JP2015232279A - 気体燃料エンジンの燃料噴射制御装置 - Google Patents

気体燃料エンジンの燃料噴射制御装置 Download PDF

Info

Publication number
JP2015232279A
JP2015232279A JP2014118573A JP2014118573A JP2015232279A JP 2015232279 A JP2015232279 A JP 2015232279A JP 2014118573 A JP2014118573 A JP 2014118573A JP 2014118573 A JP2014118573 A JP 2014118573A JP 2015232279 A JP2015232279 A JP 2015232279A
Authority
JP
Japan
Prior art keywords
engine
catalyst
fuel injection
amount
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014118573A
Other languages
English (en)
Other versions
JP6225840B2 (ja
Inventor
一保 堂園
Kazuyasu Dosono
一保 堂園
裕志 藤川
Hiroshi Fujikawa
裕志 藤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2014118573A priority Critical patent/JP6225840B2/ja
Publication of JP2015232279A publication Critical patent/JP2015232279A/ja
Application granted granted Critical
Publication of JP6225840B2 publication Critical patent/JP6225840B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

【課題】エンジン10の排気ガスの流速増大により触媒の活性化を図る場合、スロットル弁16の開度を絞ることによる燃費の悪化を招くことなく、エンジン出力を変更せずにエンジン10の運転ポイントを高回転側の運転ポイントに移動できるようにする。【解決手段】触媒82の未活性状態検出時には、触媒82の活性状態検出時に対して、スロットル弁16の開度及びエンジン10の燃焼室内の燃焼空燃比を維持させつつ、第1の燃料噴射弁17及び第2の燃料噴射弁18によるトータル燃料噴射量に対する第1の燃料噴射弁17による燃料噴射量の割合を増加させることで吸気量を低減するとともに、エンジン出力が維持されるようにエンジン10の運転ポイントを高回転側に移動させる触媒活性化制御を実行する。【選択図】図2

