JP2015118911A - Silicon-based composite negative electrode material for lithium ion secondary batteries, manufacturing method, and battery - Google Patents

Silicon-based composite negative electrode material for lithium ion secondary batteries, manufacturing method, and battery Download PDF

Info

Publication number
JP2015118911A
JP2015118911A JP2014169853A JP2014169853A JP2015118911A JP 2015118911 A JP2015118911 A JP 2015118911A JP 2014169853 A JP2014169853 A JP 2014169853A JP 2014169853 A JP2014169853 A JP 2014169853A JP 2015118911 A JP2015118911 A JP 2015118911A
Authority
JP
Japan
Prior art keywords
silicon
graphite
negative electrode
ketone
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014169853A
Other languages
Japanese (ja)
Other versions
JP6113123B2 (en
Inventor
敏 岳
Min Yue
敏 岳
鵬 何
Peng He
鵬 何
勝 李
Sheng Li
勝 李
建国 任
Jianguo Ren
建国 任
友元 黄
Youyuan Huang
友元 黄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BTR New Energy Materials Inc
Original Assignee
BTR New Energy Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BTR New Energy Materials Inc filed Critical BTR New Energy Materials Inc
Publication of JP2015118911A publication Critical patent/JP2015118911A/en
Application granted granted Critical
Publication of JP6113123B2 publication Critical patent/JP6113123B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/44Alloys based on cadmium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a silicon-based composite negative electrode material which is superior in cycle characteristics (the capacity-keeping rate for 300 cycles is 90% or higher), high in initial efficiency (>90%), and high in specific energy and press density, and which can fulfill the need for a high-output density lithium ion secondary battery, and is simple in its manufacturing process, low in raw material cost, environmentally friendly and pollution-free.SOLUTION: The problem can be solved by a silicon-based composite negative electrode material for lithium ion secondary batteries, which has an embedded composite core-shell structure. The silicon-based composite negative electrode material for lithium ion secondary batteries comprises: a core having a structure in which silicon nanoparticles are embedded in interior layer gaps of hollow graphite; and a shell including a non-graphite carbon material.

Description

本発明はリチウムイオン二次電池技術分野に関する。具体的にはリチウムイオン二次電池用シリコン系複合負極材、製造方法及び電池に関する。   The present invention relates to the technical field of lithium ion secondary batteries. Specifically, the present invention relates to a silicon-based composite negative electrode material for a lithium ion secondary battery, a manufacturing method, and a battery.

エネルギー蓄積デバイスとしてのリチウムイオン二次電池は、作動電圧が高く、サイクル寿命が長く、メモリー効果がなく、自己放電が小さく、エコなどの利点を持つので、携帯型電子製品及び電気自動車に幅広く用いられている。従来、商品化されたリチウムイオン二次電池は、主として黒鉛類負極材を用いており、その理論比容量は372mAh/gであるが、従来の技術で開発した黒鉛類負極材の比容量はその理論値に近いため、黒鉛類負極材の開発可能性には限界があり、現在の様々な携帯型電子機器の小型化発展及び電気自動車の高い比エネルギー・高出力密度のリチウムイオン二次電池の幅広い需要を満たすことは難しい。   Lithium ion secondary batteries as energy storage devices have high operating voltage, long cycle life, no memory effect, small self-discharge, and eco-friendly advantages, so they are widely used in portable electronic products and electric vehicles. It has been. Conventionally, commercialized lithium ion secondary batteries mainly use a graphite negative electrode material, and its theoretical specific capacity is 372 mAh / g, but the specific capacity of the graphite negative electrode material developed by the conventional technology is Because it is close to the theoretical value, there is a limit to the possibility of development of graphite negative electrode materials. The development of miniaturization of various portable electronic devices and the high specific energy and high output density of lithium-ion secondary batteries of electric vehicles It is difficult to meet a wide range of demand.

シリコン材料は、比較的高いリチウム貯蔵容量(理論比容量4200mAh/g)を有し、しかも資源として豊富なので、新世代の高比エネルギー・高出力密度のリチウムイオン二次電池用負極材料を開発する理想的な候補材料の一つであると考えられる。しかしながら、シリコン材料は、使用過程で電池容量の減衰が比較的速いため、その実用性がある程度制限される。分析によると、シリコン材料のリチウム吸蔵放出の体積膨張収縮は比較的大きく(>300%)、材料の破壊や粉砕をもたらし、低い材料導電率及び比較的速い材料容量減衰を及ぼす要因であると考えられる。そのため、シリコン材料の体積膨張の抑制、材料構造の安定性の向上はシリコン材料の導電率及びサイクル安定性の向上に対して重要な意味を持つ。現在、主としてシリコンのナノ化、シリコンと金属との合金化、シリコンと活性又は不活性材料との複合によって、シリコン材料の体積膨張を改善し、そのうち、シリコンと活物質である炭素との複合は幅広い市場において将来性がある。   Since silicon materials have a relatively high lithium storage capacity (theoretical specific capacity 4200 mAh / g) and are abundant as resources, we will develop a new generation of high specific energy and high power density negative electrode materials for lithium ion secondary batteries. It is considered one of the ideal candidate materials. However, the practical use of silicon materials is limited to some extent because the battery capacity decays relatively quickly during use. Analysis shows that the volume expansion and contraction of lithium occlusion and release of silicon material is relatively large (> 300%), leading to material destruction and crushing, which is responsible for low material conductivity and relatively fast material capacity decay It is done. Therefore, suppression of the volume expansion of the silicon material and improvement of the stability of the material structure are important for improving the conductivity and cycle stability of the silicon material. At present, the volume expansion of silicon materials has been improved mainly by silicon nano-alloying, silicon-metal alloying, and silicon-active or inert material composites, of which silicon and active carbon composites Promising in a wide range of markets.

特許文献CN103326023Aには、高性能リチウムイオン二次電池用シリコン炭素負極材及びその製造方法が開示され、該負極材はSi−SiOx/C/DC複合系を含み、前記複合系は、C基体と、C基体の中に接着されるSi−SiOx複合物と、C基体及びSi−SiOx−Cの中に分布しているカーボンナノチューブと、最外層である有機熱分解炭素被覆層とを含む。該発明により製造された多孔質複合物Si−SiOxは、シリコン粒子が大きく、且つ、シリコン酸化物を含有することによってその初回効率を低くし、該発明はSi−SiOxがカーボンナノチューブ及び炭素基体と複合し、且つ表面に分解炭素を被覆することで製造されるが、該方法では、大粒度シリコンの体積膨張が抑制されにくいし、比較的悪いサイクル特性を招く。   Patent document CN1033326033A discloses a silicon carbon negative electrode material for a high-performance lithium ion secondary battery and a method for manufacturing the same, and the negative electrode material includes a Si-SiOx / C / DC composite system, and the composite system includes a C substrate, , Si-SiOx composite adhered in the C substrate, carbon nanotubes distributed in the C substrate and Si-SiOx-C, and the outermost organic pyrolytic carbon coating layer. The porous composite Si-SiOx produced according to the invention has large silicon particles and contains silicon oxide, thereby reducing its initial efficiency. The composite is manufactured by covering the surface with cracked carbon. However, in this method, the volume expansion of large-grain silicon is difficult to be suppressed and relatively poor cycle characteristics are caused.

特許文献CN103078092Aには、リチウムイオン二次電池用シリコン炭素(Si/C)複合負極材の製造方法が開示され、該発明はシリコン源(エッチング処理前又は処理後)と黒鉛を第2類添加剤の存在下で溶剤に分散させ、温度を制御して溶剤を完全に揮発させた後、前駆体固体を得て、そして前駆体固体に非晶質炭素被覆を行う。該発明にかかるエッチングによって製造されたナノシリコンは比表面積が大きく、黒鉛の表面に均一に分散し難いので、該方法で製造されたシリコン炭素材料は、シリコンの凝集が深刻で、シリコンの膨張を解決することができず、該材料の悪いサイクル特性を招く。   Patent document CN1030778092A discloses a method for producing a silicon carbon (Si / C) composite negative electrode material for a lithium ion secondary battery, and the invention relates to a silicon source (before or after etching treatment) and graphite as a second type additive. After the solvent is completely volatilized by controlling the temperature and the solvent is completely volatilized, a precursor solid is obtained and the precursor solid is subjected to amorphous carbon coating. Nanosilicon produced by etching according to the present invention has a large specific surface area and is difficult to disperse uniformly on the surface of graphite. Therefore, the silicon carbon material produced by this method has severe silicon agglomeration and causes silicon expansion. Which cannot be solved, leading to poor cycling properties of the material.

そのため、小粒径のシリコンを製造してシリコン粒子の分散性を向上させるとともに、シリコン粒子に緩衝体を供給し、シリコン系負極材がリチウムを吸蔵放出する時の体積膨張と収縮を緩和し、高性能シリコン系負極材を製造する。リチウムイオン二次電池へのシリコン系負極材の実用化を達成することは、本分野で解決すべき技術課題である。   Therefore, while manufacturing silicon with a small particle size and improving the dispersibility of the silicon particles, supplying a buffer to the silicon particles, the silicon negative electrode material relaxes the volume expansion and contraction when the lithium is occluded and released, Manufactures high performance silicon negative electrode materials. Achieving practical application of silicon-based negative electrode materials for lithium ion secondary batteries is a technical problem to be solved in this field.

中国特許出願公開第103326023号明細書Chinese Patent Application No. 1033226023 中国特許出願公開第103078092号明細書Chinese Patent Application Publication No. 1030778092

本発明は、リチウムイオン二次電池用シリコン系複合負極材、その製造方法及び該負極材を含む電池を提供することを目的とし、前記リチウムイオン二次電池用シリコン系複合負極材はシリコン粒子の分散性が良く、プレス密度及び初回クーロン効率が高く、サイクル特性に優れる。   An object of the present invention is to provide a silicon-based composite negative electrode material for a lithium ion secondary battery, a method for producing the same, and a battery including the negative electrode material. Good dispersibility, high press density and high initial Coulomb efficiency, and excellent cycle characteristics.

本発明の目的を達成するために、下記の技術的手段を提供する。
第1の態様において、本発明はリチウムイオン二次電池用シリコン系複合負極材を提供し、これは埋込複合コア−シェル構造であり、該コアはナノシリコン粒子が中空黒鉛の内層隙間に埋め込まれてなる構造であり、該シェルは非黒鉛炭素材料である。
In order to achieve the object of the present invention, the following technical means are provided.
In a first aspect, the present invention provides a silicon-based composite negative electrode material for a lithium ion secondary battery, which has an embedded composite core-shell structure, in which nanosilicon particles are embedded in an inner layer gap of hollow graphite. The shell is a non-graphitic carbon material.

本発明に係るリチウムイオン二次電池用シリコン系複合負極材において、コアのナノシリコン粒子が中空黒鉛の内層隙間内に埋め込まれ、ナノシリコン粒子の分散性が良く、中空黒鉛は同時にナノシリコン粒子の良好な緩衝体として機能し、シリコン材料のリチウム吸蔵放出の体積膨張と収縮を効果的に抑制する。   In the silicon-based composite negative electrode material for a lithium ion secondary battery according to the present invention, the core nanosilicon particles are embedded in the inner space of the hollow graphite, and the dispersibility of the nanosilicon particles is good. It functions as a good buffer and effectively suppresses the volume expansion and contraction of the lithium occlusion / release of the silicon material.

本発明に係るリチウムイオン二次電池用シリコン系複合負極材において、前記中空黒鉛の内層隙間はスリット、又は前記スリットから派生された多角形孔であってもよい。   In the silicon-based composite negative electrode material for a lithium ion secondary battery according to the present invention, the inner layer gap of the hollow graphite may be a slit or a polygonal hole derived from the slit.

前記リチウムイオン二次電池用シリコン系複合負極材は、好ましくは、ナノシリコン1〜50%(重量)、黒鉛30〜90%(重量)、及び非黒鉛炭素材料5〜40%(重量)を含む。例えば、ナノシリコンは2%(重量)、5%(重量)、10%(重量)、20%(重量)又は45%(重量)などであってもよく、黒鉛は35%(重量)、45%(重量)、55%(重量)、70%(重量)又は85%(重量)などであってもよく、非黒鉛炭素材料は6%(重量)、10%(重量)、20%(重量)、30%(重量)又は35%(重量)などであってもよい。   The silicon-based composite negative electrode material for a lithium ion secondary battery preferably includes 1 to 50% (weight) of nanosilicon, 30 to 90% (weight) of graphite, and 5 to 40% (weight) of non-graphitic carbon material. . For example, nanosilicon may be 2% (weight), 5% (weight), 10% (weight), 20% (weight), 45% (weight), etc., and graphite is 35% (weight), 45%. % (Weight), 55% (weight), 70% (weight), 85% (weight), etc., and non-graphitic carbon material is 6% (weight), 10% (weight), 20% (weight) ), 30% (weight) or 35% (weight).

第2の態様において、本発明は第1の態様に記載のリチウムイオン二次電池用シリコン系複合負極材の製造方法を提供し、
(1)黒鉛類材料を機械的加工し、中空黒鉛を得る工程と、
(2)ナノシリコン、分散剤及び中空黒鉛を有機溶剤で混合乾燥処理し、第1前駆体を得る工程と、
(3)第1前駆体に対して機械的融合処理を行い、次に炭素源被覆処理を行い、第2前駆体を得る工程と、
(4)第2前駆体に対して等方性加圧処理を行い、塊状又は円柱状の第3前駆体を得る工程と、
(5)第3前駆体を高温焼結し、前記シリコン系複合負極材を得る工程と、を含む。
In a second aspect, the present invention provides a method for producing a silicon-based composite negative electrode material for a lithium ion secondary battery according to the first aspect,
(1) mechanically processing a graphite material to obtain hollow graphite;
(2) A step of mixing and drying nanosilicon, a dispersant and hollow graphite with an organic solvent to obtain a first precursor;
(3) performing a mechanical fusion process on the first precursor and then performing a carbon source coating process to obtain a second precursor;
(4) performing an isotropic pressure treatment on the second precursor to obtain a massive or columnar third precursor;
(5) high temperature sintering the third precursor to obtain the silicon-based composite negative electrode material.

本発明に係る方法では、黒鉛類材料を機械的加工することによって中空黒鉛を得て、前記中空黒鉛の内層は隙間を含み、その中におけるナノシリコン粒子の均一且つ良好な分散に空間を提供し、機械的融合処理工程で、ナノシリコン粒子と中空黒鉛粒子は押出力とせん断力の作用を絶えずに受けることによって、中空黒鉛の内部におけるナノシリコン粒子はさらに秩序よく配列し、さらにシリコンと黒鉛シートとの間の結合力を向上させ、等方性加圧処理工程で、第2前駆体粉末に等方性圧縮応力を加えることにより、中空黒鉛粒子の内部シートは異なる軸方向に沿って伸びるとともに、中空黒鉛シートの間に埋め込まれたナノシリコン粒子は二次分散し、また、等方性圧縮応力の作用で、軟質の有機炭素源粉末も中空黒鉛粒子の表面で拡張し、そして一部の有機炭素源粉末は中空黒鉛の内層に圧入され、黒鉛シート同士の粘着力を大幅に向上させることによって、高プレス密度の粒子を得る。   In the method according to the present invention, hollow graphite is obtained by mechanically processing a graphite material, the inner layer of the hollow graphite includes a gap, and provides a space for uniform and good dispersion of the nanosilicon particles therein. In the mechanical fusion process, nanosilicon particles and hollow graphite particles are constantly subjected to the action of pushing force and shearing force, so that the nanosilicon particles inside hollow graphite are arranged more orderly, and further, silicon and graphite sheet And by applying isotropic compressive stress to the second precursor powder in the isotropic pressure treatment process, the inner sheet of the hollow graphite particles extends along different axial directions. The nanosilicon particles embedded between the hollow graphite sheets are secondarily dispersed, and the soft organic carbon source powder expands on the surface of the hollow graphite particles by the action of isotropic compressive stress. , And a part of the organic carbon source powder is pressed into the inner layer of the hollow graphite, by greatly improve the adhesion of graphite sheet each other to obtain particles of high press density.

本発明では、前記工程(5)の後に好ましくは、工程(5)で得た複合負極材を解砕、粉砕、篩い分けして除磁し、中央粒径が5.0〜45.0μm、好ましくは10.0〜35.0μm、さらに好ましくは13.0〜25.0μmのシリコン系複合負極材を得る工程(6)を含む。   In the present invention, preferably, after the step (5), the composite negative electrode material obtained in the step (5) is crushed, pulverized, sieved and demagnetized, and the median particle size is 5.0 to 45.0 μm. Preferably, the method includes a step (6) of obtaining a silicon-based composite negative electrode material of 10.0 to 35.0 μm, more preferably 13.0 to 25.0 μm.

本発明では、前記工程(1)の機械的加工は、好ましくは黒鉛類材料を粉砕、除磁、篩い分けして中央粒径が5.0〜25.0μmの黒鉛粒子を得て、次に、機械的研磨を行って中央粒径が1.0〜10.0μmの中空黒鉛を得ることを含む。   In the present invention, the mechanical processing in the step (1) is preferably performed by pulverizing, demagnetizing, and sieving the graphite material to obtain graphite particles having a median particle size of 5.0 to 25.0 μm, And performing mechanical polishing to obtain hollow graphite having a median particle size of 1.0 to 10.0 μm.

