。補強部材13は、図4に示すように、ヒートシンク11の他面11c側において、レーザモジュール12と対向する位置に固定されている。
補強部材13におけるヒートシンク11の長手方向の長さは、レーザモジュール12における同方向の長さと略同程度となっており、補強部材13は、ヒートシンク11を挟んで半導体レーザバー23及び支持部材24と対向する位置に固定されている。補強部材13とヒートシンク11との固定には、例えば金錫ハンダが用いられている。なお、補強部材13の形成材料は、モリブデンを主成分としているが、若干の不純物を含有していてもよい。
続いて、上述した構成を有する半導体レーザ装置1の作用効果について説明する。
図5は、比較例に係る半導体レーザユニットを示す図である。図5(a)に示す比較例の半導体レーザユニット102では、第1のサブマウント121と第2のサブマウント122との間に支持部材が配置されておらず、半導体レーザバー123におけるヒートシンク111の長手方向の長さは、第1のサブマウント121及び第2のサブマウント122における同方向の長さと略同一となっている。ヒートシンク111の他面側において、レーザモジュール112と対向する位置に補強部材113が配置されている点については、本実施形態と同様である。
しかしながら、この半導体レーザユニット102では、例えば金錫ハンダを用いてレーザモジュール112をヒートシンク111の一面111a側の縁部に接合する際、ヒートシンク111と半導体レーザバー123との線膨張係数の差に起因して半導体レーザバー123が光軸方向に湾曲してしまうことがある。この場合、半導体レーザバー123の接合位置がヒートシンク111の一面111a側の縁部であることも影響し、図5(b)に示すように、半導体レーザバー123の幅方向の縁部側が、ヒートシンク111の一端面111bと共に中心側よりも大きく後方(出射端面123aの反対面123b側)に引っ張られる。
したがって、半導体レーザバー123は、全体として出射端面123a側が凸となるようにアーチ状に湾曲することとなる。このような出射端面123aの湾曲が生じると、出射端面123aの発光領域を設計通りに位置させることが困難となり、発光領域から出射するレーザ光の集光性の低下や発光特性の劣化などが生じるおそれがある。
これに対し、本実施形態に係る半導体レーザユニット2では、上述したように、第1のサブマウント21において、半導体レーザバー23の基板よりも線膨張係数が小さく且つヤング率が大きい材料によって形成された支持部材24が、出射端面23aと反対側の位置に配置されている。この半導体レーザユニット2では、図6(a)に示すように、H雰囲気中において100g程度の荷重を付加し、金錫ハンダを用いて第1のサブマウント21上に半導体レーザバー23及び支持部材24を接合する。次に、同様の条件で金錫ハンダを用いて半導体レーザバー23及び支持部材24上に第2のサブマウント22を接合し、第1のサブマウント21及び第2のサブマウント22で半導体レーザバー23及び支持部材24を挟み込んでなるレーザモジュール12が形成される。
このレーザモジュール12の形成の際、半導体レーザバー23の後方に支持部材24が配置されていることにより、図6(b)に示すように、半導体レーザバー23には、ヒートシンク11と半導体レーザバー23との線膨張係数の差に起因する半導体レーザバー23の光軸方向の湾曲(図5(b)参照)と反対向きの変形が生じる。すなわち、半導体レーザバー23の幅方向の中心側が縁部側よりも大きく後方(出射端面23aの反対側)に引っ張られ、半導体レーザバー23は、全体として出射端面23a側が凹となるようにアーチ状に湾曲する。