Description

本発明は、車両に搭載された、気体燃料エンジンの燃料噴射制御装置に関する技術分野に属する。
従来より、例えば特許文献1に示されているように、水素等の気体燃料を使用するエンジンが知られており、特許文献1では、気体燃料をエンジンの吸気通路に噴射する第1の燃料噴射弁と、気体燃料をエンジンの燃焼室内に直接噴射する第2の燃料噴射弁とが設けられている。また、上記エンジンの排気通路には、該エンジンの排気ガスを浄化する、NOx吸蔵還元触媒等の触媒が配設される。
また、例えば特許文献2には、エンジンの冷却水を用いて車室内の暖房を行うハイブリッド車用の暖房制御装置において、上記エンジンの冷却水の水温が予め設定された所定の水温よりも低いときに、エンジンの運転ポイントを、最高効率制御線上の運転ポイントから、定パワー曲線に沿って、暖房制御線上の運転ポイント(最高効率制御線上の運転ポイントに対して低負荷側でかつ高回転側の運転ポイント)へ移動させることが開示されている。
特開2009−228445号公報 特開平10−203145号公報
ところで、エンジンの排気通路に配設された触媒が未活性状態であるときに該触媒の活性化を図ろうとする場合、上記特許文献2のように、エンジンの運転ポイントを、エンジン出力を維持させながら、低負荷側でかつ高回転側の運転ポイントへ移動させることが考えられる。すなわち、エンジンが高回転で運転されると、排気ガスの流速が速くなるので、排気通路において燃焼室の排気開口から触媒までの間の部分での放熱量が少なくなるとともに、排気ガスが勢いよく触媒に接触するため、触媒を活性化し易くなる。また、エンジンの効率が低くなる運転ポイントへ移動させるようにすれば、廃熱量が多くなって排気ガスの温度も上昇し、触媒をより一層活性化し易くなる。
しかし、上記特許文献2のものでは、エンジン負荷(出力トルク)を低減するために、スロットル弁の開度を絞って吸気量を低減する必要があり、このようにすると、ポンピングロスが増大することになり、これによる燃費の悪化が問題となる。
本発明は、斯かる点に鑑みてなされたものであり、その目的とするところは、エンジンの排気ガスの流速増大により触媒の活性化を図る場合、スロットル弁の開度を絞ることによる燃費の悪化を招くことなく、エンジン出力を変更せずにエンジンの運転ポイントを高回転側の運転ポイントに移動できるようにすることにある。
上記の目的を達成するために、本発明では、車両に搭載された、気体燃料エンジンの燃料噴射制御装置を対象として、気体燃料を上記エンジンの吸気通路に噴射する第1の燃料噴射弁と、気体燃料を上記エンジンの燃焼室内に直接噴射する第2の燃料噴射弁と、上記吸気通路における上記第1の燃料噴射弁よりも上流側に配設され、上記燃焼室内への吸気量を調節するスロットル弁と、上記エンジンの排気通路に配設され、該エンジンの排気ガスを浄化する触媒と、上記触媒が活性状態にあるか又は未活性状態にあるかを検出する触媒活性/未活性検出手段と、上記第1の燃料噴射弁、第2の燃料噴射弁及びスロットル弁の作動を制御する制御手段とを備え、上記制御手段は、上記触媒活性/未活性検出手段による上記触媒の未活性状態検出時には、該触媒の活性状態検出時に対して、上記スロットル弁の開度及び上記燃焼室内の燃焼空燃比を維持させつつ、上記第1の燃料噴射弁及び第2の燃料噴射弁によるトータル燃料噴射量に対する上記第1の燃料噴射弁による燃料噴射量の割合を増加させることで吸気量を低減するとともに、エンジン出力が維持されるよう上記エンジンの運転ポイントを高回転側に移動させる触媒活性化制御を実行するように構成されている、という構成とした。
上記の構成により、スロットル弁の開度を小さくしなくても、トータル燃料噴射量に対する第1の燃料噴射弁による燃料噴射量(吸気通路への燃料噴射量)の割合の増加により、燃焼室内への吸気量を少なくすることができる。これにより、エンジンの出力トルクは小さくなるが、エンジンの運転ポイントが高回転側に移動することで、エンジン出力は維持される。したがって、スロットル弁の開度を絞ることによる燃費の悪化を招くことなく、エンジン出力を変更せずにエンジンの運転ポイントを高回転側の運転ポイントに移動させることができる。
上記気体燃料エンジンの燃料噴射制御装置の一実施形態では、上記気体燃料は水素であり、上記触媒は、NOx吸蔵還元触媒であり、上記NOx吸蔵還元触媒は、上記エンジンの排気ガス中のNOxをリーン空燃比雰囲気下で吸蔵するとともに、該吸蔵したNOxを、リッチ空燃比雰囲気下でかつ該NOx吸蔵還元触媒の温度が該NOx吸蔵還元触媒の活性化温度よりも高い所定温度以上の雰囲気下で、放出するものであり、上記NOx吸蔵還元触媒のNOx吸蔵量を検出するNOx吸蔵量検出手段と、上記NOx吸蔵還元触媒の温度を検出する触媒温度検出手段とを更に備え、上記制御手段は、上記触媒活性/未活性検出手段による上記触媒の活性状態検出時において、上記NOx吸蔵量検出手段によるNOx吸蔵量が第1所定量よりも少ないときには、上記エンジンを、上記NOx吸蔵還元触媒がNOxを吸蔵しかつ上記燃焼室内からのNOxの排出量が予め設定された設定量以下になるようなリーン運転とするべく、上記第1の燃料噴射弁、第2の燃料噴射弁及びスロットル弁の作動を制御するとともに、上記触媒の活性状態検出時において、上記NOx吸蔵還元触媒のNOx吸蔵量が上記第1所定量以上で、かつ、上記触媒温度検出手段による上記触媒の温度が上記所定温度以上であるときには、上記エンジンを、該NOx吸蔵還元触媒が上記吸蔵したNOxを放出するようなリッチ運転とするべく、上記第1の燃料噴射弁、第2の燃料噴射弁及びスロットル弁の作動を制御するように構成され、更に上記制御手段は、上記触媒活性/未活性検出手段による上記触媒の未活性状態検出時で、かつ、上記NOx吸蔵量検出手段によるNOx吸蔵量が上記第1所定量よりも少ない第2所定量以上であるときに、上記触媒活性化制御を実行するように構成されている。
このことにより、NOx吸蔵還元触媒においてNOx吸蔵量が第1所定量に達する前に、触媒活性化制御を実行してNOx吸蔵還元触媒を活性化させかつNOx吸蔵還元触媒の温度を所定温度以上にすることが可能になり、この結果、NOx吸蔵量が第1所定量に達すれば、NOx放出の条件が既に成立していることになり、即座にNOxを放出することが可能になる。第2所定量は、第1所定量に出来る限り近い値であって、NOx吸蔵量が第2所定量になった時点から触媒活性化制御を実行することにより、NOx吸蔵量が第1所定量に達する前に、NOx吸蔵還元触媒の温度を所定温度以上にすることが可能な量とすればよい。このようにNOx吸蔵量が、NOxを放出しなければならない量(第1所定量)に近くなったときに限定して触媒活性化制御を実行することで、触媒活性化のためのエンジン回転の上昇を極力抑えることができる。
上記のように、上記制御手段が、上記触媒活性/未活性検出手段による上記触媒の未活性状態検出時で、かつ、上記NOx吸蔵量検出手段によるNOx吸蔵量が上記第2所定量以上であるときに、上記触媒活性化制御を実行するように構成されている場合において、上記車両の停止を検出する車両停止検出手段を更に備え、上記制御手段は、上記車両停止検出手段による上記車両の停止検出時には、上記触媒の未活性状態検出時でかつ上記NOx吸蔵量が上記第2所定量以上であっても、上記触媒活性化制御を実行しないように構成されている、ことが好ましい。