前記黒鉛類材料は、好ましくは天然結晶質黒鉛、天然隠微晶質黒鉛、天然結晶脈状黒鉛、人造黒鉛及び導電性黒鉛のうちの1種又は少なくとも2種の組合せである。前記組合せとして、天然結晶質黒鉛と天然隠微晶質黒鉛の組合せ、天然結晶質黒鉛と天然結晶脈状黒鉛の組合せ、天然隠微晶質黒鉛と天然結晶脈状黒鉛の組合せ、天然結晶脈状黒鉛と人造黒鉛の組合せ、人造黒鉛と導電性黒鉛の組合せは典型例として挙げられるが、それらに限定されない。   The graphite material is preferably one or a combination of at least two of natural crystalline graphite, natural hidden crystalline graphite, natural crystalline veined graphite, artificial graphite and conductive graphite. As the above combinations, a combination of natural crystalline graphite and natural microcrystalline graphite, a combination of natural crystalline graphite and natural crystalline vein graphite, a combination of natural crystalline graphite and natural crystalline vein graphite, a natural crystalline vein A combination of graphite and artificial graphite, and a combination of artificial graphite and conductive graphite are given as typical examples, but are not limited thereto.

前記黒鉛類材料の形状は、好ましくは片状、略球状及び球状のうちの1種又は少なくとも2種の組合せである。前記黒鉛類材料の形状は特に限定されない。   The shape of the graphite material is preferably one or a combination of at least two of flaky, substantially spherical and spherical. The shape of the graphite material is not particularly limited.

前記粉砕は、好ましくはボールミル粉砕、機械的粉砕、ジェットミル粉砕、高圧微粉砕及び回転式高速粉砕のうちの1種又は少なくとも2種の組合せであり、つまり、前記のいずれかによって粉砕を行うことができる。   The pulverization is preferably one or a combination of at least two of ball mill pulverization, mechanical pulverization, jet mill pulverization, high-pressure fine pulverization, and rotary high-speed pulverization. Can do.

前記機械的研磨は、好ましくは乾式研磨又は湿式研磨であり、さらに好ましくは湿式研磨であり、前記湿式研磨は高速撹拌ミル、ボールミル、チューブミル、コロイドミル、ロッドミル及びサンドミルのいずれかを用いる。   The mechanical polishing is preferably dry polishing or wet polishing, more preferably wet polishing, and the wet polishing uses any of a high-speed stirring mill, a ball mill, a tube mill, a colloid mill, a rod mill, and a sand mill.

前記機械的研磨の媒体は、好ましくは銅、亜鉛、銀、錫、バナジウム、クロム、タングステン、銅合金、アルミニウム合金、亜鉛合金、鉄炭素合金、マグネシウム合金、リチウム合金、酸化ホウ素、酸化ケイ素、酸化ジルコニウム、アルミナ、炭酸カルシウム、酸化マグネシウム、二酸化チタン、酸化亜鉛、酸化錫、三酸化二鉄、四酸化三鉄、炭化タングステン、炭化チタン、窒化チタン、炭化ケイ素、窒化ケイ素、炭窒化チタン及び炭窒化タングステンのうちの1種又は少なくとも2種の組合せである。   The mechanical polishing medium is preferably copper, zinc, silver, tin, vanadium, chromium, tungsten, copper alloy, aluminum alloy, zinc alloy, iron carbon alloy, magnesium alloy, lithium alloy, boron oxide, silicon oxide, oxidation Zirconium, alumina, calcium carbonate, magnesium oxide, titanium dioxide, zinc oxide, tin oxide, ferric trioxide, ferric tetroxide, tungsten carbide, titanium carbide, titanium nitride, silicon carbide, silicon nitride, titanium carbonitride and carbonitride One or a combination of at least two of tungsten.

前記機械的研磨の媒体のサイズは、好ましくは0.01〜10mmであり、さらに好ましくは0.03〜8.0mmであり、特に好ましくは0.05〜5.0mmである。   The size of the mechanical polishing medium is preferably 0.01 to 10 mm, more preferably 0.03 to 8.0 mm, and particularly preferably 0.05 to 5.0 mm.

前記湿式研磨に用いられる溶剤は、好ましくは水及び/又は有機溶剤であり、前記有機溶剤はテトラヒドロフラン、アミド、アルコール及びケトンのうちの1種又は少なくとも2種の組合せであり、さらに好ましくはテトラヒドロフラン、ジメチルアセトアミド、C1−C6アルコール及びC3−C8ケトンのうちの1種又は少なくとも2種の組合せであり、前記C1−C6アルコールはメタノール、エタノール、エチレングリコール、プロパノール、イソプロパノール、1,2−プロパンジオール、1,3−プロパンジオール、グリセロール、n−ブタノール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、n−ペンタノール及び2−ヘキサノールのうちの1種又は少なくとも2種の組合せであり、前記C3−C8ケトンはアセトン、メチルエチルケトン、メチルプロピルケトン、N−メチルピロリドン、エチルプロピルケトン、メチルブチルケトン、エチルn−ブチルケトン、メチルアミルケトン及びメチルヘキシルケトンのうちの1種又は少なくとも2種の組合せである。   The solvent used for the wet polishing is preferably water and / or an organic solvent, and the organic solvent is one or a combination of at least two of tetrahydrofuran, amide, alcohol and ketone, more preferably tetrahydrofuran, One or a combination of at least two of dimethylacetamide, C1-C6 alcohol and C3-C8 ketone, wherein the C1-C6 alcohol is methanol, ethanol, ethylene glycol, propanol, isopropanol, 1,2-propanediol, One or at least two of 1,3-propanediol, glycerol, n-butanol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, n-pentanol and 2-hexanol A combination of species, the C The -C8 ketone is one or a combination of at least two of acetone, methyl ethyl ketone, methyl propyl ketone, N-methyl pyrrolidone, ethyl propyl ketone, methyl butyl ketone, ethyl n-butyl ketone, methyl amyl ketone and methyl hexyl ketone. .

機械的研磨工程で、黒鉛粒子と研磨媒体は互いに衝突し又は摩擦し、黒鉛粒子は衝撃力とせん断力の作用を絶えずに受け、そしてこの作用力が黒鉛内シート同士の接着力よりも大きくなることで、黒鉛シートをずれさせて隙間を形成し、中空黒鉛を形成する。   In the mechanical polishing process, the graphite particles and the polishing medium collide or rub against each other, the graphite particles are constantly subjected to the action of impact force and shear force, and this action force is greater than the adhesion force between the sheets in the graphite. As a result, the graphite sheet is displaced to form a gap to form hollow graphite.

本発明では前記工程(2)のナノシリコンは、好ましくはシリコン原料を機械的加工して得られる。   In the present invention, the nanosilicon in the step (2) is preferably obtained by mechanically processing a silicon raw material.

前記機械的加工は、好ましくはシリコン原料を粉砕、除磁、篩い分けして中央粒径が5.0〜40.0μmのシリコン粒子を得て、次に、機械的研磨を行って中央粒径が10〜500nmのナノシリコンを得ることを含む。   The mechanical processing is preferably performed by pulverizing, demagnetizing, and sieving a silicon raw material to obtain silicon particles having a median particle size of 5.0 to 40.0 μm, and then performing mechanical polishing to obtain a median particle size. Includes obtaining nano-silicon having a thickness of 10 to 500 nm.

前記粉砕は、好ましくはボールミル粉砕、機械的粉砕、ジェットミル粉砕、高圧微粉砕及び回転式高速粉砕のうちの1種又は少なくとも2種の組合せであり、つまり、前記のいずれかによって粉砕を行うことができる。   The pulverization is preferably one or a combination of at least two of ball mill pulverization, mechanical pulverization, jet mill pulverization, high-pressure fine pulverization, and rotary high-speed pulverization. Can do.

前記機械的研磨は、好ましくは乾式研磨又は湿式研磨であり、さらに好ましくは湿式研磨である。   The mechanical polishing is preferably dry polishing or wet polishing, and more preferably wet polishing.

前記機械的研磨は、好ましくは高速撹拌ミル、ボールミル、チューブミル、コロイドミル、ロッドミル及びサンドミルのいずれかを用いる。   The mechanical polishing is preferably performed using any one of a high speed stirring mill, a ball mill, a tube mill, a colloid mill, a rod mill, and a sand mill.

前記サンドミルによる研磨の媒体は、好ましくは銅、亜鉛、銀、錫、バナジウム、クロム、タングステン、銅合金、アルミニウム合金、亜鉛合金、鉄炭素合金、マグネシウム合金、リチウム合金、酸化ホウ素、酸化ケイ素、酸化ジルコニウム、アルミナ、炭酸カルシウム、酸化マグネシウム、二酸化チタン、酸化亜鉛、酸化錫、三酸化二鉄、四酸化三鉄、炭化タングステン、炭化チタン、窒化チタン、炭化ケイ素、窒化ケイ素、炭窒化チタン及び炭窒化タングステンのうちの1種又は少なくとも2種の組合せである。   The sand mill polishing medium is preferably copper, zinc, silver, tin, vanadium, chromium, tungsten, copper alloy, aluminum alloy, zinc alloy, iron-carbon alloy, magnesium alloy, lithium alloy, boron oxide, silicon oxide, oxidation Zirconium, alumina, calcium carbonate, magnesium oxide, titanium dioxide, zinc oxide, tin oxide, ferric trioxide, ferric tetroxide, tungsten carbide, titanium carbide, titanium nitride, silicon carbide, silicon nitride, titanium carbonitride and carbonitride One or a combination of at least two of tungsten.

前記機械的研磨の媒体のサイズは、好ましくは0.01〜1.00mmであり、さらに好ましくは0.02〜0.80mmであり、特に好ましくは0.03〜0.50mmである。   The size of the mechanical polishing medium is preferably 0.01 to 1.00 mm, more preferably 0.02 to 0.80 mm, and particularly preferably 0.03 to 0.50 mm.

前記湿式研磨に用いられる溶剤は、好ましくは有機溶剤であり、前記有機溶剤はテトラヒドロフラン、アミド、アルコール及びケトンのうちの1種又は少なくとも2種の組合せであり、さらに好ましくはテトラヒドロフラン、ジメチルアセトアミド、C1−C6アルコール及びC3−C8ケトンのうちの1種又は少なくとも2種の組合せであり、前記C1−C6アルコールはメタノール、エタノール、エチレングリコール、プロパノール、イソプロパノール、1,2−プロパンジオール、1,3−プロパンジオール、グリセロール、n−ブタノール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、n−ペンタノール及び2−ヘキサノールのうちの1種又は少なくとも2種の組合せであり、前記C3−C8ケトンはアセトン、メチルエチルケトン、メチルプロピルケトン、N−メチルピロリドン、エチルプロピルケトン、メチルブチルケトン、エチルn−ブチルケトン、メチルアミルケトン及びメチルヘキシルケトンのうちの1種又は少なくとも2種の組合せである。   The solvent used in the wet polishing is preferably an organic solvent, and the organic solvent is one or a combination of at least two of tetrahydrofuran, amide, alcohol and ketone, more preferably tetrahydrofuran, dimethylacetamide, C1. One or a combination of at least two of -C6 alcohol and C3-C8 ketone, wherein the C1-C6 alcohol is methanol, ethanol, ethylene glycol, propanol, isopropanol, 1,2-propanediol, 1,3- One or a combination of at least two of propanediol, glycerol, n-butanol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, n-pentanol and 2-hexanol Yes, the C3-C8 keto Acetone, methyl ethyl ketone, methyl propyl ketone, N- methylpyrrolidone, ethyl propyl ketone, is one or at least two combinations of the methyl ketone, ethyl n- butyl ketone, methyl amyl ketone and methyl hexyl ketone.

本発明では、前記工程(2)の混合乾燥処理は、好ましくはナノシリコンと分散剤を有機溶剤に添加し、0.1〜1時間超音波撹拌し、均一に分散したナノシリコン懸濁液を形成し、さらに中空黒鉛を懸濁液に添加し、回転速度600〜3000rpmで1〜5時間撹拌し、乾燥して第1前駆体を得ることを含む。   In the present invention, the mixing and drying treatment in the step (2) is preferably performed by adding nanosilicon and a dispersing agent to an organic solvent, ultrasonically stirring for 0.1 to 1 hour, and uniformly dispersing the nanosilicon suspension. Forming, further adding hollow graphite to the suspension, stirring at a rotational speed of 600-3000 rpm for 1-5 hours, and drying to obtain a first precursor.

前記分散剤は、好ましくはトリポリリン酸ナトリウム、ヘキサメタリン酸ナトリウム、ピロリン酸ナトリウム、トリエチルヘキシルリン酸、ドデシル硫酸ナトリウム、メチルペンタノール、セルロース誘導体、ポリアクリルアミド、グアーガム、脂肪酸ポリエチレングリコールエステル、臭化ヘキサデシルトリメチルアンモニウム、ポリエチレングリコールp−イソオクチルフェニルエーテル、ポリアクリル酸、ポリビニルピロリドン、ポリオキシエチレンソルビタンモノオレアート、p−エチル安息香酸及びポリエーテルイミドのうちの1種又は少なくとも2種の組合せである。   The dispersant is preferably sodium tripolyphosphate, sodium hexametaphosphate, sodium pyrophosphate, triethylhexyl phosphate, sodium dodecyl sulfate, methylpentanol, cellulose derivatives, polyacrylamide, guar gum, fatty acid polyethylene glycol ester, hexadecyltrimethyl bromide One or a combination of at least two of ammonium, polyethylene glycol p-isooctyl phenyl ether, polyacrylic acid, polyvinyl pyrrolidone, polyoxyethylene sorbitan monooleate, p-ethylbenzoic acid and polyetherimide.

前記乾燥は、好ましくは噴霧乾燥機、吸引濾過器、回転蒸発器又は冷凍乾燥機を用いる。   The drying is preferably performed using a spray dryer, a suction filter, a rotary evaporator or a freeze dryer.

前記噴霧乾燥機の入り口温度は、より好ましくは100〜400℃であり、さらに好ましくは110〜300℃であり、特に好ましくは120〜250℃である。前記噴霧乾燥機の出口温度は、より好ましくは20〜250℃であり、さらに好ましくは35〜200℃であり、特に好ましくは50〜120℃である。前記噴霧乾燥機の圧力は、より好ましくは5〜150MPaであり、さらに好ましくは7〜120MPaであり、特に好ましくは10〜100MPaである。前記噴霧乾燥機のフィード周波数は、より好ましくは2〜200Hzであり、さらに好ましくは5〜160Hzであり、特に好ましくは10〜100Hzである。   The inlet temperature of the spray dryer is more preferably 100 to 400 ° C, still more preferably 110 to 300 ° C, and particularly preferably 120 to 250 ° C. The outlet temperature of the spray dryer is more preferably 20 to 250 ° C, still more preferably 35 to 200 ° C, and particularly preferably 50 to 120 ° C. The pressure of the spray dryer is more preferably 5 to 150 MPa, still more preferably 7 to 120 MPa, and particularly preferably 10 to 100 MPa. The feed frequency of the spray dryer is more preferably 2 to 200 Hz, further preferably 5 to 160 Hz, and particularly preferably 10 to 100 Hz.

前記ナノシリコン、分散剤、中空黒鉛及び有機溶剤の質量比は、好ましくは(1〜50):(0.5〜10):(30〜90):(90〜800)である。   The mass ratio of the nanosilicon, the dispersant, the hollow graphite, and the organic solvent is preferably (1-50) :( 0.5-10) :( 30-90) :( 90-800).

本発明では、前記工程(3)の機械的融合処理は、好ましくは第1前駆体を融合機に入れ、回転速度を500〜3000rpm、刃物クリアランス幅を0.01〜1cmに調整し、少なくとも0.25時間融合し、融合前駆体材料を得ることを含む。   In the present invention, the mechanical fusion treatment in the step (3) is preferably performed by putting the first precursor into the fusion machine, adjusting the rotation speed to 500 to 3000 rpm, and the blade clearance width to 0.01 to 1 cm, and at least 0. Fusing for 25 hours to obtain a fusion precursor material.

前記融合機の回転速度は、好ましくは800〜2000rpm、例えば900rpm、1100rpm、1300rpm、1600rpm又は1800rpmである。   The rotation speed of the fusion machine is preferably 800 to 2000 rpm, for example 900 rpm, 1100 rpm, 1300 rpm, 1600 rpm or 1800 rpm.

前記刃物クリアランス幅は、好ましくは0.1〜0.3cm、例えば0.12cm、0.15cm、0.18cm、0.21cm、0.25cm又は0.28cmである。   The blade clearance width is preferably 0.1 to 0.3 cm, for example, 0.12 cm, 0.15 cm, 0.18 cm, 0.21 cm, 0.25 cm, or 0.28 cm.

前記融合時間は、好ましくは0.25〜8.0時間、例えば0.3時間、0.5時間、1時間、3時間、5時間又は7時間であり、特に好ましくは0.5〜4.0時間である。
機械的融合処理工程で、ナノシリコン粒子と中空黒鉛粒子は押出力とせん断力の作用を絶えずに受けることによって、中空黒鉛の内部におけるナノシリコン粒子はさらに秩序よく配列し、さらにシリコンと黒鉛シートとの間の結合力を向上させることができる。
The fusion time is preferably 0.25 to 8.0 hours, such as 0.3 hours, 0.5 hours, 1 hour, 3 hours, 5 hours or 7 hours, particularly preferably 0.5 to 4. hours. 0 hours.
In the mechanical fusion treatment process, the nanosilicon particles and the hollow graphite particles are constantly subjected to the action of the pushing force and the shearing force, so that the nanosilicon particles inside the hollow graphite are arranged more orderly, and the silicon and the graphite sheet The bonding force between the two can be improved.