次に、この半導体レーザユニット2では、図7(a)に示すように、H雰囲気中において50g程度の荷重を付加し、金錫ハンダを用いてヒートシンク11にレーザモジュール12と補強部材13とを接合する。ヒートシンク11に対するレーザモジュール12及び補強部材13の接合は、所定の治具を用いて同時に実施することができる。このとき、半導体レーザバー23には、比較例の場合と同様に、ヒートシンク11と半導体レーザバー23との線膨張係数の差に起因して、全体として出射端面23a側が凸となるようにアーチ状の変形が生じようとする。
これに対し、半導体レーザバー23には、レーザモジュール12を形成する段階で、全体として出射端面23a側が凹となるようにアーチ状の変形が予め生じている。したがって、これらの変形が互いに相殺され、図7(b)に示すように、ヒートシンク11に接合されたレーザモジュール12では、出射端面23aの光軸方向に対する半導体レーザバー23の湾曲が抑制され、出射端面23aが平坦化される。出射端面23aが平坦化されることで、出射端面23aの発光領域を設計通りに位置させることが可能となり、発光領域から出射するレーザ光の集光性や発光特性を向上できる。
また、半導体レーザユニット2では、支持部材24が半導体レーザバー23から離間して配置されている。半導体レーザバー23が支持部材24に接していると、レーザモジュール12の形成の際の半導体レーザバー23の変形が阻害されることが考えられる。したがって、支持部材24を半導体レーザバー23から離間して配置することで、ヒートシンク11と半導体レーザバー23との線膨張係数の差に起因する半導体レーザバー23の光軸方向の湾曲と反対向きの変形を半導体レーザバー23により確実に作用させることができる。
また、半導体レーザユニット2では、第1のサブマウント21と第2のサブマウント22とによって、半導体レーザバー23と支持部材24とが挟み込まれている。これにより、使用時に半導体レーザバー23で発生する熱を第1のサブマウント21及び第2のサブマウント22を介して効率良く放熱できる。また、半導体レーザユニット2を積層した場合に、第1のサブマウント21及び第2のサブマウント22を介して各半導体レーザユニット2の半導体レーザバーに簡単に駆動電圧を印加できる。
また、半導体レーザユニット2では、半導体レーザバー23及び支持部材24と第1のサブマウント21との接合、半導体レーザバー23及び支持部材24と第2のサブマウント22との接合、第1のサブマウント21とヒートシンク11との接合、及び補強部材13とヒートシンク11との接合に、それぞれ高融点ハンダである金錫ハンダが用いられている。低融点ハンダでは、使用時にハンダのマイグレーションが発生することが考えられる。この場合、ハンダが半導体レーザバー23の出射端面23aに移動してくると、発光特性が劣化して半導体レーザユニット2の信頼性が低下するおそれがある。したがって、高融点ハンダである金錫ハンダを接合に用いることで、半導体レーザユニット2の信頼性を確保できる。
また、半導体レーザユニット2では、ヒートシンク11の他面11b側において、半導体レーザバー23及び支持部材24と対向する位置に、ヒートシンク11よりも線膨張係数が小さい材料によって形成された補強部材13が配置されている。これにより、半導体レーザバー23をヒートシンク11に接合する際、ヒートシンク11と半導体レーザバー23との線膨張係数の差に起因する半導体レーザバー23の厚さ方向の湾曲を抑制できる。
以下、半導体レーザユニットの実施例について説明する。
実施例では、半導体レーザユニットにおける各構成要素を以下の寸法・材料によって形成した。寸法の表記は、幅(ヒートシンクの幅方向の長さ)×長さ(ヒートシンクの長手方向の長さ)×厚さである。
・ヒートシンク(Cu:線膨張係数16.8×10−6/℃、ヤング率98GPa)/12mm×30mm×1.1mm
・半導体レーザバー(GaAs基板:線膨張係数5.9×10−6/℃、ヤング率98GPa)/10mm×2mm×0.14mm