こうすることで、車両の停止中にエンジン回転が上昇することにより該車両のドライバに違和感を与えるのを防止することができる。
また、上記制御手段が、上記触媒活性/未活性検出手段による上記触媒の未活性状態検出時で、かつ、上記NOx吸蔵量検出手段によるNOx吸蔵量が上記第2所定量以上であるときに、上記触媒活性化制御を実行するように構成されている場合において、上記制御手段は、上記エンジンを上記リッチ運転とするときには、上記リーン運転とするときに対して、上記第1の燃料噴射弁及び第2の燃料噴射弁よるトータル燃料噴射量に対する上記第1の燃料噴射弁よる燃料噴射量の割合を増加させるように構成されている、ことが好ましい。
このことにより、トータル燃料噴射量に対する第1の燃料噴射弁による燃料噴射量の割合の増加により、燃焼室内への吸気量を少なくしてリッチ運転することができ、この結果、リッチ運転を行っても、リーン運転時と同様のエンジン出力を維持することができ、リーン運転時と同様の効率の良い運転ポイントでNOxを放出させるようにすることができる。
以上説明したように、本発明の気体燃料エンジンの燃料噴射制御装置によると、触媒の未活性状態検出時には、該触媒の活性状態検出時に対して、スロットル弁の開度及びエンジンの燃焼室内の燃焼空燃比を維持させつつ、第1の燃料噴射弁及び第2の燃料噴射弁によるトータル燃料噴射量に対する第1の燃料噴射弁による燃料噴射量の割合を増加させることで吸気量を低減するとともに、エンジン出力が維持されるようにエンジンの運転ポイントを高回転側に移動させる触媒活性化制御を実行するようにしたことにより、スロットル弁の開度を絞ることによる燃費の悪化を招くことなく、エンジン出力を変更せずにエンジンの運転ポイントを高回転側の運転ポイントに移動させることができる。
本発明の実施形態に係る気体燃料エンジンの燃料噴射制御装置が搭載された車両の概略図である。 上記車両のエンジン及びその制御系の構成を示すブロック図である。 コントロールユニットによるエンジンの運転時の処理動作の前半部を示すフローチャートである。 コントロールユニットによるエンジンの運転時の処理動作の後半部を示すフローチャートである。
以下、本発明の実施形態を図面に基づいて詳細に説明する。
図1は、本発明の実施形態に係る気体燃料エンジンの燃料噴射制御装置が搭載された車両1の概略図である。この車両1は、所謂レンジエクステンダーEV車両(広義には、シリーズ式のハイブリッド車両であるとも言える)であって、エンジン10と、該エンジン10により駆動されて発電する発電機20と、この発電機20によって発電された電力が蓄電(充電)される高電圧・大容量のバッテリ30と、エンジン10に駆動されることによる発電機20の発電電力及びバッテリ30の蓄電電力(放電電力)の両方又はバッテリ30の放電電力のみで駆動される(本実施形態では、後述の如く、基本的には、バッテリ30の放電電力のみで駆動される)駆動モータ40とを備えている。エンジン10は、本実施形態では、不図示のスタータモータにより始動されるが、発電機20をモータジェネレータに変更して、該モータジェネレータをモータとして駆動してエンジン10を始動するようにすることも可能である。
発電機20とバッテリ30との間には、第1インバータ50が設けられ、バッテリ30と駆動モータ40との間には、第2インバータ51が設けられている。第1インバータ50と第2インバータ51とは互いに接続され、その接続ラインにバッテリ30が接続されている。発電機20の発電電力は、第1インバータ50を介してバッテリ30に供給されるとともに、第1及び第2インバータ50,51を介して駆動モータ40に供給される。バッテリ30からの放電電力は、第2インバータ51を介して駆動モータ40に供給される。
駆動モータ40は、基本的には、バッテリ30の放電電力で駆動され、車両1の加速時等のように、バッテリ30の放電電力のみでは駆動モータ40の出力が不足するときには、エンジン10が始動されて発電機20の発電電力も駆動モータ40に供給される。駆動モータ40の出力は、デファレンシャル装置60を介して、駆動輪61(ステアリングホイール62により操舵される左右の前輪)に伝達され、これにより、車両1が走行する。
また、駆動モータ40は、回生発電電力を発生可能なものであって、車両1の減速時に発電機として作動して、その発電した電力(回生発電電力)がバッテリ30に充電される。バッテリ30の残存容量(SOC)が所定容量以下になると、エンジン10が始動されて発電機20の発電電力でもってバッテリ30が充電される。上記所定容量は、バッテリ30の充電が早急に必要な緊急性を要するレベルよりも多い容量であって、バッテリ30の残存容量として少なすぎずかつ多すぎない適切なレベルに維持できるような容量である。尚、バッテリ30は、車両1の外部の電源による外部充電も可能になされている。
エンジン10は、発電機20による発電用にのみ使用される。エンジン10は、気体燃料エンジンであって、本実施形態では、水素タンク70に貯留されている水素ガスが、燃料として供給される水素エンジンである。
図2に示すように、エンジン10は、ツインロータ式(2気筒)のロータリピストンエンジンであって、2つの繭状のロータハウジング11内(気筒内)に形成されるロータ収容室11aに、概略三角形状のロータ12がそれぞれ収容されて構成されている。2つのロータハウジング11は、3つのサイドハウジング(図示せず)の間に挟み込むようにして該サイドハウジングと一体化されてなり、各ロータハウジング11とその両側のサイドハウジングとで各ロータ収容室11aが形成される。尚、図2では、2つのロータハウジング11(2つの気筒)を展開した状態で図示しており、2つのロータハウジング11内の中央部にそれぞれ描いているエキセントリックシャフト13は、同じものである。
上記各ロータ12は、その三角形の各頂部に図示しないアペックスシールを有し、これらアペックスシールがロータハウジング11のトロコイド内周面に摺接しており、このことで、各ロータ12により各ロータ収容室11a(各気筒)内に3つの作動室(燃焼室に相当)が画成される。そして、各ロータ12は、該ロータ12の3つのアペックスシールが各々ロータハウジング11のトロコイド内周面に当接した状態でエキセントリックシャフト13の周りを自転しながら、該エキセントリックシャフト13の軸心の周りに公転するようになっている。ロータ12が1回転する間に、該ロータ12の各頂部間にそれぞれ形成された作動室が周方向に移動しながら、吸気、圧縮、膨張(燃焼)及び排気の各行程を行い、これにより発生する回転力がロータ12を介して出力軸としてのエキセントリックシャフト13から出力される。
上記各ロータ収容室11aには、吸気行程にある作動室に開口する吸気開口に連通するように吸気通路14が接続されているとともに、排気行程にある作動室に開口する排気開口に連通するように排気通路15が接続されている。吸気通路14は、上流側では1つであるが、下流側では、2つの分岐路に分岐してそれぞれ上記各ロータ収容室11aに連通している。吸気通路14の上記分岐部よりも上流側(後述のポート噴射弁17よりも上流側)には、ステッピングモータ等のスロットル弁アクチュエータ90により駆動されて吸気通路14の断面積(弁開度)を調節するスロットル弁16が配設されている。このスロットル弁16により、各ロータ収容室11a(吸気行程にある作動室)内への吸気量が調節されることになる。