本発明では、前記工程(3)の炭素源被覆処理は、好ましくは融合前駆体材料と有機炭素源に対して、固相被覆又は液相被覆処理、さらに好ましくは固相被覆処理を行い、第2前駆体を得ることを含む。   In the present invention, the carbon source coating treatment in the step (3) is preferably carried out by subjecting the fusion precursor material and the organic carbon source to solid phase coating or liquid phase coating treatment, more preferably solid phase coating treatment. Obtaining two precursors.

前記固相被覆処理は、好ましくは融合前駆体材料と有機炭素源をVC混合機に入れ、少なくとも0.5時間被覆処理し、第2前駆体を得ることを含む。   The solid phase coating process preferably includes placing the fusion precursor material and the organic carbon source in a VC mixer and coating process for at least 0.5 hours to obtain a second precursor.

前記有機炭素源は、好ましくは粉末状であり、中央粒径として、0.5〜25.0μm、例えば1μm、5μm、10μm、15μm、18μm又は23μmであり、特に好ましくは1.0〜8.0μmである。   The organic carbon source is preferably in a powder form, and has a median particle size of 0.5 to 25.0 μm, such as 1 μm, 5 μm, 10 μm, 15 μm, 18 μm, or 23 μm, and particularly preferably 1.0 to 8. 0 μm.

前記融合前駆体材料と有機炭素源の質量比は、好ましくは1:1〜10:1、例えば2:1、5:1、7:1又は9:1であり、特に好ましくは2:1〜6:1である。   The mass ratio of the fusion precursor material to the organic carbon source is preferably 1: 1 to 10: 1, such as 2: 1, 5: 1, 7: 1 or 9: 1, particularly preferably 2: 1. 6: 1.

前記有機炭素源は、好ましくは石炭ピッチ、石油ピッチ、メソフェースピッチ、石炭タール、石油工業重質油、重質芳香族炭化水素、エポキシ樹脂、フェノール樹脂、フルフラール樹脂、尿素樹脂、ポリビニルアルコール、ポリ塩化ビニル、ポリエチレングリコール、ポリエチレンオキシド、ポリフッ化ビニリデン、アクリル樹脂及びポリアクリロニトリルのうちの1種又は少なくとも2種の組合せである。   The organic carbon source is preferably coal pitch, petroleum pitch, mesophase pitch, coal tar, petroleum industry heavy oil, heavy aromatic hydrocarbon, epoxy resin, phenol resin, furfural resin, urea resin, polyvinyl alcohol, poly One or a combination of at least two of vinyl chloride, polyethylene glycol, polyethylene oxide, polyvinylidene fluoride, acrylic resin and polyacrylonitrile.

本発明では前記工程(4)の等方性加圧処理は、好ましくは圧力1000〜20000KN、加圧処理温度20〜300℃の条件で、第2前駆体を0.05〜4時間加圧処理し、第3前駆体を得ることを含む。   In the present invention, the isotropic pressure treatment in the step (4) is preferably performed under pressure of 1000 to 20000 KN and a pressure treatment temperature of 20 to 300 ° C. for 0.05 to 4 hours. And obtaining a third precursor.

前記加圧処理は、好ましくは押出成形処理、冷間加圧処理、熱間加圧処理及び等方圧加圧処理のうちの1種又は少なくとも2種の組合せであり、つまり、前記のいずれかによって加圧処理を行うことができる。   The pressure treatment is preferably one or a combination of at least two of an extrusion molding process, a cold pressure process, a hot pressure process and an isotropic pressure process, that is, any one of the above Can be pressurized.

前記圧力は、好ましくは5000〜10000KN、例えば6000KN、8000KN、9000KN又は9500KNである。   The pressure is preferably 5000 to 10000 KN, for example 6000 KN, 8000 KN, 9000 KN or 9500 KN.

前記加圧処理の温度は、好ましくは30〜200℃、例えば50℃、70℃、90℃、120℃、150℃、180℃又は190℃である。   The temperature of the pressure treatment is preferably 30 to 200 ° C., for example, 50 ° C., 70 ° C., 90 ° C., 120 ° C., 150 ° C., 180 ° C. or 190 ° C.

前記加圧処理の時間は、好ましくは0.1〜2時間、例えば0.2時間、0.5時間、0.7、1.2時間又は1.8時間である。   The pressure treatment time is preferably 0.1 to 2 hours, for example, 0.2 hours, 0.5 hours, 0.7, 1.2 hours, or 1.8 hours.

等方性加圧処理工程で、第2前駆体粉末に等方性圧縮応力が加えられることによって、黒鉛粒子の内部シートは異なる軸方向によって伸びるとともに、黒鉛シートの間に埋め込まれたナノシリコン粒子は二次分散し、また、等方性圧縮応力の作用で、軟質の有機炭素源粉末も黒鉛粒子の表面で拡張し、そして一部の有機炭素源粉末は黒鉛の内層に圧入され、黒鉛シート同士の粘着力を大幅に向上させることによって、高プレス密度の粒子を得る。   By applying isotropic compressive stress to the second precursor powder in the isotropic pressure treatment process, the inner sheet of graphite particles extends in different axial directions, and the nanosilicon particles embedded between the graphite sheets Is dispersed by the second, and by the action of isotropic compressive stress, the soft organic carbon source powder expands on the surface of the graphite particles, and a part of the organic carbon source powder is pressed into the inner layer of the graphite, and the graphite sheet Particles with high press density are obtained by greatly improving the adhesion between them.

本発明では、前記工程(5)の高温焼結は、好ましくは保護ガス雰囲気下で行う。   In the present invention, the high-temperature sintering in the step (5) is preferably performed in a protective gas atmosphere.

前記保護ガスは、好ましくは窒素ガス、ヘリウムガス、ネオンガス、アルゴンガス、クリプトンガス、キセノンガス及び水素ガスのうちの1種又は少なくとも2種の組合せであり、特に好ましくは窒素ガス、ヘリウムガス、アルゴンガス及び水素ガスのうちの1種又は少なくとも2種の組合せである。   The protective gas is preferably nitrogen gas, helium gas, neon gas, argon gas, krypton gas, xenon gas and hydrogen gas, and particularly preferably nitrogen gas, helium gas, argon One or a combination of at least two of gas and hydrogen gas.

前記保護ガスの流量は、好ましくは0.5〜10.0L/分であり、さらに好ましくは0.5〜5.0L/分であり、特に好ましくは1.0〜4.0L/分である。   The flow rate of the protective gas is preferably 0.5 to 10.0 L / min, more preferably 0.5 to 5.0 L / min, and particularly preferably 1.0 to 4.0 L / min. .

前記焼結時の昇温速度は、好ましくは20.0℃/分以下であり、さらに好ましくは1.0〜15.0℃/分であり、特に好ましくは2.0〜10.0℃/分である。   The heating rate during the sintering is preferably 20.0 ° C./min or less, more preferably 1.0 to 15.0 ° C./min, and particularly preferably 2.0 to 10.0 ° C./min. Minutes.

前記焼結温度は、好ましくは500〜1150℃であり、さらに好ましくは600〜1050℃であり、特に好ましくは800〜1000℃である。   The sintering temperature is preferably 500 to 1150 ° C, more preferably 600 to 1050 ° C, and particularly preferably 800 to 1000 ° C.

前記焼結時間は、好ましくは少なくとも0.5時間であり、さらに好ましくは0.5〜20.0時間であり、特に好ましくは1.0〜10.0時間である。   The sintering time is preferably at least 0.5 hours, more preferably 0.5 to 20.0 hours, and particularly preferably 1.0 to 10.0 hours.

好ましくは、前記工程(5)において、高温焼結が終了した後、室温まで自然冷却する。   Preferably, in the step (5), after the high-temperature sintering is completed, it is naturally cooled to room temperature.

第3の態様において、本発明は第2の態様に記載の方法により製造されたリチウムイオン二次電池用シリコン系複合負極材を提供する。   In a third aspect, the present invention provides a silicon-based composite negative electrode material for a lithium ion secondary battery produced by the method described in the second aspect.

前記シリコン系複合負極材の中央粒径は、好ましくは5.0〜45.0μmであり、さらに好ましくは10.0〜35.0μmであり、特に好ましくは13.0〜25.0μmである。   The median particle size of the silicon composite negative electrode material is preferably 5.0 to 45.0 μm, more preferably 10.0 to 35.0 μm, and particularly preferably 13.0 to 25.0 μm.

前記シリコン系複合負極材の比表面積は、好ましくは1.0〜20.0m2/gであり、特に好ましくは2.0〜10.0m2/gである。 The specific surface area of the silicon-based composite negative electrode material is preferably 1.0~20.0m 2 / g, particularly preferably 2.0 to 10.0 m 2 / g.

前記シリコン系複合負極材の粉末プレス密度は、好ましくは1.0〜2.0g/cm3であり、特に好ましくは1.3〜1.8g/cm3である。 The powder press density of the silicon-based composite negative electrode material is preferably 1.0 to 2.0 g / cm 3 , particularly preferably 1.3 to 1.8 g / cm 3 .

前記ナノシリコン粒子の中央粒径は、好ましくは10〜500nmであり、さらに好ましくは10〜400nmであり、特に好ましくは10〜300nmである。   The median particle size of the nanosilicon particles is preferably 10 to 500 nm, more preferably 10 to 400 nm, and particularly preferably 10 to 300 nm.

第4の態様において、本発明は、電池正極、電池負極及び電解液を備えるリチウムイオン二次電池を提供し、前記電池負極は負極活物質材料、導電剤、接着剤及び溶剤を含み、前記負極活物質材料は第1の態様又は第3の態様に記載のリチウムイオン二次電池用シリコン系複合負極材である。   4th aspect WHEREIN: This invention provides a lithium ion secondary battery provided with a battery positive electrode, a battery negative electrode, and electrolyte solution, The said battery negative electrode contains a negative electrode active material, a electrically conductive agent, an adhesive agent, and a solvent, The said negative electrode The active material is the silicon-based composite negative electrode material for a lithium ion secondary battery according to the first aspect or the third aspect.

前記導電剤は、好ましくは黒鉛粉末及び/又はナノ導電液である。   The conductive agent is preferably graphite powder and / or nano conductive liquid.

前記ナノ導電液は、好ましくは0.5−20%(重量)のナノ炭素材料と分散溶剤とからなるものである。   The nano conductive liquid is preferably composed of 0.5-20% (by weight) of a nano carbon material and a dispersion solvent.

前記ナノ炭素材料は、より好ましくはグラフェン、カーボンナノチューブ、ナノ炭素繊維、フラーレン、カーボンブラック及びアセチレンブラックのうちの1種以上であり、前記グラフェンの黒鉛層の数は1−100であり、カーボンナノチューブ及びナノ炭素繊維の直径は0.2−500nmであり、フラーレン、カーボンブラック及びアセチレンブラックの粒径は1−200nmである。   More preferably, the nanocarbon material is at least one of graphene, carbon nanotube, nanocarbon fiber, fullerene, carbon black, and acetylene black, and the number of graphite layers of the graphene is 1-100, The diameter of the nanocarbon fiber is 0.2 to 500 nm, and the particle sizes of fullerene, carbon black, and acetylene black are 1 to 200 nm.

前記分散溶剤は、より好ましくは水、メタノール、エタノール、プロパノール、イソプロパノール、アセトン、シクロヘキサノン、ジクロロメタン、クロロホルム、シクロヘキサン、ベンゼン、トルエン、キシレン、エチルベンゼン、アニリン、テトラヒドロフラン、ジメチルスルホキシド、N−メチルピロリドン、N−Nジメチルホルムアミド、N−Nジメチルアセトアミド、ピリジン、ピロール、1−ブチル−3−メチルイミダゾリウムテトラフルオロボラート、1−エチル−3−メチルイミダゾリウムジシアナミド、1−ブチル−3−メチルイミダゾリウムヘキサフルオロホスファート、1−ブチル−3−メチルイミダゾリウムビストリフルオロメタンスルホニルイミド、1−ブチル−3−メチルイミダゾリウムトリフルオロメタンスルホナート及び1−エチル−3−メチルイミダゾリウムアセテートのうちの1種又は少なくとも2種の組合せである。   The dispersion solvent is more preferably water, methanol, ethanol, propanol, isopropanol, acetone, cyclohexanone, dichloromethane, chloroform, cyclohexane, benzene, toluene, xylene, ethylbenzene, aniline, tetrahydrofuran, dimethyl sulfoxide, N-methylpyrrolidone, N- N dimethylformamide, NN dimethylacetamide, pyridine, pyrrole, 1-butyl-3-methylimidazolium tetrafluoroborate, 1-ethyl-3-methylimidazolium dicyanamide, 1-butyl-3-methylimidazolium hexa Fluorophosphate, 1-butyl-3-methylimidazolium bistrifluoromethanesulfonylimide, 1-butyl-3-methylimidazolium trifluoromethanes Honato and 1-ethyl-3 is one or at least two combinations of methylimidazolium acetate.

前記接着剤は、好ましくはポリイミド樹脂、アクリル樹脂、ポリビニリデンジフルオライド、ポリビニルアルコール、カルボキシメチルセルロースナトリウム及びスチレンブタジエンゴムのうちの1種又は少なくとも2種の組合せである。   The adhesive is preferably one or a combination of at least two of polyimide resin, acrylic resin, polyvinylidene difluoride, polyvinyl alcohol, sodium carboxymethyl cellulose, and styrene butadiene rubber.

前記溶剤は、好ましくはN−メチルピロリドン、ジメチルホルムアミド、アセトン及びメチルエチルケトンのうちの1種又は少なくとも2種の組合せである。   The solvent is preferably one or a combination of at least two of N-methylpyrrolidone, dimethylformamide, acetone and methyl ethyl ketone.

本発明の有益な効果について、本発明に係るシリコン系複合負極材は、従来の技術に比べて、機械的研磨、機械的融合、等方性加圧処理及び炭素被覆技術を組み合わせることによってナノシリコン粒子を黒鉛の内層に埋め込ませることを実現し、且つ黒鉛粒子表面の均一な被覆を達成し、高性能シリコン系材料を得て、ナノシリコン粒子が緩衝基体である黒鉛粒子の内部に均一に分散し、この埋込複合コア構造はシリコン粒子の膨張を根本的に緩和し、材料の導電率を大幅に向上させ、シリコン粒子と電解液との直接接触を回避し、それにより、材料のサイクル特性(300回サイクルの容量維持率が90%以上である。)及び初回効率(>90%)を大幅に向上させ、また、本発明に係るシリコン系複合負極材は比エネルギー及びプレス密度が高く、高出力密度のリチウムイオン二次電池のニーズを満たすことができる。該負極材は製造プロセスが簡単で、原料コストが低く、エコで無公害である。   Regarding the beneficial effects of the present invention, the silicon-based composite negative electrode material according to the present invention is a nano-silicon by combining mechanical polishing, mechanical fusion, isotropic pressure treatment and carbon coating technology compared to the conventional technology. Realizing that the particles are embedded in the inner layer of graphite, achieving a uniform coating on the surface of the graphite particles, obtaining a high-performance silicon-based material, and nano-silicon particles are uniformly dispersed inside the graphite particles as the buffer substrate This embedded composite core structure fundamentally mitigates the expansion of the silicon particles, greatly improves the conductivity of the material and avoids direct contact between the silicon particles and the electrolyte, thereby enabling the cycle characteristics of the material. (The capacity retention rate of 300 cycles is 90% or more) and the initial efficiency (> 90%) is greatly improved, and the silicon composite negative electrode material according to the present invention has a specific energy and press density. Can be high, meet the needs of the lithium ion secondary battery having a high output density. The negative electrode material has a simple manufacturing process, a low raw material cost, and is eco-friendly and non-polluting.

図1は本発明の実施例1で製造されるシリコン系複合負極材の走査型電子顕微鏡(SEM)像である。FIG. 1 is a scanning electron microscope (SEM) image of the silicon-based composite negative electrode material produced in Example 1 of the present invention. 図2は本発明の実施例1で製造されるシリコン系複合負極材の断面走査型電子顕微鏡(SEM)像であり、図において、ナノシリコン粒子が黒鉛層間に埋め込まれて複合コアを形成し、且つナノシリコン粒子の分散性が比較的よく、また、複合コアの外層に均一な分解炭素被覆層を1層有することが見られる。FIG. 2 is a cross-sectional scanning electron microscope (SEM) image of the silicon-based composite negative electrode material produced in Example 1 of the present invention, in which nanosilicon particles are embedded between graphite layers to form a composite core, In addition, it can be seen that the dispersibility of the nanosilicon particles is relatively good and that the outer layer of the composite core has one uniform cracked carbon coating layer. 図3は本発明の実施例1で製造されるシリコン複合負極材のXRD図であり、図において、比較的強い黒鉛及びシリコンの回折ピークが見られる。FIG. 3 is an XRD diagram of the silicon composite negative electrode material produced in Example 1 of the present invention. In the figure, relatively strong diffraction peaks of graphite and silicon are observed. 図4は本発明の実施例1で製造されるシリコン複合負極材のサイクル特性曲線であり、図からわかるように、該材料は優れたサイクル特性を有し、300サイクル容量維持率が90.1%である。FIG. 4 is a cycle characteristic curve of the silicon composite negative electrode material produced in Example 1 of the present invention. As can be seen from the figure, the material has excellent cycle characteristics and a 300 cycle capacity retention rate of 90.1. %.