・第1及び第2のサブマウント(CuW:線膨張係数6.5×10−6/℃、ヤング率330GPa)/10mm×4mm×0.15mm、表面にNiメッキ2μm〜3μm/Auメッキ0.1μm〜0.3μm
・支持部材(SiN:線膨張係数2.6×10−6/℃、ヤング率290GPa)/10mm×1.5mm×0.14mm
・補強部材(Mo:線膨張係数5.1×10−6/℃、ヤング率329GPa)/10mm×4mm×0.15mm
・接合面/金錫ハンダ、半導体レーザバー及び支持部材と第1及び第2のサブマウントとの間:厚さ5μm、第1のサブマウントとヒートシンクとの間:厚さ20μm、ヒートシンクと補強部材との間:厚さ20μm、熱圧着温度300℃
半導体レーザバー及び支持部材の長さ(ヒートシンクの長手方向の長さ)は、サブマウントからはみ出ない範囲で適宜変更してもよい。支持部材の長さを例えば2mm〜4mmの範囲で変更する場合、第1及び第2のサブマウントの長さを例えば4mm〜12mmの範囲で変更し、半導体レーザバーの長さを例えば1mm〜5mmの範囲で変更してもよい。
図8は、レーザモジュールの形成工程における半導体レーザバーの形状計測結果を示す図である。この形状計測は、支持部材の形成材料を変えた場合に、レーザモジュール形成時の半導体レーザバーの出射端面の形状をレーザ顕微鏡にて計測したものである。
図8(a)に示すように、支持部材の形成材料の比較例としてジルコニア(ZrO:線膨張係数10.5×10−6/℃、ヤング率210GPa)を用いた場合、出射端面は、前方に凸となるようにアーチ状に湾曲した。この場合の出射端面の湾曲量(出射端面の両端を結ぶ直線に対する突出量)は、1.5μm程度であった。これに対し、図8(b)に示すように、支持部材の形成材料の実施例として炭化珪素(SiC:線膨張係数4.5×10−6/℃、ヤング率360GPa)を用いた場合、ジルコニアの場合に比べて、出射端面の湾曲量が減少し、ほぼフラットな状態となった。
また、図8(c)に示すように、支持部材の形成材料の実施例として窒化珪素(SiN:線膨張係数2.6×10−6/℃、ヤング率290GPa)を用いた場合、出射端面の湾曲の向きが反転し、出射端面は、前方に凹となるようにアーチ状に湾曲した。この場合の出射端面の湾曲量は、−1.5μm程度であった。
図9は、レーザモジュール及び補強部材の組立工程における半導体レーザバーの形状計測結果を示す図である。図9(a)に示すように、支持部材の形成材料の比較例としてジルコニアを用いた場合、出射端面の湾曲量は、レーザモジュール形成時よりも更に前方に凸となるようにアーチ状に湾曲し、湾曲量は、3.0μm程度に増加した。これに対し、図9(b)に示すように、支持部材の形成材料の実施例として炭化珪素を用いた場合、ジルコニアの場合に比べて、出射端面の湾曲量が減少し、湾曲量は、1.8μm程度に抑制された。また、図9(c)に示すように、支持部材の形成材料の実施例として窒化珪素を用いた場合、出射端面の湾曲量が更に減少し、湾曲量は、1.0μm程度に抑制された。
以上の結果から、サブマウントにおいて半導体レーザバーの出射端面と反対側の位置に、半導体レーザバーの基板よりも線膨張係数が小さく且つヤング率が大きい材料によって形成された支持部材を用いることで、半導体レーザバーの光軸方向の湾曲が抑制されることが確認できた。GaAs基板を有する半導体レーザバーに対しては、石英(SiO:線膨張係数0.5×10−6/℃、ヤング率70GPa)、及びコージライト(2MgO−2Al−5SiO:線膨張係数<0.1×10−6/℃、ヤング率140GPa)についても条件を満足する。したがって、一定の湾曲量抑制効果を奏する。
1…半導体レーザ装置、2…半導体レーザユニット、11…ヒートシンク、11a…一面、11b…一端面、11c…他面、13…補強部材、21…第1のサブマウント、22…第2のサブマウント、23…半導体レーザバー、23a…出射端面、24…支持部材。