吸気通路14の上記分岐部よりも下流側の各分岐路には、上記水素タンク70から供給された水素ガスを、吸気通路14内に噴射するポート噴射弁17(第1の燃料噴射弁)が配設されている。このポート噴射弁17により噴射された水素ガスは空気と混合された状態(予混合状態)で、吸気行程にある作動室に供給される。
上記排気通路15は、上流側では、各ロータ収容室11aにそれぞれ連通するように2つ設けられているが、下流側では、1つに合流されている。この排気通路15の該合流部よりも下流側には、排気ガスを浄化するための低温活性三元触媒81及びNOx吸蔵還元触媒82が配設されている。低温活性三元触媒81は、NOx吸蔵還元触媒82よりも触媒活性化温度が低い三元触媒であって、NOx吸蔵還元触媒82よりも上流側に配設されている。尚、図2において吸気通路14及び排気通路15に図示した矢印は、吸気及び排気の流れを示している。
上記NOx吸蔵還元触媒82は、例えば、白金(Pt)、パラジウム(Pd)等の貴金属を含んだ担体に、バリウム(Ba)、カリウム(K)等のNOx吸蔵剤を担持させて構成されていて、エンジン10の排気ガス中のNOxをリーン空燃比雰囲気下で吸蔵するとともに、該吸蔵したNOxを、リッチ空燃比雰囲気下でかつ該NOx吸蔵還元触媒82の温度が該NOx吸蔵還元触媒82の活性化温度よりも高い所定温度以上の雰囲気下で、放出して、該NOxを、排気ガス中のHCやCOと反応させて還元する機能を有する。
上記各ロータハウジング11(各気筒)には、水素タンク70から供給された水素ガスをロータ収容室11aの圧縮行程にある作動室(燃焼室)内に直接噴射する直噴噴射弁18(第2の燃料噴射弁)と、上記ポート噴射弁17及び直噴噴射弁18より噴射された水素ガスの点火を行う2つの点火プラグ19とが設けられている。
ポート噴射弁17及び直噴噴射弁18によるトータル燃料噴射量に対するポート噴射弁17による燃料噴射量の質量割合(以下、ポート噴射割合という)、及び、上記トータル燃料噴射量に対する直噴噴射弁18による燃料噴射量の質量割合(以下、直噴噴射割合という)は、予め決められており、基本的には、共に50%であるが、これらポート噴射割合及び直噴噴射割合は、後述の如く、変化する。
本実施形態では、上記吸気開口は、ロータ12によって開閉されるとともに、圧縮行程で全閉とされるように構成されている(所謂吸気遅閉じの構成とされている)。このような吸気遅閉じの構成では、有効圧縮比の低下によりエンジン10の出力トルクが低下するが、その出力トルクが低下しないようにするために、ターボ過給機85が設けられている。また、吸気遅閉じの構成では、ポート噴射弁17より噴射された水素ガス及び吸気された空気が、圧縮行程で作動室から上記吸気開口を通って吸気通路14に戻されようとするが、ターボ過給機85による過給圧により、それを防止することができる。
上記ターボ過給機85は、吸気通路14におけるスロットル弁16よりも上流側に配設されたコンプレッサ85aと、排気通路15における上記合流部よりも下流側でかつ三元触媒81よりも上流側に配設されたタービン85bとで構成されている。タービン85bが排気ガス流により回転し、このタービン85bの回転により、該タービン85bと連結されたコンプレッサ85aが作動して、吸気通路14に吸入された空気を圧縮する。この圧縮された空気は、吸気通路14におけるコンプレッサ85aよりも下流側に配設されたインタークーラ86によって冷却される。
車両1には、バッテリ30に出入りする電流及びバッテリ30の電圧を検出するバッテリ電流・電圧センサ101と、車両1のドライバによるアクセルペダルの踏み込み量(ドライバの操作によるアクセル開度)を検出するアクセル開度センサ102と、車両1の車速を検出する車速センサ103と、エキセントリックシャフト13に設けられ、エキセントリックシャフト13の回転角度位置を検出する回転角センサ104と、排気通路15における低温活性三元触媒81とタービン85bとの間に配設され、エンジン10の排気ガスの空燃比を検出する空燃比センサ105(本実施形態では、リニアO2センサで構成されている)と、ロータハウジング11の内部に形成されたウォータジャケット(図示せず)に臨んで該ウォータジャケット内を流れるエンジン冷却水の温度(エンジン水温)を検出するエンジン水温センサ106と、水素タンク70内の圧力(つまり水素タンク70内の水素ガス残量)を検出するタンク圧力センサ107と、吸気通路14内に吸入される吸気流量を検出するエアフローセンサ108と、エンジン10の作動制御や、第1及び第2インバータ50,51の作動制御(つまり発電機20及び駆動モータ40の作動制御)等を行うコントロールユニット100とが設けられている。上記回転角センサ104は、エンジン10の回転数(以下、エンジン回転数という)を検出するエンジン回転数センサを兼ねている。
コントロールユニット100は、周知のマイクロコンピュータをベースとするコントローラであって、プログラムを実行する中央演算処理装置(CPU)と、例えばRAMやROMにより構成されてプログラム及びデータを格納するメモリと、電気信号の入出力をする入出力(I/O)バスと、を備えている。コントロールユニット100には、バッテリ電流・電圧センサ101、アクセル開度センサ102、車速センサ103、回転角センサ104、空燃比センサ105、エンジン水温センサ106、タンク圧力センサ107、エアフローセンサ108等からの各種情報の信号が入力されるようになっている。
発電機20は、該発電機20による発電電圧及び発電電流の情報をコントロールユニット100に送信するようになっており、コントロールユニット100は、その情報を入力して該情報から発電機20による発電電力(発電量)を検出する。
駆動モータ40は、該駆動モータ40の回転数の情報や、駆動モータ40による回生発電電圧及び回生発電電流の情報をコントロールユニット100に送信するようになっており、コントロールユニット100は、その情報を入力して駆動モータ40の作動制御に用いる。
そして、コントロールユニット100は、上記入力信号に基づいて、スロットル弁アクチュエータ90、ポート噴射弁17、直噴噴射弁18、点火プラグ19に対して制御信号を出力してエンジン10を制御するとともに、第1及び第2インバータ50,51に対して制御信号を出力して発電機20及び駆動モータ40を制御する。コントロールユニット100は、ポート噴射弁17、直噴噴射弁18及びスロットル弁16の作動を制御する制御手段を構成することになる。
コントロールユニット100は、第1及び第2インバータ50,51の制御により、エンジン10が停止した状態でバッテリ30からの放電電力のみでもって駆動モータ40を駆動する第1態様と、発電機20の発電電力でもってバッテリ30を充電しながら、バッテリ30からの放電電力でもって駆動モータ40を駆動する第2態様と、バッテリ30及び発電機20の両方からの電力でもって駆動モータ40を駆動する第3態様とに切換える。この第3態様には、発電機20の発電電力の全てが駆動モータ40に供給される場合と、発電機20の発電電力の一部が駆動モータ40に供給されながら、残りがバッテリ30に供給される場合とが含まれる。
