CN108123111A - A kind of lithium ion battery silicon substrate composite negative pole material, its preparation method and the negative electrode of lithium ion battery comprising the material - Google Patents
A kind of lithium ion battery silicon substrate composite negative pole material, its preparation method and the negative electrode of lithium ion battery comprising the material Download PDFInfo
- Publication number
- CN108123111A CN108123111A CN201611071114.0A CN201611071114A CN108123111A CN 108123111 A CN108123111 A CN 108123111A CN 201611071114 A CN201611071114 A CN 201611071114A CN 108123111 A CN108123111 A CN 108123111A
- Authority
- CN
- China
- Prior art keywords
- silicon
- carbon
- graphite
- preparation
- lithium ion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 110
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 98
- 239000010703 silicon Substances 0.000 title claims abstract description 98
- 239000002131 composite material Substances 0.000 title claims abstract description 73
- 239000000463 material Substances 0.000 title claims abstract description 53
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 28
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 28
- 238000002360 preparation method Methods 0.000 title claims abstract description 23
- 239000000758 substrate Substances 0.000 title claims 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 108
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 53
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 47
- 239000010439 graphite Substances 0.000 claims abstract description 47
- 239000011856 silicon-based particle Substances 0.000 claims abstract description 38
- 239000002243 precursor Substances 0.000 claims abstract description 36
- 229910003481 amorphous carbon Inorganic materials 0.000 claims abstract description 23
- 239000004020 conductor Substances 0.000 claims abstract description 21
- 239000002245 particle Substances 0.000 claims abstract description 17
- 239000006185 dispersion Substances 0.000 claims description 20
- 238000000498 ball milling Methods 0.000 claims description 15
- 239000011268 mixed slurry Substances 0.000 claims description 13
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 11
- 239000011247 coating layer Substances 0.000 claims description 11
- 239000011246 composite particle Substances 0.000 claims description 9
- 239000010410 layer Substances 0.000 claims description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 6
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical group [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 6
- 239000010426 asphalt Substances 0.000 claims description 6
- 229910021389 graphene Inorganic materials 0.000 claims description 6
- 238000004898 kneading Methods 0.000 claims description 6
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 claims description 5
- 238000007731 hot pressing Methods 0.000 claims description 5
- 229920001568 phenolic resin Polymers 0.000 claims description 5
- 239000005011 phenolic resin Substances 0.000 claims description 5
- 238000003825 pressing Methods 0.000 claims description 5
- 238000012216 screening Methods 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 4
- URLKBWYHVLBVBO-UHFFFAOYSA-N Para-Xylene Chemical group CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 claims description 4
- 239000012298 atmosphere Substances 0.000 claims description 4
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 4
- 239000002041 carbon nanotube Substances 0.000 claims description 4
- 229910021385 hard carbon Inorganic materials 0.000 claims description 4
- 229910021384 soft carbon Inorganic materials 0.000 claims description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052786 argon Inorganic materials 0.000 claims description 3
- 238000001354 calcination Methods 0.000 claims description 3
- 229910010293 ceramic material Inorganic materials 0.000 claims description 3
- 239000007789 gas Substances 0.000 claims description 3
- 239000008103 glucose Substances 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 3
- 239000011295 pitch Substances 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 3
- 239000004642 Polyimide Substances 0.000 claims description 2
- 229920002125 Sokalan® Polymers 0.000 claims description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims description 2
- 238000005253 cladding Methods 0.000 claims description 2
- 239000011280 coal tar Substances 0.000 claims description 2
- 239000003822 epoxy resin Substances 0.000 claims description 2
- 239000001307 helium Substances 0.000 claims description 2
- 229910052734 helium Inorganic materials 0.000 claims description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 2
- 238000001513 hot isostatic pressing Methods 0.000 claims description 2
- 239000001257 hydrogen Substances 0.000 claims description 2
- 229910052739 hydrogen Inorganic materials 0.000 claims description 2
- 239000011302 mesophase pitch Substances 0.000 claims description 2
- 238000000465 moulding Methods 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 239000004584 polyacrylic acid Substances 0.000 claims description 2
- 229920000647 polyepoxide Polymers 0.000 claims description 2
- 229920001721 polyimide Polymers 0.000 claims description 2
- 239000002994 raw material Substances 0.000 claims description 2
- 238000000926 separation method Methods 0.000 claims description 2
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 2
- 229920005992 thermoplastic resin Polymers 0.000 claims description 2
- 235000013339 cereals Nutrition 0.000 claims 4
- -1 oxygen alkane Chemical class 0.000 claims 3
- 229920001296 polysiloxane Polymers 0.000 claims 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims 1
- ADKPKEZZYOUGBZ-UHFFFAOYSA-N [C].[O].[Si] Chemical compound [C].[O].[Si] ADKPKEZZYOUGBZ-UHFFFAOYSA-N 0.000 claims 1
- 150000001722 carbon compounds Chemical class 0.000 claims 1
- 239000003245 coal Substances 0.000 claims 1
- 150000001875 compounds Chemical class 0.000 claims 1
- 238000004132 cross linking Methods 0.000 claims 1
- 235000019441 ethanol Nutrition 0.000 claims 1
- MJEMIOXXNCZZFK-UHFFFAOYSA-N ethylone Chemical compound CCNC(C)C(=O)C1=CC=C2OCOC2=C1 MJEMIOXXNCZZFK-UHFFFAOYSA-N 0.000 claims 1
- 235000013312 flour Nutrition 0.000 claims 1
- 239000008246 gaseous mixture Substances 0.000 claims 1
- 238000000227 grinding Methods 0.000 claims 1
- 125000004836 hexamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 claims 1
- 238000003701 mechanical milling Methods 0.000 claims 1
- 239000013081 microcrystal Substances 0.000 claims 1
- 239000000203 mixture Substances 0.000 claims 1
- 238000005457 optimization Methods 0.000 claims 1
- 239000001301 oxygen Substances 0.000 claims 1
- 229910052760 oxygen Inorganic materials 0.000 claims 1
- 239000000377 silicon dioxide Substances 0.000 claims 1
- 239000007773 negative electrode material Substances 0.000 abstract description 42
- 238000000034 method Methods 0.000 abstract description 14
- 230000000694 effects Effects 0.000 abstract description 9
- 230000008569 process Effects 0.000 abstract description 6
- 239000011248 coating agent Substances 0.000 abstract description 4
- 238000000576 coating method Methods 0.000 abstract description 4
- 238000011031 large-scale manufacturing process Methods 0.000 abstract description 4
- 238000007873 sieving Methods 0.000 abstract description 3
- 238000005469 granulation Methods 0.000 abstract description 2
- 230000003179 granulation Effects 0.000 abstract description 2
- 238000010000 carbonizing Methods 0.000 abstract 1
- 239000000843 powder Substances 0.000 description 18
- 239000011863 silicon-based powder Substances 0.000 description 12
- 239000010405 anode material Substances 0.000 description 11
- 238000000462 isostatic pressing Methods 0.000 description 10
- 229910021383 artificial graphite Inorganic materials 0.000 description 7
- 238000001816 cooling Methods 0.000 description 7
- 239000012299 nitrogen atmosphere Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 229920001971 elastomer Polymers 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- 239000002609 medium Substances 0.000 description 5
- 239000003921 oil Substances 0.000 description 5
- 239000005060 rubber Substances 0.000 description 5
- 238000001878 scanning electron micrograph Methods 0.000 description 5
- 229910052708 sodium Inorganic materials 0.000 description 5
- 239000011734 sodium Substances 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 5
- 238000005098 hot rolling Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 229920005610 lignin Polymers 0.000 description 3
- 239000005543 nano-size silicon particle Substances 0.000 description 3
- 238000010298 pulverizing process Methods 0.000 description 3
- 239000002210 silicon-based material Substances 0.000 description 3
- 238000001694 spray drying Methods 0.000 description 3
- 229920003048 styrene butadiene rubber Polymers 0.000 description 3
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 239000002174 Styrene-butadiene Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000003763 carbonization Methods 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 239000013067 intermediate product Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000007086 side reaction Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000011300 coal pitch Substances 0.000 description 1
- 238000009694 cold isostatic pressing Methods 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000003837 high-temperature calcination Methods 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 230000037427 ion transport Effects 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- 230000003446 memory effect Effects 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 125000005375 organosiloxane group Chemical group 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 239000011301 petroleum pitch Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 239000002153 silicon-carbon composite material Substances 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明公开了一种锂离子电池用硅基复合负极材料、其制备方法及包含该材料的锂离子电池负极。该硅基复合负极材料由超细硅颗粒、含碳导电体、无定形碳、石墨组成,其中,超细硅颗粒表面包覆一层含碳导电体并均匀分布在取向排列的石墨表面及石墨片层之间,包覆有含碳导电体的超细硅颗粒与石墨之间通过无定形碳紧密结合,并且在石墨/无定形碳/含碳导电体/硅的最外层表面包覆有无定形碳包覆层。其制备方法包括如下步骤:机械化学法制备超细硅颗粒;石墨/含碳导电体前驱体/硅复合造粒;制备前驱体;前驱体碳化、破碎、过筛得到硅基复合负极材料。该负极材料粒径均匀、结构稳定性和电化学稳定性好、电化学活性高。该方法工艺简单,成本低,适于规模化生产。
The invention discloses a silicon-based composite negative electrode material for a lithium ion battery, a preparation method thereof and a lithium ion battery negative electrode containing the material. The silicon-based composite negative electrode material is composed of ultrafine silicon particles, carbon-containing conductors, amorphous carbon, and graphite. Between the sheets, the ultrafine silicon particles coated with carbon-containing conductors and graphite are tightly bonded by amorphous carbon, and the outermost surface of graphite/amorphous carbon/carbon-containing conductors/silicon is coated with Amorphous carbon coating. The preparation method includes the following steps: preparing superfine silicon particles by mechanochemical method; graphite/carbon-containing conductor precursor/silicon composite granulation; preparing precursor; carbonizing, crushing and sieving the precursor to obtain silicon-based composite negative electrode material. The negative electrode material has uniform particle size, good structural stability and electrochemical stability, and high electrochemical activity. The method has simple process, low cost and is suitable for large-scale production.