Claims (6)

  1. 内部に流体通路が形成された板状のヒートシンクと、
    複数の発光領域を有する出射端面が設けられた半導体レーザバーと、を備え、
    前記半導体レーザバーは、前記出射端面が前記ヒートシンクの一端面側を向くように、サブマウントを介して前記ヒートシンクの一面側の縁部に配置され、
    前記サブマウントには、前記半導体レーザバーの基板よりも線膨張係数が小さく且つヤング率が大きい材料によって形成された支持部材が、前記出射端面と反対側の位置に配置されている半導体レーザユニット。
  2. 前記支持部材は、前記半導体レーザバーから離間して配置されている請求項1記載の半導体レーザユニット。
  3. 前記サブマウントは、前記半導体レーザバーと前記支持部材とを挟み込むように複数配置されている請求項1又は2記載の半導体レーザユニット。
  4. 前記半導体レーザバーと前記サブマウントとは、金錫ハンダを用いて接合されている請求項1〜3のいずれか一項記載の半導体レーザユニット。
  5. 前記ヒートシンクの他面側には、前記半導体レーザバー及び前記支持部材と対向する位置に、前記ヒートシンクよりも線膨張係数が小さい材料によって形成された補強部材が配置されている請求項1〜4のいずれか一項記載の半導体レーザユニット。
  6. 請求項1〜5のいずれか一項に記載の半導体レーザユニットを前記ヒートシンクの厚さ方向に複数積層してなる半導体レーザ装置。
JP2014252030A 2014-12-12 2014-12-12 半導体レーザユニット及び半導体レーザ装置 Active JP6573451B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014252030A JP6573451B2 (ja) 2014-12-12 2014-12-12 半導体レーザユニット及び半導体レーザ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014252030A JP6573451B2 (ja) 2014-12-12 2014-12-12 半導体レーザユニット及び半導体レーザ装置