コントロールユニット100は、バッテリ電流・電圧センサ101により検出された、バッテリ30に出入りする電流及びバッテリ30の電圧に基づいて、バッテリ30の残存容量(SOC)を検出する。そして、コントロールユニット100は、バッテリ30のSOCが上記所定容量よりも高いときには、上記1態様を選択し、バッテリ30のSOCが上記所定容量よりも高くても、ドライバの加速要求等により、アクセル開度センサ102及び車速センサ103からの信号に基づく駆動モータ40の要求出力が大きい場合等においては、上記第3態様を選択する。また、コントロールユニット100は、バッテリ30のSOCが上記所定容量以下であるときには、上記第2態様を選択する。尚、タンク圧力センサ107による水素タンク70内の水素ガス残量が、予め設定された設定値以下になった場合等においては、上記第1態様を選択する。
コントロールユニット100は、エンジン10が停止した状態にあるときにおいて、駆動モータ40の要求出力及びバッテリ30のSOCの値に基づいて、発電要求の有無を確認し、発電要求が有るときには、上記スタータモータによりエンジン10を始動させ、発電機20に発電を行わせるべくエンジン10を運転する。
以下に、コントロールユニット100によるエンジン10の運転時の処理動作を、図3及び図4のフローチャートに基づいて説明する。
最初のステップS1で、各種センサからの信号を読み込み、次のステップS2で、アクセル開度センサ102及び車速センサ103からの信号に基づき、駆動モータ40の要求出力を計算する。
次のステップS3では、上記駆動モータ40の要求出力とバッテリ30のSOCとに基づき発電要求の有無を確認し、次のステップS4では、発電要求が有るか否かを判定する。
上記ステップS4の判定がNOであるときには、上記ステップS1に戻る一方、ステップS4の判定がYESであるときには、ステップS5に進んで、エンジン10を始動する。
次のステップS6では、エンジン10がその始動から所定回転数(後述の所定の回転数領域内の回転数よりも低い回転数(例えば1800rpm))まで上昇したか否かを判定し、このステップS6の判定がNOであるときには、ステップS7に進んで、ポート噴射割合を第1所定値よりも小さくするとともに、直噴噴射割合を第2所定値よりも大きくする(直噴噴射割合を、ポート噴射割合と直噴噴射割合との合計が100%になるようにする)。これにより、ポート噴射割合は、後述の通常発電運転時の50%よりも小さくなる。しかる後に上記ステップS6に戻る。
ここで、上記所定回転数に達するまでの低いエンジン回転数では、ターボ過給機85による過給圧が低いために、上記のような吸気遅閉じの構成では、ポート噴射弁17より噴射された燃料及び吸気された空気が、圧縮行程で作動室から上記吸気開口を通って吸気通路14に戻されることになる。一方、直噴噴射弁18より噴射された燃料は、上記吸気開口が閉じられてから噴射されるので、吸気通路14に戻されることはない。そこで、エンジン10の始動時における上記所定回転数に達するまでの低いエンジン回転数では、ポート噴射割合を第1所定値よりも小さくすることで、吸気通路14に戻される燃料量を少なくして、燃料が吸気通路14に戻されることによるエンジン10の出力低下を抑制する。
エンジン回転数が上記所定回転数に達して、上記ステップS6の判定がYESになれば、ステップS8に進んで、スロットル弁16を全開状態にして、作動室(燃焼室)内の燃焼空燃比A/Fが2.3になるようにトータル燃料噴射量を設定し(空燃比センサ105の出力によりフィードバック制御される)かつポート噴射割合及び直噴噴射割合を共に50%に設定するとともに、エンジン回転数Neが2000rpm(エンジン10の最大効率点を含む所定の回転数領域内(エンジン10の効率が最大ないし最大に近い回転数領域内)の回転数であればよい)となる運転ポイントでエンジン10を運転して、発電機20に所定量の発電を行わせる。以下、このステップS8におけるエンジン10の運転を、通常発電運転という。この通常発電運転では、ターボ過給機85による過給圧により、ポート噴射弁17より噴射された燃料が吸気通路14に戻されることはない。尚、本実施形態では、エンジン10の運転中(始動時を含む)、スロットル弁16は、常に、上記通常発電運転と同じ全開状態とされる。
上記通常発電運転は、基本的に、NOx吸蔵還元触媒82が活性状態にあり(低温活性三元触媒81も活性状態にあることになる)かつNOx吸蔵還元触媒82のNOx吸蔵量が第1所定量よりも少ないときに行われる運転であり、この運転では、エンジン10を、NOx吸蔵還元触媒82がNOxを吸蔵しかつ上記作動室内からのNOxの排出量が予め設定された設定量以下になるようなリーン運転(A/F=2.3)とするべく、ポート噴射弁17、直噴噴射弁18及びスロットル弁16の作動を制御する。上記第1所定量は、これ以上NOxを吸蔵することができなくなるレベルに近い量であって、吸蔵したNOxの放出が必要となる量である。NOx吸蔵還元触媒82のNOx吸蔵量は、エンジン10の運転履歴から計算することができ、コントロールユニット100が、エンジン10の運転中、その運転状態に基づいてNOx吸蔵量を積算していく。したがって、コントロールユニット100は、NOx吸蔵還元触媒82のNOx吸蔵量を検出するNOx吸蔵量検出手段を構成する。
次のステップS9では、エンジン水温センサ106によるエンジン水温が第1所定温度以上であるか否かを判定する。この第1所定温度は、NOx吸蔵還元触媒82が活性化する温度に対応する温度である。すなわち、ステップS9では、NOx吸蔵還元触媒82が活性状態にあるか否かを判定しており、エンジン水温センサ106は、NOx吸蔵還元触媒が活性状態にあるか又は未活性状態にあるかを検出する触媒活性/未活性検出手段を構成することになる。
上記ステップS9の判定がYESであるときには、ステップS10に進んで、NOx吸蔵還元触媒82のNOx吸蔵量が上記第1所定量よりも少ないか否かを判定する。このステップS9の判定がYESであるときには、そのままリターンする。すなわち、そのまま上記通常発電運転を行うことになる。
上記ステップS9の判定がNOであるときには、ステップS11に進んで、NOx吸蔵還元触媒82のNOx吸蔵量が、上記第1所定量よりも少ない第2所定量以上であるか否かを判定する。この第2所定量は、上記第1所定量に出来る限り近い値であって、NOx吸蔵量が該第2所定量になった時点から後述の触媒活性化制御を実行することにより、NOx吸蔵量が上記第1所定量に達する前に、エンジン水温を、上記第1所定温度よりも高い第2所定温度以上にする(つまり、NOx吸蔵還元触媒82の温度を上記所定温度以上にする)ことが可能な量とする。上記第2所定温度は、NOx吸蔵還元触媒82の温度としてNOxを放出させることが可能な上記所定温度に対応する温度である。エンジン水温センサ106は、触媒活性/未活性検出手段に加えて、NOx吸蔵還元触媒82の温度を検出する触媒温度検出手段も構成することになる。尚、触媒温度検出手段として、エンジン水温センサ106の代わりに、NOx吸蔵還元触媒82の温度を検出する温度センサをNOx吸蔵還元触媒82に設けてよく、この場合、その温度センサを、触媒活性/未活性検出手段として兼用することが好ましい。
上記ステップS11の判定がNOであるときには、そのままリターンする。すなわち、NOx吸蔵還元触媒82の未活性状態検出時であっても、NOx吸蔵還元触媒82のNOx吸蔵量が上記第2所定量よりも少ないときには、上記通常発電運転を行う。