以下、実施例を参照しながら本発明の実施形態を詳細に説明する。当業者は、以下の実施例が本発明の好ましい実施例で、本発明をさらに理解するためのものであるので、本発明の範囲を制限するものではないと理解すべきである。当業者は、本発明に対してさまざまな変更及び変化を実施してもよく、本発明の趣旨及び原則を逸脱しない範囲で実施されるすべての修正、等価置換や改良などは、本発明の保護範囲に属すべきである。   Hereinafter, embodiments of the present invention will be described in detail with reference to examples. Those skilled in the art should understand that the following examples are preferred examples of the present invention, and are not intended to limit the scope of the present invention, for further understanding of the present invention. Those skilled in the art may make various changes and modifications to the present invention, and all modifications, equivalent substitutions, improvements, etc. implemented without departing from the spirit and principle of the present invention are protected by the present invention. Should belong to a range.

実施例1
類球状の天然黒鉛を中央粒径が5.0〜15.0μmの黒鉛粒子に機械的粉砕し、それを4mmの窒化ケイ素ビーズ及びプロパノール溶剤を含むボールミルに入れ、ボールミル粉砕して中央粒径が1.0〜10.0μmの中空黒鉛を得、シリコン原料をジェットミル粉砕して中央粒径が5.0〜30.0μmのシリコン粒子を得、次に、それを0.01mmの炭化タングステンビーズ及びメタノール溶剤を含むサンドミルに入れて研磨し、中央粒径が10〜300nmのナノシリコン粉末を得、前記製造したナノシリコン粉末と脂肪酸ポリエチレングリコールエステルを質量比15:0.5でメタノールに添加し、0.5時間超音波撹拌し、均一に分散したナノシリコン懸濁液を得、中空黒鉛(ナノシリコン:中空黒鉛の質量比が15:50である。)を懸濁液に添加し、2000rpmの撹拌回転速度で2時間撹拌し、乾燥して第1前駆体を得、第1前駆体を融合機に入れ、1時間融合し、融合前駆体材料を得、前記製造した融合前駆体材料と中央粒径が0.8〜4.0μmのピッチ粉末を質量比5:1でVC混合機に入れ、0.5時間混合被覆処理し、第2前駆体を得、第2前駆体を冷間プレスに入れ、10000KNの等方性圧力を加え、0.5時間圧力保持し、第3前駆体を得、第3前駆体をトンネルキルンに入れ、流量が1.0L/分のアルゴンガスの保護雰囲気で、15.0℃/分の昇温速度で1150.0℃まで昇温し、8時間恒温し、室温まで自然冷却し、次に、解砕、粉砕し、325メッシュで篩い分けして中央粒径が10.0〜20.0μmのシリコン系複合負極材を得た。
Example 1
Spherical natural graphite is mechanically pulverized into graphite particles having a median particle size of 5.0 to 15.0 μm, placed in a ball mill containing 4 mm silicon nitride beads and a propanol solvent, and pulverized by ball milling. Obtain hollow graphite of 1.0 to 10.0 μm, jet mill pulverize the silicon raw material to obtain silicon particles having a median particle size of 5.0 to 30.0 μm, and then add it to 0.01 mm tungsten carbide beads And polishing in a sand mill containing methanol solvent to obtain nanosilicon powder having a median particle size of 10 to 300 nm, and adding the prepared nanosilicon powder and fatty acid polyethylene glycol ester to methanol at a mass ratio of 15: 0.5. , Ultrasonically stirred for 0.5 hours to obtain a uniformly dispersed nanosilicon suspension, and hollow graphite (mass ratio of nanosilicon: hollow graphite is 15:50) Is added to the suspension, stirred for 2 hours at a stirring rotational speed of 2000 rpm, dried to obtain the first precursor, and the first precursor is put into the fusion machine and fused for 1 hour. A material is obtained, and the manufactured fusion precursor material and pitch powder having a median particle size of 0.8 to 4.0 μm are placed in a VC mixer at a mass ratio of 5: 1, mixed and coated for 0.5 hours, Obtain a precursor, put the second precursor in a cold press, apply an isotropic pressure of 10000 KN, hold the pressure for 0.5 hours, get a third precursor, put the third precursor in a tunnel kiln, In a protective atmosphere of argon gas at a flow rate of 1.0 L / min, the temperature was raised to 1150.0 ° C. at a rate of 15.0 ° C./min, kept constant for 8 hours, naturally cooled to room temperature, Crushing, crushing, sieving with 325 mesh, silicon composite negative electrode with a median particle size of 10.0-20.0 μm It was obtained.

実施例2
片状の天然黒鉛を中央粒径が10.0〜25.0μmの黒鉛粒子に機械的粉砕し、それを0.01mmの窒化ケイ素ビーズ及びエチレングリコール溶剤を含むボールミルに入れ、ボールミル粉砕して中央粒径が1.0〜10.0μmの中空黒鉛を得、シリコン原料を機械的粉砕して中央粒径が5.0〜40.0μmのシリコン粒子を得、次に、それを0.02mmの酸化ジルコニウムビーズ及びエチレングリコール溶剤を含むサンドミルに入れて研磨し、中央粒径が10〜400nmのナノシリコン粉末を得、前記製造したナノシリコン粉末とポリエーテルイミドを質量比50:1でエチレングリコールに添加し、1時間超音波撹拌し、均一に分散したナノシリコン懸濁液を形成し、中空黒鉛(ナノシリコン:中空黒鉛の質量比が50:30である。)を懸濁液に添加し、3000rpmの撹拌回転速度で5時間撹拌し、乾燥して第1前駆体を得、第1前駆体を融合機に入れ、4時間融合し、融合前駆体材料を得、前記製造した融合前駆体材料と中央粒径が10.0〜25.0μmのフェノール樹脂粉末を質量比1:1でVC高速混合機に入れ、1時間混合被覆処理し、第2前駆体を得て、第2前駆体を熱間プレスに入れ、20000KNの等方性圧力を加え、温度が90℃であり、0.05時間圧力保持し、第3前駆体を得、第3前駆体をトンネルキルンに入れ、流量が10.0L/分の窒素ガスの保護雰囲気で、5.0℃/分の昇温速度で1000.0℃まで昇温し、20時間恒温し、室温まで自然冷却し、次に、解砕、粉砕し、325メッシュで篩い分けして中央粒径が5.0〜15.0μmのシリコン系複合負極材を得た。
Example 2
The flake natural graphite is mechanically pulverized into graphite particles having a median particle size of 10.0 to 25.0 μm, and then put into a ball mill containing 0.01 mm silicon nitride beads and an ethylene glycol solvent. Hollow graphite having a particle size of 1.0-10.0 μm is obtained, silicon raw material is mechanically pulverized to obtain silicon particles having a median particle size of 5.0-40.0 μm, and then 0.02 mm Polishing by putting in a sand mill containing zirconium oxide beads and ethylene glycol solvent to obtain nanosilicon powder having a median particle size of 10 to 400 nm. The prepared nanosilicon powder and polyetherimide are converted into ethylene glycol at a mass ratio of 50: 1. Added, ultrasonically stirred for 1 hour to form a uniformly dispersed nanosilicon suspension, and hollow graphite (mass ratio of nanosilicon: hollow graphite is 50:30) Is added to the suspension, stirred for 5 hours at a stirring rotational speed of 3000 rpm, dried to obtain a first precursor, and the first precursor is put into a fusion machine, fused for 4 hours, and fused precursor. A material is obtained, and the prepared fusion precursor material and a phenol resin powder having a median particle size of 10.0 to 25.0 μm are put into a VC high-speed mixer at a mass ratio of 1: 1 and mixed and coated for 1 hour. A precursor is obtained, the second precursor is put into a hot press, an isotropic pressure of 20000 KN is applied, the temperature is 90 ° C., the pressure is maintained for 0.05 hours, and a third precursor is obtained. The precursor is put into a tunnel kiln, heated to 1000.0 ° C. at a temperature rising rate of 5.0 ° C./min in a nitrogen gas protective atmosphere with a flow rate of 10.0 L / min, and kept at a constant temperature for 20 hours. Cool naturally, then crush, pulverize, sieve through 325 mesh, median particle size is 5.0 ~ A 15.0 μm silicon composite negative electrode material was obtained.

実施例3
球状の人造黒鉛を中央粒径が5.0〜10.0μmの黒鉛粒子に高圧微粉砕し、それを10mmの窒化ケイ素ビーズ及びアセトン溶剤を含むボールミルに入れ、ボールミル粉砕して中央粒径が1.0〜10.0μmの中空黒鉛を得、シリコン原料をジェットミル粉砕して中央粒径が5.0〜20.0μmのシリコン粒子を得、次に、それを1mmの炭化ケイ素ビーズ及びN−メチルピロリドン溶剤を含むサンドミルに入れて研磨し、中央粒径が50〜500nmのナノシリコン粉末を得、前記製造したナノシリコン粉末とポリアクリル酸を質量比1:10でエタノールに添加し、0.1時間超音波撹拌し、均一に分散したナノシリコン懸濁液を形成し、中空黒鉛(ナノシリコン:中空黒鉛の質量比が1:90である。)を懸濁液に添加し、600rpmの撹拌回転速度で1時間撹拌し、乾燥して第1前駆体を得て、第1前駆体を融合機に入れ、0.25時間融合し、融合前駆体材料を得、前記製造した融合前駆体材料と中央粒径が0.5〜25.0μmのメソフェースピッチ粉末を質量比10:1でVC高速混合機に入れ、0.5時間混合被覆処理し、第2前駆体を得、第2前駆体を熱間プレスに入れ、1000KNの等方性圧力を加え、温度が300℃であり、4時間圧力保持し、第3前駆体を得、第3前駆体をトンネルキルンに入れ、流量が0.5L/分の窒素ガスの保護雰囲気で、20.0℃/分の昇温速度で1150.0℃まで昇温し、15時間恒温し、室温まで自然冷却し、次に、解砕、粉砕し、325メッシュで篩い分けして中央粒径が20.0〜45.0μmのシリコン系複合負極材を得た。
Example 3
Spherical artificial graphite is finely pulverized into graphite particles having a median particle size of 5.0 to 10.0 μm under high pressure, put into a ball mill containing 10 mm silicon nitride beads and an acetone solvent, and pulverized by ball milling to obtain a median particle size of 1. 0.0-10.0 μm hollow graphite is obtained, and the silicon raw material is jet milled to obtain silicon particles having a median particle size of 5.0-20.0 μm, which are then divided into 1 mm silicon carbide beads and N- It is put into a sand mill containing a methylpyrrolidone solvent and polished to obtain a nanosilicon powder having a median particle size of 50 to 500 nm, and the prepared nanosilicon powder and polyacrylic acid are added to ethanol at a mass ratio of 1:10. Ultrasonic agitation for 1 hour to form a uniformly dispersed nanosilicon suspension, and hollow graphite (nanosilicon: hollow graphite mass ratio is 1:90) is added to the suspension. Stir at an agitation rotational speed of rpm for 1 hour, dry to obtain the first precursor, put the first precursor into the fusion machine, fuse for 0.25 hour to obtain the fusion precursor material, the fusion produced above The precursor material and mesophase pitch powder having a median particle size of 0.5 to 25.0 μm are put into a VC high-speed mixer at a mass ratio of 10: 1 and mixed and coated for 0.5 hours to obtain a second precursor, Put the second precursor in a hot press, apply an isotropic pressure of 1000 KN, the temperature is 300 ° C., hold the pressure for 4 hours, obtain a third precursor, put the third precursor in a tunnel kiln, In a protective atmosphere of nitrogen gas at a flow rate of 0.5 L / min, the temperature is raised to 1150.0 ° C. at a rate of temperature increase of 20.0 ° C./min, kept constant for 15 hours, naturally cooled to room temperature, Crushed, ground and sieved with 325 mesh, silicon with a median particle size of 20.0-45.0 μm To obtain a composite negative electrode material.

実施例4
塊状の導電性黒鉛を中央粒径が10.0〜15.0μmの黒鉛粒子にジェットミル粉砕し、それを3mmの窒化ケイ素ビーズ及びエタノール溶剤を含むボールミルに入れ、ボールミル粉砕して中央粒径が1.0〜10.0μmの中空黒鉛を得、シリコン原料を機械的粉砕して中央粒径が5.0〜25.0μmのシリコン粒子を得、次に、それを0.05mmの炭窒化ケイ素ビーズ及びエタノール溶剤を含むサンドミルに入れて研磨し、中央粒径が10〜200nmのナノシリコン粉末を得、前記製造したナノシリコン粉末とポリビニルピロリドンを質量比30:5でエタノールに添加し、0.5時間超音波撹拌し、均一に分散したナノシリコン懸濁液を形成し、中空黒鉛(ナノシリコン:中空黒鉛の質量比が30:60である)を懸濁液に添加し、2000rpmの撹拌回転速度で3時間撹拌し、乾燥して第1前駆体を得て、第1前駆体を融合機に入れ、2時間融合し、融合前駆体材料を得、前記製造した融合前駆体材料と中央粒径が1.0〜10.0μmのクエン酸粉末を質量比5:1でVC高速混合機に入れ、1.5時間混合被覆処理し、第2前駆体を得、第2前駆体を冷間プレスに入れ、15000KNの等方性圧力を加え、温度が30℃であり、0.5時間圧力保持し、第3前駆体を得、第3前駆体をトンネルキルンに入れ、流量が3L/分の窒素ガスの保護雰囲気で、6.0℃/分の昇温速度で500.0℃まで昇温し、5時間恒温し、室温まで自然冷却し、次に、解砕、粉砕し、325メッシュで篩い分けして中央粒径が10.0〜25.0μmのシリコン系複合負極材を得た。
Example 4
The bulk conductive graphite is jet milled into graphite particles having a median particle size of 10.0 to 15.0 μm, put into a ball mill containing 3 mm silicon nitride beads and an ethanol solvent, and ball milled to obtain a median particle size. Obtain hollow graphite of 1.0 to 10.0 μm, mechanically pulverize the silicon raw material to obtain silicon particles having a median particle size of 5.0 to 25.0 μm, and then add it to 0.05 mm silicon carbonitride It is put into a sand mill containing beads and an ethanol solvent and polished to obtain a nanosilicon powder having a median particle size of 10 to 200 nm. The prepared nanosilicon powder and polyvinylpyrrolidone are added to ethanol at a mass ratio of 30: 5. Ultrasonic stirring for 5 hours to form a uniformly dispersed nanosilicon suspension and adding hollow graphite (nanosilicon: hollow graphite mass ratio is 30:60) to the suspension , Stirred for 3 hours at a stirring rotational speed of 2000 rpm, dried to obtain a first precursor, put the first precursor into a fusion machine, fused for 2 hours to obtain a fusion precursor material, and the manufactured fusion precursor The body material and citric acid powder having a median particle size of 1.0-10.0 μm were put into a VC high speed mixer at a mass ratio of 5: 1, mixed and coated for 1.5 hours to obtain a second precursor, Put the precursor in a cold press, apply an isotropic pressure of 15000 KN, the temperature is 30 ° C., hold the pressure for 0.5 hours to obtain a third precursor, put the third precursor in a tunnel kiln, In a protective atmosphere of nitrogen gas at a flow rate of 3 L / min, the temperature was raised to 500.0 ° C. at a rate of temperature increase of 6.0 ° C./min, kept constant for 5 hours, naturally cooled to room temperature, then crushed, A silicon composite negative electrode material having a median particle size of 10.0 to 25.0 μm by pulverizing and sieving with 325 mesh It was.

実施例5
鱗片状の天然黒鉛を中央粒径が5.0〜10.0μmの黒鉛粒子に回転式高速粉砕し、それを0.4mmの酸化ジルコニウムビーズ及び水を含むボールミルに入れ、ボールミル粉砕して中央粒径が1.0〜10.0μmの中空黒鉛を得、シリコン原料を機械的粉砕して中央粒径が5.0〜25.0μmのシリコン粒子を得、次に、それを0.8mmの炭窒化ケイ素ビーズ及びエタノール溶剤を含むサンドミルに入れて研磨し、中央粒径が10〜200nmのナノシリコン粉末を得、前記製造したナノシリコン粉末と臭化ヘキサデシルトリメチルアンモニウムを質量比10:1でエタノールに添加し、0.5時間超音波撹拌し、均一に分散したナノシリコン懸濁液を形成し、中空黒鉛(ナノシリコン:中空黒鉛の質量比が10:60である。)を懸濁液に添加し、2500rpmの撹拌回転速度で2時間撹拌し、乾燥して第1前駆体を得、第1前駆体を融合機に入れ、1.5時間融合し、融合前駆体材料を得、前記製造した融合前駆体材料と中央粒径が1.0〜5.0μmのポリビニルアルコール粉末を質量比2:1でVC高速混合機に入れ、2時間混合被覆処理し、第2前駆体を得、第2前駆体を冷間プレスに入れ、9000KNの等方性圧力を加え、温度が20℃であり、1時間圧力保持し、第3前駆体を得て、第3前駆体をトンネルキルンに入れ、流量が5L/分の窒素ガスの保護雰囲気で、12.0℃/分の昇温速度で800.0℃まで昇温し、5時間恒温し、室温まで自然冷却し、次に、解砕、粉砕し、325メッシュで篩い分けして中央粒径が10.0〜25.0μmのシリコン系複合負極材を得た。
Example 5
Scale-like natural graphite is pulverized at high speed by rotation into graphite particles having a median particle size of 5.0-10.0 μm, put into a ball mill containing 0.4 mm zirconium oxide beads and water, and pulverized by ball mill. Hollow graphite having a diameter of 1.0 to 10.0 μm is obtained, and silicon raw material is mechanically pulverized to obtain silicon particles having a median particle diameter of 5.0 to 25.0 μm. Polishing by putting in a sand mill containing silicon nitride beads and ethanol solvent to obtain nanosilicon powder having a median particle diameter of 10 to 200 nm, ethanol produced at a mass ratio of 10: 1 with the prepared nanosilicon powder and hexadecyltrimethylammonium bromide And stirred with ultrasonic waves for 0.5 hour to form a uniformly dispersed nanosilicon suspension, and hollow graphite (the mass ratio of nanosilicon: hollow graphite is 10:60). Add to the turbid liquid, stir at 2500 rpm stirring speed for 2 hours, dry to obtain the first precursor, put the first precursor into the fusion machine and fuse for 1.5 hours to obtain the fusion precursor material The prepared fusion precursor material and polyvinyl alcohol powder having a median particle size of 1.0 to 5.0 μm are placed in a VC high speed mixer at a mass ratio of 2: 1 and mixed and coated for 2 hours to obtain a second precursor. The second precursor is put into a cold press, isotropic pressure of 9000 KN is applied, the temperature is 20 ° C., the pressure is kept for 1 hour, the third precursor is obtained, and the third precursor is tunnel kiln In a protective atmosphere of nitrogen gas at a flow rate of 5 L / min, the temperature is raised to 800.0 ° C. at a rate of temperature increase of 12.0 ° C./min, kept constant for 5 hours, naturally cooled to room temperature, Crushing, crushing, sieving with 325 mesh, and a median particle size of 10.0-25.0 μm To obtain a down-based composite negative electrode material.

比較例1
類球状の天然黒鉛に対して粉砕及びボールミル粉砕処理を行わない以外、実施例1とほぼ同様な方法でシリコン系負極材を製造し、実施例1と同様な方法で電池を作製した。
Comparative Example 1
A silicon-based negative electrode material was produced in substantially the same manner as in Example 1 except that the spherical natural graphite was not crushed and ball milled, and a battery was produced in the same manner as in Example 1.

比較例2
前駆IIに対して等方性の熱間加圧処理を行わない以外、実施例2とほぼ同様な方法でシリコン系負極材を製造し、実施例2と同様な方法で電池を作製した。
Comparative Example 2
A silicon-based negative electrode material was produced in substantially the same manner as in Example 2 except that the isotropic hot pressing treatment was not performed on the precursor II, and a battery was produced in the same manner as in Example 2.

下記の方法によって実施例1〜5及び比較例1〜2の負極材をテストした。
本発明に係る粉末プレス密度はCARVER粉末プレスを用いて実際にテストされ、粉末プレス密度=テスト用サンプルの質量/テスト用サンプルの体積、極片プレス密度=(負極極片質量−銅箔質量)/(極片面積×極片圧密後の厚さ)である。
The negative electrode materials of Examples 1 to 5 and Comparative Examples 1 and 2 were tested by the following method.
The powder press density according to the present invention was actually tested using a CARVER powder press. Powder press density = mass of test sample / volume of test sample, pole piece press density = (negative electrode pole piece mass−copper foil mass) / (Pole piece area × Thickness after pole piece compaction).

米国Micromeritics Instrument社のTristar3000全自動比表面積及び空孔率分析装置を用いて材料の比表面積をテストした。   The specific surface area of the material was tested using a Tristar 3000 fully automatic specific surface area and porosity analyzer from Micromeritics Instrument, USA.

Malvernレーザー粒度測定装置MS 2000を用いて材料粒径範囲及び原料粒子の平均粒径をテストした。   The material particle size range and the average particle size of the raw material particles were tested using a Malvern laser particle size analyzer MS 2000.

X線回折装置X′Pert Pro,PANalyticalを用いて材料の構造をテストした。   The material structure was tested using an X-ray diffractometer X'Pert Pro, PANalytical.

株式会社日立製作所のS4800走査型電子顕微鏡でサンプルの表面形態、粒子の大きさなどを観察した。   The surface morphology of the sample and the size of the particles were observed with an S4800 scanning electron microscope from Hitachi, Ltd.

下記の方法によって、電気化学サイクル特性をテストし、負極材、導電剤及び接着剤を質量比94:1:5で溶剤に溶解して混合し、固形分を50%に制御し、銅箔集電体に塗布し、真空乾燥して負極極片を得、次に、従来の成熟したプロセスにより製造される三元系正極極片、1mol/LのLiPF6/ EC+DMC+EMC(v/v=1:1:1)電解液、Celgard2400セパレータ、ケースを通常の生産プロセスによって18650円筒型単電池に組み立てた。円筒型電池の充放電テストは武漢金諾電子有限公司のLAND電池テストシステムで行われ、常温条件で、0.2Cの定電流で充放電し、充放電電圧を2.75〜4.2Vに制限した。 The electrochemical cycle characteristics were tested by the following method, and the negative electrode material, the conductive agent and the adhesive were dissolved and mixed in a solvent at a mass ratio of 94: 1: 5, and the solid content was controlled to 50%. A negative electrode piece is obtained by applying to an electric body and vacuum-drying, and then producing a ternary positive electrode piece manufactured by a conventional mature process, 1 mol / L LiPF 6 / EC + DMC + EMC (v / v = 1: 1: 1) The electrolyte, Celgard 2400 separator, and case were assembled into 18650 cylindrical cells by a normal production process. Cylindrical battery charge / discharge test is performed by LAND battery test system of Wuhan Jinyi Electronics Co., Ltd., charge / discharge with constant current of 0.2C under normal temperature condition, and charge / discharge voltage to 2.75 ~ 4.2V Restricted.

実施例1〜5及び比較例1〜2で製造された負極材の電気化学測定結果を表1に示す。   Table 1 shows the electrochemical measurement results of the negative electrode materials produced in Examples 1 to 5 and Comparative Examples 1 and 2.

表1 負極材の電気化学測定結果   Table 1 Electrochemical measurement results of negative electrode material

上記の表からわかるように、比較例は放電容量及び初回充放電効率が低く、初回効率が85.5%しかなく、300サイクル後の容量維持率が75%と低い。これに対し、本出願に係る方法により製造されたシリコン系複合負極材は、比表面積が低く(2.0〜4.0m2/g)、プレス密度が高く(1.6〜1.8g/cm3)、放電容量が400mAh/gを超え、初回クーロン効率が90.0%を超え、300サイクル容量維持率がいずれも90%以上であった。 As can be seen from the above table, the comparative example has a low discharge capacity and initial charge / discharge efficiency, the initial efficiency is only 85.5%, and the capacity retention rate after 300 cycles is as low as 75%. In contrast, the silicon-based composite negative electrode material produced by the method according to the present application has a low specific surface area (2.0 to 4.0 m 2 / g) and a high press density (1.6 to 1.8 g / g). cm 3 ), the discharge capacity exceeded 400 mAh / g, the initial coulombic efficiency exceeded 90.0%, and the 300 cycle capacity retention rate was 90% or more.

出願人は、本発明は上記実施例によって本発明の具体的な特徴及び具体的な方法を説明したが、本発明は上記具体的な特徴及び具体的な方法に限定されるものではなく、すなわち、本発明は上記具体的な特徴及び具体的な方法によって実施されなければならないという意味ではないことを言明する。当業者は、本発明へのすべての改良、本発明の選用する成分の等価置換及び補助成分の添加、具体的な方式の選択などがいずれも本発明の保護範囲及び開示範囲に属すると理解すべきである。   The applicant has described specific features and specific methods of the present invention with the above embodiments, but the present invention is not limited to the specific features and specific methods described above. It is stated that the present invention is not meant to be implemented by the specific features and methods set forth above. Those skilled in the art will understand that all modifications to the present invention, equivalent substitution of components to be selected and addition of auxiliary components, selection of specific methods, etc. are all within the protection scope and disclosure scope of the present invention. Should.

Claims (10)

埋込複合コア−シェル構造であるリチウムイオン二次電池用シリコン系複合負極材であって、該コアはナノシリコン粒子が中空黒鉛の内層隙間に埋め込まれてなる構造であり、該シェルは非黒鉛炭素材料である、リチウムイオン二次電池用シリコン系複合負極材。   A silicon-based composite negative electrode material for a lithium ion secondary battery having an embedded composite core-shell structure, wherein the core has a structure in which nanosilicon particles are embedded in an inner layer gap of hollow graphite, and the shell is non-graphite A silicon-based composite negative electrode material for a lithium ion secondary battery, which is a carbon material. 前記隙間がスリット又は該スリットから派生された多角形孔であり、前記リチウムイオン二次電池用シリコン系複合負極材は、好ましくはナノシリコン1〜50%(重量)、黒鉛30〜90%(重量)及び非黒鉛炭素材料5〜40%(重量)を含むことを特徴とする、請求項1に記載のリチウムイオン二次電池用シリコン系複合負極材。   The gap is a slit or a polygonal hole derived from the slit, and the silicon-based composite negative electrode material for a lithium ion secondary battery is preferably nanosilicon 1-50% (weight), graphite 30-90% (weight) ) And a non-graphitic carbon material in an amount of 5 to 40% (by weight). The silicon-based composite negative electrode material for a lithium ion secondary battery according to claim 1. 請求項1又は2に記載のリチウムイオン二次電池用シリコン系複合負極材を製造する方法であって、
(1)黒鉛類材料を機械的加工し、中空黒鉛を得る工程と、
(2)ナノシリコン、分散剤及び中空黒鉛を有機溶剤で混合乾燥処理し、第1前駆体を得る工程と、
(3)第1前駆体に対して機械的融合処理を行い、次に炭素源被覆処理を行い、第2前駆体を得る工程と、
(4)第2前駆体に対して等方性加圧処理を行い、塊状又は円柱状の第3前駆体を得る工程と、
(5)第3前駆体を高温焼結し、前記シリコン系複合負極材を得る工程と、
を含む、方法。
A method for producing a silicon-based composite negative electrode material for a lithium ion secondary battery according to claim 1 or 2,
(1) mechanically processing a graphite material to obtain hollow graphite;
(2) A step of mixing and drying nanosilicon, a dispersant and hollow graphite with an organic solvent to obtain a first precursor;
(3) performing a mechanical fusion process on the first precursor and then performing a carbon source coating process to obtain a second precursor;
(4) performing an isotropic pressure treatment on the second precursor to obtain a massive or columnar third precursor;
(5) a step of high-temperature sintering the third precursor to obtain the silicon-based composite negative electrode material;
Including a method.
前記工程(5)の後、(6)工程(5)で得た複合負極材を解砕、粉砕、篩い分けして除磁し、中央粒径が5.0〜45.0μm、好ましくは10.0〜35.0μm、さらに好ましくは13.0〜25.0μmのシリコン系複合負極材を得る工程を行うことを特徴とする請求項3に記載の方法。   After the step (5), the composite negative electrode material obtained in the step (5) is crushed, pulverized and sieved to demagnetize, and the median particle size is 5.0 to 45.0 μm, preferably 10 The method according to claim 3, wherein a step of obtaining a silicon composite negative electrode material having a thickness of 0.0 to 35.0 μm, more preferably 13.0 to 25.0 μm is performed. 前記工程(1)の機械的加工が、黒鉛類材料を粉砕、除磁、篩い分けして中央粒径が5.0〜25.0μmの黒鉛粒子を得、次に、機械的研磨を行って中央粒径が1.0〜10.0μmの中空黒鉛を得ることを含み、
前記黒鉛類材料が、好ましくは天然結晶質黒鉛、天然隠微晶質黒鉛、天然結晶脈状黒鉛、人造黒鉛及び導電性黒鉛のうちの1種又は少なくとも2種の組合せであり、
前記黒鉛類材料の形状が、好ましくは片状、略球状及び球状のうちの1種又は少なくとも2種の組合せであり、
前記粉砕が、好ましくはボールミル粉砕、機械的粉砕、ジェットミル粉砕、高圧微粉砕及び回転式高速粉砕のうちの1種又は少なくとも2種の組合せであり、
前記機械的研磨が、好ましくは乾式研磨又は湿式研磨であり、さらに好ましくは湿式研磨であり、
前記湿式研磨が、より好ましくは高速撹拌ミル、ボールミル、チューブミル、コロイドミル、ロッドミル及びサンドミルのいずれかを用い、
前記機械的研磨の媒体が、好ましくは銅、亜鉛、銀、錫、バナジウム、クロム、タングステン、銅合金、アルミニウム合金、亜鉛合金、鉄炭素合金、マグネシウム合金、リチウム合金、酸化ホウ素、酸化ケイ素、酸化ジルコニウム、アルミナ、炭酸カルシウム、酸化マグネシウム、二酸化チタン、酸化亜鉛、酸化錫、三酸化二鉄、四酸化三鉄、炭化タングステン、炭化チタン、窒化チタン、炭化ケイ素、窒化ケイ素、炭窒化チタン及び炭窒化タングステンのうちの1種又は少なくとも2種の組合せであり、
前記機械的研磨の媒体のサイズが、好ましくは0.01〜10mmであり、さらに好ましくは0.03〜8.0mmであり、特に好ましくは0.05〜5.0mmであり、
前記湿式研磨に用いられる溶剤が、好ましくは水及び/又は有機溶剤であり、
前記有機溶剤が、より好ましくはテトラヒドロフラン、アミド、アルコール及びケトンのうちの1種又は少なくとも2種の組合せであり、さらに好ましくはテトラヒドロフラン、ジメチルアセトアミド、C1−C6アルコール及びC3−C8ケトンのうちの1種又は少なくとも2種の組合せであり、前記C1−C6アルコールはメタノール、エタノール、エチレングリコール、プロパノール、イソプロパノール、1,2−プロパンジオール、1,3−プロパンジオール、グリセロール、n−ブタノール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、n−ペンタノール及び2−ヘキサノールのうちの1種又は少なくとも2種の組合せであり、前記C3−C8ケトンはアセトン、メチルエチルケトン、メチルプロピルケトン、N−メチルピロリドン、エチルプロピルケトン、メチルブチルケトン、エチルn−ブチルケトン、メチルアミルケトン及びメチルヘキシルケトンのうちの1種又は少なくとも2種の組合せである
ことを特徴とする請求項3又は4に記載の方法。
The mechanical processing of the step (1) pulverizes, demagnetizes and sieves the graphite material to obtain graphite particles having a median particle size of 5.0 to 25.0 μm, and then performs mechanical polishing. Obtaining hollow graphite having a median particle size of 1.0-10.0 μm,
The graphite material is preferably one or a combination of at least two of natural crystalline graphite, natural microcrystalline graphite, natural crystalline vein graphite, artificial graphite and conductive graphite,
The shape of the graphite material is preferably one or a combination of at least two of flaky, substantially spherical and spherical,
Said grinding is preferably one or a combination of at least two of ball milling, mechanical grinding, jet milling, high pressure fine grinding and rotary high speed grinding,
The mechanical polishing is preferably dry polishing or wet polishing, more preferably wet polishing,
The wet polishing is more preferably performed using any one of a high-speed stirring mill, a ball mill, a tube mill, a colloid mill, a rod mill, and a sand mill.
The mechanical polishing medium is preferably copper, zinc, silver, tin, vanadium, chromium, tungsten, copper alloy, aluminum alloy, zinc alloy, iron-carbon alloy, magnesium alloy, lithium alloy, boron oxide, silicon oxide, oxidation Zirconium, alumina, calcium carbonate, magnesium oxide, titanium dioxide, zinc oxide, tin oxide, ferric trioxide, ferric tetroxide, tungsten carbide, titanium carbide, titanium nitride, silicon carbide, silicon nitride, titanium carbonitride and carbonitride One or a combination of at least two of tungsten;
The size of the mechanical polishing medium is preferably 0.01 to 10 mm, more preferably 0.03 to 8.0 mm, and particularly preferably 0.05 to 5.0 mm.
The solvent used for the wet polishing is preferably water and / or an organic solvent,
More preferably, the organic solvent is one or a combination of at least two of tetrahydrofuran, amide, alcohol and ketone, and more preferably one of tetrahydrofuran, dimethylacetamide, C1-C6 alcohol and C3-C8 ketone. Or a combination of at least two, and the C1-C6 alcohol is methanol, ethanol, ethylene glycol, propanol, isopropanol, 1,2-propanediol, 1,3-propanediol, glycerol, n-butanol, 1,2 -Butanediol, 1,3-butanediol, 1,4-butanediol, n-pentanol, and a combination of at least two of 2-hexanol, and the C3-C8 ketone is acetone, methyl ethyl ketone, Methylp 5. A combination of one or at least two of pyrrole ketone, N-methyl pyrrolidone, ethyl propyl ketone, methyl butyl ketone, ethyl n-butyl ketone, methyl amyl ketone and methyl hexyl ketone. The method described in 1.
前記工程(2)のナノシリコンがシリコン原料を機械的加工して得られ、
前記機械的加工が、好ましくはシリコン原料を粉砕、除磁、篩い分けして中央粒径が5.0〜40.0μmであるシリコン粒子を得、次に、機械的研磨を行って中央粒径が10〜500nmであるナノシリコンを得ることを含み、
前記粉砕が、好ましくはボールミル粉砕、機械的粉砕、ジェットミル粉砕、高圧微粉砕及び回転式高速粉砕のうちの1種又は少なくとも2種の組合せであり、
前記機械的研磨が、好ましくは乾式研磨又は湿式研磨であり、更に好ましくは湿式研磨であり、
前記機械的研磨が、好ましくは高速撹拌ミル、ボールミル、チューブミル、コロイドミル、ロッドミル及びサンドミルのいずれかを用い、
前記サンドミルによる研磨の媒体が、好ましくは銅、亜鉛、銀、錫、バナジウム、クロム、タングステン、銅合金、アルミニウム合金、亜鉛合金、鉄炭素合金、マグネシウム合金、リチウム合金、酸化ホウ素、酸化ケイ素、酸化ジルコニウム、アルミナ、炭酸カルシウム、酸化マグネシウム、二酸化チタン、酸化亜鉛、酸化錫、三酸化二鉄、四酸化三鉄、炭化タングステン、炭化チタン、窒化チタン、炭化ケイ素、窒化ケイ素、炭窒化チタン及び炭窒化タングステンのうちの1種又は少なくとも2種の組合せであり、
前記機械的研磨の媒体のサイズが、好ましくは0.01〜1.00mmであり、さらに好ましくは0.02〜0.80mmであり、特に好ましくは0.03〜0.50mmであり、
前記湿式研磨に用いられる溶剤が、好ましくは有機溶剤であり、
前記有機溶剤が、より好ましくはテトラヒドロフラン、アミド、アルコール及びケトンのうちの1種又は少なくとも2種の組合せであり、さらに好ましくはテトラヒドロフラン、ジメチルアセトアミド、C1−C6アルコール及びC3−C8ケトンのうちの1種又は少なくとも2種の組合せであり、前記C1−C6アルコールはメタノール、エタノール、エチレングリコール、プロパノール、イソプロパノール、1,2−プロパンジオール、1,3−プロパンジオール、グリセロール、n−ブタノール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、n−ペンタノール及び2−ヘキサノールのうちの1種又は少なくとも2種の組合せであり、前記C3−C8ケトンはアセトン、メチルエチルケトン、メチルプロピルケトン、N−メチルピロリドン、エチルプロピルケトン、メチルブチルケトン、エチルn−ブチルケトン、メチルアミルケトン及びメチルヘキシルケトンのうちの1種又は少なくとも2種の組合せであり、
前記工程(2)の混合乾燥処理が、好ましくはナノシリコンと分散剤を有機溶剤に添加し、0.1〜1時間超音波撹拌し、均一に分散したナノシリコン懸濁液を形成し、さらに中空黒鉛を懸濁液に添加し、回転速度600〜3000rpmで1〜5時間撹拌し、乾燥して第1前駆体を得ることを含み、
前記分散剤が、好ましくはトリポリリン酸ナトリウム、ヘキサメタリン酸ナトリウム、ピロリン酸ナトリウム、リン酸トリエチルヘキシル、ドデシル硫酸ナトリウム、メチルペンタノール、セルロース誘導体、ポリアクリルアミド、グアーガム、脂肪酸ポリエチレングリコールエステル、臭化ヘキサデシルトリメチルアンモニウム、ポリエチレングリコールp−イソオクチルフェニルエーテル、ポリアクリル酸、ポリビニルピロリドン、ポリオキシエチレンソルビタンモノオレアート、p−エチル安息香酸及びポリエーテルイミドのうちの1種又は少なくとも2種の組合せであり、
前記乾燥が、好ましくは噴霧乾燥機、吸引濾過器、回転蒸発器又は冷凍乾燥機を用い、
前記噴霧乾燥機の入り口温度が、より好ましくは100〜400℃であり、さらに好ましくは110〜300℃であり、特に好ましくは120〜250℃である、
前記噴霧乾燥機の出口温度が、より好ましくは20〜250℃であり、さらに好ましくは35〜200℃であり、特に好ましくは50〜120℃である。
前記噴霧乾燥機の圧力が、より好ましくは5〜150MPaであり、さらに好ましくは7〜120MPaであり、特に好ましくは10〜100MPaであり、
前記噴霧乾燥機のフィード周波数が、より好ましくは2〜200Hzであり、さらに好ましくは5〜160Hzであり、特に好ましくは10〜100Hzであり、
前記ナノシリコン、分散剤、中空黒鉛及び有機溶剤の質量比が、好ましくは(1〜50):(0.5〜10):(30〜90):(90〜800)である
ことを特徴とする請求項3〜5のいずれか1項に記載の方法。
The nanosilicon of the step (2) is obtained by mechanically processing a silicon raw material,
The mechanical processing is preferably performed by grinding, demagnetizing, and sieving the silicon raw material to obtain silicon particles having a median particle size of 5.0 to 40.0 μm, followed by mechanical polishing. Obtaining nanosilicon that is 10 to 500 nm,
Said grinding is preferably one or a combination of at least two of ball milling, mechanical grinding, jet milling, high pressure fine grinding and rotary high speed grinding,
The mechanical polishing is preferably dry polishing or wet polishing, more preferably wet polishing,
The mechanical polishing is preferably performed using any one of a high speed stirring mill, a ball mill, a tube mill, a colloid mill, a rod mill and a sand mill.
The sand mill polishing medium is preferably copper, zinc, silver, tin, vanadium, chromium, tungsten, copper alloy, aluminum alloy, zinc alloy, iron-carbon alloy, magnesium alloy, lithium alloy, boron oxide, silicon oxide, oxidation Zirconium, alumina, calcium carbonate, magnesium oxide, titanium dioxide, zinc oxide, tin oxide, ferric trioxide, ferric tetroxide, tungsten carbide, titanium carbide, titanium nitride, silicon carbide, silicon nitride, titanium carbonitride and carbonitride One or a combination of at least two of tungsten;
The size of the mechanical polishing medium is preferably 0.01 to 1.00 mm, more preferably 0.02 to 0.80 mm, and particularly preferably 0.03 to 0.50 mm.
The solvent used for the wet polishing is preferably an organic solvent,
More preferably, the organic solvent is one or a combination of at least two of tetrahydrofuran, amide, alcohol and ketone, and more preferably one of tetrahydrofuran, dimethylacetamide, C1-C6 alcohol and C3-C8 ketone. Or a combination of at least two, and the C1-C6 alcohol is methanol, ethanol, ethylene glycol, propanol, isopropanol, 1,2-propanediol, 1,3-propanediol, glycerol, n-butanol, 1,2 -Butanediol, 1,3-butanediol, 1,4-butanediol, n-pentanol, and a combination of at least two of 2-hexanol, and the C3-C8 ketone is acetone, methyl ethyl ketone, Methylp Piruketon, N- methylpyrrolidone, ethyl propyl ketone, is one or at least two combinations of the methyl ketone, ethyl n- butyl ketone, methyl amyl ketone and methyl hexyl ketone,
The mixing and drying treatment in the step (2) is preferably performed by adding nanosilicon and a dispersant to an organic solvent, and ultrasonically stirring for 0.1 to 1 hour to form a uniformly dispersed nanosilicon suspension, Adding hollow graphite to the suspension, stirring at a rotational speed of 600-3000 rpm for 1-5 hours, and drying to obtain a first precursor;
The dispersant is preferably sodium tripolyphosphate, sodium hexametaphosphate, sodium pyrophosphate, triethylhexyl phosphate, sodium dodecyl sulfate, methylpentanol, cellulose derivatives, polyacrylamide, guar gum, fatty acid polyethylene glycol ester, hexadecyltrimethyl bromide One or a combination of at least two of ammonium, polyethylene glycol p-isooctyl phenyl ether, polyacrylic acid, polyvinyl pyrrolidone, polyoxyethylene sorbitan monooleate, p-ethylbenzoic acid and polyetherimide,
The drying is preferably performed using a spray dryer, a suction filter, a rotary evaporator or a freeze dryer,
The inlet temperature of the spray dryer is more preferably 100 to 400 ° C, still more preferably 110 to 300 ° C, and particularly preferably 120 to 250 ° C.
The outlet temperature of the spray dryer is more preferably 20 to 250 ° C, still more preferably 35 to 200 ° C, and particularly preferably 50 to 120 ° C.
The pressure of the spray dryer is more preferably 5 to 150 MPa, still more preferably 7 to 120 MPa, particularly preferably 10 to 100 MPa,
The feed frequency of the spray dryer is more preferably 2 to 200 Hz, further preferably 5 to 160 Hz, and particularly preferably 10 to 100 Hz.
The mass ratio of the nanosilicon, the dispersant, the hollow graphite, and the organic solvent is preferably (1-50) :( 0.5-10) :( 30-90) :( 90-800). The method according to any one of claims 3 to 5.
前記工程(3)の機械的融合処理が、第1前駆体を融合機に入れ、回転速度を500〜3000rpm、刃物クリアランス幅を0.01〜1cmに調整し、少なくとも0.25時間融合し、融合前駆体材料を得ることを含み、
前記融合機の回転速度が、好ましくは800〜2000rpmであり、
前記刃物クリアランス幅が、好ましくは0.1〜0.3cmであり、
前記融合時間が、好ましくは0.25〜8.0時間であり、特に好ましくは0.5〜4.0時間であり、
前記工程(3)の炭素源被覆処理が、好ましくは融合前駆体材料と有機炭素源に対して、固相被覆又は液相被覆処理、さらに好ましくは固相被覆処理を行い、第2前駆体を得ることを含み、
前記固相被覆処理が、好ましくは融合前駆体材料と有機炭素源をVC混合機に入れ、少なくとも0.5時間被覆処理し、第2前駆体を得ることを含み、
前記有機炭素源が、好ましくは粉末状で、中央粒径が0.5〜25.0μmであり、特に好ましくは1.0〜8.0μmであり、
前記融合前駆体材料と有機炭素源の質量比が、好ましくは1:1〜10:1であり、特に好ましくは2:1〜6:1であり、
前記有機炭素源が、好ましくは石炭ピッチ、石油ピッチ、メソフェースピッチ、石炭タール、石油工業重質油、重質芳香族炭化水素、エポキシ樹脂、フェノール樹脂、フルフラール樹脂、尿素樹脂、ポリビニルアルコール、ポリ塩化ビニル、ポリエチレングリコール、ポリエチレンオキシド、ポリフッ化ビニリデン、アクリル樹脂及びポリアクリロニトリルのうちの1種又は少なくとも2種の組合せである
ことを特徴とする請求項3〜6のいずれか1項に記載の方法。
In the mechanical fusion process of the step (3), the first precursor is put into a fusion machine, the rotational speed is adjusted to 500 to 3000 rpm, the blade clearance width is adjusted to 0.01 to 1 cm, and the fusion is performed for at least 0.25 hours. Obtaining a fusion precursor material,
The rotational speed of the fusion machine is preferably 800 to 2000 rpm,
The blade clearance width is preferably 0.1 to 0.3 cm,
The fusion time is preferably 0.25 to 8.0 hours, particularly preferably 0.5 to 4.0 hours,
In the carbon source coating treatment in the step (3), preferably, the fusion precursor material and the organic carbon source are subjected to a solid phase coating or a liquid phase coating treatment, more preferably a solid phase coating treatment. Including obtaining
The solid phase coating preferably comprises placing the fusion precursor material and the organic carbon source in a VC mixer and coating for at least 0.5 hours to obtain a second precursor;
The organic carbon source is preferably in a powder form, and the median particle size is 0.5 to 25.0 μm, particularly preferably 1.0 to 8.0 μm,
The mass ratio of the fusion precursor material to the organic carbon source is preferably 1: 1 to 10: 1, particularly preferably 2: 1 to 6: 1.
The organic carbon source is preferably coal pitch, petroleum pitch, mesophase pitch, coal tar, petroleum industry heavy oil, heavy aromatic hydrocarbon, epoxy resin, phenol resin, furfural resin, urea resin, polyvinyl alcohol, poly The method according to any one of claims 3 to 6, which is one or a combination of at least two of vinyl chloride, polyethylene glycol, polyethylene oxide, polyvinylidene fluoride, acrylic resin and polyacrylonitrile. .
前記工程(4)の等方性加圧処理が、圧力1000〜20000KN、加圧処理温度20〜300℃の条件で、第2前駆体を0.05〜4時間加圧処理し、第3前駆体を得ることを含み、
前記加圧処理が、好ましくは押出成形処理、冷間加圧処理、熱間加圧処理及び等方圧加圧処理のうちの1種又は少なくとも2種の組合せであり、
前記圧力が、好ましくは5000〜10000KNであり、
前記加圧処理の温度が、好ましくは30〜200℃であり、
前記加圧処理の時間が、好ましくは0.1〜2時間であり、
前記工程(5)の高温焼結が、好ましくは保護ガス雰囲気下で行われ、
前記保護ガスが、好ましくは窒素ガス、ヘリウムガス、ネオンガス、アルゴンガス、クリプトンガス、キセノンガス及び水素ガスのうちの1種又は少なくとも2種の組合せであり、特に好ましくは窒素ガス、ヘリウムガス、アルゴンガス及び水素ガスのうちの1種又は少なくとも2種の組合せであり、
前記保護ガスの流量が、好ましくは0.5〜10.0L/分であり、さらに好ましくは0.5〜5.0L/分であり、特に好ましくは1.0〜4.0L/分であり、
前記焼結時の昇温速度が、好ましくは20.0℃/分以下であり、さらに好ましくは1.0〜15.0℃/分であり特に好ましくは2.0〜10.0℃/分であり、
前記焼結温度が、好ましくは500〜1150℃であり、さらに好ましくは600〜1050℃であり、特に好ましくは800〜1000℃であり、
前記焼結時間が、好ましくは少なくとも0.5時間であり、さらに好ましくは0.5〜20.0時間であり、特に好ましくは1.0〜10.0時間であり、
前記工程(5)において、好ましくは高温焼結が終了した後、室温まで自然冷却する
ことを特徴とする請求項3〜7のいずれか1項に記載の方法。
The isotropic pressure treatment in the step (4) is performed by pressure-treating the second precursor for 0.05 to 4 hours under conditions of a pressure of 1000 to 20000 KN and a pressure treatment temperature of 20 to 300 ° C. Including obtaining the body,
The pressure treatment is preferably one or a combination of at least two of extrusion treatment, cold pressure treatment, hot pressure treatment and isotropic pressure treatment,
The pressure is preferably 5000 to 10,000 KN,
The temperature of the pressure treatment is preferably 30 to 200 ° C.,
The pressure treatment time is preferably 0.1 to 2 hours,
The high-temperature sintering of the step (5) is preferably performed in a protective gas atmosphere,
The protective gas is preferably nitrogen gas, helium gas, neon gas, argon gas, krypton gas, xenon gas and hydrogen gas, and particularly preferably nitrogen gas, helium gas, argon One or a combination of at least two of gas and hydrogen gas,
The flow rate of the protective gas is preferably 0.5 to 10.0 L / min, more preferably 0.5 to 5.0 L / min, and particularly preferably 1.0 to 4.0 L / min. ,
The heating rate during the sintering is preferably 20.0 ° C./min or less, more preferably 1.0-15.0 ° C./min, and particularly preferably 2.0-10.0 ° C./min. And
The sintering temperature is preferably 500 to 1150 ° C, more preferably 600 to 1050 ° C, particularly preferably 800 to 1000 ° C,
The sintering time is preferably at least 0.5 hours, more preferably 0.5 to 20.0 hours, particularly preferably 1.0 to 10.0 hours,
The method according to any one of claims 3 to 7, wherein, in the step (5), preferably, after high-temperature sintering is finished, natural cooling to room temperature is performed.
請求項3〜8のいずれか1項に記載の方法により製造されたリチウムイオン二次電池用シリコン系複合負極材であって、
前記シリコン系複合負極材の中央粒径が、好ましくは5.0〜45.0μmであり、さらに好ましくは10.0〜35.0μmであり、特に好ましくは13.0〜25.0μmであり、
前記シリコン系複合負極材の比表面積が、好ましくは1.0〜20.0m2/gであり、特に好ましく2.0〜10.0m2/gであり、
前記シリコン系複合負極材の粉末プレス密度が、好ましくは1.0〜2.0g/cm3であり、特に好ましくは1.3〜1.8g/cm3であり、
前記ナノシリコン粒子の中央粒径が、好ましくは10〜500nmであり、さらに好ましくは10〜400nmであり、特に好ましくは10〜300nmである
ことを特徴とするリチウムイオン二次電池用シリコン系複合負極材。
A silicon-based composite negative electrode material for a lithium ion secondary battery manufactured by the method according to any one of claims 3 to 8,
The median particle size of the silicon-based composite negative electrode material is preferably 5.0 to 45.0 μm, more preferably 10.0 to 35.0 μm, and particularly preferably 13.0 to 25.0 μm.
The specific surface area of the silicon-based composite negative electrode material is preferably 1.0~20.0m 2 / g, particularly preferably 2.0 to 10.0 m 2 / g,
The powder press density of the silicon-based composite negative electrode material is preferably 1.0 to 2.0 g / cm 3 , particularly preferably 1.3 to 1.8 g / cm 3 ,
The center particle size of the nanosilicon particles is preferably 10 to 500 nm, more preferably 10 to 400 nm, and particularly preferably 10 to 300 nm, a silicon-based composite negative electrode for a lithium ion secondary battery Wood.
電池正極、電池負極及び電解液を備えるリチウムイオン二次電池であって、前記電池負極が負極活物質材料、導電剤、接着剤及び溶剤を含み、前記負極活物質材料が請求項1、2又は9に記載のリチウムイオン二次電池用シリコン系複合負極材であり、
前記導電剤が、好ましくは黒鉛粉末及び/又はナノ導電液であり、
前記ナノ導電液が、好ましくは0.5〜20%(重量)のナノ炭素材料と分散溶剤とからなり、
前記ナノ炭素材料が、より好ましくはグラフェン、カーボンナノチューブ、ナノ炭素繊維、フラーレン、カーボンブラック及びアセチレンブラックのうちの1種以上であり、前記グラフェンの黒鉛層の数は1〜100であり、カーボンナノチューブ及びナノ炭素繊維の直径は0.2〜500nmであり、フラーレン、カーボンブラック及びアセチレンブラックの粒径は1〜200nmであり、
前記分散溶剤が、より好ましくは水、メタノール、エタノール、プロパノール、イソプロパノール、アセトン、シクロヘキサノン、ジクロロメタン、クロロホルム、シクロヘキサン、ベンゼン、トルエン、キシレン、エチルベンゼン、アニリン、テトラヒドロフラン、ジメチルスルホキシド、N−メチルピロリドン、N−Nジメチルホルムアミド、N−Nジメチルアセトアミド、ピリジン、ピロール、1−ブチル−3−メチルイミダゾリウムテトラフルオロボラート、1−エチル−3−メチルイミダゾリウムジシアナミド、1−ブチル−3−メチルイミダゾリウムヘキサフルオロホスファート、1−ブチル−3−メチルイミダゾリウムビストリフルオロメタンスルホニルイミド、1−ブチル−3−メチルイミダゾリウムトリフルオロメタンスルホナート及び1−エチル−3−メチルイミダゾリウムアセテートのうちの1種又は少なくとも2種の組合せであり、
前記接着剤が、好ましくはポリイミド樹脂、アクリル樹脂、ポリビニリデンジフルオライド、ポリビニルアルコール、カルボキシメチルセルロースナトリウム及びスチレンブタジエンゴムのうちの1種又は少なくとも2種の組合せであり、
前記溶剤が、好ましくはN−メチルピロリドン、ジメチルホルムアミド、アセトン及びメチルエチルケトンのうちの1種又は少なくとも2種の組合せである、リチウムイオン二次電池。
A lithium ion secondary battery comprising a battery positive electrode, a battery negative electrode, and an electrolyte, wherein the battery negative electrode includes a negative electrode active material, a conductive agent, an adhesive, and a solvent, and the negative electrode active material is a claim 1, 2 or 9 is a silicon-based composite negative electrode material for a lithium ion secondary battery according to 9,
The conductive agent is preferably graphite powder and / or nano conductive liquid,
The nano conductive liquid preferably comprises 0.5 to 20% (by weight) of a nanocarbon material and a dispersion solvent,
More preferably, the nanocarbon material is at least one of graphene, carbon nanotube, nanocarbon fiber, fullerene, carbon black and acetylene black, and the number of graphite layers of the graphene is 1 to 100, And the diameter of the nano carbon fiber is 0.2 to 500 nm, and the particle sizes of fullerene, carbon black and acetylene black are 1 to 200 nm,
More preferably, the dispersion solvent is water, methanol, ethanol, propanol, isopropanol, acetone, cyclohexanone, dichloromethane, chloroform, cyclohexane, benzene, toluene, xylene, ethylbenzene, aniline, tetrahydrofuran, dimethyl sulfoxide, N-methylpyrrolidone, N- N dimethylformamide, NN dimethylacetamide, pyridine, pyrrole, 1-butyl-3-methylimidazolium tetrafluoroborate, 1-ethyl-3-methylimidazolium dicyanamide, 1-butyl-3-methylimidazolium hexa Fluorophosphate, 1-butyl-3-methylimidazolium bistrifluoromethanesulfonylimide, 1-butyl-3-methylimidazolium trifluoromethanes Is one or at least two combinations of Honato and 1-ethyl-3-methylimidazolium acetate,
The adhesive is preferably one or a combination of at least two of polyimide resin, acrylic resin, polyvinylidene difluoride, polyvinyl alcohol, sodium carboxymethylcellulose and styrene butadiene rubber,
A lithium ion secondary battery, wherein the solvent is preferably one or a combination of at least two of N-methylpyrrolidone, dimethylformamide, acetone and methyl ethyl ketone.
JP2014169853A 2013-12-19 2014-08-22 Silicon-based composite negative electrode material for lithium ion secondary battery, manufacturing method and battery Active JP6113123B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310703654.6 2013-12-19
CN201310703654.6A CN103682287B (en) 2013-12-19 2013-12-19 A kind of silicon-based composite anode material for Li-ion battery, preparation method and battery

Publications (2)

Publication Number Publication Date
JP2015118911A true JP2015118911A (en) 2015-06-25
JP6113123B2 JP6113123B2 (en) 2017-04-12

Family

ID=50319118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014169853A Active JP6113123B2 (en) 2013-12-19 2014-08-22 Silicon-based composite negative electrode material for lithium ion secondary battery, manufacturing method and battery

Country Status (3)

Country Link
JP (1) JP6113123B2 (en)
KR (1) KR101687288B1 (en)
CN (1) CN103682287B (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016134382A (en) * 2015-01-20 2016-07-25 深▲セン▼市貝特瑞新能源材料股▲ふん▼有限公司 Nano silicon composite negative electrode material for lithium ion battery, production method and lithium ion battery
CN108539181A (en) * 2018-05-03 2018-09-14 东莞理工学院 A kind of lithium-ion negative pole composite material and preparation method
CN109860567A (en) * 2019-02-26 2019-06-07 成都爱敏特新能源技术有限公司 A kind of Copper substrate graphene/silicon/carbon nitrogen combination electrode and preparation method thereof
JP2020502723A (en) * 2016-10-06 2020-01-23 ナノテク インストゥルメンツ, インコーポレイテッドNanotek Instruments, Inc. Lithium-ion battery anode containing silicon nanowires grown in situ within the pores of graphene foam and method of making
CN110890537A (en) * 2018-09-11 2020-03-17 江苏中能硅业科技发展有限公司 Production method of high-purity nanocrystalline silicon
CN112038618A (en) * 2020-09-04 2020-12-04 中国有色桂林矿产地质研究院有限公司 Nano silicon powder polymeric sphere composite negative electrode material with hollow structure and preparation method and application thereof
WO2021066458A1 (en) * 2019-09-30 2021-04-08 주식회사 엘지화학 Composite anode active material, preparation method therefor, and anode comprising same
CN112938958A (en) * 2021-01-29 2021-06-11 乌海宝杰新能源材料有限公司 Surface modification method of negative electrode material
CN113161525A (en) * 2021-04-20 2021-07-23 山东精工电子科技有限公司 Preparation method of lithium ion battery cathode slurry
CN113422029A (en) * 2021-06-29 2021-09-21 贝特瑞新材料集团股份有限公司 Negative electrode material, preparation method thereof and lithium ion battery
CN113493194A (en) * 2020-04-08 2021-10-12 万文文 Preparation method of high-conductivity silicon-carbon composite material
CN113578366A (en) * 2021-08-13 2021-11-02 南京信息工程大学 OCN-TiO2@Fe3O4Magnetic photocatalytic material, preparation method and application thereof
JP2021530089A (en) * 2018-07-03 2021-11-04 スリーディーバッテリーズ リミテッド3Dbatteries Ltd. Glue and its use as slurries and EPD bath stabilizers
CN113764625A (en) * 2021-08-26 2021-12-07 蜂巢能源科技有限公司 Sulfide silicon-based negative plate, preparation method thereof and all-solid-state lithium ion battery
CN113793924A (en) * 2021-08-25 2021-12-14 浙江工业大学 By using supercritical CO2Preparation of Si/Fe by fluid medium3O4Method for preparing/C composite material
CN113851609A (en) * 2021-08-26 2021-12-28 蜂巢能源科技有限公司 Silicon-based negative electrode plate, preparation method thereof and all-solid-state lithium ion battery
CN114105133A (en) * 2021-10-19 2022-03-01 湖南金硅科技有限公司 Graphite-silicon/silicon oxide-carbon composite material and preparation method and application thereof
CN114188533A (en) * 2021-12-20 2022-03-15 湖北亿纬动力有限公司 Negative electrode material and preparation method and application thereof
CN114220956A (en) * 2021-12-06 2022-03-22 厦门理工学院 Si @ MnO @ C composite material, preparation method thereof, negative electrode material and battery
CN114242987A (en) * 2021-12-22 2022-03-25 格龙新材料科技(常州)有限公司 Preparation method of three-dimensional porous silicon-carbon composite material
CN114243017A (en) * 2021-12-14 2022-03-25 湖北亿纬动力有限公司 Negative electrode material and preparation method and application thereof
CN114284479A (en) * 2021-12-22 2022-04-05 博路天成新能源科技有限公司 Preparation method of novel carbon-silicon negative electrode material
CN114275760A (en) * 2021-12-22 2022-04-05 江西紫宸科技有限公司 Silicon-carbon composite material and preparation method and application thereof
JP2022522704A (en) * 2019-11-04 2022-04-20 コリア メタル シリコン カンパニー, リミテッド Method for manufacturing silicon complex
CN114388767A (en) * 2021-12-18 2022-04-22 万向一二三股份公司 Nano silicon composite material, battery cathode, solid battery, preparation method and application thereof
CN114628686A (en) * 2022-03-11 2022-06-14 南京邮电大学 Production method of porous copper micron hollow sphere current collector
CN114975962A (en) * 2022-06-24 2022-08-30 内蒙古瑞盛天然石墨应用技术研究院 Method for preparing silicon-carbon cathode material by using photovoltaic waste silicon powder and graphene oxide
CN114959993A (en) * 2022-06-28 2022-08-30 界首市宏利塑料股份有限公司 Wear-resistant woven bag and preparation method thereof
CN115020690A (en) * 2022-05-31 2022-09-06 华东师范大学 Crystalline silicon-carbon composite additive material for lithium ion battery cathode and preparation method thereof
CN115050966A (en) * 2022-08-11 2022-09-13 楚能新能源股份有限公司 Silicon-carbon negative electrode material and preparation method thereof
CN115117327A (en) * 2022-08-25 2022-09-27 溧阳天目先导电池材料科技有限公司 Low-expansion silicon-based composite material and preparation method and application thereof
CN115196641A (en) * 2022-09-11 2022-10-18 隆能科技(南通)有限公司 Preparation process of porous SiOx negative electrode material with high lithium storage performance
CN115207336A (en) * 2022-07-04 2022-10-18 杭州琼天新材料科技有限公司 Modified organic silicon coating of lithium ion battery cathode and preparation method thereof
JP2022549748A (en) * 2020-08-31 2022-11-29 貝特瑞新材料集団股▲ふん▼有限公司 Silicon-based composite material, negative electrode, lithium-ion battery, and manufacturing method
CN116102052A (en) * 2022-12-01 2023-05-12 吉林大学 Cu-doped ZnO nano gas-sensitive material with hollow hexahedral structure and preparation method thereof
CN116121844A (en) * 2023-04-04 2023-05-16 南通海星电子股份有限公司 Preparation method of composite electrode used in aluminum foil pore-forming stage
CN117154182A (en) * 2023-10-30 2023-12-01 山东硅纳新材料科技有限公司 Solid silicon-sulfur battery with gradually changed electrolyte components and preparation method and application thereof
CN117509614A (en) * 2024-01-04 2024-02-06 河北宝力工程装备股份有限公司 Preparation method of carbon material for rubber engineering equipment

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103983548A (en) * 2014-05-30 2014-08-13 浙江天能电池(江苏)有限公司 Method for testing particle size of acetylene black for lead storage battery
CN104269521B (en) * 2014-10-20 2017-02-22 洛阳月星新能源科技有限公司 Carbon/silicon/blocky graphite cathode material for lithium ion battery, preparation method and lithium ion battery
CN104409709B (en) * 2014-11-27 2016-09-21 中航锂电(江苏)有限公司 A kind of lithium ion battery negative material, preparation method and lithium ion battery
CN104577081A (en) * 2014-12-30 2015-04-29 华南理工大学 Anode material for lithium-ion battery and preparation method of anode material
CN104681785A (en) * 2015-02-12 2015-06-03 山东精工电子科技有限公司 Lithium ion battery anode coating material and preparation method thereof
TWI594487B (en) * 2015-04-28 2017-08-01 烏明克公司 Composite powder for use in an anode of a lithium ion battery, method for manufacturing a composite powder and lithium ion battery
CN106328887A (en) * 2015-06-19 2017-01-11 宁德时代新能源科技股份有限公司 Anode material of lithium ion battery and preparation method thereof
KR102479726B1 (en) * 2015-10-22 2022-12-21 삼성전자주식회사 Electrode active material, electrode and secondary battery including the same, and method of preparing the electrode active material
CN106531980A (en) * 2015-11-17 2017-03-22 宁波杉杉新材料科技有限公司 Negative electrode material for lithium-ion battery and preparation method and application of negative electrode material
CN105591080B (en) * 2016-01-18 2018-10-02 北京科技大学 A kind of lithium ion battery negative material SiOX-TiO2The preparation method of/C
DE102016202459A1 (en) * 2016-02-17 2017-08-17 Wacker Chemie Ag Core-shell composite particles
CN107204437B (en) * 2016-03-16 2019-08-30 华中科技大学 A kind of preparation method of lithium selenium cell positive electrode
CN105655570B (en) * 2016-04-01 2018-08-21 四川创能新能源材料有限公司 A kind of method prepared by the fining of nano silicone powder material
CN105789589A (en) * 2016-04-06 2016-07-20 苏州思创源博电子科技有限公司 Preparation method of multilayer structure battery cathode material
CN105742611B (en) * 2016-05-06 2018-09-21 中国科学院宁波材料技术与工程研究所 A kind of lithium ion battery negative material, preparation method and lithium ion battery
KR102246770B1 (en) * 2016-07-19 2021-04-30 삼성에스디아이 주식회사 Negative active material, lithium battery including the same, and method of preparing the negative active material
KR102270155B1 (en) * 2016-07-21 2021-06-28 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery including same
CN106129362B (en) * 2016-07-21 2019-03-15 天津巴莫科技股份有限公司 A kind of lithium-ion battery silicon-carbon anode material and preparation method thereof
CN106229479B (en) * 2016-08-18 2019-10-18 惠州市鼎元新能源科技有限公司 A kind of lithium ion battery active carbon composite negative pole material, preparation method and lithium ion battery
CN107785541B (en) * 2016-08-29 2021-06-01 安普瑞斯(南京)有限公司 Silicon-carbon composite material for lithium ion battery and preparation method thereof
CN107799728A (en) * 2016-08-29 2018-03-13 南京安普瑞斯有限公司 A kind of hollow Si-C composite material for lithium ion battery and preparation method thereof
CN106129411B (en) * 2016-09-19 2020-01-24 深圳市贝特瑞新能源材料股份有限公司 Hollow silicon-based composite material, preparation method and lithium ion battery containing composite material
KR102591512B1 (en) 2016-09-30 2023-10-23 삼성전자주식회사 Negative active material, lithium secondary battery including the material, and method for manufacturing the material
CN108123111A (en) * 2016-11-28 2018-06-05 国联汽车动力电池研究院有限责任公司 A kind of lithium ion battery silicon substrate composite negative pole material, its preparation method and the negative electrode of lithium ion battery comprising the material
US10779362B2 (en) 2016-12-08 2020-09-15 Samsung Electronics Co., Ltd. Heating element, manufacturing method thereof, composition for forming heating element, and heating apparatus
CN106602043B (en) * 2017-02-10 2019-05-17 深圳市金润能源材料有限公司 Negative electrode material and preparation method thereof
CN107394141A (en) * 2017-07-06 2017-11-24 张勇 Li4Ti5O12Composite, preparation method and lithium ion battery
KR102487626B1 (en) * 2017-07-12 2023-01-12 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery and rechargeable lithium battery including same
CN107611365B (en) * 2017-07-27 2020-05-22 华南理工大学 Graphene and ferroferric oxide double-coated nano-silicon composite material, preparation method thereof and application thereof in lithium ion battery
CN107528060A (en) * 2017-09-05 2017-12-29 国联汽车动力电池研究院有限责任公司 A kind of nickelic positive electrode of gradient and preparation method thereof and lithium ion battery
CN111492529B (en) * 2017-11-28 2022-02-15 江苏经纬知识产权运营有限公司 Preparation method of composite conductive slurry
CN108075125A (en) * 2017-12-15 2018-05-25 南京根广化学有限公司 A kind of graphene/silicon anode composite and its preparation method and application
CN109932286B (en) * 2017-12-15 2022-11-25 广东凯金新能源科技股份有限公司 Method for testing graphite particle size distribution
CN108400307B (en) * 2018-03-05 2020-07-03 天津巴莫科技股份有限公司 Apple-shaped embedded silicon-carbon negative electrode material and preparation method thereof
CN109046618A (en) * 2018-08-13 2018-12-21 昆明海创兴科技有限公司 The method that one-step method prepares lithium ion battery negative material nano-silicon powder
CN109378457A (en) * 2018-10-16 2019-02-22 周昊宸 A kind of high compacted density porous silicon chip/carbon compound cathode materials and preparation method
EP3703163A1 (en) * 2019-02-28 2020-09-02 Samsung SDI Co., Ltd. Negative active material composite for rechargeable lithium battery, method of preparing the same, and negative electrode and rechargeable lithium battery including the same
KR102252452B1 (en) 2019-08-01 2021-05-17 한국전자기술연구원 Anode Additive for improving initial charge efficiency, method of manufacturing the anode Additive, anode and lithium ion battery comprising the same
KR102386281B1 (en) 2019-08-01 2022-04-15 한국전자기술연구원 Anode Additive for improving initial charge efficiency, method of manufacturing the anode Additive, anode and lithium ion battery comprising the same
CN110400930A (en) * 2019-08-15 2019-11-01 马鞍山科达普锐能源科技有限公司 A kind of lithium-ion battery silicon-carbon anode material and preparation method thereof
CN112786848A (en) * 2019-11-18 2021-05-11 多氟多化工股份有限公司 Silicon-based negative electrode material
CN111434609B (en) * 2019-12-27 2022-09-20 蜂巢能源科技有限公司 Pre-lithiated negative electrode active material, preparation method thereof, negative plate and lithium ion battery
CN111239222B (en) * 2020-01-16 2022-12-02 郑州大学 Ionic liquid electrolyte and electrochemical gas sensor
CN111682183B (en) * 2020-06-22 2022-10-28 贝特瑞新材料集团股份有限公司 Multi-element composite negative electrode material, preparation method thereof and lithium ion battery
CN112151771B (en) 2020-09-27 2022-04-12 溧阳天目先导电池材料科技有限公司 Silicate framework-containing silicon-based negative electrode material, negative plate and lithium battery
CN113135571A (en) * 2021-03-10 2021-07-20 汕头大学 Nitrogen-doped carbon-coated TiC material and preparation method and application thereof
CN113161521B (en) * 2021-03-10 2022-11-01 广东海洋大学 Natural graphite-based silicon-carbon composite negative electrode material and preparation method and application thereof
CN113023731A (en) * 2021-04-12 2021-06-25 西安隆基材料科技有限公司 Method for preparing silicon powder
CN114864917A (en) * 2021-06-09 2022-08-05 江苏载驰科技股份有限公司 Silicon-carbon negative electrode material and preparation method thereof
CN113690417B (en) * 2021-08-18 2023-05-26 蜂巢能源科技有限公司 Negative electrode composite material and preparation method and application thereof
CN113745465B (en) * 2021-08-31 2023-01-24 长沙矿冶研究院有限责任公司 Preparation method of silicon-carbon composite material
CN114267839B (en) * 2021-12-20 2023-03-21 北京卫蓝新能源科技有限公司 Micron silicon composite material and preparation method and application thereof
KR20230094464A (en) * 2021-12-21 2023-06-28 포스코홀딩스 주식회사 Precursor of negative electrode material for rechargeble lithium battery, and negative electrode material for rechargeble lithium battery
CN114094107B (en) * 2022-01-17 2022-04-08 湖南金阳烯碳新材料有限公司 Graphite negative electrode material and preparation method and application thereof
CN114665083A (en) * 2022-03-21 2022-06-24 深圳市贝特瑞新能源技术研究院有限公司 Negative electrode material, preparation method thereof and lithium ion battery
WO2023201774A1 (en) * 2022-04-22 2023-10-26 贝特瑞新材料集团股份有限公司 Negative electrode material and preparation method therefor, and lithium ion battery
CN114864928B (en) * 2022-05-31 2024-02-20 河北坤天新能源股份有限公司 Carbon material with enlarged accessible subsurface layer and preparation method thereof
WO2024020880A1 (en) * 2022-07-27 2024-02-01 宁德时代新能源科技股份有限公司 Silicon-carbon composite material and preparation method therefor, negative electrode material, negative electrode sheet, electrode assembly, battery, electric device, and carbon matrix
CN115911306B (en) * 2022-11-07 2023-08-22 晖阳(贵州)新能源材料有限公司 High-energy-density graphite composite material and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000268824A (en) * 1999-01-14 2000-09-29 Hitachi Ltd Lithium battery and its manufacture
JP2008027897A (en) * 2006-06-20 2008-02-07 Osaka Gas Chem Kk Anode active substance for lithium ion secondary battery
JP2008153006A (en) * 2006-12-15 2008-07-03 Shin Etsu Chem Co Ltd Negative electrode for non-aqueous electrolyte secondary battery and its manufacturing method
JP2009535776A (en) * 2006-05-23 2009-10-01 ケイエヌユー‐インダストリー・コオペレイション・ファウンデイション Negative electrode active material for lithium secondary battery, method for producing the same, negative electrode including the same, and lithium secondary battery including the same
JP2012226937A (en) * 2011-04-19 2012-11-15 Daiso Co Ltd Nonaqueous electrolyte secondary battery
JP2014519135A (en) * 2012-05-02 2014-08-07 昭和電工株式会社 Negative electrode material for lithium ion battery and its use
JP5599527B1 (en) * 2012-11-20 2014-10-01 昭和電工株式会社 Method for producing negative electrode material for lithium ion battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100565980C (en) * 2008-05-30 2009-12-02 成都中科来方能源科技有限公司 A kind of composite cathode material for lithium ion cell and preparation method thereof
CN102651476B (en) * 2012-05-28 2015-01-28 深圳市贝特瑞新能源材料股份有限公司 Lithium ion battery silicon carbide composite anode material and preparation method thereof
CN103367727B (en) * 2013-07-12 2015-07-15 深圳市贝特瑞新能源材料股份有限公司 Lithium ion battery silicon-carbon anode material and preparation method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000268824A (en) * 1999-01-14 2000-09-29 Hitachi Ltd Lithium battery and its manufacture
JP2009535776A (en) * 2006-05-23 2009-10-01 ケイエヌユー‐インダストリー・コオペレイション・ファウンデイション Negative electrode active material for lithium secondary battery, method for producing the same, negative electrode including the same, and lithium secondary battery including the same
JP2008027897A (en) * 2006-06-20 2008-02-07 Osaka Gas Chem Kk Anode active substance for lithium ion secondary battery
JP2008153006A (en) * 2006-12-15 2008-07-03 Shin Etsu Chem Co Ltd Negative electrode for non-aqueous electrolyte secondary battery and its manufacturing method
JP2012226937A (en) * 2011-04-19 2012-11-15 Daiso Co Ltd Nonaqueous electrolyte secondary battery
JP2014519135A (en) * 2012-05-02 2014-08-07 昭和電工株式会社 Negative electrode material for lithium ion battery and its use
JP5599527B1 (en) * 2012-11-20 2014-10-01 昭和電工株式会社 Method for producing negative electrode material for lithium ion battery