Publications (2)

Publication Number Publication Date
JP2016115767A true JP2016115767A (ja) 2016-06-23
JP6573451B2 JP6573451B2 (ja) 2019-09-11

Family

ID=56140125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014252030A Active JP6573451B2 (ja) 2014-12-12 2014-12-12 半導体レーザユニット及び半導体レーザ装置

Country Status (1)

Country Link
JP (1) JP6573451B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017217610A1 (de) 2016-10-04 2018-04-05 Omron Automotive Electronics Co., Ltd. Optisches Projektionssystem und Objektdetektionsvorrichtung
DE102017122575B3 (de) 2017-09-28 2019-02-28 Rogers Germany Gmbh Kühlvorrichtung zum Kühlen eines elektrischen Bauteils und Verfahren zur Herstellung einer Kühlvorrichtung

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02281782A (ja) * 1989-04-24 1990-11-19 Matsushita Electric Ind Co Ltd 半導体レーザアレイ装置
JPH0444286A (ja) * 1990-06-07 1992-02-14 Canon Inc 半導体レーザ
JP2003306731A (ja) * 2002-04-15 2003-10-31 Sumitomo Electric Ind Ltd 金属基複合材料の製造方法および金属基複合材料
JP2005088125A (ja) * 2003-08-12 2005-04-07 Konica Minolta Opto Inc 加工機
JP2006086229A (ja) * 2004-09-14 2006-03-30 Hamamatsu Photonics Kk 半導体レーザ装置及び半導体レーザスタック装置
JP2007073549A (ja) * 2005-09-02 2007-03-22 Hamamatsu Photonics Kk 半導体レーザモジュール、半導体レーザスタック及び半導体レーザモジュールの製造方法
US20090185593A1 (en) * 2008-01-18 2009-07-23 Northrop Grumman Space & Mission Systems Corp. Method of manufacturing laser diode packages and arrays
JP2010087360A (ja) * 2008-10-01 2010-04-15 Kyoto Institute Of Technology 半導体基板の製造方法および半導体基板
JP2012089585A (ja) * 2010-10-15 2012-05-10 Hamamatsu Photonics Kk 半導体レーザ装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02281782A (ja) * 1989-04-24 1990-11-19 Matsushita Electric Ind Co Ltd 半導体レーザアレイ装置
JPH0444286A (ja) * 1990-06-07 1992-02-14 Canon Inc 半導体レーザ
JP2003306731A (ja) * 2002-04-15 2003-10-31 Sumitomo Electric Ind Ltd 金属基複合材料の製造方法および金属基複合材料
JP2005088125A (ja) * 2003-08-12 2005-04-07 Konica Minolta Opto Inc 加工機
JP2006086229A (ja) * 2004-09-14 2006-03-30 Hamamatsu Photonics Kk 半導体レーザ装置及び半導体レーザスタック装置
JP2007073549A (ja) * 2005-09-02 2007-03-22 Hamamatsu Photonics Kk 半導体レーザモジュール、半導体レーザスタック及び半導体レーザモジュールの製造方法
US20090185593A1 (en) * 2008-01-18 2009-07-23 Northrop Grumman Space & Mission Systems Corp. Method of manufacturing laser diode packages and arrays
JP2010087360A (ja) * 2008-10-01 2010-04-15 Kyoto Institute Of Technology 半導体基板の製造方法および半導体基板
JP2012089585A (ja) * 2010-10-15 2012-05-10 Hamamatsu Photonics Kk 半導体レーザ装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017217610A1 (de) 2016-10-04 2018-04-05 Omron Automotive Electronics Co., Ltd. Optisches Projektionssystem und Objektdetektionsvorrichtung
US10551035B2 (en) 2016-10-04 2020-02-04 Omron Automotive Electronics Co., Ltd. Projection optical system and object detection device
DE102017122575B3 (de) 2017-09-28 2019-02-28 Rogers Germany Gmbh Kühlvorrichtung zum Kühlen eines elektrischen Bauteils und Verfahren zur Herstellung einer Kühlvorrichtung
WO2019063251A1 (de) 2017-09-28 2019-04-04 Rogers Germany Gmbh Kühlvorrichtung zum kühlen eines elektrischen bauteils und verfahren zur herstellung einer kühlvorrichtung

Also Published As

Publication number Publication date
JP6573451B2 (ja) 2019-09-11

Similar Documents

Publication Publication Date Title
US9203213B2 (en) Semiconductor light-emitting device
KR101142561B1 (ko) 레이저 광원 모듈
JP2001168442A (ja) 半導体レーザ素子の製造方法、配設基板および支持基板
JP2001291925A (ja) 高出力ダイオードレーザバー用の実装基板およびヒートシンク
JPH11346031A (ja) ダイオ―ドレ―ザ―素子及びその製造方法
WO2012050132A1 (ja) 半導体レーザ装置
JP5259166B2 (ja) 半導体レーザ装置
WO2017141894A1 (ja) 半導体レーザ光源装置
JP6576137B2 (ja) 半導体レーザ装置及び半導体レーザ装置の製造方法
WO2017145987A1 (ja) 半導体レーザモジュール及びその製造方法
JP6573451B2 (ja) 半導体レーザユニット及び半導体レーザ装置
WO2022039016A1 (ja) 半導体レーザモジュール
JP5090622B2 (ja) 冷却エレメントを備えた半導体装置
JP2008172141A (ja) レーザダイオード素子
JP2007184316A (ja) 半導体装置
EP2782196B1 (en) Semiconductor laser-excitation solid-state laser
JP2002299744A (ja) 半導体レーザアセンブリ
JP5280119B2 (ja) 半導体レーザ装置
JP6024657B2 (ja) 半導体レーザ素子
JP2003023200A (ja) 半導体レーザ装置
JP6906721B1 (ja) 半導体レーザ装置
TWI411183B (zh) 雷射二極體元件
JP4659565B2 (ja) 半導体レーザモジュール及び半導体レーザスタック
JP2012089584A (ja) 半導体レーザ装置
JP2009111065A (ja) 光半導体装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180515

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190813

R150 Certificate of patent or registration of utility model

Ref document number: 6573451

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150