一方、上記ステップS11の判定がYESであるときには、ステップS12に進んで、車速センサ103からの信号により車両1が停止中であるか否かを判定する。ここでの停止は、車速が0であることに加えて、実質的に停止していると見做せる車速であって後述の触媒活性化制御の実行によるエンジン回転の上昇により車両のドライバに違和感を与えるような車速である場合も含む。車速センサ103は、車両1の停止を検出する車両停止検出手段を構成することになる。尚、ステップS12の判定は、必ずしも必要ではなく、なくすことも可能である。
上記ステップS12の判定がYESであるときには、そのままリターンする(上記通常発電運転を行う)一方、ステップS12の判定がNOであるときには、ステップS13に進んで、上記通常発電運転に対して、ポート噴射割合を50%よりも増加させかつ直噴噴射割合を50%よりも減少させる(ポート噴射割合と直噴噴射割合との合計は100%にする)とともに、エンジン10の運転ポイントを上記通常発電運転よりも高回転側に移動させ、しかる後にリターンする。すなわち、NOx吸蔵還元触媒82の未活性状態検出時で、かつ、NOx吸蔵還元触媒82のNOx吸蔵量が上記第2所定量以上であるときであって、車両1の停止中に、NOx吸蔵還元触媒82の活性状態検出時に対して、スロットル弁16の開度及び作動室内の燃焼空燃比を維持させつつ、ポート噴射割合を増加させることで吸気量を低減するとともに、エンジン出力が維持されるようエンジン1の運転ポイントを高回転側に移動させる触媒活性化制御を実行する。このようにスロットル弁16の開度を小さくしなくても(全開状態のままであっても)、ポート噴射割合の増加により、作動室内への吸気量を少なくすることができる。これにより、エンジン10の出力トルクは小さくなるが、エンジン10の運転ポイントが高回転側に移動することで、エンジン出力は維持される。尚、上記高回転側に移動した後のエンジン回転数は、基本的には、上記所定の回転数領域外の回転数となり、このときのエンジン10の効率は、上記通常発電運転時よりも低下する。
上記ステップS10の判定がNOであるときには、ステップS14に進んで、エンジン水温センサ106によるエンジン水温が上記第2所定温度以上であるか否か(つまり、NOx吸蔵還元触媒82の温度が上記所定温度以上であるか否か)を判定する。
上記ステップS14の判定がNOであるときには、そのままリターンする(上記通常発電運転を行う)一方、ステップS14の判定がYESであるときには、ステップS15に進んで、作動室内の燃焼空燃比A/Fを0.9になるようにトータル燃料噴射量を設定し(空燃比センサ105の出力によりフィードバック制御される)かつポート噴射割合を50%よりも増加させかつ直噴噴射割合を50%よりも減少させる(ポート噴射割合と直噴噴射割合との合計は100%にする)とともに、エンジン回転数Neが2000rpmとなる運転ポイント(上記通常発電運転と同じ運転ポイント)でエンジン10を運転して、発電機20に上記所定量の発電を行わせる。すなわち、NOx吸蔵還元触媒82の活性状態検出時において、NOx吸蔵還元触媒82のNOx吸蔵量が上記第1所定量以上で、かつ、NOx吸蔵還元触媒82の温度が上記所定温度以上であるときには、エンジン10を、該NOx吸蔵還元触媒82が上記吸蔵したNOxを放出するようなリッチ運転とするべく、ポート噴射弁17、直噴噴射弁18及びスロットル弁16の作動を制御する。上記のようにポート噴射割合を増加させることにより、作動室内への吸気量を少なくしてリッチ運転することができ、この結果、リッチ運転を行っても、リーン運転時と同様のエンジン出力を維持することができ、リーン運転時と同様の効率の良い運転ポイントでNOxを放出させるようにすることができる。
次のステップS16では、上記リッチ運転の開始から所定時間が経過したか否かを判定する。上記所定時間は、NOx吸蔵還元触媒82に吸蔵されているNOxの略全量が放出するのに要する時間である。このステップS16の判定がNOであるときには、当該ステップS16の動作を繰り返す一方、ステップS16の判定がYESになると、上記ステップS8に戻る(上記通常発電運転を実行する)。
したがって、本実施形態では、NOx吸蔵還元触媒82の未活性状態検出時で、かつ、NOx吸蔵還元触媒82のNOx吸蔵量が上記第2所定量以上であるときであって、車両1の停止中に、NOx吸蔵還元触媒82の活性状態検出時に対して、スロットル弁16の開度及び作動室内の燃焼空燃比を維持させつつ、ポート噴射割合を増加させることで吸気量を低減するとともに、エンジン出力が維持されるようエンジン1の運転ポイントを高回転側に移動させる触媒活性化制御を実行するようにしたことにより、スロットル弁16の開度を絞ることによる燃費の悪化を招くことなく、エンジン出力を変更せずにエンジン10の運転ポイントを高回転側の運転ポイントに移動させることができる。このようにエンジン10が高回転で運転されると、排気ガスの流速が速くなるので、排気通路15において燃焼室の排気開口から触媒までの間の部分での放熱量が少なくなるとともに、排気ガスが勢いよくNOx吸蔵還元触媒82に接触するため、NOx吸蔵還元触媒82を活性化し易くなる。また、エンジン10の効率が低くなる運転ポイントへ移動させることで、廃熱量が多くなって排気ガスの温度も上昇し、NOx吸蔵還元触媒82をより一層活性化し易くなる。
また、本実施形態では、NOx吸蔵還元触媒82のNOx吸蔵量が、NOxを放出しなければならない量(第1所定量)に近くなったときに限定して上記触媒活性化制御を実行することで、触媒活性化のためのエンジン回転の上昇を極力抑えることができる。
さらに、車両1の停止中には、NOx吸蔵還元触媒82の未活性状態検出時でかつNOx吸蔵還元触媒82のNOx吸蔵量が上記第2所定量以上であっても、上記触媒活性化制御を実行しないので、車両1の停止中においてエンジン回転の変化(上昇)により該車両1のドライバに違和感を与えるのを防止することができる。
本発明は、上記実施形態に限られるものではなく、請求の範囲の主旨を逸脱しない範囲で代用が可能である。
例えば、上記実施形態では、エンジン1を、水素ガスを燃料とする水素ロータリエンジンとしたが、水素ガスを燃料とする往復動型エンジンであってもよく、水素ガス以外の気体(例えば、天然ガス(CNG))を燃料とするロータリエンジンや往復動型エンジンであってもよい。
また、上記実施形態では、エンジン1及びその燃料噴射制御装置を、レンジエクステンダーEV車両(シリーズ式のハイブリッド車両)に搭載したが、これに限らず、エンジン及び車両駆動モータを備えた、他のどのような形式のハイブリッド車両に搭載することも可能であり、エンジンのみで駆動される車両に搭載することも可能である。
上述の実施形態は単なる例示に過ぎず、本発明の範囲を限定的に解釈してはならない。本発明の範囲は請求の範囲によって定義され、請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。
本発明は、車両(特に、エンジンの排気ガスを浄化する触媒が未活性状態になり易いハイブリッド車両)に搭載された、気体燃料エンジンの燃料噴射制御装置に有用である。
1 車両
10 気体燃料エンジン
14 吸気通路
15 排気通路
16 スロットル弁
17 ポート噴射弁(第1の燃料噴射弁)
18 直噴噴射弁(第2の燃料噴射弁)
82 NOx吸蔵還元触媒
100 コントロールユニット(制御手段)(NOx吸蔵量検出手段)
103 車速センサ(車両停止検出手段)
106 エンジン水温センサ(触媒活性/未活性検出手段)(触媒温度検出手段)

