WO2019019410A1 - Modified lithium-free anode, method for preparing same, and lithium-ion battery comprising same - Google Patents

Modified lithium-free anode, method for preparing same, and lithium-ion battery comprising same Download PDF

Info

Publication number
WO2019019410A1
WO2019019410A1 PCT/CN2017/105674 CN2017105674W WO2019019410A1 WO 2019019410 A1 WO2019019410 A1 WO 2019019410A1 CN 2017105674 W CN2017105674 W CN 2017105674W WO 2019019410 A1 WO2019019410 A1 WO 2019019410A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
negative electrode
free
modified
metal
Prior art date
Application number
PCT/CN2017/105674
Other languages
French (fr)
Chinese (zh)
Inventor
陈鹏
陈立桅
卢威
沈炎宾
王亚龙
郭峰
康拓
刘承浩
Original Assignee
中能中科(天津)新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中能中科(天津)新能源科技有限公司 filed Critical 中能中科(天津)新能源科技有限公司
Publication of WO2019019410A1 publication Critical patent/WO2019019410A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Example 2 is a graph showing the first discharge-charge curve of a graphite negative electrode using lithium metal-skeletal carbon composite material in Example 1.
  • Fig. 6 is a capacity retention curve of the battery obtained in Example 3.
  • the carbon nanotube microspheres can be prepared by dispersing carbon nanotubes in a solvent to form a dispersion, followed by spray drying.
  • the preparation method may include the following steps:
  • Another aspect of the present invention provides a method for improving the first cycle efficiency of a lithium-ion-free negative electrode of a lithium ion battery, the method comprising combining a metal lithium-skeletal carbon composite material in a lithium-free negative electrode material, the metal lithium-skeletal carbon composite The content of the material is from 2% to 20% by mass based on the mass of the negative active material.
  • the 2.2-5.1 process was carried out in an argon-filled glove box with a water oxygen content of no more than 10 ppm.

Abstract

Disclosed are a modified lithium-free anode, a method for preparing same, and a lithium-ion battery comprising same. In addition to a lithium-free anode material, the modified lithium-free anode further comprises a lithium metal-carbon skeleton composite material; the content of the lithium metal-carbon skeleton composite material accounts for 2-20% of the mass of the anode active material in mass percentage. In the first charging and discharging process of the battery, lithium metal in the lithium metal-carbon skeleton composite material can supplement lithium consumed for forming a SEI layer on the surface of the lithium-free anode. Therefore, the first charging and discharging efficiency of the lithium-free anode is improved.

Description

改性无锂负极、其制备方法和含有其的锂离子电池Modified lithium-free anode, preparation method thereof and lithium ion battery containing same 技术领域Technical field
本发明涉及一种纳米材料技术领域,特别涉及一种改性无锂负极、其制备方法和含有其的锂离子电池。The invention relates to the technical field of nano materials, in particular to a modified lithium-free anode, a preparation method thereof and a lithium ion battery containing the same.
背景技术Background technique
锂电池具有高能量密度,良好的循环稳定性、安全性等特点,已经在便携电子设备,电动汽车和电网储能中得到了广泛的应用。石墨为六元碳环组成的网状结构层层堆叠形成的层状结构,该层状结构有利于锂离子在其层间的脱嵌,充电时锂离子嵌入到层间,形成化合物LiC6,其理论比容量为372mAh/g。除此之外,锂在石墨中的脱嵌反应在0-0.25V左右,具有良好的充放电平台,可与提供锂源的正极材料,如钴酸锂、锰酸锂、镍酸锂等相匹配,组成的电池平均输出电压高,它是目前商业锂离子电池应用最多的负极材料。Lithium batteries have high energy density, good cycle stability and safety, and have been widely used in portable electronic devices, electric vehicles and power storage. Graphite is a layered structure formed by stacking network layers composed of six-membered carbon rings. This layered structure facilitates the deintercalation of lithium ions between layers. Lithium ions are intercalated between layers during charging to form compound LiC 6 . Its theoretical specific capacity is 372 mAh/g. In addition, the deintercalation reaction of lithium in graphite is about 0-0.25V, which has a good charge and discharge platform, and can be used with a positive electrode material that provides a lithium source, such as lithium cobaltate, lithium manganate, lithium nickelate, etc. Matching, the assembled battery has a high average output voltage, and it is the most used anode material for commercial lithium-ion batteries.
然而,由于石墨电极在首次嵌锂的过程中表面会形成一层固体电解质界面膜(SEI膜),形成这层SEI膜需要的锂来源于正极材料,且形成SEI膜的反应为不可逆反应,因此充电时从正极得到的锂离子并不能在放电时全部回到正极之中,造成了电池活性物质的损失以及首次仅80%的效率。为完全发挥出电池容量,全电池的正极材料通常需要过量,然而由于正极材料价格较高,正极材料过量的方法并非解决问题的完美方法。However, since the graphite electrode forms a solid electrolyte interface film (SEI film) on the surface during the first lithium intercalation process, the lithium required to form the SEI film is derived from the positive electrode material, and the reaction forming the SEI film is an irreversible reaction. The lithium ions obtained from the positive electrode during charging cannot be returned to the positive electrode at the time of discharge, resulting in loss of the battery active material and efficiency of only 80% for the first time. In order to fully exert the battery capacity, the positive electrode material of the whole battery usually needs an excessive amount. However, since the price of the positive electrode material is high, the method of excess of the positive electrode material is not a perfect method for solving the problem.
日本专利JP9-330703报导了一种石墨-碳素复合石墨负极的制备方法,该方法将有机物溶解在有机试剂中,再与微晶石墨粉混合后蒸发烘干溶剂,得到有机物包覆石墨微晶材料,再将该材料在惰性气氛下以700℃-900℃烧结,使得表面的包覆层碳化,得到石墨-碳素复合材料。尽管该种材料作为负极的首次循环效率有所提高,但该材料初期放电比容量仅有240mAh/g,此外该制备方法较为复杂,生产成本较高,不利于大规模产业化。此外,中国专利200710072974.0报道了通过沥青包覆石墨粉体再碳化的工艺制备了一种表面改性的石墨,使得该材料的首次循环效率有所提高。然而,该法制备的改性石墨需要在惰性气体的保护下,以800℃-1000℃的高温进行烧结,因此对生产设备的要求较高,能耗较大。此外,该种对石墨改性的方法对于石墨负极的首效率提高有限,最高仅为93.53%。因此在首次循环效率的提升方面还有巨大的提升空间。 Japanese Patent JP9-330703 reports a preparation method of a graphite-carbon composite graphite anode, which dissolves organic matter in an organic reagent, and then mixes with the microcrystalline graphite powder, evaporates and evaporates the solvent to obtain an organic coated graphite microcrystal. The material is then sintered at 700 ° C to 900 ° C under an inert atmosphere to carbonize the surface coating to obtain a graphite-carbon composite. Although the first cycle efficiency of the material as the negative electrode is improved, the initial discharge specific capacity of the material is only 240 mAh/g, and the preparation method is complicated and the production cost is high, which is not conducive to large-scale industrialization. In addition, Chinese patent 200710072974.0 reports that a surface-modified graphite is prepared by a process of re-carbonization of asphalt-coated graphite powder, so that the first cycle efficiency of the material is improved. However, the modified graphite prepared by the method needs to be sintered at a high temperature of 800 ° C to 1000 ° C under the protection of an inert gas, so that the requirements for the production equipment are high and the energy consumption is large. In addition, the method for the modification of graphite has a limited improvement in the first efficiency of the graphite anode, and the maximum is only 93.53%. Therefore, there is still a huge room for improvement in the efficiency of the first cycle.
发明内容Summary of the invention
本发明的主要目的之一在于提供一种改性无锂负极、其制备方法和含有其的锂离子电池,可以用于提高锂离子电池无锂负极的首次循环效率。One of the main objects of the present invention is to provide a modified lithium-free negative electrode, a preparation method thereof and a lithium ion battery containing the same, which can be used for improving the first cycle efficiency of a lithium-ion negative electrode of a lithium ion battery.
本发明采用了如下技术方案:The invention adopts the following technical solutions:
在一些实施例中提供一种锂离子电池的改性无锂负极,其中所述改性无锂负极除了无锂负极材料外,还含有金属锂-骨架碳复合材料,所述金属锂-骨架碳复合材料的含量以质量百分比计为无锂负极活性材料的2%-20%。In some embodiments, a modified lithium-free negative electrode of a lithium ion battery is provided, wherein the modified lithium-free negative electrode further comprises a metal lithium-skeletal carbon composite material in addition to the lithium-free negative electrode material, the metallic lithium-skeletal carbon The content of the composite material is 2% to 20% by mass of the lithium-free negative electrode active material.
在一些实施例中提供一种制备锂离子电池的改性无锂负极的方法,所述方法包括:将含有无锂负极材料和金属锂-骨架碳复合材料的混合物的负极材料浆料涂覆于金属集流体上,形成负极极片;或者将金属锂-骨架碳复合材料分散在涂布好的无锂负极极片上并以压力复合方式复合于无锂负极极片。In some embodiments, a method of preparing a modified lithium-free negative electrode of a lithium ion battery is provided, the method comprising: applying a negative electrode material slurry containing a mixture of a lithium-free negative electrode material and a metal lithium-skeletal carbon composite material to On the metal current collector, a negative electrode tab is formed; or the metal lithium-skeletal carbon composite material is dispersed on the coated lithium-free negative electrode tab and is composited in a pressure composite manner to the lithium-free negative electrode tab.
在一些实施例中提供一种锂离子电池,所述锂离子电池包含上述的改性无锂负极。In some embodiments, a lithium ion battery is provided, the lithium ion battery comprising the modified lithium-free negative electrode described above.
在一些实施例中提供一种提高锂离子电池无锂负极的首次循环效率的方法,所述方法包括在无锂负极材料中结合金属锂-骨架碳复合材料,所述金属锂-骨架碳复合材料的含量以质量百分比计为负极材料总质量的2%-20%。In some embodiments, a method of increasing the first cycle efficiency of a lithium-ion negative electrode of a lithium ion battery is provided, the method comprising incorporating a metal lithium-skeletal carbon composite material in a lithium-free negative electrode material, the metal lithium-skeletal carbon composite material The content is from 2% to 20% by mass based on the total mass of the negative electrode material.
本发明可以具有以下有益效果中的至少一种:The invention may have at least one of the following beneficial effects:
(1)通过在无锂负极材料中掺入金属锂-骨架碳复合材料,在电池首次的充放电过程中金属锂-骨架碳材料中的金属锂能够补充在无锂负极表面形成SEI层所消耗的锂,从而提高无锂负极的首次充放电效率,使其接近100%。(1) By incorporating a lithium metal-skeletal carbon composite material into the lithium-free anode material, the metal lithium in the metal lithium-skeletal carbon material can be supplemented by the formation of the SEI layer on the surface of the lithium-free anode during the first charge and discharge of the battery. Lithium improves the first charge and discharge efficiency of the lithium-free anode, making it close to 100%.
(2)改性无锂负极可以提高电池的循环稳定性。(2) The modified lithium-free negative electrode can improve the cycle stability of the battery.
(3)本发明的改性无锂负极制备工艺简便,能耗低,大大降低了生产成本。(3) The modified lithium-free anode of the invention has simple preparation process, low energy consumption, and greatly reduces production cost.
(4)本发明对生产设配要求低,适合工业化生产。(4) The invention has low requirements on production and is suitable for industrial production.
附图说明DRAWINGS
图1为实施例1中石墨负极的首次放电-充电曲线图。1 is a graph showing the first discharge-charge graph of the graphite negative electrode in Example 1.
图2为实施例1中采用金属锂-骨架碳复合材料补锂的石墨负极首次放电-充电曲线图。2 is a graph showing the first discharge-charge curve of a graphite negative electrode using lithium metal-skeletal carbon composite material in Example 1.
图3为实施例1中石墨负极和采用金属锂-骨架碳复合材料补锂的石墨负极的充放电循环曲线图。 3 is a graph showing charge and discharge cycles of a graphite negative electrode and a graphite negative electrode supplemented with lithium using a metal lithium-skeletal carbon composite material in Example 1. FIG.
图4为实施例2中硅负极和采用金属锂-骨架碳复合材料补锂的硅负极的首次放电-充电曲线图。4 is a first discharge-charge graph of a silicon negative electrode and a silicon negative electrode supplemented with lithium using a metal lithium-skeletal carbon composite material in Example 2. FIG.
图5为实施例3中获得的补锂石墨负极首次放电-充电曲线图。Fig. 5 is a graph showing the first discharge-charge curve of the lithium-filled graphite negative electrode obtained in Example 3.
图6为实施例3中获得的电池的容量保持曲线。Fig. 6 is a capacity retention curve of the battery obtained in Example 3.
具体实施方式Detailed ways
本发明的一个方面提供一种锂离子电池的改性无锂负极,该改性无锂负极的负极材料中除了无锂负极材料外,还含有金属锂-骨架碳复合材料。One aspect of the present invention provides a modified lithium-free negative electrode of a lithium ion battery, which further comprises a metal lithium-skeletal carbon composite material in addition to the lithium-free negative electrode material.
在一些实施例中,所述金属锂-骨架碳复合材料含量为无锂负极活性材料的质量百分比2%-20%,例如,3%-20%,或者5%-20%,或者5%-15%。In some embodiments, the metal lithium-skeletal carbon composite content is from 2% to 20% by mass of the lithium-free negative active material, for example, 3%-20%, or 5%-20%, or 5%- 15%.
在一些实施例中,所述金属锂-骨架碳复合材料包含多孔碳材料载体和存在于所述多孔碳材料载体孔隙中和表面上的金属锂。金属锂在金属锂-骨架碳复合材料中的质量百分比含量可以为10%-95%,或者20%-70%,或者30%-70%,或者40%-70%。In some embodiments, the metallic lithium-skeletal carbon composite comprises a porous carbon material support and metallic lithium present in and on the pores of the porous carbon material support. The mass percentage of metallic lithium in the metallic lithium-skeletal carbon composite may range from 10% to 95%, or from 20% to 70%, or from 30% to 70%, or from 40% to 70%.
在一些实施例中,所述多孔碳材料包括碳纤维微球、多孔碳纳米管微球和乙炔黑至少一种。碳纤维微球和多孔碳纳米管微球由碳纳米管或碳纳米纤维相互交缠团聚而形成,内部和表面上具有大量纳米尺度孔隙。这样的微球具有近似实心的结构(类似毛线团结构),即微球内部充满碳纳米管或碳纳米纤维,但是交缠团聚的碳纳米管或碳纳米纤维之间存在纳米尺度孔隙,这些孔隙可以用于容纳纳米碳颗粒和金属锂颗粒。乙炔黑是通过乙炔气在高温下隔绝空气进行热裂解后,冷却收集制得的炭黑,粒径可以为40-50纳米。In some embodiments, the porous carbon material comprises at least one of carbon fiber microspheres, porous carbon nanotube microspheres, and acetylene black. The carbon fiber microspheres and the porous carbon nanotube microspheres are formed by intertwining a carbon nanotube or a carbon nanofiber with a large amount of nanometer-scale pores on the inside and on the surface. Such microspheres have an approximately solid structure (like a wool-like structure), that is, the inside of the microspheres is filled with carbon nanotubes or carbon nanofibers, but nano-scale pores exist between the entangled agglomerated carbon nanotubes or carbon nanofibers, and these pores It can be used to hold nano carbon particles and metallic lithium particles. Acetylene black is a carbon black obtained by cooling and collecting carbon dioxide by acetylene gas at a high temperature to isolate the air, and the particle diameter may be 40-50 nm.
在一些实施例中,所述碳纳米管微球为球形或类球状颗粒,平均直径可以为1μm~100μm,优选为1μm~25μm;比表面积可以为100~1500m2/g,优选为150~500m2/g;微球内所含孔隙的孔径分布可以为1~200nm,优选为1~50nm。In some embodiments, the carbon nanotube microspheres are spherical or spheroidal particles, and may have an average diameter of 1 μm to 100 μm, preferably 1 μm to 25 μm; and a specific surface area of 100 to 1500 m 2 /g, preferably 150 to 500 m. 2 / g; the pore size distribution of the pores contained in the microspheres may be from 1 to 200 nm, preferably from 1 to 50 nm.
在一些实施例中,所述碳纳米管微球至少具有微小球状实体聚集结构、球形聚集结构、类球形聚集结构、多孔球形聚集结构和面包圈形聚集结构中的任意一种。In some embodiments, the carbon nanotube microspheres have at least any one of a microscopic spherical solid aggregate structure, a spherical aggregate structure, a spheroidal aggregate structure, a porous spherical aggregate structure, and a doughnut-shaped aggregate structure.
在一些实施例中,所述碳纳米管包括多壁碳纳米管、双壁碳纳米管和单壁碳纳米管中的任意一种或两种以上的组合,所述碳纳米管任选经过表面功能化处理。修饰于碳纳米管表面的基团可选自但不限于-COOH、-OH、-NH2等基团。 In some embodiments, the carbon nanotubes include any one or a combination of two or more of multi-walled carbon nanotubes, double-walled carbon nanotubes, and single-walled carbon nanotubes, optionally passing through a surface. Functional processing. The group modified on the surface of the carbon nanotube may be selected from, but not limited to, a group such as -COOH, -OH, -NH 2 or the like.
在一些实施例中,所述碳纳米管微球可以通过将碳纳米管分散于溶剂中形成分散液,然后喷雾干燥而制备。例如,制备方法可以包括以下步骤:In some embodiments, the carbon nanotube microspheres can be prepared by dispersing carbon nanotubes in a solvent to form a dispersion, followed by spray drying. For example, the preparation method may include the following steps:
A、将碳纳米管通过超声处理分散到分散溶剂(不含表面活性剂)中,获得分散液;A, the carbon nanotubes are dispersed by ultrasonic treatment into a dispersion solvent (without a surfactant) to obtain a dispersion;
B、将步骤A中获得的分散液通过喷雾干燥机的喷嘴喷出,预设定进风温度和出风温度,喷雾过程中保持溶液为搅拌状态;B. The dispersion obtained in the step A is sprayed through the nozzle of the spray dryer, and the inlet air temperature and the outlet air temperature are preset, and the solution is kept in a stirring state during the spraying process;
C、冷却,即获得碳纳米管微球。C. Cooling, that is, obtaining carbon nanotube microspheres.
在一些实施例中,所述溶剂采用能够使碳纳米管/碳纳米纤维和纳米碳颗粒均匀分散的有机和/或无机液体,例如,水、氨水、盐酸溶液、乙醇、丙酮、异丙醇的任意一种或多种的组合。In some embodiments, the solvent employs an organic and/or inorganic liquid capable of uniformly dispersing carbon nanotubes/carbon nanofibers and nanocarbon particles, for example, water, ammonia, hydrochloric acid solution, ethanol, acetone, isopropanol. Any combination of one or more.
在一些实施例中,所述溶剂可以是体积比为1:10的乙醇与水的混合物。In some embodiments, the solvent may be a mixture of ethanol and water in a volume ratio of 1:10.
在一些实施例中,喷雾干燥的条件可以包括:进风温度为150~250℃,出风温度为75℃以上,如75~150℃,或者为90℃以上;一个优选的喷雾干燥条件包括:进风温度为190~210℃,出风温度为90~110℃。In some embodiments, the conditions of spray drying may include: an inlet air temperature of 150 to 250 ° C, an outlet air temperature of 75 ° C or higher, such as 75 to 150 ° C, or 90 ° C or higher; a preferred spray drying condition includes: The inlet air temperature is 190 to 210 ° C, and the outlet air temperature is 90 to 110 ° C.
在一些实施例中,喷雾干燥时的喷雾速度可以为1毫升/分钟至100升/分钟。In some embodiments, the spray rate at spray drying can range from 1 milliliter per minute to 100 liters per minute.
在一些实施例中,金属锂-骨架碳复合材料可以通过将熔融金属锂与多孔骨架碳材料混合,冷却后获得。所述混合可以包括将金属锂与多孔骨架碳材料在加热下(例如约200℃)搅拌混合或者将多孔骨架碳材料浸入熔融金属锂中。金属锂-骨架碳复合材料的制备在惰性气氛中进行,例如在氩气气氛的手套箱中(水含量<10ppm,氧气含量<10ppm)。In some embodiments, the metallic lithium-skeletal carbon composite may be obtained by mixing molten metal with a porous framework carbon material and cooling. The mixing may include stirring and mixing the metallic lithium with the porous framework carbon material under heating (for example, about 200 ° C) or immersing the porous skeleton carbon material in the molten metallic lithium. The preparation of the metallic lithium-skeletal carbon composite is carried out in an inert atmosphere, for example in a glove box under argon atmosphere (water content < 10 ppm, oxygen content < 10 ppm).
在一些实施例中,所述无锂负极材料选自石墨、硅、和钛酸锂中的至少一种。In some embodiments, the lithium-free anode material is selected from at least one of graphite, silicon, and lithium titanate.
在一些实施例中,所述石墨包括纯石墨、修饰的石墨以及锂离子电池专用负极石墨粉。修饰的石墨可以包括表面氧化还原、掺杂其他元素或含有包覆层的石墨。In some embodiments, the graphite comprises pure graphite, modified graphite, and negative graphite powder for lithium ion batteries. The modified graphite may include surface redox, doped other elements, or graphite containing a coating.
在一些实施例中,所述硅包括纯硅、修饰的硅。修饰的硅可以包括表面氧化还原、掺杂其他元素、或含有包覆层的硅。硅颗粒的直径可以是纳米级或者微米级。In some embodiments, the silicon comprises pure silicon, modified silicon. The modified silicon may include surface redox, doped other elements, or silicon containing a cladding layer. The diameter of the silicon particles can be on the order of nanometers or micrometers.
在一些实施例中,所述钛酸锂包括纯钛酸锂、修饰的钛酸锂。修饰的钛酸锂可以包括表面氧化还原、掺杂其他元素、或含有包覆层的钛酸锂。碳酸锂的直径可以是纳米级或者微米级。In some embodiments, the lithium titanate comprises pure lithium titanate, a modified lithium titanate. The modified lithium titanate may include surface redox, doped other elements, or lithium titanate containing a coating. The diameter of lithium carbonate can be on the order of nanometers or micrometers.
在一些实施例中,所述金属锂-骨架碳复合材料与所述无锂负极材料的质量比为1:12至1:6。在此质量比范围内,金属锂-骨架碳复合材料中的金属锂能够在电池首次充放电过程中充分补充在负极表面形成SEI层所消耗的锂,而且在成本上是合适的。In some embodiments, the mass ratio of the metallic lithium-skeletal carbon composite to the lithium-free negative electrode material is from 1:12 to 1:6. Within this mass ratio range, the metallic lithium in the metallic lithium-skeletal carbon composite can sufficiently replenish the lithium consumed in forming the SEI layer on the surface of the negative electrode during the first charge and discharge of the battery, and is suitable in terms of cost.
在一些实施例中,所述负极材料还包含粘结剂。所述粘结剂用于使金属锂-骨架碳复合材料与无锂负极材料以及它们与基材如金属集流体之间稳定结合。In some embodiments, the negative electrode material further comprises a binder. The binder is used to stably bond the metal lithium-skeletal carbon composite material to the lithium-free anode material and their substrate to a substrate such as a metal current collector.
在一些实施例中,所述粘结剂包括聚苯乙烯、丁苯橡胶、聚偏氟乙烯中的至少一种。 In some embodiments, the binder comprises at least one of polystyrene, styrene butadiene rubber, and polyvinylidene fluoride.
在一些实施例中,所述负极材料可以包括导电剂,亦可以不包括导电剂,所述导电剂为乙炔黑、Super P中至少一种。In some embodiments, the anode material may or may not include a conductive agent, and the conductive agent is at least one of acetylene black and Super P.
在一些实施例中,所述改性无锂负极极片还包括金属集流体,所述负极材料负载于所述金属集流体上。In some embodiments, the modified lithium-free negative electrode tab further includes a metal current collector supported on the metal current collector.
在一些实施例中,所述金属集流体包括铜箔。铜箔的厚度可以为约9μm(+/-3μm)。In some embodiments, the metal current collector comprises a copper foil. The thickness of the copper foil may be about 9 μm (+/- 3 μm).
本发明的另一个方面提供一种制备锂离子电池的改性无锂负极的方法,所述方法包括:将含有无锂负极材料和金属锂-骨架碳复合材料的混合物的负极材料浆料涂覆于金属集流体上,形成负极极片。Another aspect of the present invention provides a method of preparing a modified lithium-free negative electrode of a lithium ion battery, the method comprising: coating a negative electrode material slurry containing a mixture of a lithium-free negative electrode material and a metal lithium-skeletal carbon composite material On the metal current collector, a negative electrode tab is formed.
在一些实施例中,所述负极材料浆料包含无锂负极材料、金属锂-骨架碳复合材料、粘结剂、分散剂和任选的导电剂。In some embodiments, the anode material slurry comprises a lithium-free anode material, a metal lithium-skeletal carbon composite, a binder, a dispersant, and an optional conductive agent.
在一些实施例中,所述分散剂选自对二甲苯、四氢呋喃、N-甲基吡咯烷酮中的至少一种。In some embodiments, the dispersing agent is selected from at least one of p-xylene, tetrahydrofuran, and N-methylpyrrolidone.
关于“无锂负极材料”、“金属锂-骨架碳复合材料”、“粘结剂”和“导电剂”以及它们的用量,参见上述的相关描述。Regarding "no lithium negative electrode material", "metal lithium-skeletal carbon composite material", "binder" and "conductive agent" and their amounts, refer to the related description above.
在一些实施例中,制备改性的锂离子电池无锂负极的方法可以包括以下具体步骤:In some embodiments, the method of preparing a lithium-ion negative electrode of a modified lithium ion battery may include the following specific steps:
1.涂布制备方法1. Coating preparation method
(1)将无锂负极材料、金属锂-骨架碳复合材料、粘结剂和分散剂混合(混合可以在搅拌下进行,搅拌速度可以为200-300转/分钟,时间可以为10小时以上),形成负极材料浆料;(1) Mixing a lithium-free anode material, a metal lithium-skeletal carbon composite material, a binder, and a dispersing agent (mixing can be carried out under stirring, the stirring speed can be 200-300 rpm, and the time can be 10 hours or more) Forming a slurry of the negative electrode material;
(2)将步骤(1)制备的负极材料浆料涂覆(涂覆方式可以包括刮涂、旋涂、喷涂等,涂层厚度可以为100-1000微米,例如约500微米)在金属集流体,例如铜箔上;(2) coating the negative electrode material slurry prepared in the step (1) (the coating method may include blade coating, spin coating, spray coating, etc., the coating thickness may be 100-1000 micrometers, for example, about 500 micrometers) in the metal current collector. , for example on copper foil;
(3)干燥步骤(2)所得的涂有负极材料浆料的金属集流体,形成负极极片。(3) A metal current collector coated with a slurry of a negative electrode material obtained in the drying step (2) to form a negative electrode tab.
2.压力复合方法2. Pressure composite method
(1)将金属锂-骨架碳复合材料分散在已涂布好的无锂负极极片上。(1) Dispersing a metallic lithium-skeletal carbon composite material on a coated lithium-free negative electrode tab.
(2)施加压力使得金属锂-骨架碳复合材料压力复合于无锂负极极片。(2) Applying pressure causes the metal lithium-skeletal carbon composite to be pressure-compressed to the lithium-free negative electrode tab.
在一些实施例中,压力复合通过辊压机或者静压机进行,压力范围可以为10MPa-100MPa。In some embodiments, the pressure compounding is carried out by a roller press or a static press, and the pressure may range from 10 MPa to 100 MPa.
在一些实施例中,单位面积分散的锂碳复合材料的含量为极片中单位面积石墨含量的2%-20%。 In some embodiments, the amount of lithium carbon composite material dispersed per unit area is from 2% to 20% of the graphite content per unit area in the pole piece.
本发明的另一个方面提供一种锂离子电池,其包含上述的改性无锂负极。Another aspect of the invention provides a lithium ion battery comprising the modified lithium-free negative electrode described above.
在一些实施例中,所述锂电池包括一次、二次锂电池。In some embodiments, the lithium battery includes primary and secondary lithium batteries.
本发明的另一个方面提供一种提高锂离子电池无锂负极的首次循环效率的方法,所述方法包括在无锂负极材料中结合金属锂-骨架碳复合材料,所述金属锂-骨架碳复合材料的含量以质量百分比计为负极活性材料质量的2%-20%。Another aspect of the present invention provides a method for improving the first cycle efficiency of a lithium-ion-free negative electrode of a lithium ion battery, the method comprising combining a metal lithium-skeletal carbon composite material in a lithium-free negative electrode material, the metal lithium-skeletal carbon composite The content of the material is from 2% to 20% by mass based on the mass of the negative active material.
关于“无锂负极材料”和“金属锂-骨架碳复合材料”,参见上述的相关描述。For the "lithium-free anode material" and "metal lithium-skeletal carbon composite material", refer to the relevant description above.
下列具体实施方式意在示例性地而非限定性地说明本公开。The following detailed description is intended to be illustrative, and not restrictive.
具体实施方式1是一种锂离子电池的改性无锂负极,其中所述改性无锂负极除了无锂负极材料外,还含有金属锂-骨架碳复合材料,所述金属锂-骨架碳复合材料的含量以质量百分比计为负极活性材料质量的2%-20%。1 is a modified lithium-free negative electrode of a lithium ion battery, wherein the modified lithium-free negative electrode further comprises a metal lithium-skeletal carbon composite material in addition to a lithium-free negative electrode material, and the metal lithium-skeletal carbon composite The content of the material is from 2% to 20% by mass based on the mass of the negative active material.
具体实施方式2是根据具体实施方式1所述的改性无锂负极,其中所述金属锂-骨架碳复合材料包含多孔碳材料载体和存在于所述多孔碳材料载体孔隙中和表面上的金属锂。Embodiment 2 is the modified lithium-free anode according to Embodiment 1, wherein the metal lithium-skeletal carbon composite material comprises a porous carbon material carrier and a metal present in the pores and surfaces of the porous carbon material carrier lithium.
具体实施方式3是根据具体实施方式1或2所述的改性无锂负极,其中所述金属锂-骨架碳复合材料中金属锂的含量以质量百分比计为10%-95%。The third embodiment is the modified lithium-free anode according to the embodiment 1 or 2, wherein the content of the metal lithium in the metal lithium-skeletal carbon composite is 10% to 95% by mass.
具体实施方式4是根据具体实施方式2或3所述的改性无锂负极,其中所述多孔碳材料包括碳纤维微球、多孔碳纳米管微球和乙炔黑中的至少一种。The modified lithium-free anode according to the embodiment 2 or 3, wherein the porous carbon material comprises at least one of carbon fiber microspheres, porous carbon nanotube microspheres, and acetylene black.
具体实施方式5是根据具体实施方式4所述的改性无锂负极,其中所述多孔碳纳米管微球是由碳纳米管相互交缠团聚而形成的、内部和表面上具有纳米尺度孔隙的微球,微球粒径为1-100微米。The fifth embodiment is the modified lithium-free anode according to the fourth embodiment, wherein the porous carbon nanotube microspheres are formed by intertwining and agglomerating carbon nanotubes, and having nanometer-scale pores on the inner surface and the surface. Microspheres, microspheres having a particle size of 1-100 microns.
具体实施方式6是根据具体实施方式5所述的改性无锂负极,其中所述碳纳米管微球的比表面积为100~1500m2/g;The modified lithium-free anode according to the embodiment 5, wherein the carbon nanotube microspheres have a specific surface area of 100 to 1500 m 2 /g;
和/或,所述碳纳米管微球所含孔隙的孔径为1~200nm;And/or, the pores of the carbon nanotube microspheres have a pore diameter of 1 to 200 nm;
和/或,所述碳纳米管微球至少具有微小球状实体聚集结构、球形聚集结构、类球形聚集结构、多孔球形聚集结构和面包圈形聚集结构中的任意一种;And/or, the carbon nanotube microspheres have at least one of a microscopic spherical solid aggregate structure, a spherical aggregate structure, a spherical aggregate structure, a porous spherical aggregate structure, and a doughnut aggregate structure;
和/或,所述碳纳米管包括多壁碳纳米管、双壁碳纳米管和单壁碳纳米管中的任意一种或两种以上的组合,所述碳纳米管任选经过表面功能化处理。 And/or, the carbon nanotubes include any one or a combination of two or more of multi-walled carbon nanotubes, double-walled carbon nanotubes, and single-walled carbon nanotubes, optionally subjected to surface functionalization deal with.
具体实施方式7是根据具体实施方式1-6中任一项所述的改性无锂负极,其中所述无锂负极活性材料选自石墨、硅和钛酸锂中的至少一种。The modified lithium-free anode according to any one of the embodiments 1 to 6, wherein the lithium-free anode active material is at least one selected from the group consisting of graphite, silicon, and lithium titanate.
具体实施方式8是根据具体实施方式7所述的改性无锂负极,其中所述石墨包括纯石墨或者修饰的石墨。 Embodiment 8 is the modified lithium-free negative electrode according to Embodiment 7, wherein the graphite comprises pure graphite or modified graphite.
具体实施方式9是根据具体实施方式7所述的改性无锂负极,其中所述修饰的石墨包括表面氧化还原、掺杂其他元素或含有包覆层的石墨。Embodiment 9 is the modified lithium-free negative electrode according to Embodiment 7, wherein the modified graphite comprises surface redox, doped other elements or graphite containing a coating layer.
具体实施方式10是根据具体实施方式7-9中任一项所述的改性无锂负极,其中所述金属锂-骨架碳复合材料与无锂负极材料的质量比为1:12至1:6。The modified lithium-free anode according to any one of the embodiments 7-9, wherein the mass ratio of the metal lithium-skeletal carbon composite material to the lithium-free anode material is 1:12 to 1: 6.
具体实施方式11是根据具体实施方式1-10中任一项所述的改性无锂负极,其中所述负极材料还包含粘结剂。The modified lithium-free negative electrode according to any one of the embodiments 1 to 10, wherein the negative electrode material further comprises a binder.
具体实施方式12是根据具体实施方式11所述的改性无锂负极,其中所述粘结剂包括聚苯乙烯、丁苯橡胶、聚偏氟乙烯中的至少一种。 Embodiment 12 is the modified lithium-free negative electrode according to Embodiment 11, wherein the binder comprises at least one of polystyrene, styrene butadiene rubber, and polyvinylidene fluoride.
具体实施方式13是根据具体实施方式1-12中任一项所述的改性无锂负极,其中所述改性无锂负极还包括金属集流体,所述负极材料负载于所述金属集流体上。The modified lithium-free anode according to any one of the embodiments 1-12, wherein the modified lithium-free anode further comprises a metal current collector, the anode material being supported on the metal current collector on.
具体实施方式14是根据具体实施方式13所述的改性无锂负极,其中所述金属集流体包括铜箔。Embodiment 14 is the modified lithium-free negative electrode according to embodiment 13, wherein the metal current collector comprises a copper foil.
具体实施方式15是一种制备具体实施方式1-14中任一项所述的改性无锂负极的方法,其中所述方法包括:15 is a method of preparing the modified lithium-free negative electrode according to any one of the embodiments 1-14, wherein the method comprises:
将含有无锂负极材料和金属锂-骨架碳复合材料的混合物的负极材料浆料涂覆于金属集流体上,形成负极极片;或者将金属锂-骨架碳复合材料分散在涂布好的无锂负极极片上并以压力复合方式复合于无锂负极极片。Coating a negative electrode material slurry containing a mixture of a lithium-free negative electrode material and a metal lithium-skeletal carbon composite material on a metal current collector to form a negative electrode tab; or dispersing the metal lithium-skeletal carbon composite material in a coated The lithium negative electrode pole piece is composited on the lithium-free negative electrode piece by pressure composite means.
具体实施方式16是根据具体实施方式15所述的方法,其中所述负极材料浆料包含无锂负极材料、金属锂-骨架碳复合材料、粘结剂、分散剂和任选的导电剂。The method of embodiment 15 wherein the anode material slurry comprises a lithium-free anode material, a metal lithium-skeletal carbon composite, a binder, a dispersant, and an optional conductive agent.
具体实施方式17是根据具体实施方式16所述的方法,其中所述分散剂选自对二甲苯、四氢呋喃、N-甲基吡咯烷酮中的至少一种。The method of embodiment 16 wherein the dispersing agent is selected from at least one of p-xylene, tetrahydrofuran, and N-methylpyrrolidone.
具体实施方式18是一种锂离子电池,其中所述锂离子电池包含具体实施方式1-14中任一项所述的改性无锂负极。 The embodiment 18 is a lithium ion battery, wherein the lithium ion battery comprises the modified lithium-free negative electrode according to any one of embodiments 1-14.
具体实施方式19是根据具体实施方式18所述的锂离子电池,其中所述锂电池包括一次锂电池、二次锂电池。A lithium ion battery according to embodiment 18, wherein the lithium battery comprises a primary lithium battery and a secondary lithium battery.
具体实施方式20是一种提高锂离子电池无锂负极的首次循环效率的方法,其中所述方法包括在无锂负极材料中结合金属锂-骨架碳复合材料,所述金属锂-骨架碳复合材料的含量以质量百分比计为负极活性材料质量的2%-20%。20 is a method for improving the first cycle efficiency of a lithium-ion negative electrode of a lithium ion battery, wherein the method comprises combining a metal lithium-skeletal carbon composite material in a lithium-free negative electrode material, the metal lithium-skeletal carbon composite material The content is from 2% to 20% by mass of the negative electrode active material.
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。The present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It is understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention. Further, the technical features involved in the various embodiments of the present invention described below may be combined with each other as long as they do not constitute a conflict with each other.
又及,在如下实施例之中所采用的各种产品结构参数、各种反应参与物及工艺条件均是较为典型的范例,但经过本案发明人大量试验验证,于上文所列出的其它不同结构参数、其它类型的反应参与物及其它工艺条件也均是适用的,并也均可达成本发明所声称的技术效果。In addition, the various product structural parameters, various reaction participants and process conditions used in the following examples are typical examples, but after extensive trial and verification by the inventors of the present invention, the other Different structural parameters, other types of reaction participants, and other process conditions are also applicable, and the claimed technical effects of the present invention can also be achieved.
实施例1Example 1
1.锂-碳骨架复合材料制备1. Preparation of lithium-carbon skeleton composite
首先将2g未经任何化学处理的多壁碳纳米管(上海鹏芯新材料科技有限公司)加入200mL去离子水,后加入20mL无水乙醇。密封搅拌,130W超声探头超声处理5小时,使样品均匀分散。完毕后将样品加入喷雾干燥机。进风温度设定为200℃,出风温度设定在150℃,喷雾压力设定为40MPa,进样量设定为500mL/h,干燥后即得到多孔碳纳米管微球材料。对微球进行氮气吸附脱附测试,微球比表面积为151m2/g,平均孔径为18.7nm。First, 2 g of multi-walled carbon nanotubes (Shanghai Pengxin New Material Technology Co., Ltd.) without any chemical treatment was added to 200 mL of deionized water, followed by 20 mL of absolute ethanol. Sealed and stirred, 130W ultrasonic probe was sonicated for 5 hours to evenly disperse the sample. When finished, add the sample to the spray dryer. The inlet air temperature was set to 200 ° C, the outlet air temperature was set to 150 ° C, the spray pressure was set to 40 MPa, and the injection amount was set to 500 mL / h. After drying, a porous carbon nanotube microsphere material was obtained. The microspheres were subjected to nitrogen adsorption desorption test, and the specific surface area of the microspheres was 151 m 2 /g, and the average pore diameter was 18.7 nm.
称取100mg电池级金属锂(天津中能锂业)和100mg多孔碳纳米管微球材料置于不锈钢加热器中,加热至220℃,搅拌,持续6分钟,混合结束,降温至室温。该过程在氩气保护的手套箱中进行(水氧含量不高于10ppm)。得到金属锂-多孔碳纳米管微球复合材料(锂-骨架碳复合材料一种)。所得金属锂-多孔碳纳米管微球复合材料比容量为1600mAh/g。100 mg of battery-grade metal lithium (Tianjin Zhongneng Lithium) and 100 mg of porous carbon nanotube microspheres were weighed into a stainless steel heater, heated to 220 ° C, stirred for 6 minutes, mixed, and cooled to room temperature. The process was carried out in an argon-protected glove box (water oxygen content not higher than 10 ppm). A metal lithium-porous carbon nanotube microsphere composite (a lithium-skeletal carbon composite material) was obtained. The obtained metal lithium-porous carbon nanotube microsphere composite had a specific capacity of 1600 mAh/g.
2.浆料制备2. Slurry preparation
2.1石墨浆料 2.1 graphite slurry
按照人造石墨(深圳科晶):乙炔黑(Alfa Aesar公司,下同):(聚苯乙烯(熔融指数6g/min(200℃/5kg),Sigma-Aldrich中国,下同)+丁苯橡胶(分子量为200万)Sigma-Aldrich中国,下同)=450mg:50mg:50mg称取各种物质,加入对二甲苯(超干,水含量<50ppm,上海阿拉丁生化科技股份有限公司想,下同)1.5毫升。磁力搅拌过夜(大于10小时),搅拌数度为200-300转/分钟。According to artificial graphite (Shenzhen Kejing): acetylene black (Alfa Aesar, the same below): (polystyrene (melt index 6g / min (200 ° C / 5kg), Sigma-Aldrich China, the same below) + styrene-butadiene rubber ( Molecular weight is 2 million) Sigma-Aldrich China, the same below) = 450mg: 50mg: 50mg weighed a variety of substances, added para-xylene (ultra dry, water content <50ppm, Shanghai Aladdin Biochemical Technology Co., Ltd., the same below ) 1.5 ml. Magnetic stirring overnight (greater than 10 hours), stirring a few degrees of 200-300 rev / min.
2.2锂-碳骨架复合材料补锂的浆料2.2 Lithium-carbon skeleton composite material lithium-removing slurry
按照人造石墨:锂-碳骨架复合材料(合成实施例1中合成):乙炔黑:(聚苯乙烯+丁苯橡胶)=415mg:35mg:50mg:50mg称取各种物质,加入对二甲苯1.5毫升。磁力搅拌过夜(大于10小时),搅拌数度为200-300转/分钟。According to artificial graphite: lithium-carbon skeleton composite (synthesized in Synthesis Example 1): acetylene black: (polystyrene + styrene butadiene rubber) = 415 mg: 35 mg: 50 mg: 50 mg, various substances were weighed, and p-xylene 1.5 was added. ML. Magnetic stirring overnight (greater than 10 hours), stirring a few degrees of 200-300 rev / min.
3.涂布3. Coating
将上述两种搅拌均匀的浆料,采用刮涂的方式刮涂在铜箔(厚度为12微米)上,刮刀厚度为500微米。The above two uniformly stirred slurries were scraped on a copper foil (thickness of 12 μm) with a doctor blade thickness of 500 μm.
4.烘干4. Drying
将上述2中的极片在60摄氏度过夜烘干(约10小时),使得对二甲苯完全挥发。The pole piece of the above 2 was dried overnight (about 10 hours) at 60 degrees Celsius to completely evaporate p-xylene.
5.电池组装5. Battery assembly
5.1将上述两种极片冲压成直径为15毫米的圆片电极作为锂电池的负极材料,电解液为1mol/L的LiPF6的三组分混合溶剂EC:DMC:EMC=1:1:1(v/v/v,杉杉电解液,下同),聚丙烯微孔薄膜为隔膜(Celgard 2400,下同),以金属锂(直径16毫米,厚度400微米,深圳比源电子有限公司,下同)为对电极组装电池(扣式电池,CR2025,深圳比源电子有限公司,下同)。5.1 The above two kinds of pole pieces were punched into a 15 mm diameter wafer electrode as a negative electrode material for a lithium battery, and the electrolyte was a 1 mol/L LiPF 6 three-component mixed solvent EC:DMC:EMC=1:1:1 (v/v/v, Shanshan electrolyte, the same below), polypropylene microporous film is a separator (Celgard 2400, the same below), with metallic lithium (diameter 16 mm, thickness 400 microns, Shenzhen Biyuan Electronics Co., Ltd., The same as below) for the electrode assembly battery (button battery, CR2025, Shenzhen than source Electronics Co., Ltd., the same below).
2.2-5.1过程均于充满氩气的手套箱中进行,其中水氧含量不高于10ppm。The 2.2-5.1 process was carried out in an argon-filled glove box with a water oxygen content of no more than 10 ppm.
5.2对5.1中的模拟电池进行恒流充放电,充放电电压范围:0.01-1V,充放电电电流为0.1C。5.2 Constant current charge and discharge for the analog battery in 5.1, charge and discharge voltage range: 0.01-1V, charge and discharge current is 0.1C.
图1显示了石墨负极的首次放电-充电曲线,在石墨负极的首次放电过程中在0.7V左右有一个平台是石墨负极表面生产SEI膜的平台,石墨负极的首次充放电的库伦效率为81%。Figure 1 shows the first discharge-charge curve of the graphite negative electrode. In the first discharge of the graphite negative electrode, there is a platform at 0.7V for the SEI film on the surface of the graphite negative electrode. The coulombic efficiency of the first charge and discharge of the graphite negative electrode is 81%. .
图2显示了采用金属锂-骨架碳复合材料补锂的石墨负极首次放电-充电曲线。补锂后0.7V左右平台消失,且对比首次放电和充电的容量可得首次充放电的库伦效率为99%。可以看出通过金属锂-骨架碳复合材料与石墨材料共混,有效提高了石墨负极的首效。 Figure 2 shows the first discharge-charge curve of a graphite negative electrode supplemented with lithium metal-skeletal carbon composite. After the lithium is replenished, the platform disappears around 0.7V, and the Coulomb efficiency of the first charge and discharge is 99% compared with the capacity of the first discharge and charge. It can be seen that the first effect of the graphite negative electrode is effectively improved by blending the metallic lithium-skeletal carbon composite material with the graphite material.
图3显示了石墨负极和采用金属锂-骨架碳复合材料补锂的石墨负极充放电循环曲线图。图中可以看出采用金属锂-骨架碳复合材料补锂的石墨负极充放电循环曲线,可见其循环库伦效率为99%以上,50个循环后容量保持率为80%。Fig. 3 is a graph showing the charge and discharge cycle of a graphite negative electrode and a graphite negative electrode supplemented with a lithium metal-skeletal carbon composite material. It can be seen from the graph that the charge and discharge cycle curve of the graphite anode using lithium metal-skeletal carbon composite material to supplement lithium shows that the cycle coulombic efficiency is over 99%, and the capacity retention rate after 50 cycles is 80%.
实施例2Example 2
1.浆料制备Slurry preparation
1.1硅负极浆料1.1 Silicon anode slurry
硅(深圳科晶):乙炔黑(Alfa Aesar公司):(聚苯乙烯(熔融指数6g/min(200℃/5kg))+丁苯橡胶(分子量为200万))=450mg:50mg:50mg称取各种物质,加入对二甲苯(超干,水含量<50ppm)1.5毫升。磁力搅拌过夜(大于10小时),搅拌数度为200-300转/分钟。Silicon (Shenzhen Kejing): acetylene black (Alfa Aesar): (polystyrene (melt index 6g / min (200 ° C / 5kg)) + styrene butadiene rubber (molecular weight of 2 million)) = 450mg: 50mg: 50mg Take various substances and add 1.5 ml of p-xylene (ultra dry, water content <50 ppm). Magnetic stirring overnight (greater than 10 hours), stirring a few degrees of 200-300 rev / min.
1.2锂-碳骨架复合材料补锂的浆料1.2 lithium-carbon skeleton composite material lithium-removing slurry
硅:锂-碳骨架复合材料(制备方法同实施例1):乙炔黑:(聚苯乙烯+丁苯橡胶)=350mg:100mg:50mg:50mg称取各种物质,加入对二甲苯1.5毫升。磁力搅拌过夜(大于10小时),搅拌数度为200-300转/分钟。Silicon: lithium-carbon skeleton composite (preparation method is the same as in Example 1): acetylene black: (polystyrene + styrene butadiene rubber) = 350 mg: 100 mg: 50 mg: 50 mg Each substance was weighed and 1.5 ml of p-xylene was added. Magnetic stirring overnight (greater than 10 hours), stirring a few degrees of 200-300 rev / min.
2.涂布2. Coating
将上述两种搅拌均匀的浆料,采用刮涂的方式刮涂在铜箔(厚度为12微米)上,刮刀厚度为500微米。The above two uniformly stirred slurries were scraped on a copper foil (thickness of 12 μm) with a doctor blade thickness of 500 μm.
3.烘干3. Drying
将上述2中的极片在60摄氏度过夜烘干(约10小时),使得对二甲苯完全挥发。The pole piece of the above 2 was dried overnight (about 10 hours) at 60 degrees Celsius to completely evaporate p-xylene.
4.电池组装4. Battery assembly
4.1将上述两种极片冲压成直径为15毫米的圆片电极作为锂电池的负极材料。电解液为1mol/L的LiPF6的三组分混合溶剂EC:DMC:EMC=1:1:1(体积比v/v/v),聚丙烯微孔薄膜为隔膜,以金属锂为正极组装成模拟电池。4.1 The above two kinds of pole pieces were punched into a disk electrode having a diameter of 15 mm as a negative electrode material of a lithium battery. The electrolyte is a three-component mixed solvent of LiPF 6 of 1 mol/L EC: DMC: EMC = 1:1:1 (volume ratio v/v/v), the polypropylene microporous film is a separator, and metal lithium is used as a positive electrode assembly. Into the analog battery.
上述过程均于充满氩气的手套箱中进行,其中水氧含量不高于10ppm。The above process was carried out in an argon-filled glove box in which the water oxygen content was not higher than 10 ppm.
4.2对4.1中的模拟电池进行恒流充放电,充放电电压范围:0.01-1V,充放电电电流为0.1C。4.2 Constant current charge and discharge for the analog battery in 4.1, charge and discharge voltage range: 0.01-1V, charge and discharge current is 0.1C.
图4显示了硅负极和采用金属锂-骨架碳复合材料补锂的硅负极首次放电-充电曲线。对比首次放电和充电的容量可得首次充放电的库伦效率为98%,而未经混锂的硅负极首次效率仅为83%。可以看出通过金属锂-骨架碳复合材料与硅负极材料共混,有效提高了硅负极的首效。Figure 4 shows the first discharge-charge curve for a silicon negative electrode and a silicon negative electrode supplemented with a lithium metal-framework carbon composite. Compared with the capacity of the first discharge and charge, the Coulomb efficiency of the first charge and discharge is 98%, while the first negative efficiency of the silicon negative electrode without the mixed lithium is only 83%. It can be seen that the first effect of the silicon negative electrode is effectively improved by blending the metal lithium-skeletal carbon composite material with the silicon negative electrode material.
实施例3 Example 3
石墨负极极片(苏州纳新新能源有限公司,下同),其中石墨含量为90%。Graphite negative pole piece (Suzhou Naxin New Energy Co., Ltd., the same below), in which the graphite content is 90%.
锂-碳骨架复合材料制备如实施例1中所述。The lithium-carbon skeleton composite was prepared as described in Example 1.
将所制备锂-碳骨架复合材料分散至石墨极片上,每平方厘米锂-碳骨架复合材料的质量为1.0mg。采用辊压机,辊压锂-碳骨架复合材料和石墨极片,使得锂-碳骨架复合材料牢固嵌入到负极极片中,所施加压力为30MPa,制得负极极片。The prepared lithium-carbon skeleton composite was dispersed on a graphite pole piece, and the mass per square centimeter of the lithium-carbon skeleton composite was 1.0 mg. The roller compactor was used to roll the lithium-carbon skeleton composite material and the graphite pole piece, so that the lithium-carbon skeleton composite material was firmly embedded in the negative electrode pole piece, and the applied pressure was 30 MPa, and the negative electrode pole piece was obtained.
电池组装和测试,如实施例1中所述。Battery assembly and testing as described in Example 1.
图5.是采用上述办法补锂的负极极片首次充放电曲线,可以看出由于锂-碳骨架复合材料的加入,负极放电过程中形成SEI层的电位平台(0.7V左右)消失,且首次库伦效率为85%,说明锂-碳骨架复合材料的加入起到了补充形成SEI消耗锂的目的。Figure 5. It is the first charge and discharge curve of the negative electrode piece which is supplemented with lithium by the above method. It can be seen that due to the addition of the lithium-carbon skeleton composite material, the potential platform (about 0.7V) which forms the SEI layer during the discharge of the negative electrode disappears, and for the first time. The coulombic efficiency is 85%, indicating that the addition of lithium-carbon skeleton composites complements the formation of SEI to consume lithium.
图6.是该电池的容量保持曲线。可以看出该电池70次循环均可以保持95%以上的库伦效率。Figure 6. is the capacity retention curve of the battery. It can be seen that the battery can maintain a coulombic efficiency of more than 95% in 70 cycles.
应当理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。 It should be understood that the above description is only the preferred embodiment of the present invention and is not intended to limit the invention, and any modifications, equivalents, and improvements made within the spirit and scope of the present invention should be included in the present invention. Within the scope of protection of the invention.

Claims (20)

  1. 一种锂离子电池的改性无锂负极,其特征在于所述改性无锂负极除了无锂负极材料外,还含有金属锂-骨架碳复合材料,所述金属锂-骨架碳复合材料的含量以质量百分比计为负极活性材料质量的2%-20%。A modified lithium-free anode for a lithium ion battery, characterized in that the modified lithium-free anode further comprises a metal lithium-skeletal carbon composite material in addition to the lithium-free anode material, and the content of the metal lithium-skeletal carbon composite material It is 2%-20% of the mass of the negative active material in terms of mass percentage.
  2. 根据权利要求1所述的改性无锂负极,其特征在于所述金属锂-骨架碳复合材料包含多孔碳材料载体和存在于所述多孔碳材料载体孔隙中和表面上的金属锂。The modified lithium-free negative electrode according to claim 1, wherein said metallic lithium-skeletal carbon composite material comprises a porous carbon material support and metallic lithium present in and on the pores of said porous carbon material support.
  3. 根据权利要求1或2所述的改性无锂负极,其特征在于所述金属锂-骨架碳复合材料中金属锂的含量以质量百分比计为10%-95%。The modified lithium-free negative electrode according to claim 1 or 2, wherein the content of metallic lithium in the metallic lithium-skeletal carbon composite is from 10% to 95% by mass.
  4. 根据权利要求2或3所述的改性无锂负极,其特征在于所述多孔碳材料包括碳纤维微球、多孔碳纳米管微球和乙炔黑中的至少一种。The modified lithium-free negative electrode according to claim 2 or 3, wherein the porous carbon material comprises at least one of carbon fiber microspheres, porous carbon nanotube microspheres, and acetylene black.
  5. 根据权利要求4所述的改性无锂负极,其特征在于所述多孔碳纳米管微球是由碳纳米管相互交缠团聚而形成的、内部和表面上具有纳米尺度孔隙的微球,微球粒径为1-100微米。The modified lithium-free negative electrode according to claim 4, wherein the porous carbon nanotube microspheres are microspheres formed by intertwining and agglomerating carbon nanotubes with nanometer-scale pores inside and on the surface, micro The ball has a particle size of 1-100 microns.
  6. 根据权利要求5所述的改性无锂负极,其特征在于所述碳纳米管微球的比表面积为100~1500m2/g;The modified lithium-free negative electrode according to claim 5, wherein the carbon nanotube microspheres have a specific surface area of 100 to 1500 m 2 /g;
    和/或,所述碳纳米管微球所含孔隙的孔径为1~200nm;And/or, the pores of the carbon nanotube microspheres have a pore diameter of 1 to 200 nm;
    和/或,所述碳纳米管微球至少具有微小球状实体聚集结构、球形聚集结构、类球形聚集结构、多孔球形聚集结构和面包圈形聚集结构中的任意一种;And/or, the carbon nanotube microspheres have at least one of a microscopic spherical solid aggregate structure, a spherical aggregate structure, a spherical aggregate structure, a porous spherical aggregate structure, and a doughnut aggregate structure;
    和/或,所述碳纳米管包括多壁碳纳米管、双壁碳纳米管和单壁碳纳米管中的任意一种或两种以上的组合,所述碳纳米管任选经过表面功能化处理。And/or, the carbon nanotubes include any one or a combination of two or more of multi-walled carbon nanotubes, double-walled carbon nanotubes, and single-walled carbon nanotubes, optionally subjected to surface functionalization deal with.
  7. 根据权利要求1-6中任一项所述的改性无锂负极,其特征在于所述无锂负极活性材料选自石墨、硅和钛酸锂中的至少一种。The modified lithium-free negative electrode according to any one of claims 1 to 6, wherein the lithium-free negative electrode active material is at least one selected from the group consisting of graphite, silicon, and lithium titanate.
  8. 根据权利要求7所述的改性无锂负极,其特征在于所述石墨包括纯石墨或者修饰的石墨。The modified lithium-free negative electrode according to claim 7, wherein the graphite comprises pure graphite or modified graphite.
  9. 根据权利要求7所述的改性无锂负极,其特征在于所述修饰的石墨包括表面氧化还原、掺杂其他元素或含有包覆层的石墨。The modified lithium-free negative electrode according to claim 7, wherein the modified graphite comprises surface redox, doped other elements or graphite containing a coating layer.
  10. 根据权利要求7-9中任一项所述的改性无锂负极,其特征在于所述金属锂-骨架碳复合材料与无锂负极材料的质量比为1:12至1:6。 The modified lithium-free negative electrode according to any one of claims 7 to 9, characterized in that the mass ratio of the metallic lithium-skeletal carbon composite material to the lithium-free negative electrode material is from 1:12 to 1:6.
  11. 根据权利要求1-10中任一项所述的改性无锂负极,其特征在于所述负极材料还包含粘结剂。The modified lithium-free negative electrode according to any one of claims 1 to 10, wherein the negative electrode material further comprises a binder.
  12. 根据权利要求11所述的改性无锂负极,其特征在于所述粘结剂包括聚苯乙烯、丁苯橡胶、聚偏氟乙烯中的至少一种。The modified lithium-free negative electrode according to claim 11, wherein the binder comprises at least one of polystyrene, styrene butadiene rubber, and polyvinylidene fluoride.
  13. 根据权利要求1-12中任一项所述的改性无锂负极,其特征在于所述改性无锂负极还包括金属集流体,所述负极材料负载于所述金属集流体上。The modified lithium-free negative electrode according to any one of claims 1 to 12, wherein the modified lithium-free negative electrode further comprises a metal current collector, and the negative electrode material is supported on the metal current collector.
  14. 根据权利要求13所述的改性无锂负极,其特征在于所述金属集流体包括铜箔。The modified lithium-free negative electrode according to claim 13, wherein the metal current collector comprises a copper foil.
  15. 一种制备权利要求1-14中任一项所述的改性无锂负极的方法,其特征在于所述方法包括:A method of preparing the modified lithium-free negative electrode according to any one of claims 1 to 14, characterized in that the method comprises:
    将含有无锂负极材料和金属锂-骨架碳复合材料的混合物的负极材料浆料涂覆于金属集流体上,形成负极极片;或者将金属锂-骨架碳复合材料分散在涂布好的无锂负极极片上并以压力复合方式复合于无锂负极极片。Coating a negative electrode material slurry containing a mixture of a lithium-free negative electrode material and a metal lithium-skeletal carbon composite material on a metal current collector to form a negative electrode tab; or dispersing the metal lithium-skeletal carbon composite material in a coated The lithium negative electrode pole piece is composited on the lithium-free negative electrode piece by pressure composite means.
  16. 根据权利要求15所述的方法,其特征在于所述负极材料浆料包含无锂负极材料、金属锂-骨架碳复合材料、粘结剂、分散剂和任选的导电剂。The method of claim 15 wherein said negative electrode material slurry comprises a lithium-free negative electrode material, a metallic lithium-skeletal carbon composite material, a binder, a dispersant, and optionally a conductive agent.
  17. 根据权利要求16所述的方法,其特征在于所述分散剂选自对二甲苯、四氢呋喃、N-甲基吡咯烷酮中的至少一种。The method according to claim 16, wherein said dispersing agent is at least one selected from the group consisting of p-xylene, tetrahydrofuran, and N-methylpyrrolidone.
  18. 一种锂离子电池,其特征在于所述锂离子电池包含权利要求1-14中任一项所述的改性无锂负极。A lithium ion battery, characterized in that the lithium ion battery comprises the modified lithium-free negative electrode according to any one of claims 1-14.
  19. 根据权利要求18所述的锂离子电池,其特征在于所述锂电池包括一次锂电池、二次锂电池。The lithium ion battery according to claim 18, wherein said lithium battery comprises a primary lithium battery and a secondary lithium battery.
  20. 一种提高锂离子电池无锂负极的首次循环效率的方法,其特征在于所述方法包括在无锂负极材料中结合金属锂-骨架碳复合材料,所述金属锂-骨架碳复合材料的含量以质量百分比计为负极活性材料质量的2%-20%。 A method for improving the first cycle efficiency of a lithium-ion negative electrode of a lithium ion battery, characterized in that the method comprises combining a metal lithium-skeletal carbon composite material in a lithium-free anode material, the content of the metal lithium-skeletal carbon composite material being The mass percentage is from 2% to 20% of the mass of the negative active material.
PCT/CN2017/105674 2017-07-26 2017-10-11 Modified lithium-free anode, method for preparing same, and lithium-ion battery comprising same WO2019019410A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710618085.3A CN109309194A (en) 2017-07-26 2017-07-26 It is modified without cathode of lithium, preparation method and contains its lithium ion battery
CN201710618085.3 2017-07-26

Publications (1)

Publication Number Publication Date
WO2019019410A1 true WO2019019410A1 (en) 2019-01-31

Family

ID=65040924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/105674 WO2019019410A1 (en) 2017-07-26 2017-10-11 Modified lithium-free anode, method for preparing same, and lithium-ion battery comprising same

Country Status (2)

Country Link
CN (1) CN109309194A (en)
WO (1) WO2019019410A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114497465A (en) * 2022-03-31 2022-05-13 宁德新能源科技有限公司 Preparation method of pole piece, electrochemical device and electronic device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110729459A (en) * 2019-09-30 2020-01-24 山东玉皇新能源科技有限公司 Lithium ion battery cathode composite lithium supplement material and preparation method thereof
CN110729468A (en) * 2019-09-30 2020-01-24 山东玉皇新能源科技有限公司 Lithium ion battery carbon nanotube composite lithium supplement material and preparation method and application thereof
CN110729452A (en) * 2019-09-30 2020-01-24 山东玉皇新能源科技有限公司 Lithium ion battery negative pole piece and preparation method thereof
CN110729460B (en) * 2019-09-30 2023-06-30 山东玉皇新能源科技有限公司 Nano silicon composite lithium supplementing negative electrode material of lithium ion battery and preparation method and application thereof
CN110729467A (en) * 2019-09-30 2020-01-24 山东玉皇新能源科技有限公司 Lithium ion battery carbon nanotube composite lithium-supplementing negative plate and preparation method thereof
CN112993251B (en) * 2019-12-16 2023-12-12 比亚迪股份有限公司 Lithium supplementing material, preparation method thereof, negative electrode and lithium ion battery
US20220052342A1 (en) * 2020-03-30 2022-02-17 China Energy Cas Technology Co., Ltd. Prelithiated negative electrode, preparation method thereof, and lithium ion battery and supercapacitor comprising the same
CN113823852A (en) * 2020-06-19 2021-12-21 北京卫蓝新能源科技有限公司 Alkali metal ion supplement additive and preparation method and application thereof
CN115036495B (en) * 2022-07-29 2023-08-22 赣州市瑞富特科技有限公司 Porous nitrogen-doped carbon nanotube anode material and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102479948A (en) * 2010-11-30 2012-05-30 比亚迪股份有限公司 Cathode active material of lithium ion battery, preparation method thereof and lithium ion battery
WO2015139660A1 (en) * 2014-03-21 2015-09-24 中国科学院苏州纳米技术与纳米仿生研究所 Porous carbon nanotube microsphere and preparation method therefor and application thereof, lithium metal-skeleton carbon composite material and preparation method therefor, negative electrode, and battery
CN106229479A (en) * 2016-08-18 2016-12-14 深圳市贝特瑞新能源材料股份有限公司 A kind of lithium ion battery activated carbon composite negative pole material, preparation method and lithium ion battery
WO2017029692A1 (en) * 2015-08-18 2017-02-23 Nec Corporation Porous Graphene Coated Oxygen-Containing Carbon Material for High Capacity and Fast Chargeable Anode of Lithium Ion Battery
CN106711456A (en) * 2015-11-12 2017-05-24 中国科学院苏州纳米技术与纳米仿生研究所 Passivated lithium metal-carbon skeleton composite material and preparation method and application thereof
CN107305941A (en) * 2016-04-21 2017-10-31 中国科学院苏州纳米技术与纳米仿生研究所 Lithium carbon composite, its preparation method and application and lithium compensation method

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050130043A1 (en) * 2003-07-29 2005-06-16 Yuan Gao Lithium metal dispersion in electrodes
CN101420047B (en) * 2008-12-04 2010-09-29 清华大学 Preparation of lithium sulfureous secondary battery
JP5351618B2 (en) * 2009-06-05 2013-11-27 株式会社神戸製鋼所 Negative electrode material for lithium ion secondary battery, manufacturing method thereof, and lithium ion secondary battery
CN102201565B (en) * 2011-04-14 2013-11-06 美国电化学动力公司 High-capacity metal lithium powder composite cathode and preparation method thereof, and multi-layer composite electrode
CN102867983A (en) * 2011-07-04 2013-01-09 中国人民解放军63971部队 Nonaqueous secondary lithium battery
CN102623685B (en) * 2012-04-18 2015-03-25 清华大学深圳研究生院 High-power lithium-ion battery anode material, preparation method thereof and negative plate
CN102694156A (en) * 2012-06-15 2012-09-26 东莞市迈科新能源有限公司 Silicon-carbon composite negative pole material, preparation method thereof and lithium ion battery using foamed metal as negative pole current collector
CN103855360B (en) * 2014-02-27 2016-08-17 宁德新能源科技有限公司 Lithium ion battery and cathode pole piece thereof and preparation method
CN105374991B (en) * 2014-08-13 2019-10-18 中国科学院苏州纳米技术与纳米仿生研究所 Lithium metal-skeleton carbon composite material and preparation method, cathode and secondary cell
CN103872294A (en) * 2014-03-26 2014-06-18 深圳市贝特瑞新能源材料股份有限公司 Composite material of lithium ion battery, preparation method thereof and lithium ion battery
CN105336914B (en) * 2014-07-01 2018-07-13 宁德时代新能源科技股份有限公司 Lithium ion secondary battery and lithium-rich negative plate thereof
CN104993098A (en) * 2015-06-10 2015-10-21 中航锂电(洛阳)有限公司 Lithium supplement negative electrode piece, preparing method thereof, lithium-ion supercapacitor and lithium-ion battery
JP6353517B2 (en) * 2015-12-30 2018-07-04 友達晶材股▲ふん▼有限公司AUO Crystal Corporation Lithium battery negative electrode material and manufacturing method thereof
CN105742613B (en) * 2016-04-18 2018-09-18 宁德新能源科技有限公司 A kind of cathode pole piece and lithium ion battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102479948A (en) * 2010-11-30 2012-05-30 比亚迪股份有限公司 Cathode active material of lithium ion battery, preparation method thereof and lithium ion battery
WO2015139660A1 (en) * 2014-03-21 2015-09-24 中国科学院苏州纳米技术与纳米仿生研究所 Porous carbon nanotube microsphere and preparation method therefor and application thereof, lithium metal-skeleton carbon composite material and preparation method therefor, negative electrode, and battery
WO2017029692A1 (en) * 2015-08-18 2017-02-23 Nec Corporation Porous Graphene Coated Oxygen-Containing Carbon Material for High Capacity and Fast Chargeable Anode of Lithium Ion Battery
CN106711456A (en) * 2015-11-12 2017-05-24 中国科学院苏州纳米技术与纳米仿生研究所 Passivated lithium metal-carbon skeleton composite material and preparation method and application thereof
CN107305941A (en) * 2016-04-21 2017-10-31 中国科学院苏州纳米技术与纳米仿生研究所 Lithium carbon composite, its preparation method and application and lithium compensation method
CN106229479A (en) * 2016-08-18 2016-12-14 深圳市贝特瑞新能源材料股份有限公司 A kind of lithium ion battery activated carbon composite negative pole material, preparation method and lithium ion battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114497465A (en) * 2022-03-31 2022-05-13 宁德新能源科技有限公司 Preparation method of pole piece, electrochemical device and electronic device

Also Published As

Publication number Publication date
CN109309194A (en) 2019-02-05

Similar Documents

Publication Publication Date Title
WO2019019410A1 (en) Modified lithium-free anode, method for preparing same, and lithium-ion battery comprising same
JP6445585B2 (en) Porous carbon nanotube microspheres and production method and use thereof, metallic lithium-skeleton carbon composite material and production method thereof, negative electrode, and battery
KR102142200B1 (en) Composite silicon anode material, manufacturing method and use
JP6563477B2 (en) Multi-component composite negative electrode material, method for producing the same, and lithium ion battery including the same
CN103633295B (en) A kind of Si-C composite material, lithium ion battery and its preparation method and application
CN107681142B (en) Molybdenum disulfide coated carbon nanofiber used as lithium ion battery negative electrode material and preparation method thereof
WO2019019412A1 (en) Carbon nanoparticle-porous framework composite material, lithium metal complex of carbon nanoparticle-porous framework composite material, preparation methods therefor, and applications thereof
KR101631137B1 (en) Silicon-silicon oxycarbide glass composite, preparation method of thereof, and anode materials and lithium secondary battery comprising the same
WO2019019411A1 (en) Lithium metal-skeletal carbon composite material with hydrophobic cladding layer and preparation method and use thereof
CN105489854B (en) A kind of preparation method of high-capacity cathode material
Wang et al. Facile fabrication of binder-free metallic tin nanoparticle/carbon nanofiber hybrid electrodes for lithium-ion batteries
CN107845797B (en) Nano silicon-carbon composite negative electrode material for lithium ion battery and preparation method thereof
CN108682787B (en) Lithium ion battery pole piece and preparation method thereof
CN108281634A (en) A kind of method and its application of graphene coated graphite negative material of lithium ion battery
WO2022021933A1 (en) Negative electrode material for nonaqueous electrolyte secondary battery, and preparation method therefor
WO2022121281A1 (en) Self-filling coated silicon-based composite material and preparation method therefor and application thereof
Wang et al. Carbon-coated SnO2@ carbon nanofibers produced by electrospinning-electrospraying method for anode materials of lithium-ion batteries
WO2016110108A1 (en) Method of preparing plasma spraying for nanoscale lithium-ion composite positive electrode
WO2020211848A1 (en) Nano-composite negative electrode material, preparation method therefor and use thereof
WO2023208058A1 (en) Negative electrode sheet, preparation method therefor, battery, and preparation method for negative electrode material
CN108682830B (en) Silicon-carbon composite negative electrode material of lithium ion battery and preparation method thereof
Zhang et al. A review on electrode materials of fast‐charging lithium‐ion batteries
WO2022121280A1 (en) Pomegranate-like-structure silicon-based composite material, and preparation method therefor and application thereof
Wang et al. Natural‐Cellulose‐Derived Tin‐Nanoparticle/Carbon‐Nanofiber Composite as Anodic Material in Lithium‐Ion Batteries
WO2023217240A1 (en) Cavity-customized carbon-silicon composite material, and preparation method therefor and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17919451

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17919451

Country of ref document: EP

Kind code of ref document: A1