Description
技术领域technical field
本发明涉及一种锂离子电池用硅基复合负极材料、其制备方法及包含该材料的锂离子电池负极。The invention relates to a silicon-based composite negative electrode material for a lithium ion battery, a preparation method thereof and a lithium ion battery negative electrode containing the material.
背景技术Background technique
锂离子电池因其具有工作电压高、循环寿命长、无记忆效应、自放电效应小、环境友好等优点,已被广泛应用于便携式电子器件、规模化储能电站和电动汽车中。当前,商业化的锂离子电池负极材料主要采用石墨类负极材料,但其理论比容量仅为372mAh/g,无法满足未来更高比能量及高功率密度锂离子电池发展的要求。因此,寻找替代碳的高比容量负极材料成为一个重要的发展方向。Lithium-ion batteries have been widely used in portable electronic devices, large-scale energy storage power stations and electric vehicles because of their advantages such as high working voltage, long cycle life, no memory effect, small self-discharge effect, and environmental friendliness. At present, graphite-based anode materials are mainly used as anode materials for commercialized lithium-ion batteries, but their theoretical specific capacity is only 372mAh/g, which cannot meet the requirements for the development of lithium-ion batteries with higher specific energy and high power density in the future. Therefore, finding high-capacity anode materials to replace carbon has become an important development direction.
由于具有最高的储锂容量(理论比容量4200mAh/g)和丰富的资源,硅材料被认为最有潜力有望成为下一代锂离子电池负极材料。然而,由于在嵌/脱锂过程中较大的体积变化带来的硅材料结构破坏和材料粉化,会导致电极结构破坏,造成硅活性组分丧失电接触。此外材料的粉化和巨大的体积变化,会造成SEI膜的不断生成,从而导致电池的电化学循环稳定性较差,阻碍了硅材料作为锂离子电池负极材料的规模化应用。Due to the highest lithium storage capacity (theoretical specific capacity 4200mAh/g) and abundant resources, silicon materials are considered to have the most potential to become the anode material for next-generation lithium-ion batteries. However, due to the large volume change in the intercalation/delithiation process, the structural damage of the silicon material and the pulverization of the material will lead to the destruction of the electrode structure, resulting in the loss of electrical contact of the silicon active components. In addition, the pulverization of the material and the huge volume change will cause the continuous formation of the SEI film, resulting in poor electrochemical cycle stability of the battery, which hinders the large-scale application of silicon materials as anode materials for lithium-ion batteries.
为解决硅负极材料在应用中存在的问题,目前研究者们主要通过硅的纳米化手段来降低硅的粒径,减小硅的绝对体积膨胀,避免材料粉化。但单纯的纳米化无法解决纳米硅在循环过程中的“电化学烧结”和加剧的副反应造成的SEI膜不断生成的问题。因此必须采用纳米化和复合化相结合的手段,通过构筑多元多层次复合材料的方法来解决硅在实际应用中存在的各种问题。In order to solve the problems existing in the application of silicon anode materials, researchers currently mainly reduce the particle size of silicon, reduce the absolute volume expansion of silicon, and avoid material pulverization through the nanometerization of silicon. However, simple nanonization cannot solve the problem of continuous formation of SEI film caused by "electrochemical sintering" of nano-silicon in the cycle process and intensified side reactions. Therefore, it is necessary to adopt the means of combining nanometerization and compounding, and to solve various problems of silicon in practical applications by constructing multivariate and multi-level composite materials.
CN 105609730A公开了一种硅/碳/石墨复合负极材料的制备方法,将硅粉与碳源前驱体分散、喷雾干燥后煅烧,得到多孔球形硅/碳复合颗粒;再加入有机碳源和石墨进行二次喷雾干燥,二次煅烧后得到硅/碳/石墨复合材料。但是首次喷雾干燥得到的硅/碳复合颗粒中,必然会发生硅的团聚,进而导致硅在石墨表面的分散性及结合强度不高,充放电过程中硅/碳结构单元的巨大的体积膨胀会造成无定形碳包覆层的破裂,因而材料的循环稳定性较差(50周循环容量保持率50-83.5%)。同时复合材料的首周库伦效率不高(60-75%),这也限制了其在当前锂离子电池规模化生产中的应用。CN 105609730A discloses a method for preparing a silicon/carbon/graphite composite negative electrode material, in which silicon powder and a carbon source precursor are dispersed, spray-dried, and then calcined to obtain porous spherical silicon/carbon composite particles; then organic carbon sources and graphite are added to carry out The silicon/carbon/graphite composite material is obtained after secondary spray drying and secondary calcination. However, in the silicon/carbon composite particles obtained by spray drying for the first time, the agglomeration of silicon will inevitably occur, which will lead to the low dispersion and bonding strength of silicon on the graphite surface, and the huge volume expansion of silicon/carbon structural units during charging and discharging will cause serious problems. Causes the rupture of the amorphous carbon coating layer, so the cycle stability of the material is poor (the cycle capacity retention rate of 50 cycles is 50-83.5%). At the same time, the first-week Coulombic efficiency of the composite material is not high (60-75%), which also limits its application in the current large-scale production of lithium-ion batteries.
传统的纳米硅制备方法主要包括化学气相沉积法、物理蒸发法、溶液法和激光烧蚀法等,但这些方法成本高,产率低,批次稳定性差。同时纳米硅比表面积大,表面能高,容易团聚,因而在构建复合材料过程中,在基体材料表面分散性差,界面结合强度低,循环过程中会从基体表面剥离,最终造成了硅基复合材料的循环稳定性较差,无法达到商品化使用的要求。Traditional nano-silicon preparation methods mainly include chemical vapor deposition, physical evaporation, solution and laser ablation, but these methods have high cost, low yield and poor batch stability. At the same time, nano-silicon has a large specific surface area, high surface energy, and is easy to agglomerate. Therefore, in the process of building composite materials, the dispersion on the surface of the matrix material is poor, the interface bonding strength is low, and it will be peeled off from the surface of the matrix during the cycle. The cycle stability is poor and cannot meet the requirements of commercial use.
发明内容Contents of the invention
针对现有技术的不足,本发明目的在于提供一种锂离子电池用硅基复合负极材料,该复合负极材料中超细硅颗粒达到纳米尺寸、径分布窄、在基体材料表面分散均匀、界面结合强度高,复合材料表现出较好的结构稳定性和电化学稳定性、电化学活性。In view of the deficiencies in the prior art, the purpose of the present invention is to provide a silicon-based composite negative electrode material for lithium-ion batteries. In the composite negative electrode material, ultra-fine silicon particles reach nanometer size, narrow diameter distribution, uniform dispersion on the surface of the matrix material, and interfacial bonding. The strength is high, and the composite material shows good structural stability, electrochemical stability, and electrochemical activity.
本发明的另一目的在于提供一种所述锂离子电池用硅基复合负极材料的制备方法,该方法制备工艺简单,成本低,易实现规模化生产。Another object of the present invention is to provide a method for preparing the silicon-based composite negative electrode material for lithium-ion batteries, which has simple preparation process, low cost, and is easy to realize large-scale production.