Claims (4)

  1. 車両に搭載された、気体燃料エンジンの燃料噴射制御装置であって、
    気体燃料を上記エンジンの吸気通路に噴射する第1の燃料噴射弁と、
    気体燃料を上記エンジンの燃焼室内に直接噴射する第2の燃料噴射弁と、
    上記吸気通路における上記第1の燃料噴射弁よりも上流側に配設され、上記燃焼室内への吸気量を調節するスロットル弁と、
    上記エンジンの排気通路に配設され、該エンジンの排気ガスを浄化する触媒と、
    上記触媒が活性状態にあるか又は未活性状態にあるかを検出する触媒活性/未活性検出手段と、
    上記第1の燃料噴射弁、第2の燃料噴射弁及びスロットル弁の作動を制御する制御手段とを備え、
    上記制御手段は、上記触媒活性/未活性検出手段による上記触媒の未活性状態検出時には、該触媒の活性状態検出時に対して、上記スロットル弁の開度及び上記燃焼室内の燃焼空燃比を維持させつつ、上記第1の燃料噴射弁及び第2の燃料噴射弁によるトータル燃料噴射量に対する上記第1の燃料噴射弁による燃料噴射量の割合を増加させることで吸気量を低減するとともに、エンジン出力が維持されるよう上記エンジンの運転ポイントを高回転側に移動させる触媒活性化制御を実行するように構成されていることを特徴とする気体燃料エンジンの燃料噴射制御装置。
  2. 請求項1記載の気体燃料エンジンの燃料噴射制御装置において、
    上記気体燃料は水素であり、
    上記触媒は、NOx吸蔵還元触媒であり、
    上記NOx吸蔵還元触媒は、上記エンジンの排気ガス中のNOxをリーン空燃比雰囲気下で吸蔵するとともに、該吸蔵したNOxを、リッチ空燃比雰囲気下でかつ該NOx吸蔵還元触媒の温度が該NOx吸蔵還元触媒の活性化温度よりも高い所定温度以上の雰囲気下で、放出するものであり、
    上記NOx吸蔵還元触媒のNOx吸蔵量を検出するNOx吸蔵量検出手段と、
    上記NOx吸蔵還元触媒の温度を検出する触媒温度検出手段とを更に備え、
    上記制御手段は、上記触媒活性/未活性検出手段による上記触媒の活性状態検出時において、上記NOx吸蔵量検出手段によるNOx吸蔵量が第1所定量よりも少ないときには、上記エンジンを、上記NOx吸蔵還元触媒がNOxを吸蔵しかつ上記燃焼室内からのNOxの排出量が予め設定された設定量以下になるようなリーン運転とするべく、上記第1の燃料噴射弁、第2の燃料噴射弁及びスロットル弁の作動を制御するとともに、上記触媒の活性状態検出時において、上記NOx吸蔵還元触媒のNOx吸蔵量が上記第1所定量以上で、かつ、上記触媒温度検出手段による上記触媒の温度が上記所定温度以上であるときには、上記エンジンを、該NOx吸蔵還元触媒が上記吸蔵したNOxを放出するようなリッチ運転とするべく、上記第1の燃料噴射弁、第2の燃料噴射弁及びスロットル弁の作動を制御するように構成され、
    更に上記制御手段は、上記触媒活性/未活性検出手段による上記触媒の未活性状態検出時で、かつ、上記NOx吸蔵量検出手段によるNOx吸蔵量が上記第1所定量よりも少ない第2所定量以上であるときに、上記触媒活性化制御を実行するように構成されていることを特徴とする気体燃料エンジンの燃料噴射制御装置。
  3. 請求項2記載の気体燃料エンジンの燃料噴射制御装置において、
    上記車両の停止を検出する車両停止検出手段を更に備え、
    上記制御手段は、上記車両停止検出手段による上記車両の停止検出時には、上記触媒の未活性状態検出時でかつ上記NOx吸蔵量が上記第2所定量以上であっても、上記触媒活性化制御を実行しないように構成されていることを特徴とする気体燃料エンジンの燃料噴射制御装置。
  4. 請求項2又は3記載の気体燃料エンジンの燃料噴射制御装置において、
    上記制御手段は、上記エンジンを上記リッチ運転とするときには、上記リーン運転とするときに対して、上記第1の燃料噴射弁及び第2の燃料噴射弁よるトータル燃料噴射量に対する上記第1の燃料噴射弁よる燃料噴射量の割合を増加させるように構成されていることを特徴とする気体燃料エンジンの燃料噴射制御装置。
JP2014118573A 2014-06-09 2014-06-09 気体燃料エンジンの燃料噴射制御装置 Expired - Fee Related JP6225840B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014118573A JP6225840B2 (ja) 2014-06-09 2014-06-09 気体燃料エンジンの燃料噴射制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014118573A JP6225840B2 (ja) 2014-06-09 2014-06-09 気体燃料エンジンの燃料噴射制御装置