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016134382A (en) * 2015-01-20 2016-07-25 深▲セン▼市貝特瑞新能源材料股▲ふん▼有限公司 Nano silicon composite negative electrode material for lithium ion battery, production method and lithium ion battery
JP2020502723A (en) * 2016-10-06 2020-01-23 ナノテク インストゥルメンツ, インコーポレイテッドNanotek Instruments, Inc. Lithium-ion battery anode containing silicon nanowires grown in situ within the pores of graphene foam and method of making
JP7113818B2 (en) 2016-10-06 2022-08-05 ナノテク インストゥルメンツ,インコーポレイテッド Lithium ion battery anode containing in situ grown silicon nanowires within pores of graphene foam and method of manufacture
CN108539181A (en) * 2018-05-03 2018-09-14 东莞理工学院 A kind of lithium-ion negative pole composite material and preparation method
JP2021530089A (en) * 2018-07-03 2021-11-04 スリーディーバッテリーズ リミテッド3Dbatteries Ltd. Glue and its use as slurries and EPD bath stabilizers
US11753554B2 (en) 2018-07-03 2023-09-12 3Dbatteries Ltd. De-flocculant as slurry and EPD bath stabilizer and uses thereof
CN110890537A (en) * 2018-09-11 2020-03-17 江苏中能硅业科技发展有限公司 Production method of high-purity nanocrystalline silicon
CN109860567A (en) * 2019-02-26 2019-06-07 成都爱敏特新能源技术有限公司 A kind of Copper substrate graphene/silicon/carbon nitrogen combination electrode and preparation method thereof
WO2021066458A1 (en) * 2019-09-30 2021-04-08 주식회사 엘지화학 Composite anode active material, preparation method therefor, and anode comprising same
US11891523B2 (en) 2019-09-30 2024-02-06 Lg Energy Solution, Ltd. Composite negative electrode active material, method of manufacturing the same, and negative electrode including the same
JP7345556B2 (en) 2019-11-04 2023-09-15 コリア メタル シリコン カンパニー, リミテッド Method for manufacturing silicone composites
JP2022522704A (en) * 2019-11-04 2022-04-20 コリア メタル シリコン カンパニー, リミテッド Method for manufacturing silicon complex
CN113493194A (en) * 2020-04-08 2021-10-12 万文文 Preparation method of high-conductivity silicon-carbon composite material
JP2022549748A (en) * 2020-08-31 2022-11-29 貝特瑞新材料集団股▲ふん▼有限公司 Silicon-based composite material, negative electrode, lithium-ion battery, and manufacturing method
JP7455870B2 (en) 2020-08-31 2024-03-26 貝特瑞新材料集団股▲ふん▼有限公司 Silicon-based composite material, negative electrode, lithium ion battery, and manufacturing method
CN112038618B (en) * 2020-09-04 2022-12-30 中国有色桂林矿产地质研究院有限公司 Nano silicon powder polymeric sphere composite negative electrode material with hollow structure and preparation method and application thereof
CN112038618A (en) * 2020-09-04 2020-12-04 中国有色桂林矿产地质研究院有限公司 Nano silicon powder polymeric sphere composite negative electrode material with hollow structure and preparation method and application thereof
CN112938958A (en) * 2021-01-29 2021-06-11 乌海宝杰新能源材料有限公司 Surface modification method of negative electrode material
CN113161525A (en) * 2021-04-20 2021-07-23 山东精工电子科技有限公司 Preparation method of lithium ion battery cathode slurry
CN113422029A (en) * 2021-06-29 2021-09-21 贝特瑞新材料集团股份有限公司 Negative electrode material, preparation method thereof and lithium ion battery
CN113578366A (en) * 2021-08-13 2021-11-02 南京信息工程大学 OCN-TiO2@Fe3O4Magnetic photocatalytic material, preparation method and application thereof
CN113793924A (en) * 2021-08-25 2021-12-14 浙江工业大学 By using supercritical CO2Preparation of Si/Fe by fluid medium3O4Method for preparing/C composite material
CN113793924B (en) * 2021-08-25 2023-03-14 浙江工业大学 By using supercritical CO 2 Preparation of Si/Fe by fluid medium 3 O 4 Method for preparing/C composite material
CN113764625A (en) * 2021-08-26 2021-12-07 蜂巢能源科技有限公司 Sulfide silicon-based negative plate, preparation method thereof and all-solid-state lithium ion battery
CN113851609A (en) * 2021-08-26 2021-12-28 蜂巢能源科技有限公司 Silicon-based negative electrode plate, preparation method thereof and all-solid-state lithium ion battery
CN114105133B (en) * 2021-10-19 2023-09-05 湖南金硅科技有限公司 Graphite-silicon/silicon oxide-carbon composite material and preparation method and application thereof
CN114105133A (en) * 2021-10-19 2022-03-01 湖南金硅科技有限公司 Graphite-silicon/silicon oxide-carbon composite material and preparation method and application thereof
CN114220956A (en) * 2021-12-06 2022-03-22 厦门理工学院 Si @ MnO @ C composite material, preparation method thereof, negative electrode material and battery
CN114243017A (en) * 2021-12-14 2022-03-25 湖北亿纬动力有限公司 Negative electrode material and preparation method and application thereof
CN114388767B (en) * 2021-12-18 2024-02-02 万向一二三股份公司 Nano silicon composite material, battery cathode and solid battery, and preparation methods and applications thereof
CN114388767A (en) * 2021-12-18 2022-04-22 万向一二三股份公司 Nano silicon composite material, battery cathode, solid battery, preparation method and application thereof
CN114188533A (en) * 2021-12-20 2022-03-15 湖北亿纬动力有限公司 Negative electrode material and preparation method and application thereof
CN114242987B (en) * 2021-12-22 2023-09-26 格龙新材料科技(常州)有限公司 Preparation method of three-dimensional porous silicon-carbon composite material
CN114242987A (en) * 2021-12-22 2022-03-25 格龙新材料科技(常州)有限公司 Preparation method of three-dimensional porous silicon-carbon composite material
CN114275760A (en) * 2021-12-22 2022-04-05 江西紫宸科技有限公司 Silicon-carbon composite material and preparation method and application thereof
CN114275760B (en) * 2021-12-22 2023-07-14 江西紫宸科技有限公司 Silicon-carbon composite material and preparation method and application thereof
CN114284479A (en) * 2021-12-22 2022-04-05 博路天成新能源科技有限公司 Preparation method of novel carbon-silicon negative electrode material
CN114628686A (en) * 2022-03-11 2022-06-14 南京邮电大学 Production method of porous copper micron hollow sphere current collector
CN115020690A (en) * 2022-05-31 2022-09-06 华东师范大学 Crystalline silicon-carbon composite additive material for lithium ion battery cathode and preparation method thereof
CN114975962A (en) * 2022-06-24 2022-08-30 内蒙古瑞盛天然石墨应用技术研究院 Method for preparing silicon-carbon cathode material by using photovoltaic waste silicon powder and graphene oxide
CN114959993B (en) * 2022-06-28 2024-03-22 界首市宏利塑料股份有限公司 Wear-resistant woven bag and preparation method thereof
CN114959993A (en) * 2022-06-28 2022-08-30 界首市宏利塑料股份有限公司 Wear-resistant woven bag and preparation method thereof
CN115207336A (en) * 2022-07-04 2022-10-18 杭州琼天新材料科技有限公司 Modified organic silicon coating of lithium ion battery cathode and preparation method thereof
CN115207336B (en) * 2022-07-04 2023-05-02 杭州琼天新材料科技有限公司 Modified organic silicon coating of lithium ion battery cathode and preparation method thereof
CN115050966A (en) * 2022-08-11 2022-09-13 楚能新能源股份有限公司 Silicon-carbon negative electrode material and preparation method thereof
CN115117327A (en) * 2022-08-25 2022-09-27 溧阳天目先导电池材料科技有限公司 Low-expansion silicon-based composite material and preparation method and application thereof
CN115196641A (en) * 2022-09-11 2022-10-18 隆能科技(南通)有限公司 Preparation process of porous SiOx negative electrode material with high lithium storage performance
CN116102052A (en) * 2022-12-01 2023-05-12 吉林大学 Cu-doped ZnO nano gas-sensitive material with hollow hexahedral structure and preparation method thereof
CN116121844A (en) * 2023-04-04 2023-05-16 南通海星电子股份有限公司 Preparation method of composite electrode used in aluminum foil pore-forming stage
CN117154182A (en) * 2023-10-30 2023-12-01 山东硅纳新材料科技有限公司 Solid silicon-sulfur battery with gradually changed electrolyte components and preparation method and application thereof
CN117154182B (en) * 2023-10-30 2024-01-16 山东硅纳新材料科技有限公司 Solid silicon-sulfur battery with gradually changed electrolyte components and preparation method and application thereof
CN117509614A (en) * 2024-01-04 2024-02-06 河北宝力工程装备股份有限公司 Preparation method of carbon material for rubber engineering equipment
CN117509614B (en) * 2024-01-04 2024-03-19 河北宝力工程装备股份有限公司 Preparation method of carbon material for rubber engineering equipment

Also Published As

Publication number Publication date
CN103682287A (en) 2014-03-26
JP6113123B2 (en) 2017-04-12
KR101687288B1 (en) 2016-12-16
KR20150072319A (en) 2015-06-29
CN103682287B (en) 2016-09-14

Similar Documents

Publication Publication Date Title
JP6113123B2 (en) Silicon-based composite negative electrode material for lithium ion secondary battery, manufacturing method and battery
JP6963734B2 (en) Carbon-based composite material, its manufacturing method, and lithium-ion secondary battery containing it
JP6235430B2 (en) SiOx-based composite negative electrode material, manufacturing method and battery
CN107785560B (en) High-performance silicon-carbon negative electrode material and preparation method thereof
JP6563477B2 (en) Multi-component composite negative electrode material, method for producing the same, and lithium ion battery including the same
CN103474667B (en) A kind of silicon-carbon composite anode material for lithium ion battery and preparation method thereof
JP6445585B2 (en) Porous carbon nanotube microspheres and production method and use thereof, metallic lithium-skeleton carbon composite material and production method thereof, negative electrode, and battery
CN109216686B (en) Silicon-carbon composite material of lithium ion battery and preparation method thereof
JP6152076B2 (en) Lithium ion battery negative electrode material for in-vehicle use and energy storage, and manufacturing method thereof
WO2020107672A1 (en) Silicon-based composite negative electrode material and preparation method thereof, and negative electrode of lithium ion battery
JP2019505948A (en) Composite silicon negative electrode material, preparation method and use
CN108011083B (en) Preparation method of double-network hydrogel-derived Si @ C/G nano porous composite material, and obtained material and application thereof
JP2018520494A (en) Silicon-carbon composite particle material
CN111509198A (en) Core-shell structure composite material, preparation method thereof and application thereof in lithium ion battery
CN108281634A (en) A kind of method and its application of graphene coated graphite negative material of lithium ion battery
CN105576210A (en) Silicon and carbon composite material for lithium ion battery anode and preparation method thereof
Zhang et al. Silicon-multi-walled carbon nanotubes-carbon microspherical composite as high-performance anode for lithium-ion batteries
CN111048764A (en) Silicon-carbon composite material and preparation method and application thereof
KR20220140615A (en) Silicon carbon negative electrode material for lithium ion battery and manufacturing method thereof
CN106784741B (en) Carbon-silicon composite material, preparation method thereof and lithium ion battery containing composite material
WO2019019410A1 (en) Modified lithium-free anode, method for preparing same, and lithium-ion battery comprising same
CN113394386A (en) Silicon-carbon negative electrode material and preparation method thereof
CN102867945B (en) Preparation method of graphite negative electrode material containing hollow carbon nanostructure for lithium ion battery
CN108682830B (en) Silicon-carbon composite negative electrode material of lithium ion battery and preparation method thereof
Xie et al. Nitrogen-doped carbon caging silicon nanoparticles for high performance lithium-ion battery anodes

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20151028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160315

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170314

R150 Certificate of patent or registration of utility model

Ref document number: 6113123

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250