本发明的又一目的在于提供一种包括所述硅基复合负极材料的锂离子电池负极。Another object of the present invention is to provide a lithium ion battery negative electrode comprising the silicon-based composite negative electrode material.
为实现上述目的,本发明采用以下技术方案:To achieve the above object, the present invention adopts the following technical solutions:
一种锂离子电池用硅基复合负极材料,该硅基复合负极材料由超细硅颗粒、含碳导电体、无定形碳、石墨组成,其中,超细硅颗粒表面包覆一层含碳导电体并均匀分布在取向排列的石墨表面及石墨片层之间,包覆有含碳导电体的超细硅颗粒与石墨之间通过无定形碳紧密结合,并且在石墨/无定形碳/含碳导电体/硅的最外层表面包覆有无定形碳包覆层。A silicon-based composite negative electrode material for lithium-ion batteries, the silicon-based composite negative electrode material is composed of ultrafine silicon particles, carbon-containing conductors, amorphous carbon, and graphite, wherein the surface of the ultrafine silicon particles is coated with a layer of carbon-containing conductive body and uniformly distributed between the graphite surface and the graphite sheets in the orientation arrangement, the ultrafine silicon particles coated with carbon-containing conductors and graphite are closely combined through amorphous carbon, and graphite/amorphous carbon/carbon-containing The outermost surface of the conductor/silicon is coated with an amorphous carbon coating.
在本发明中,按重量百分比计,所述负极材料中包含硅1-35%,石墨45-90%,含碳导电体1%-10%,无定形碳5-35%。In the present invention, by weight percentage, the negative electrode material contains 1-35% of silicon, 45-90% of graphite, 1%-10% of carbon-containing conductor, and 5-35% of amorphous carbon.
所述超细硅颗粒粒径在10-300nm,优选为30-100nm,其表面氧化层SiOx的厚度≤3nm,其中,0<x≤2。The particle size of the ultrafine silicon particles is 10-300nm, preferably 30-100nm, and the thickness of the SiOx surface oxide layer is ≤3nm, where 0<x≤2.
所述石墨基体材料为天然石墨、微晶石墨、各向同性人造石墨或各向异性人造石墨的一种或几种。The graphite matrix material is one or more of natural graphite, microcrystalline graphite, isotropic artificial graphite or anisotropic artificial graphite.
所述含碳导电体为无定形碳、石墨烯、碳纳米管、低含碳量硅氧碳陶瓷材料、高含碳量硅氧碳陶瓷材料、碳化硅的一种或几种。The carbon-containing conductor is one or more of amorphous carbon, graphene, carbon nanotubes, low-carbon silicon-oxycarbon ceramic materials, high-carbon silicon-oxycarbon ceramic materials, and silicon carbide.
所述无定形碳包覆层为软碳包覆层、硬碳包覆层或软碳硬碳复合包覆层,厚度≤2μm。The amorphous carbon coating layer is a soft carbon coating layer, a hard carbon coating layer or a soft carbon hard carbon composite coating layer, and the thickness is ≤2 μm.
一种所述锂离子电池用硅基复合负极材料的制备方法,至少包括以下步骤:A preparation method of the silicon-based composite negative electrode material for lithium-ion batteries, at least comprising the following steps:
(1)以硅粉为原料,将其分散在分散介质中,球磨得到超细硅颗粒分散液;(1) Using silicon powder as a raw material, disperse it in a dispersion medium, and ball mill to obtain an ultrafine silicon particle dispersion;
(2)将一定量的石墨、含碳导电体前驱体加入到超细硅颗粒分散液中,分散后得到均匀的混合浆料,然后干燥、造粒得到前驱体I复合颗粒;(2) Add a certain amount of graphite and carbon-containing conductor precursors to the ultrafine silicon particle dispersion, obtain a uniform mixed slurry after dispersion, then dry and granulate to obtain precursor I composite particles;
(3)将前驱体I复合颗粒与有机碳源前驱体进行热混捏,将软化的碳源前驱体均匀包覆在复合颗粒表面,得到前躯体II;(3) Thermally kneading the precursor I composite particles and the organic carbon source precursor, and uniformly coating the softened carbon source precursor on the surface of the composite particles to obtain the precursor II;
(4)对前躯体II进行热压处理得到前躯体III;(4) performing heat-pressing treatment on the precursor II to obtain the precursor III;
(5)将前躯体III破碎,并进行等静压处理得到前驱体IV;(5) crushing the precursor III, and performing isostatic pressing to obtain the precursor IV;
(6)将前驱体IV在惰性气氛中进行煅烧,再经破碎、筛分后得到所述硅基复合负极材料。(6) Calcining the precursor IV in an inert atmosphere, and then crushing and sieving to obtain the silicon-based composite negative electrode material.
本发明采用机械化学的方法制备高电化学活性的超细硅颗粒,并通过复合化的手段构筑多元多层次硅基复合负极材料,以解决硅在实际应用中存在的各种问题。所述硅基复合负极材料中,高电化学活性的超细硅颗粒表面包覆一层含碳导电体并均匀分布在取向排列的石墨表面及石墨片层之间,通过高填充率的无定形碳紧密结合,并且在石墨/无定形碳/含碳导电体/硅的最外层表面包覆无定形碳包覆层而构成的高振实密度核壳结构负极材料。这种结构可以防止硅在循环过程中发生团聚,硅与石墨的紧密结合保证了稳定的电子和锂离子传输通道;同时石墨颗粒之间以及硅粒子之间的空隙可以为硅的体积膨胀预留空间;无定形碳包覆层不仅可以缓冲硅的体积膨胀,还有利于形成稳定的固液界面,避免了SEI膜的不断生成。因而可以极大地提高硅基负极材料在循环过程中的电化学活性和稳定性。The invention adopts a mechanochemical method to prepare superfine silicon particles with high electrochemical activity, and constructs a multi-element and multi-level silicon-based composite negative electrode material by means of compounding, so as to solve various problems existing in the practical application of silicon. In the silicon-based composite negative electrode material, the surface of ultra-fine silicon particles with high electrochemical activity is coated with a layer of carbon-containing conductor and evenly distributed between the graphite surface and graphite sheets arranged in orientation. Carbon is closely combined, and the outermost surface of graphite/amorphous carbon/carbon-containing conductor/silicon is covered with an amorphous carbon coating layer, which is a high tap density core-shell structure negative electrode material. This structure can prevent silicon from agglomerating during the cycle, and the tight combination of silicon and graphite ensures stable electron and lithium ion transport channels; at the same time, the gaps between graphite particles and silicon particles can be reserved for the volume expansion of silicon Space; the amorphous carbon coating can not only buffer the volume expansion of silicon, but also facilitate the formation of a stable solid-liquid interface, avoiding the continuous generation of SEI films. Therefore, the electrochemical activity and stability of silicon-based anode materials during cycling can be greatly improved.
在本发明制备方法的步骤(1)中,所述分散介质为水、乙醇、乙二醇、异丙醇、丙酮、环己烷中的一种或几种;In step (1) of the preparation method of the present invention, the dispersion medium is one or more of water, ethanol, ethylene glycol, isopropanol, acetone, and cyclohexane;
所述步骤(1)中球料比(质量比)控制在5∶1-20∶1;所述步骤(1)中球磨机的转速为1400-2500rpm,球磨时间为3-16小时,物料温度控制在25-35℃;所述离心分离步骤离心力为6000-48000×g;In the step (1), the ball-to-material ratio (mass ratio) is controlled at 5:1-20:1; in the step (1), the rotating speed of the ball mill is 1400-2500rpm, the ball milling time is 3-16 hours, and the material temperature is controlled At 25-35°C; the centrifugal force in the centrifugal separation step is 6000-48000×g;
在步骤(2)中所述含碳导电体前驱体为聚丙烯酸、聚酰亚胺、酚醛树脂、环氧树脂、葡萄糖、氧化石墨烯、石墨烯、碳纳米管、有机硅氧烷、聚有机硅氧烷、聚有机硅氧烷与对二甲苯交联产物、硅树脂的一种或几种。In step (2), the carbon-containing conductor precursor is polyacrylic acid, polyimide, phenolic resin, epoxy resin, glucose, graphene oxide, graphene, carbon nanotubes, organosiloxane, polyorganic One or more of siloxane, polyorganosiloxane and p-xylene cross-linked product, silicone resin.
在所述步骤(3)中的有机碳源前驱体为煤沥青、石油沥青、中间相沥青、煤焦油、热塑性树脂的一种或几种。The organic carbon source precursor in the step (3) is one or more of coal pitch, petroleum pitch, mesophase pitch, coal tar, and thermoplastic resin.
在所述步骤(3)中物料温度控制在100-250℃,有机碳源前驱体为软化状态或熔融状态,混捏时间1-4h。In the step (3), the material temperature is controlled at 100-250° C., the organic carbon source precursor is in a softened or molten state, and the kneading time is 1-4 hours.
在所述步骤(4)中的热压采用热模压或热辊压,热压温度控制在有机碳源前驱体软化点温度以上。The hot pressing in the step (4) adopts hot mold pressing or hot rolling pressing, and the hot pressing temperature is controlled above the softening point temperature of the organic carbon source precursor.
在所述步骤(5)中的等静压为冷等静压、温等静压或热等静压中的任意一种,压强控制在10-250Mpa,保压时间3-30分钟。The isostatic pressing in the step (5) is any one of cold isostatic pressing, warm isostatic pressing or hot isostatic pressing, the pressure is controlled at 10-250Mpa, and the holding time is 3-30 minutes.
在所述步骤(6)中高温煅烧温度为600-1200℃,时间为0.5-8小时。In the step (6), the high-temperature calcination temperature is 600-1200° C., and the time is 0.5-8 hours.
在步骤(6)中所述惰性气氛为氩气、氮气、氦气和氩氢混合气中的一种。In the step (6), the inert atmosphere is one of argon, nitrogen, helium and argon-hydrogen mixed gas.
步骤(6)所得的硅基复合负极材料为类球形或无规则多边形,中值粒径为5-15μm。The silicon-based composite negative electrode material obtained in step (6) is spherical or random polygonal, with a median particle size of 5-15 μm.
一种锂离子电池负极,其包含所述的硅基复合负极材料。A lithium ion battery negative electrode, which comprises the silicon-based composite negative electrode material.
本发明的优点在于:The advantages of the present invention are:
本发明与现有技术相比,提供了稳定的、低成本的高活性超细硅颗粒及含有该超细硅颗粒的复合负极材料的制备方法。对超细硅颗粒/含碳导电体前驱体/石墨混合浆料喷雾干燥造粒解决了硅颗粒在石墨基体表面的分散性及结合特性;采用混捏、热辊压、等静压的方法,利用碳源前驱体的流动特性增强了超细硅颗粒在石墨表面及石墨片层之间的分散性及结合强度,进而提高了硅碳复合颗粒的密度及结合强度,同时有利于在复合颗粒表面形成完整的碳包覆层。本发明描述的制备方法工艺简单、成本低、适合于大规模生产。制备的多元多层次结构的硅基复合负极材料有效地解决了硅在使用过程中存在的结构稳定性和循环稳定性差、SEI膜不断生成等问题,并且材料具有较高的首周可逆容量和库伦效率,同时复合材料具有较高的振实密度和较好的加工性能。采用该材料的电池具有很好的结构稳定性和电化学稳定性。Compared with the prior art, the invention provides stable, low-cost, high-activity ultrafine silicon particles and a preparation method for composite negative electrode materials containing the ultrafine silicon particles. The spray-drying and granulation of ultrafine silicon particles/carbon-containing conductor precursor/graphite mixed slurry solves the dispersion and bonding characteristics of silicon particles on the surface of graphite matrix; The flow characteristics of the carbon source precursor enhance the dispersion and bonding strength of ultrafine silicon particles on the graphite surface and between graphite sheets, thereby increasing the density and bonding strength of silicon-carbon composite particles, and at the same time facilitate the formation of Full carbon cladding. The preparation method described in the invention has simple process, low cost and is suitable for large-scale production. The prepared silicon-based composite anode material with multi-component and multi-level structure effectively solves the problems of poor structural stability and cycle stability of silicon during use, and the continuous formation of SEI film, and the material has high first-week reversible capacity and Coulombic capacity. At the same time, the composite material has a higher tap density and better processing performance. The battery using this material has good structural stability and electrochemical stability.
附图说明Description of drawings
图1为本发明的工艺路线图。Fig. 1 is a process roadmap of the present invention.
图2液相球磨后得到的超细硅颗粒粒径分布图。Figure 2 is the particle size distribution diagram of ultrafine silicon particles obtained after liquid phase ball milling.
图3为实施例1中热辊压得到的石墨/含碳导电前驱体/硅复合结构断面SEM(扫描电子显微镜)图。3 is a cross-sectional SEM (scanning electron microscope) diagram of the graphite/carbon-containing conductive precursor/silicon composite structure obtained by hot rolling in Example 1.
图4为实施例1中制备的硅基复合负极材料断面SEM(扫描电子显微镜)图。4 is a cross-sectional SEM (scanning electron microscope) diagram of the silicon-based composite negative electrode material prepared in Example 1.
图5为实施例1中制备的硅基复合负极材料颗粒表面的SEM图。FIG. 5 is an SEM image of the surface of silicon-based composite negative electrode material particles prepared in Example 1. FIG.
图6为实施例1中制备的硅基复合负极材料的首周充放电曲线。6 is the charge-discharge curve of the first cycle of the silicon-based composite negative electrode material prepared in Example 1.
图7为实施例1中制备的硅基复合负极材料的循环稳定性曲线。FIG. 7 is a cycle stability curve of the silicon-based composite negative electrode material prepared in Example 1.
图8为对比例1中制备的硅基复合负极材料的SEM图。FIG. 8 is an SEM image of the silicon-based composite negative electrode material prepared in Comparative Example 1. FIG.
图9为对比例2中制备的硅基复合负极材料的SEM图。FIG. 9 is an SEM image of the silicon-based composite negative electrode material prepared in Comparative Example 2. FIG.
具体实施方式Detailed ways
以下通过实施例对本发明作进一步说明,但本发明并不限于以下实施例。The present invention will be further described by the following examples, but the present invention is not limited to the following examples.
实施例1-5和对比例1-2均采用以下方法制备电极和测试材料电化学性能,测试结果如表1所示。Both Examples 1-5 and Comparative Examples 1-2 used the following methods to prepare electrodes and test the electrochemical properties of materials, and the test results are shown in Table 1.
将硅基复合负极材料、导电剂和粘结剂按质量百分比86∶6∶8的比例溶解在溶剂中,固含量为30%。其中粘结剂采用质量比为1∶3的羧甲基纤维素钠(CMC,2wt%CMC水溶液)-丁苯橡胶(SBR,50wt%SBR水溶液)复合水系粘结剂。再加0.8%的草酸作为刻蚀铜箔的酸性物质,经过充分搅拌后得到均匀浆料。涂覆在10μm铜箔上,室温下干燥4h后,用直径为14毫米的冲头冲成极片,在100kg/cm-2压力下压片,放入120℃真空烘箱中干燥8小时。The silicon-based composite negative electrode material, the conductive agent and the binder are dissolved in the solvent at a mass percentage ratio of 86:6:8, and the solid content is 30%. Wherein the binder adopts sodium carboxymethylcellulose (CMC, 2wt% CMC aqueous solution)-styrene-butadiene rubber (SBR, 50wt% SBR aqueous solution) composite water-based binder with a mass ratio of 1:3. Add 0.8% oxalic acid as an acidic substance for etching copper foil, and obtain a uniform slurry after thorough stirring. Coated on 10μm copper foil, dried at room temperature for 4 hours, punched into pole pieces with a punch with a diameter of 14mm, pressed under a pressure of 100kg/cm -2 , and dried in a vacuum oven at 120°C for 8 hours.
将极片转移到手套箱中,采用金属锂片为负极、Celgard2400隔膜、1mol/L的LiPF6/EC+DMC+EMC(v/v/v=1∶1∶1)电解液、CR2016电池壳组装扣式电池。在武汉金诺LandCT2001A电池测试***上进行恒流的充放电测试,在80mA/g的电流密度下循环充放电,充放电截止电压相对于Li/Li+为0.005-2V。Transfer the pole piece to the glove box, use lithium metal as the negative electrode, Celgard2400 diaphragm, 1mol/L LiPF 6 /EC+DMC+EMC (v/v/v=1:1:1) electrolyte, CR2016 battery case Assemble the button battery. The constant current charge and discharge test was carried out on the Wuhan Jinnuo LandCT2001A battery test system, and the cycle charge and discharge were performed at a current density of 80mA/g. The charge and discharge cut-off voltage was 0.005-2V relative to Li/Li + .
实施例1Example 1
取2kg中值粒径为3μm、硅含量为大于99%的微米硅粉,加入到18kg去离子水中,超声分散30min后,倒入超细球磨机腔体中,加入0.5wt%硅粉质量的木质素磺酸钠。采用直径为0.3mm的氧化锆球为球磨介质,球料比(质量比)为10∶1,在1800rpm的转速下球磨10小时,得到超细硅颗粒分散液。Take 2 kg of micron silicon powder with a median particle size of 3 μm and a silicon content greater than 99%, add it to 18 kg of deionized water, ultrasonically disperse it for 30 minutes, pour it into the cavity of an ultra-fine ball mill, and add 0.5 wt% of silicon powder quality wood Sodium Sulfonate. Zirconia balls with a diameter of 0.3 mm were used as the ball milling medium, and the ball-to-material ratio (mass ratio) was 10:1, and ball milled at a speed of 1800 rpm for 10 hours to obtain an ultrafine silicon particle dispersion.
向超细硅颗粒分散液中加入800g葡萄糖和5.5kg各向同性人造石墨KS6,1000rpm转速下球磨分散1小时后得到均匀的混合浆料。对混合浆料进行喷雾干燥,得到颗粒状复合粉体。通过循环导热油控制混捏机温度为170℃,取2kg上述喷雾干燥所得粉状中间产物放入混捏机中预热1h;放入0.88kg熔融状态的改质沥青混捏1h;将混捏产物在170℃下热辊压10次,形成约2mm厚度的胶皮状,冷却后破碎成粉体材料;再将粉体材料放入橡胶包套中,在温等静压机中150℃,200MPa压强下等静压成型10分钟;然后将成型块体材料放入井式炉中,氮气气氛下900℃煅烧5小时后冷却至室温;最后经破碎和筛分后得到硅含量20%的硅基复合负极材料。Add 800 g of glucose and 5.5 kg of isotropic artificial graphite KS6 to the ultrafine silicon particle dispersion, and disperse by ball milling at 1000 rpm for 1 hour to obtain a uniform mixed slurry. The mixed slurry is spray-dried to obtain granular composite powder. Control the temperature of the kneader to 170°C by circulating heat transfer oil, take 2kg of the above spray-dried powdery intermediate product and put it into the kneader for preheating for 1 hour; put 0.88kg of molten modified asphalt into the kneader for 1 hour; put the kneaded product at 170°C Press the hot roller 10 times to form a rubber-like material with a thickness of about 2mm, which is broken into a powder material after cooling; then put the powder material into a rubber sheath, and isostatic in a warm isostatic press at 150°C and 200MPa pressure Press molding for 10 minutes; then put the shaped block material into a well-type furnace, calcinate at 900°C for 5 hours under a nitrogen atmosphere, and then cool to room temperature; finally, a silicon-based composite negative electrode material with a silicon content of 20% is obtained after crushing and sieving.
图2为实施例1中液相球磨后得到的超细硅颗粒粒径分布图,可以看到经10h球磨后,硅颗粒的中值粒径为139nm。Fig. 2 is a particle size distribution diagram of ultrafine silicon particles obtained after liquid phase ball milling in Example 1. It can be seen that after 10 hours of ball milling, the median particle size of silicon particles is 139nm.
图3为实施例1中热辊压后石墨/含碳导电前驱体/硅复合结构断面SEM(扫描电子显微镜)图,可以看到在压力和熔融态碳源前驱体流动的作用下,石墨发生了取向性排列。石墨片层之间充满了碳源前驱体,将石墨与超细硅颗粒紧密连接在一起。Fig. 3 is the SEM (scanning electron microscope) figure of graphite/carbon-containing conductive precursor/silicon composite structure cross-section after hot roll pressing in embodiment 1, can see that under the effect of pressure and molten state carbon source precursor flow, graphite produces oriented alignment. The graphite sheets are filled with carbon source precursors, which tightly connect graphite and ultrafine silicon particles.
图4为碳化后硅基复合负极材料断面SEM(扫描电子显微镜)图,可以看到硅颗粒均匀分布在石墨片层之间,并与石墨紧密结合;碳源前驱体碳化后产生了大量的孔隙,为充放电过程中硅的体积膨胀预留了空间。Figure 4 is the SEM (scanning electron microscope) diagram of the cross-section of the silicon-based composite negative electrode material after carbonization. It can be seen that the silicon particles are evenly distributed between the graphite sheets and tightly combined with the graphite; a large number of pores are produced after carbonization of the carbon source precursor , leaving space for the volume expansion of silicon during charging and discharging.
图5为硅基复合负极材料表面SEM图,可以看到复合颗粒表面形成了一层均匀的无定形碳包覆层,降低了材料的比表面积,避免了电解液与硅和石墨的直接接触,从而可以抑制电解液的副反应。Figure 5 is an SEM image of the surface of the silicon-based composite negative electrode material. It can be seen that a uniform amorphous carbon coating layer is formed on the surface of the composite particles, which reduces the specific surface area of the material and avoids direct contact between the electrolyte and silicon and graphite. Thereby, side reactions of the electrolyte can be suppressed.
图6和图7分别为合成的硅基复合负极材料的首周充放电曲线和循环稳定性曲线。可以看到硅基复合负极材料首周可逆容量为656.2mAh/g,首周库仑效率为80.1%,50周循环容量保持率为92.0%。Figure 6 and Figure 7 are the first-cycle charge-discharge curve and cycle stability curve of the synthesized silicon-based composite anode material, respectively. It can be seen that the reversible capacity of the silicon-based composite negative electrode material in the first week is 656.2mAh/g, the Coulombic efficiency in the first week is 80.1%, and the 50-week cycle capacity retention rate is 92.0%.
对比例1Comparative example 1
按照与实施例1基本相同的方法制备硅基复合负极材料,区别在于:石墨/含碳导电前驱体/硅与改质沥青热混捏后不进行热辊压、破碎、等静压成型步骤的加工,直接在氮气气氛下900℃碳化,冷却后经破碎、筛分得到硅基复合负极材料。图8为对比例1中制备硅基复合负极材料SEM图,可以看到颗粒表面仍有裸露的部位,包覆层不完整。因而材料的表面面积大,首周库仑效率降低。由于没有热辊压和等静压的步骤,材料振实密度较低。The silicon-based composite negative electrode material was prepared in the same manner as in Example 1, with the difference that graphite/carbon-containing conductive precursor/silicon and modified pitch were not subjected to hot rolling, crushing, and isostatic pressing after hot kneading. , directly carbonized at 900°C under a nitrogen atmosphere, and then crushed and sieved after cooling to obtain a silicon-based composite negative electrode material. Fig. 8 is an SEM image of the silicon-based composite negative electrode material prepared in Comparative Example 1. It can be seen that there are still exposed parts on the surface of the particles, and the coating layer is incomplete. Therefore, the surface area of the material is large, and the Coulombic efficiency decreases in the first week. The tap density of the material is low due to the absence of hot rolling and isostatic pressing steps.
对比例2Comparative example 2
按照与实施例1基本相同的方法制备硅基复合负极材料,区别在于:石墨/含碳导电前驱体/硅与改质沥青经热混捏后、热辊压、破碎后不进行等静压成型步骤的加工,直接在氮气气氛下900℃碳化,冷却后经破碎、筛分得到硅基复合负极材料。由图9可知,相比于热混捏后直接碳化的硅基复合负极材料,无定形碳包覆层完整性得到了提高。材料的振实密度提高,比表面积降低,材料首周库仑效率和循环稳定性进一步改善,但性能比等静压后制备的硅基复合负极材料性能要差。The silicon-based composite negative electrode material was prepared in the same manner as in Example 1, with the difference that graphite/carbon-containing conductive precursor/silicon and modified pitch were thermally kneaded, hot-rolled, and crushed without isostatic pressing. The processing is directly carbonized at 900°C under a nitrogen atmosphere, and after cooling, it is crushed and sieved to obtain a silicon-based composite negative electrode material. It can be seen from Figure 9 that compared with the silicon-based composite anode material directly carbonized after thermal kneading, the integrity of the amorphous carbon coating layer has been improved. The tap density of the material is increased, the specific surface area is reduced, and the Coulombic efficiency and cycle stability of the material are further improved in the first week, but the performance is worse than that of the silicon-based composite anode material prepared after isostatic pressing.
实施例2Example 2
取2kg中值粒径为3μm、硅含量为大于99%的微米硅粉,加入到18kg乙醇中,超声分散30min后,倒入超细球磨机腔体中,加入0.5wt%硅粉质量的木质素磺酸钠。采用直径为0.3mm的氧化锆球为球磨介质,球料比(质量比)为14∶1,在1800rpm的转速下球磨10小时,得到超细硅颗粒分散液。Take 2 kg of micron silicon powder with a median particle size of 3 μm and a silicon content greater than 99%, add it to 18 kg of ethanol, ultrasonically disperse it for 30 minutes, pour it into the cavity of an ultrafine ball mill, and add 0.5 wt% of lignin with the quality of silicon powder sodium sulfonate. Zirconia balls with a diameter of 0.3 mm were used as the ball milling medium, and the ball-to-material ratio (mass ratio) was 14:1, and ball milled at a speed of 1800 rpm for 10 hours to obtain an ultrafine silicon particle dispersion.
向超细硅颗粒分散液中加入50g酚醛树脂和2.86kg各向同性人造石墨KS6,1000rpm转速下球磨1小时后得到均匀的混合浆料。对混合浆料进行喷雾干燥,得到颗粒状复合粉体。通过循环导热油控制混捏机温度为170℃,取2kg上述复合粉体放入混捏机中搅拌预热1h;放入0.53kg熔融状态的改质沥青混捏1h;将混捏产物在170℃下热辊压10次,形成约2mm厚度的胶皮状,冷却后破碎成粉体材料;将粉状前驱体放入橡胶包套中,在温等静压机中150℃,200MPa压强下等静压成型10分钟;然后将成型块体材料放入井式炉中,氮气气氛下900℃煅烧5小时后冷却至室温;最后经破碎和筛分后得到硅含量30%的硅基复合负极材料。50g of phenolic resin and 2.86kg of isotropic artificial graphite KS6 were added to the ultrafine silicon particle dispersion, and a uniform mixed slurry was obtained after ball milling at 1000rpm for 1 hour. The mixed slurry is spray-dried to obtain granular composite powder. Control the temperature of the kneader to 170°C by circulating heat transfer oil, take 2kg of the above-mentioned composite powder and put it into the kneader to stir and preheat for 1h; put in 0.53kg of molten modified asphalt and knead for 1h; heat the kneaded product at 170°C Press 10 times to form a rubber-like material with a thickness of about 2 mm, which is broken into a powder material after cooling; put the powder precursor into a rubber sheath, and perform isostatic pressing in a warm isostatic press at 150°C and 200 MPa for 10 Minutes; then put the shaped block material into a well-type furnace, calcined at 900°C for 5 hours under a nitrogen atmosphere, and then cooled to room temperature; finally, a silicon-based composite negative electrode material with a silicon content of 30% was obtained after crushing and screening.
实施例3Example 3
取2kg中值粒径为3μm、硅含量为大于99%的微米硅粉,加入到18kg乙醇中,超声分散30min后,倒入超细球磨机腔体中,加入0.5wt%硅粉质量的木质素磺酸钠。采用直径为0.3mm的氧化锆球为球磨介质,球料比(质量比)为14∶1,在1800rpm的转速下球磨10小时,得到超细硅颗粒分散液。Take 2 kg of micron silicon powder with a median particle size of 3 μm and a silicon content greater than 99%, add it to 18 kg of ethanol, ultrasonically disperse it for 30 minutes, pour it into the cavity of an ultrafine ball mill, and add 0.5 wt% of lignin with the quality of silicon powder sodium sulfonate. Zirconia balls with a diameter of 0.3 mm were used as the ball milling medium, and the ball-to-material ratio (mass ratio) was 14:1, and ball milled at a speed of 1800 rpm for 10 hours to obtain an ultrafine silicon particle dispersion.
向超细硅颗粒分散液中加入50g酚醛树脂和2.86kg各向异性人造石墨SFG6,1000rpm转速下球磨1小时后得到均匀的混合浆料。对混合浆料进行喷雾干燥,得到颗粒状复合粉体。通过循环导热油控制混捏机温度为170℃,取2kg上述复合粉体放入混捏机中搅拌预热1h;放入0.53kg熔融状态的改质沥青混捏1h;将混捏产物在170℃下热辊压10次,形成约2mm厚度的胶皮状,冷却后破碎成粉体材料;将粉状前驱体放入橡胶包套中,在温等静压机中150℃,200MPa压强下等静压成型10分钟;然后将成型块体材料放入井式炉中,氮气气氛下900℃煅烧5小时后冷却至室温;最后经破碎和筛分后得到硅含量30%的硅基复合负极材料。50g of phenolic resin and 2.86kg of anisotropic artificial graphite SFG6 were added to the ultrafine silicon particle dispersion, and a uniform mixed slurry was obtained after ball milling at 1000rpm for 1 hour. The mixed slurry is spray-dried to obtain granular composite powder. Control the temperature of the kneader to 170°C by circulating heat transfer oil, take 2kg of the above-mentioned composite powder and put it into the kneader to stir and preheat for 1h; put in 0.53kg of molten modified asphalt and knead for 1h; heat the kneaded product at 170°C Press 10 times to form a rubber-like material with a thickness of about 2 mm, which is broken into a powder material after cooling; put the powder precursor into a rubber sheath, and perform isostatic pressing in a warm isostatic press at 150°C and 200 MPa for 10 Minutes; then put the shaped block material into a well-type furnace, calcined at 900°C for 5 hours under a nitrogen atmosphere, and then cooled to room temperature; finally, a silicon-based composite negative electrode material with a silicon content of 30% was obtained after crushing and screening.
实施例4Example 4
取2kg中值粒径为3μm、硅含量为大于99%的微米硅粉,加入到18kg乙醇中,超声分散30min后,倒入超细球磨机腔体中,加入0.5wt%硅粉质量的木质素磺酸钠。采用直径为0.3mm的氧化锆球为球磨介质,球料比(质量比)为14∶1,在1800rpm的转速下球磨10小时,得到超细硅颗粒分散液。Take 2 kg of micron silicon powder with a median particle size of 3 μm and a silicon content greater than 99%, add it to 18 kg of ethanol, ultrasonically disperse it for 30 minutes, pour it into the cavity of an ultrafine ball mill, and add 0.5 wt% of lignin with the quality of silicon powder sodium sulfonate. Zirconia balls with a diameter of 0.3 mm were used as the ball milling medium, and the ball-to-material ratio (mass ratio) was 14:1, and ball milled at a speed of 1800 rpm for 10 hours to obtain an ultrafine silicon particle dispersion.
向超细硅颗粒分散液中加入50g酚醛树脂和2.86kg各向异性人造石墨SFG15,1000rpm转速下球磨1小时后得到均匀的混合浆料。对混合浆料进行喷雾干燥,得到颗粒状复合粉体。通过循环导热油控制混捏机温度为170℃,取2kg上述复合粉体放入混捏机中搅拌预热1h;放入0.53kg熔融状态的改质沥青混捏1h;将混捏产物在170℃下热辊压10次,形成约2mm厚度的胶皮状,冷却后破碎成粉体材料;将粉状前驱体放入橡胶包套中,在温等静压机中150℃,200MPa压强下等静压成型10分钟;然后将成型块体材料放入井式炉中,氮气气氛下900℃煅烧5小时后冷却至室温;最后经破碎和筛分后得到硅含量30%的硅基复合负极材料。50 g of phenolic resin and 2.86 kg of anisotropic artificial graphite SFG15 were added to the ultrafine silicon particle dispersion, and a uniform mixed slurry was obtained after ball milling at 1000 rpm for 1 hour. The mixed slurry is spray-dried to obtain granular composite powder. Control the temperature of the kneader to 170°C by circulating heat transfer oil, take 2kg of the above-mentioned composite powder and put it into the kneader to stir and preheat for 1h; put in 0.53kg of molten modified asphalt and knead for 1h; heat the kneaded product at 170°C Press 10 times to form a rubber-like material with a thickness of about 2 mm, which is broken into a powder material after cooling; put the powder precursor into a rubber sheath, and perform isostatic pressing in a warm isostatic press at 150°C and 200 MPa for 10 Minutes; then put the shaped block material into a well-type furnace, calcined at 900°C for 5 hours under a nitrogen atmosphere, and then cooled to room temperature; finally, a silicon-based composite negative electrode material with a silicon content of 30% was obtained after crushing and screening.
实施例5Example 5
取2kg中值粒径为3μm、硅含量为大于99%的微米硅粉,加入到18kg去离子水中,超声分散30min后,倒入超细球磨机腔体中,加入0.5wt%硅粉质量的木质素磺酸钠。采用直径为0.3mm的氧化锆球为球磨介质,球料比(质量比)为14∶1,在1800rpm的转速下球磨10小时,得到超细硅颗粒分散液。Take 2 kg of micron silicon powder with a median particle size of 3 μm and a silicon content greater than 99%, add it to 18 kg of deionized water, ultrasonically disperse it for 30 minutes, pour it into the cavity of an ultra-fine ball mill, and add 0.5 wt% of silicon powder quality wood Sodium Sulfonate. Zirconia balls with a diameter of 0.3 mm were used as the ball milling medium, and the ball-to-material ratio (mass ratio) was 14:1, and ball milled at a speed of 1800 rpm for 10 hours to obtain an ultrafine silicon particle dispersion.
向超细硅颗粒分散液中加入5.5kg各向同性人造石墨KS6,1000rpm转速下球磨1小时后得到均匀的混合浆料。对混合浆料进行喷雾干燥,得到颗粒状粉末。通过循环导热油控制混捏机温度为170℃,取2kg上述粉状中间产物放入混捏机中搅拌1h;放入1.89kg熔融状态的改质沥青混捏1h;将混捏产物在170℃下热辊压,成2mm厚度的片状,冷却后破碎成粉体材料;将粉状前驱体放入橡胶包套中,在冷等静压机中150℃,200MPa压强下等静压成型20分钟;然后将成型块体材料放入井式炉中,氮气气氛下900℃煅烧5小时后冷却至室温;最后经破碎和筛分后得到硅含量30%的硅基复合负极材料。Add 5.5 kg of isotropic artificial graphite KS6 to the ultrafine silicon particle dispersion, and ball mill at 1000 rpm for 1 hour to obtain a uniform mixed slurry. The mixed slurry is spray-dried to obtain granular powder. Control the temperature of the kneader to 170°C by circulating heat transfer oil, take 2kg of the above-mentioned powdery intermediate product and put it into the kneader and stir for 1h; put 1.89kg of molten modified asphalt into the kneader for 1h; heat the kneaded product at 170°C for rolling , into flakes with a thickness of 2 mm, and broken into powder materials after cooling; put the powder precursor into a rubber sheath, and press it in a cold isostatic press at 150°C and 200 MPa for 20 minutes; then put The formed block material was put into a well-type furnace, calcined at 900°C for 5 hours under a nitrogen atmosphere, and then cooled to room temperature; finally, a silicon-based composite negative electrode material with a silicon content of 30% was obtained after crushing and screening.
表1Table 1
由以上结果可知,本发明制备的硅基复合负极材料表现很高的电化学活性和优异的循环稳定性。From the above results, it can be seen that the silicon-based composite negative electrode material prepared by the present invention exhibits high electrochemical activity and excellent cycle stability.
Claims (21)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611071114.0A CN108123111A (en) | 2016-11-28 | 2016-11-28 | A kind of lithium ion battery silicon substrate composite negative pole material, its preparation method and the negative electrode of lithium ion battery comprising the material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611071114.0A CN108123111A (en) | 2016-11-28 | 2016-11-28 | A kind of lithium ion battery silicon substrate composite negative pole material, its preparation method and the negative electrode of lithium ion battery comprising the material |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108123111A true CN108123111A (en) | 2018-06-05 |
Family
ID=62225286
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611071114.0A Pending CN108123111A (en) | 2016-11-28 | 2016-11-28 | A kind of lithium ion battery silicon substrate composite negative pole material, its preparation method and the negative electrode of lithium ion battery comprising the material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108123111A (en) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108736007A (en) * | 2018-08-20 | 2018-11-02 | 赣州市瑞富特科技有限公司 | A kind of preparation method of high compacted density lithium ion battery silicon-carbon cathode material |
CN109411714A (en) * | 2018-09-12 | 2019-03-01 | 西安交通大学 | A kind of high capacity high stability silicon-carbon cathode material and preparation method thereof |
CN109565036A (en) * | 2018-09-28 | 2019-04-02 | 香港应用科技研究院有限公司 | Anode active material for lithium ion battery |
CN109585820A (en) * | 2018-11-23 | 2019-04-05 | 四川大学 | Si-C composite material, preparation method, application and negative electrode of lithium ion battery |
CN110590364A (en) * | 2019-10-15 | 2019-12-20 | 湖南中科星城石墨有限公司 | Novel secondary granulation process of multiphase powder |
WO2020062354A1 (en) * | 2018-09-28 | 2020-04-02 | Hong Kong Applied Science and Technology Research Institute Company Limited | Anode Active Materials for Lithium-ion Batteries |
CN111224078A (en) * | 2018-11-27 | 2020-06-02 | 广州汽车集团股份有限公司 | Silicon-based composite negative electrode material, preparation method thereof and lithium ion battery negative electrode |
CN111430789A (en) * | 2019-11-29 | 2020-07-17 | 蜂巢能源科技有限公司 | Method for reducing porosity of solid electrolyte layer and its application |
CN111755679A (en) * | 2020-07-06 | 2020-10-09 | 马鞍山科达普锐能源科技有限公司 | Silicon-containing powder for lithium ion battery negative electrode material and preparation method thereof |
CN112310363A (en) * | 2019-07-31 | 2021-02-02 | 华为技术有限公司 | Silicon-carbon composite material, preparation method thereof and lithium ion battery |
CN112768671A (en) * | 2021-02-02 | 2021-05-07 | 湖南大学 | Preparation method of silicon-carbon composite negative electrode material and negative electrode material prepared by preparation method |
CN112909255A (en) * | 2021-01-20 | 2021-06-04 | 南京师范大学 | Silicon-silicon carbide/graphene composite material and preparation method thereof |
CN113193183A (en) * | 2021-04-28 | 2021-07-30 | 四川大学 | High-tap-density double-carbon-layer silicon-carbon composite material and preparation method thereof |
CN113764625A (en) * | 2021-08-26 | 2021-12-07 | 蜂巢能源科技有限公司 | Sulfide silicon-based negative electrode sheet and preparation method thereof, and all-solid-state lithium ion battery |
CN113964307A (en) * | 2021-10-24 | 2022-01-21 | 江苏载驰科技股份有限公司 | Silicon-carbon negative electrode material of lithium ion battery and preparation method thereof |
CN113964313A (en) * | 2019-12-30 | 2022-01-21 | 上海杉杉科技有限公司 | Silicon-based negative electrode material and lithium ion battery |
CN114026713A (en) * | 2020-12-28 | 2022-02-08 | 宁德新能源科技有限公司 | Silicon-carbon composite particle, negative electrode active material, and negative electrode, electrochemical device, and electronic device comprising same |
CN114303259A (en) * | 2019-06-28 | 2022-04-08 | 塔尔加科技有限公司 | Composite material containing silicon and graphite and method for producing same |
CN114447294A (en) * | 2021-12-28 | 2022-05-06 | 长沙矿冶研究院有限责任公司 | Silicon-carbon composite negative electrode material with high compact structure and preparation method thereof |
CN114497467A (en) * | 2020-10-26 | 2022-05-13 | 湖南中科星城石墨有限公司 | Long-cycle high-rate graphite negative electrode material and preparation method and application thereof |
CN114824230A (en) * | 2022-05-27 | 2022-07-29 | 山东海科创新研究院有限公司 | Silicon-carbon graphene composite material, preparation method thereof and lithium ion battery |
CN115377405A (en) * | 2021-05-19 | 2022-11-22 | 中国石油化工股份有限公司 | Silicon-carbon negative electrode material and preparation method and application thereof |
SE2151513A1 (en) * | 2021-12-10 | 2023-06-11 | Stora Enso Oyj | Method for producing a granular carbon-silicon composite from a lignin-silicon composite |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102448880A (en) * | 2009-05-26 | 2012-05-09 | 创业发展联盟技术有限公司 | Carbon material and method for producing the same |
US20130196223A1 (en) * | 2012-01-27 | 2013-08-01 | Battelle Energy Alliance, Llc | Electrodes including a polyphosphazene cyclomatrix, methods of forming the electrodes, and related electrochemical cells |
CN103682287A (en) * | 2013-12-19 | 2014-03-26 | 深圳市贝特瑞新能源材料股份有限公司 | Lithium ion battery silicon-based composite anode material, preparation method thereof and battery |
CN105762329A (en) * | 2014-12-16 | 2016-07-13 | 北京有色金属研究总院 | Silicon-based composite anode material for lithium ion battery and preparation method thereof |
-
2016
- 2016-11-28 CN CN201611071114.0A patent/CN108123111A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102448880A (en) * | 2009-05-26 | 2012-05-09 | 创业发展联盟技术有限公司 | Carbon material and method for producing the same |
US20130196223A1 (en) * | 2012-01-27 | 2013-08-01 | Battelle Energy Alliance, Llc | Electrodes including a polyphosphazene cyclomatrix, methods of forming the electrodes, and related electrochemical cells |
CN103682287A (en) * | 2013-12-19 | 2014-03-26 | 深圳市贝特瑞新能源材料股份有限公司 | Lithium ion battery silicon-based composite anode material, preparation method thereof and battery |
CN105762329A (en) * | 2014-12-16 | 2016-07-13 | 北京有色金属研究总院 | Silicon-based composite anode material for lithium ion battery and preparation method thereof |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108736007A (en) * | 2018-08-20 | 2018-11-02 | 赣州市瑞富特科技有限公司 | A kind of preparation method of high compacted density lithium ion battery silicon-carbon cathode material |
CN109411714A (en) * | 2018-09-12 | 2019-03-01 | 西安交通大学 | A kind of high capacity high stability silicon-carbon cathode material and preparation method thereof |
WO2020062354A1 (en) * | 2018-09-28 | 2020-04-02 | Hong Kong Applied Science and Technology Research Institute Company Limited | Anode Active Materials for Lithium-ion Batteries |
CN109565036A (en) * | 2018-09-28 | 2019-04-02 | 香港应用科技研究院有限公司 | Anode active material for lithium ion battery |
CN109585820A (en) * | 2018-11-23 | 2019-04-05 | 四川大学 | Si-C composite material, preparation method, application and negative electrode of lithium ion battery |
CN111224078A (en) * | 2018-11-27 | 2020-06-02 | 广州汽车集团股份有限公司 | Silicon-based composite negative electrode material, preparation method thereof and lithium ion battery negative electrode |
CN114303259A (en) * | 2019-06-28 | 2022-04-08 | 塔尔加科技有限公司 | Composite material containing silicon and graphite and method for producing same |
CN112310363A (en) * | 2019-07-31 | 2021-02-02 | 华为技术有限公司 | Silicon-carbon composite material, preparation method thereof and lithium ion battery |
CN115312726A (en) * | 2019-07-31 | 2022-11-08 | 华为技术有限公司 | Silicon-carbon composite material, preparation method thereof and lithium ion battery |
CN115295784A (en) * | 2019-07-31 | 2022-11-04 | 华为技术有限公司 | Silicon-carbon composite material, preparation method thereof and lithium ion battery |
CN112310363B (en) * | 2019-07-31 | 2022-08-26 | 华为技术有限公司 | Silicon-carbon composite material, preparation method thereof and lithium ion battery |
CN110590364A (en) * | 2019-10-15 | 2019-12-20 | 湖南中科星城石墨有限公司 | Novel secondary granulation process of multiphase powder |
CN111430789A (en) * | 2019-11-29 | 2020-07-17 | 蜂巢能源科技有限公司 | Method for reducing porosity of solid electrolyte layer and its application |
CN111430789B (en) * | 2019-11-29 | 2022-09-20 | 蜂巢能源科技有限公司 | Method for reducing porosity of solid electrolyte layer and application thereof |
CN113964313A (en) * | 2019-12-30 | 2022-01-21 | 上海杉杉科技有限公司 | Silicon-based negative electrode material and lithium ion battery |
CN111755679A (en) * | 2020-07-06 | 2020-10-09 | 马鞍山科达普锐能源科技有限公司 | Silicon-containing powder for lithium ion battery negative electrode material and preparation method thereof |
CN114497467A (en) * | 2020-10-26 | 2022-05-13 | 湖南中科星城石墨有限公司 | Long-cycle high-rate graphite negative electrode material and preparation method and application thereof |
CN114497467B (en) * | 2020-10-26 | 2024-02-27 | 湖南中科星城石墨有限公司 | Long-cycle high-magnification graphite anode material and preparation method and application thereof |
CN114026713A (en) * | 2020-12-28 | 2022-02-08 | 宁德新能源科技有限公司 | Silicon-carbon composite particle, negative electrode active material, and negative electrode, electrochemical device, and electronic device comprising same |
CN112909255A (en) * | 2021-01-20 | 2021-06-04 | 南京师范大学 | Silicon-silicon carbide/graphene composite material and preparation method thereof |
CN112909255B (en) * | 2021-01-20 | 2022-06-07 | 南京师范大学 | A kind of silicon-silicon carbide/graphene composite material and preparation method thereof |
CN112768671A (en) * | 2021-02-02 | 2021-05-07 | 湖南大学 | Preparation method of silicon-carbon composite negative electrode material and negative electrode material prepared by preparation method |
CN113193183A (en) * | 2021-04-28 | 2021-07-30 | 四川大学 | High-tap-density double-carbon-layer silicon-carbon composite material and preparation method thereof |
CN115377405A (en) * | 2021-05-19 | 2022-11-22 | 中国石油化工股份有限公司 | Silicon-carbon negative electrode material and preparation method and application thereof |
CN113764625A (en) * | 2021-08-26 | 2021-12-07 | 蜂巢能源科技有限公司 | Sulfide silicon-based negative electrode sheet and preparation method thereof, and all-solid-state lithium ion battery |
CN113964307A (en) * | 2021-10-24 | 2022-01-21 | 江苏载驰科技股份有限公司 | Silicon-carbon negative electrode material of lithium ion battery and preparation method thereof |
SE2151513A1 (en) * | 2021-12-10 | 2023-06-11 | Stora Enso Oyj | Method for producing a granular carbon-silicon composite from a lignin-silicon composite |
WO2023105441A1 (en) * | 2021-12-10 | 2023-06-15 | Stora Enso Oyj | Method for producing a granular carbon-silicon composite from a lignin-silicon composite |
SE545990C2 (en) * | 2021-12-10 | 2024-04-02 | Stora Enso Oyj | Method for producing a granular carbon-silicon composite from a lignin-silicon composite |
CN114447294A (en) * | 2021-12-28 | 2022-05-06 | 长沙矿冶研究院有限责任公司 | Silicon-carbon composite negative electrode material with high compact structure and preparation method thereof |
CN114447294B (en) * | 2021-12-28 | 2024-03-22 | 长沙矿冶研究院有限责任公司 | Silicon-carbon composite negative electrode material with high compact structure and preparation method thereof |
CN114824230A (en) * | 2022-05-27 | 2022-07-29 | 山东海科创新研究院有限公司 | Silicon-carbon graphene composite material, preparation method thereof and lithium ion battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108123111A (en) | A kind of lithium ion battery silicon substrate composite negative pole material, its preparation method and the negative electrode of lithium ion battery comprising the material | |
CN106784640B (en) | Silicon-based composite negative electrode material for lithium ion battery, preparation method of silicon-based composite negative electrode material and lithium ion battery negative electrode containing silicon-based composite negative electrode material | |
CN107785560B (en) | A kind of high-performance silicon carbon anode material and preparation method thereof | |
CN106025221B (en) | A kind of preparation method of silicon/carbon graphite composite negative pole material | |
CN113226986B (en) | Preparation method of lithium secondary battery negative electrode active material | |
CN103050666B (en) | Preparation method of silicon and carbon-coated graphene composite cathode material | |
CN109686952B (en) | Silicon-carbon negative electrode material and coating preparation method | |
EP4095948A1 (en) | Multi-element composite negative electrode material and preparation method therefor, negative electrode material of lithium-ion battery, and lithium-ion battery | |
CN111224078A (en) | Silicon-based composite negative electrode material, preparation method thereof and lithium ion battery negative electrode | |
CN106848264A (en) | A kind of porous silicon oxide lithium ion battery negative material and preparation method thereof | |
CN106711461A (en) | Spherical porous silicon/carbon composite material as well as preparation method and application thereof | |
CN101800304B (en) | Different-orientation spherical natural graphite negative electrode material and preparation method thereof | |
CN106384825A (en) | Silicon carbon composite microsphere, and preparation method and application thereof | |
CN104466141A (en) | Preparation method of Si / graphite / C composite material for lithium ion battery | |
CN106410158A (en) | Graphene modified silicon monoxide and carbon composite microsphere, and preparation method and application thereof | |
CN106025222A (en) | Preparation method for coated silicon/carbon/graphite composite negative electrode material | |
CN104466142A (en) | Silicon/silicon oxycarbide/graphite composite negative electrode material | |
CN113206249B (en) | Lithium battery silicon-oxygen composite anode material with good electrochemical performance and preparation method thereof | |
CN106784833A (en) | Silicon-carbon cathode material and preparation method thereof | |
CN102263245A (en) | Preparation method of spherical porous lithium ion battery composite negative electrode material | |
CN102694156A (en) | A kind of silicon-carbon composite negative electrode material and preparation method thereof and lithium ion battery using metal foam as negative electrode current collector | |
CN111653739B (en) | Method for preparing high-cycle-performance SiO negative electrode material of lithium battery | |
CN105609743A (en) | Preparation method for SiO<x>-C-CNT composite material of lithium-ion battery negative electrode | |
CN108321438B (en) | Full-graphite lithium-sulfur battery and preparation method thereof | |
CN102569726A (en) | Method for preparing lithium ion battery anode material coated with metal ions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180605 |
|
RJ01 | Rejection of invention patent application after publication |