Publications (2)

Publication Number Publication Date
JP2015232279A true JP2015232279A (ja) 2015-12-24
JP6225840B2 JP6225840B2 (ja) 2017-11-08

Family

ID=54933873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014118573A Expired - Fee Related JP6225840B2 (ja) 2014-06-09 2014-06-09 気体燃料エンジンの燃料噴射制御装置

Country Status (1)

Country Link
JP (1) JP6225840B2 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11324765A (ja) * 1998-03-17 1999-11-26 Nissan Motor Co Ltd 直噴火花点火式内燃機関の制御装置
JP2005061234A (ja) * 2003-08-12 2005-03-10 Toyota Motor Corp 内燃機関の制御装置
JP2005240657A (ja) * 2004-02-26 2005-09-08 Mazda Motor Corp 水素エンジンの制御装置
JP2006291939A (ja) * 2005-04-14 2006-10-26 Toyota Motor Corp エンジンの制御装置
JP2007046515A (ja) * 2005-08-09 2007-02-22 Toyota Motor Corp 内燃機関の排気浄化装置
JP2008215210A (ja) * 2007-03-05 2008-09-18 Toyota Motor Corp 内燃機関の排気浄化システム
WO2011027469A1 (ja) * 2009-09-01 2011-03-10 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2012158303A (ja) * 2011-02-02 2012-08-23 Toyota Motor Corp ハイブリッド自動車
JP2012219685A (ja) * 2011-04-07 2012-11-12 Mazda Motor Corp ハイブリッド車のエンジン制御装置
JP2013241914A (ja) * 2012-05-22 2013-12-05 Mazda Motor Corp 内燃機関の排気ガス浄化方法及び装置
JP2014066232A (ja) * 2012-09-27 2014-04-17 Isuzu Motors Ltd 内燃機関とその制御方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11324765A (ja) * 1998-03-17 1999-11-26 Nissan Motor Co Ltd 直噴火花点火式内燃機関の制御装置
JP2005061234A (ja) * 2003-08-12 2005-03-10 Toyota Motor Corp 内燃機関の制御装置
JP2005240657A (ja) * 2004-02-26 2005-09-08 Mazda Motor Corp 水素エンジンの制御装置
JP2006291939A (ja) * 2005-04-14 2006-10-26 Toyota Motor Corp エンジンの制御装置
JP2007046515A (ja) * 2005-08-09 2007-02-22 Toyota Motor Corp 内燃機関の排気浄化装置
JP2008215210A (ja) * 2007-03-05 2008-09-18 Toyota Motor Corp 内燃機関の排気浄化システム
WO2011027469A1 (ja) * 2009-09-01 2011-03-10 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2012158303A (ja) * 2011-02-02 2012-08-23 Toyota Motor Corp ハイブリッド自動車
JP2012219685A (ja) * 2011-04-07 2012-11-12 Mazda Motor Corp ハイブリッド車のエンジン制御装置
JP2013241914A (ja) * 2012-05-22 2013-12-05 Mazda Motor Corp 内燃機関の排気ガス浄化方法及び装置
JP2014066232A (ja) * 2012-09-27 2014-04-17 Isuzu Motors Ltd 内燃機関とその制御方法

Also Published As

Publication number Publication date
JP6225840B2 (ja) 2017-11-08

Similar Documents

Publication Publication Date Title
JP6327272B2 (ja) 気体燃料直噴エンジンの制御装置
JP6361611B2 (ja) ハイブリッド車両の制御装置
JP6319239B2 (ja) 気体燃料エンジンの制御装置
JP6288131B2 (ja) 気体燃料エンジンの制御装置
JP6213384B2 (ja) エンジンの燃料噴射制御装置
JP6256434B2 (ja) シリーズハイブリッド車両のエンジン制御装置
JP6112020B2 (ja) ハイブリッド車
JP6225841B2 (ja) 多種燃料エンジンの燃料噴射制御装置
JP6079793B2 (ja) 多種燃料エンジンの燃料制御装置
JP6269602B2 (ja) 気体燃料エンジンの燃料制御装置
JP6269519B2 (ja) 多種燃料エンジンの燃料制御装置
JP6225840B2 (ja) 気体燃料エンジンの燃料噴射制御装置
JP6354687B2 (ja) 車両の制御装置
JP6344329B2 (ja) 多種燃料エンジンの制御装置
JP6160490B2 (ja) ハイブリッド車
JP6119770B2 (ja) 多種燃料エンジンの燃料制御装置
JP6183384B2 (ja) 多種燃料エンジンの燃料制御装置
JP6354711B2 (ja) シリーズハイブリッド車両のエンジン制御装置
JP2015030405A (ja) ハイブリッド車両の制御装置
JP6332178B2 (ja) 気体燃料エンジンの制御装置
JP6288017B2 (ja) ハイブリッド車の多気筒エンジン制御装置
JP6020243B2 (ja) ハイブリッド車両の制御装置
JP2017052400A (ja) ハイブリッド車のエンジン潤滑油制御装置
JP6287983B2 (ja) 多種燃料エンジンの制御装置
JP6171941B2 (ja) ハイブリッド車

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170925

R150 Certificate of patent or registration of utility model

Ref document number: 6225840

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees