JP2015033757A - Coated cutting tool for processing titanium or titanium alloy, manufacturing method of the same and processing method of titanium or titanium alloy using the same - Google Patents

Coated cutting tool for processing titanium or titanium alloy, manufacturing method of the same and processing method of titanium or titanium alloy using the same Download PDF

Info

Publication number
JP2015033757A
JP2015033757A JP2014131016A JP2014131016A JP2015033757A JP 2015033757 A JP2015033757 A JP 2015033757A JP 2014131016 A JP2014131016 A JP 2014131016A JP 2014131016 A JP2014131016 A JP 2014131016A JP 2015033757 A JP2015033757 A JP 2015033757A
Authority
JP
Japan
Prior art keywords
titanium
cutting tool
titanium alloy
hard coating
coated cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014131016A
Other languages
Japanese (ja)
Other versions
JP6510771B2 (en
Inventor
秀峰 小関
Hidemine Koseki
秀峰 小関
智也 佐々木
Tomoya Sasaki
智也 佐々木
謙一 井上
Kenichi Inoue
謙一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd, Hitachi Tool Engineering Ltd filed Critical Hitachi Metals Ltd
Priority to JP2014131016A priority Critical patent/JP6510771B2/en
Publication of JP2015033757A publication Critical patent/JP2015033757A/en
Application granted granted Critical
Publication of JP6510771B2 publication Critical patent/JP6510771B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a coated cutting tool for processing titanium or titanium alloy capable of suppressing early-time peeling of hard coating film and applying an ordinary WC-based cemented carbide, a manufacturing method of the coated cutting tool for processing titanium or titanium alloy, and a milling processing method of titanium or titanium alloy using the coated cutting tool for processing titanium or titanium alloy.SOLUTION: A coated cutting tool has a hard coating film formed at least on the edge of a blade of a cutting tool using WC-based cemented carbide alloy as a base. Therein, the base has a WC average particle size of 0.2 to 3.0 μm and has a monolayer structure, and the hard coated film is formed according to a sputtering method and has an arithmetic average roughness Ra of 60 nm or less.

Description

本発明は、スパッタリング法で被覆した硬質皮膜を有するチタン又はチタン合金加工用の被覆切削工具及びその製造方法並びにそれを用いたチタン又はチタン合金の加工方法に関するものである。   The present invention relates to a coated cutting tool for machining titanium or titanium alloy having a hard coating coated by sputtering, a method for producing the same, and a method for machining titanium or titanium alloy using the same.

チタン又はチタン合金は、比強度が高く、耐食性に優れることから日常生活品から航空機部品に至るまで極めて広い範囲で使用されている。一方で、チタン又はチタン合金は一般的な鋼等に比べて熱伝導率が低く切削加工の際に工具刃先の温度上昇が大きくなって早期に工具寿命に到達するため難削材としても知られている。通常、切削工具の耐久性を向上させるために、セラミックスからなる各種硬質皮膜を被覆した被覆切削工具が適用されている。各種の被覆手段の中でも、多元系の硬質皮膜を高い密着性を有した状態で被覆できる物理蒸着法が広く適用されている。   Titanium or titanium alloys are used in a very wide range from daily life products to aircraft parts because of their high specific strength and excellent corrosion resistance. On the other hand, titanium or titanium alloy is also known as a difficult-to-cut material because it has a low thermal conductivity compared to general steel, etc., and the temperature rise of the tool edge increases during cutting and reaches the tool life early. ing. Usually, in order to improve the durability of a cutting tool, a coated cutting tool coated with various hard coatings made of ceramics is applied. Among various coating means, a physical vapor deposition method that can coat a multi-component hard film with high adhesion is widely applied.

特開2005−262389号公報JP 2005-262389 A 特開2008−254116号公報JP 2008-254116 A 特開2008−284637号公報JP 2008-284737 A 特開2008−284638号公報JP 2008-284638 A

チタン合金の切削加工において、物理蒸着法であるアークイオンプレーティング法やスパッタリング法で硬質皮膜を被覆した被覆切削工具を適用することが開示されている(特許文献1、2)。しかし、チタン合金の加工では、切削時に被削材が刃先に凝着し、これが脱落するときに皮膜が一緒に剥離する現象が生じ易い。また、皮膜内部の欠陥を起点に皮膜破壊が早期発生するため硬質皮膜の効果が得られ難い。
硬質皮膜の密着性を改善するため、基材となるWC基超硬合金を改良した被覆切削工具が提案されている(特許文献3、4)。しかし、これらの基材は微粒層と粗粒層を積層させた構造からなり、組成及びWC平均粒径が異なるものを積層させて作製することから、一般的なWC基超硬合金の基材に比べて製造工程が複雑でコストが増加する。また、積層構造からなる基材ではチタン合金の断続切削であるミーリング加工においては強度が十分ではない。
In the cutting of a titanium alloy, it is disclosed that a coated cutting tool coated with a hard film by an arc ion plating method or a sputtering method which is a physical vapor deposition method is applied (Patent Documents 1 and 2). However, in the machining of a titanium alloy, the work material is likely to adhere to the cutting edge during cutting, and the film tends to peel off when it is removed. Further, since the film breakage occurs early starting from defects inside the film, it is difficult to obtain the effect of the hard film.
In order to improve the adhesion of the hard coating, a coated cutting tool in which a WC-based cemented carbide as a base material is improved has been proposed (Patent Documents 3 and 4). However, these base materials have a structure in which a fine particle layer and a coarse particle layer are laminated, and are produced by laminating materials having different compositions and WC average particle diameters. The manufacturing process is complicated and the cost is increased. Moreover, in the base material which consists of laminated structures, intensity | strength is not enough in the milling process which is the intermittent cutting of a titanium alloy.

本発明はこのような事情に鑑みてされたものであり、一般的なWC基超硬合金を適用した被覆切削工具で、硬質皮膜の早期剥離を抑制できるチタン又はチタン合金加工用の被覆切削工具及びその製造方法並びにそれを用いたチタン又はチタン合金の加工方法を提供するものである。   The present invention has been made in view of such circumstances, and is a coated cutting tool to which a general WC-based cemented carbide is applied, and is capable of suppressing early peeling of a hard coating, or a coated cutting tool for machining titanium or titanium alloy. And a method for producing the same and a method for processing titanium or a titanium alloy using the same.

本発明者はチタン又はチタン合金の切削加工においては、硬質皮膜に含まれる欠陥が起点となって早期に皮膜破壊が発生して工具寿命に達することを確認した。そして硬質皮膜の早期破壊を抑制できる具体的な皮膜構造を見出して本発明に到達した。
すなわち本発明は、WC基超硬合金を基材とする切削工具の少なくとも刃先部に硬質皮膜が形成された被覆切削工具であって、前記基材はWC平均粒径が0.2〜3.0μmであり、かつ、単層構造であり、前記硬質皮膜はスパッタリング法で形成され、前記硬質皮膜の算術平均粗さRaが60nm以下であるチタン又はチタン合金加工用の被覆切削工具である。
更には、硬質皮膜は算術平均粗さRaが60nm以下の基材に形成されることが好ましい。
更には、硬質皮膜の膜厚は3.0μm以下であることが好ましい。
更には、硬質皮膜は金属部分の原子比率でチタンの含有比率が85%(原子%)以上であることが好ましく、更には窒化物であることが好ましい。
The present inventor has confirmed that in cutting of titanium or a titanium alloy, defects included in the hard film are the starting point, and the film breakage occurs at an early stage to reach the tool life. And the specific film | membrane structure which can suppress the early destruction of a hard film was discovered, and this invention was reached | attained.
That is, the present invention is a coated cutting tool in which a hard coating is formed on at least the cutting edge portion of a cutting tool based on a WC-based cemented carbide, and the base material has a WC average particle size of 0.2 to 3. It is a coated cutting tool for machining titanium or a titanium alloy having a thickness of 0 μm and a single layer structure, wherein the hard coating is formed by a sputtering method, and the arithmetic average roughness Ra of the hard coating is 60 nm or less.
Furthermore, it is preferable that the hard coating is formed on a substrate having an arithmetic average roughness Ra of 60 nm or less.
Furthermore, the film thickness of the hard coating is preferably 3.0 μm or less.
Further, the hard coating preferably has a titanium content ratio of 85% (atomic%) or more in terms of the atomic ratio of the metal portion, and more preferably is a nitride.

また、本発明は、平均粒径が0.2〜3.0μmの単層構造からなるWC基超硬合金を基材とする切削工具の少なくとも刃先部を算術平均粗さRaが60nm以下にする工程と、前記基材の表面に算術平均粗さRaが60nm以下になるよう硬質皮膜をスパッタリング法で被覆する工程と、を有するチタン又はチタン合金加工用被覆切削工具の製造方法である。更には、スパッタリング法で膜厚が3.0μm以下の硬質皮膜を被覆することが好ましい。更には、前記硬質皮膜は金属部分の原子比率でチタンを85%(原子%)以上を含有することが好ましく、更には窒化物であることが好ましい。
また、この被覆切削工具を用いてミーリング加工するチタン又はチタン合金の加工方法である。
Further, according to the present invention, at least the cutting edge portion of a cutting tool based on a WC-based cemented carbide having a single layer structure with an average particle size of 0.2 to 3.0 μm is set to have an arithmetic average roughness Ra of 60 nm or less. A method of manufacturing a coated cutting tool for machining titanium or titanium alloy, comprising: a step; and a step of coating a hard film on the surface of the base material with a sputtering method so that the arithmetic average roughness Ra is 60 nm or less. Furthermore, it is preferable to coat a hard film having a film thickness of 3.0 μm or less by a sputtering method. Furthermore, the hard coating preferably contains 85% (atomic%) or more of titanium in terms of the atomic ratio of the metal portion, and more preferably is a nitride.
Moreover, it is the processing method of the titanium or titanium alloy which mills using this coated cutting tool.

本発明によれば、硬質皮膜の早期破壊が抑制できる密着性に優れたチタン又はチタン合金加工用の被覆切削工具を達成することができる。また、単層構造からなる一般的なWC基超硬合金を適用して工具寿命に優れるチタン又はチタン合金加工用被覆切削工具を製造することができる。また、本発明の被覆切削工具をチタン又はチタン合金のミーリング加工に用いることで、より優れた工具寿命を発揮することができる。   ADVANTAGE OF THE INVENTION According to this invention, the coated cutting tool for titanium or titanium alloy processing excellent in the adhesiveness which can suppress the early fracture | rupture of a hard film can be achieved. Moreover, the coated cutting tool for titanium or titanium alloy processing which is excellent in tool life can be manufactured by applying a general WC base cemented carbide having a single layer structure. Further, by using the coated cutting tool of the present invention for milling of titanium or a titanium alloy, a more excellent tool life can be exhibited.

本発明例である試料No.1の基材であるソリッドエンドミルの逃げ面の表面プロファイルである。Sample No. which is an example of the present invention. 1 is a surface profile of a flank of a solid end mill that is a base material of No. 1; 比較例である試料No.10の基材であるソリッドエンドミルの逃げ面の表面プロファイルである。Sample No. which is a comparative example. 10 is a surface profile of a flank face of a solid end mill that is a base material of No. 10; 本発明例である試料No.1の断面観察写真である。Sample No. which is an example of the present invention. 1 is a cross-sectional observation photograph of 1.

本発明者はチタン又はチタン合金の切削加工において硬質皮膜の早期剥離を抑制するため、汎用的に用いられているチタン合金であるJIS60種(Ti−6Al−4V合金)を用いて被覆切削工具の損傷メカニズムを研究した。なお、本発明の被覆切削工具はJIS60種のチタン合金に限定されるものではなく、その他のチタン合金や純チタンの切削加工にも適用することができる。
一般的な鋼等の切削加工で発生した熱は、大部分が切り屑に伝達し放熱される。一方、熱伝導率の低いチタン又はチタン合金の切削加工の場合、切り屑へ熱が伝達しづらく大部分の熱は切削工具及び被削材に伝達する。そして、本発明者の検討によると、チタン合金の切削加工で発生する熱は数ミリ秒で800℃程度まで上昇することを確認した。このことから、チタン又はチタン合金の切削加工では工具刃先の急激な温度上昇による熱衝撃が加わると推測される。
The present inventor uses JIS 60 type (Ti-6Al-4V alloy), which is a commonly used titanium alloy, in order to suppress early peeling of the hard coating in the cutting of titanium or titanium alloy. The damage mechanism was studied. The coated cutting tool of the present invention is not limited to JIS 60 type titanium alloys, and can be applied to other titanium alloys and pure titanium cutting.
Most of the heat generated by cutting of general steel is transferred to the chips and dissipated. On the other hand, in the case of cutting of titanium or titanium alloy having a low thermal conductivity, most of the heat that is difficult to transfer to the chips is transferred to the cutting tool and the work material. According to the study by the inventor, it was confirmed that the heat generated in the cutting process of the titanium alloy rose to about 800 ° C. in several milliseconds. From this, it is presumed that thermal shock due to a rapid temperature rise of the tool edge is applied in the cutting of titanium or titanium alloy.

脆性材料であるセラミックスは、破壊靱性値が低く熱衝撃に弱い。そのため、セラミックからなる硬質皮膜の内部に破壊の起点となりうる欠陥が存在すると、熱衝撃によって膨張収縮が生じた場合に欠陥を起点として破壊が生じ易くなる。
一般的に切削工具においては、物理蒸着法の中でも特に基材との密着性が優れるアークイオンプレーティング法によってセラミックスからなる硬質皮膜が被覆されている。しかし、チタン又はチタン合金の切削加工では、不可避的に含まれるドロップレットが起点となり切削初期から硬質皮膜の破壊が発生することが判明した。
Ceramics that are brittle materials have low fracture toughness values and are vulnerable to thermal shock. Therefore, if there is a defect that can be a starting point of breakage in the hard coating made of ceramic, the breakage is likely to occur starting from the defect when expansion and contraction occur due to thermal shock.
In general, a cutting tool is coated with a hard film made of ceramics by an arc ion plating method that is particularly excellent in adhesion to a substrate among physical vapor deposition methods. However, it has been found that in the cutting of titanium or titanium alloy, the hard coating is destroyed from the beginning of cutting, starting from the inevitable droplets.

一方、スパッタリング法で被覆した硬質皮膜はアークイオンプレーティング法で被覆した硬質皮膜に比べて密着性が乏しいが、ドロップレットを殆ど含有しない。そこで、チタン合金の加工においては、あえてアークイオンプレーティング法よりも密着性が劣るスパッタリング法を適用してドロップレットを起点とする硬質皮膜の破壊を抑制することを検討した。しかし、スパッタリング法で被覆した被覆切削工具においては、基材の研削痕や硬質皮膜の凹凸に応力が集中して皮膜破壊が発生することを確認した。   On the other hand, the hard film coated by the sputtering method has poor adhesion compared to the hard film coated by the arc ion plating method, but contains almost no droplets. Therefore, in the processing of titanium alloys, we studied to suppress the breakage of the hard coating starting from the droplets by applying a sputtering method, which has lower adhesion than the arc ion plating method. However, in the coated cutting tool coated by the sputtering method, it was confirmed that the stress was concentrated on the grinding marks of the base material and the unevenness of the hard film and the film was broken.

本発明者は、チタン合金の加工において、スパッタリング法によって被覆した硬質皮膜の早期破壊を抑制するためには、被覆前の基材の表面粗さを一定以下に平滑にして基材表面の凹凸を減少させることで、硬質皮膜を平滑にすることが重要であることを知見した。そして、基材を平滑研磨して、スパッタリング法で被覆した硬質皮膜の表面の算術平均粗さRa(JIS−B−0601−2001に準拠)を60nm以下とすることで、硬質皮膜の早期剥離を抑制できることを確認した。より好ましくは硬質皮膜のRaを50nm以下である。更には硬質皮膜のRaを40nm以下とすることが好ましい。基材の凹凸を減少させるには、硬質皮膜は算術平均粗さRaが60nm以下の基材の形成することが好ましい。基材を平滑にしても、硬質皮膜の平均粗さが低下すれば切削抵抗が低下するので、更には、硬質皮膜のRaは被覆前の基材のRaよりも小さい方が好ましい。
本発明で規定する表面粗さは、非接触表面形状測定機を用いて測定する。測定個所は、刃先部付近の逃げ面またはすくい面における0.04mm以上の測定面積から求めればよい。
In order to suppress the early breakage of the hard coating coated by the sputtering method in the processing of the titanium alloy, the inventor smoothes the surface roughness of the substrate before coating to a certain level or less to make the substrate surface uneven. It has been found that it is important to make the hard coating smooth by reducing it. Then, the substrate is smooth polished and the surface of the hard coating coated with the sputtering method has an arithmetic average roughness Ra (conforming to JIS-B-0601-2001) of 60 nm or less, so that the hard coating can be removed early. It was confirmed that it could be suppressed. More preferably, the Ra of the hard film is 50 nm or less. Furthermore, it is preferable that Ra of a hard film shall be 40 nm or less. In order to reduce the unevenness of the base material, it is preferable that the hard film is formed of a base material having an arithmetic average roughness Ra of 60 nm or less. Even if the substrate is smoothed, if the average roughness of the hard coating is reduced, the cutting resistance is lowered. Therefore, the Ra of the hard coating is preferably smaller than the Ra of the substrate before coating.
The surface roughness defined in the present invention is measured using a non-contact surface shape measuring instrument. What is necessary is just to obtain | require a measurement location from 0.04 mm < 2 > or more of measurement areas in the flank or rake face near a blade edge | tip part.

上記の算術平均粗さを満たしたとしても、局所的に大きな凹凸があれば工具寿命が短くなる可能性がある。そのため、基材および硬質皮膜の最大粗さ高さRz(JIS−B−0601−2001に準拠)を3000nm以下とすることが好ましい。特に、基材に局所的に大きな凹凸があれば工具寿命が低下する傾向にあるので、基材のRzは硬質皮膜のRzよりも小さい方が好ましい。   Even if the above arithmetic average roughness is satisfied, the tool life may be shortened if there are locally large irregularities. Therefore, it is preferable that the maximum roughness height Rz (based on JIS-B-0601-2001) of the base material and the hard coating is 3000 nm or less. In particular, if the substrate has locally large irregularities, the tool life tends to be reduced. Therefore, the Rz of the substrate is preferably smaller than the Rz of the hard coating.

本発明で使用する基材は従来知られている平均粒径が0.2〜3.0μmのWC基超硬合金を適用することができる。WC平均粒径がこれよりも微粒になると工具の靭性が低下する傾向にある。また、WC平均粒径がこれよりも粗粒になると工具の耐摩耗性が低下する傾向にある。特に、基材のWC平均粒径が1.5μm以下であると、刃先がシャープエッジとなって切削性能が向上するので好ましい。本発明のWC平均粒径は、鏡面加工した基材をエッチングした後に電子顕微鏡で10,000〜20,000倍で観測し、その観察画像から画像解析ソフトを用いて円相当径の平均粒径から求めることができる。
本発明において単層構造とは、一種類の混合粉末を形成して得られる一般的なWC基超硬合金である。特許文献3、4のような組成やWC平均粒径が異なる混合粉末を2回に分けてプレス成型して形成する積層構造からなる基材では、チタン合金の断続切削であるミーリング加工においては強度が十分ではない。
A conventionally known WC-based cemented carbide having an average particle size of 0.2 to 3.0 μm can be applied to the substrate used in the present invention. When the WC average particle size becomes finer than this, the toughness of the tool tends to decrease. Moreover, when the WC average particle size becomes coarser than this, the wear resistance of the tool tends to be lowered. In particular, it is preferable that the WC average particle diameter of the base material is 1.5 μm or less because the cutting edge becomes a sharp edge and the cutting performance is improved. The WC average particle diameter of the present invention is measured at 10,000 to 20,000 times with an electron microscope after etching the mirror-finished substrate, and the average particle diameter of the equivalent circle diameter from the observed image using image analysis software Can be obtained from
In the present invention, the single layer structure is a general WC-based cemented carbide obtained by forming one kind of mixed powder. In a base material composed of a laminated structure formed by press-molding mixed powders having different compositions and different WC average particle diameters as in Patent Documents 3 and 4, strength in milling processing, which is intermittent cutting of a titanium alloy Is not enough.

本発明において、硬質皮膜の硬度は、ナノインデンテーション法で測定した硬度が20GPa以上であることが耐摩耗性を高めるために好ましい。更に好ましくは25GPa以上である。本発明の硬質皮膜は、窒化物、炭窒化物、炭化物、硼化物等を適用することができる。
本発明者の検討によると、硬質皮膜がチタンを含有することで熱伝導率が高まる傾向にあり切削加工時に硬質皮膜への蓄熱が少なくなり熱衝撃による皮膜の損傷が抑制され易くなる。これらの効果を得るには、硬質皮膜は金属部分の原子比率でチタンを85%(原子%)以上とすることが好ましい。更には、金属部分の原子比率でチタンを90%(原子%)以上が好ましい。更には、金属部分の原子比率でチタンを95%(原子%)以上がより好ましい。更には、硬質皮膜の金属部分がチタンからなることが好ましい。
また、硬質皮膜は、耐摩耗性および耐熱性が優れる傾向にある窒化物又は炭窒化物とすることが好ましい。更に好ましくは窒化物である。
In the present invention, the hardness of the hard coating is preferably 20 GPa or more as measured by the nanoindentation method in order to increase the wear resistance. More preferably, it is 25 GPa or more. Nitride, carbonitride, carbide, boride and the like can be applied to the hard coating of the present invention.
According to the study of the present inventors, the thermal conductivity tends to increase because the hard coating contains titanium, and heat storage to the hard coating is reduced at the time of cutting, so that damage to the coating due to thermal shock is easily suppressed. In order to obtain these effects, the hard coating preferably contains 85% (atomic%) or more of titanium by the atomic ratio of the metal portion. Furthermore, the atomic ratio of the metal portion is preferably 90% (atomic%) or more of titanium. Furthermore, 95% (atomic%) or more of titanium is more preferable in terms of the atomic ratio of the metal portion. Furthermore, it is preferable that the metal portion of the hard coating is made of titanium.
The hard coating is preferably a nitride or carbonitride that tends to have excellent wear resistance and heat resistance. More preferred is nitride.

本発明において、硬質皮膜の膜厚は、チタン又はチタン合金の加工における耐熱衝撃性と耐摩耗性を考慮すると0.5〜5.0μmとすることが好ましい。チタン又はチタン合金の加工においては、硬質皮膜の膜厚が厚くなると、熱量が硬質皮膜の内部に蓄熱して熱影響による歪が生じ易くなる。そのため、切削加工中の熱量を硬質皮膜の内部に蓄熱させずに基材に瞬時に伝達させるには膜厚の上限は3.0μm以下とすることが特に好ましい。より好ましくは2.0μm以下である。更には、1.5μm以下である。硬質皮膜により優れた耐摩耗性を付与するために膜厚の下限は0.7μm以上であることが好ましい。更には1.0μm以上であることが好ましい。   In the present invention, the film thickness of the hard coating is preferably 0.5 to 5.0 μm in consideration of thermal shock resistance and wear resistance in processing of titanium or titanium alloy. In the processing of titanium or a titanium alloy, when the thickness of the hard coating is increased, the amount of heat is stored inside the hard coating, and distortion due to the thermal effect is likely to occur. Therefore, the upper limit of the film thickness is particularly preferably set to 3.0 μm or less in order to instantaneously transmit the amount of heat during cutting to the base material without accumulating heat inside the hard coating. More preferably, it is 2.0 μm or less. Furthermore, it is 1.5 μm or less. In order to impart excellent wear resistance to the hard film, the lower limit of the film thickness is preferably 0.7 μm or more. Furthermore, it is preferable that it is 1.0 micrometer or more.

本発明の被覆切削工具は、刃先交換式のインサートチップ、ドリルやエンドミルに適用することができる。特に、熱の増減の激しい断続切削であるミーリング加工に適用することで優れた工具寿命となり好ましい。   The coated cutting tool of the present invention can be applied to a blade tip replaceable insert tip, drill or end mill. In particular, it is preferable to apply to milling, which is intermittent cutting in which the increase and decrease of heat is intense, because the tool life is excellent.

基材の表面粗さは、砥石研削、バレル研磨、ブラスト処理等を適用して調整することができる。硬質皮膜の表面粗さは、基材を平滑に研摩することに加えて、被覆時の基材の温度、炉内圧力、ターゲットへの投入電力、基材に印加するバイアス電圧、成膜時間等により調整することができる。   The surface roughness of the substrate can be adjusted by applying grinding wheel grinding, barrel polishing, blasting, or the like. The surface roughness of the hard coating is not only smooth polishing of the substrate, but also the temperature of the substrate during coating, the pressure in the furnace, the power applied to the target, the bias voltage applied to the substrate, the film formation time, etc. Can be adjusted.

本発明で採用するスパッタリング法とは、例えば、DC(直流)スパッタリング法、RF(高周波)スパッタリング法、非平衡マグネトロンスパッタリング法、パルス電源を利用したスパッタリング等の他には、HIPIMS(High Power Impulse Magnetron Sputtering)やHPPMS(High Power Pulse Magnetron Sputtering)等に代表されるターゲット成分のイオン化率が高い、高出力パルスマグネトロンスパッタリング法を適用することができる。
ターゲットへ投入する平均の電力密度が低くなると硬質皮膜に含まれる空隙が増加して皮膜の密着性が低下する傾向にある。また、ターゲットへ投入する平均の電力密度が高くなると硬質皮膜の表面状態が粗くなる傾向にある。そのため、ターゲットへ投入する平均の電力密度を7.0〜15.0W/cmとすることが好ましい。また、皮膜の密着性を高めて硬質皮膜をより平滑にするには、被覆時の基材温度は450〜550℃とすることが好ましい。また、被覆時の炉内圧力は0.40〜0.70Paとすることが好ましい。
Examples of the sputtering method employed in the present invention include, for example, DCIP (direct current) sputtering method, RF (radio frequency) sputtering method, non-equilibrium magnetron sputtering method, sputtering using a pulse power source, and the like, as well as HIPIMS (High Power Impulse Magnetron). A high-power pulse magnetron sputtering method with a high ionization rate of a target component typified by Sputtering or HPPMS (High Power Pulse Magnetron Sputtering) can be applied.
When the average power density input to the target is lowered, voids contained in the hard coating tend to increase and the coating adhesion tends to decrease. Moreover, when the average power density thrown into a target becomes high, the surface state of a hard film tends to become rough. Therefore, it is preferable that the average power density input to the target is 7.0 to 15.0 W / cm 2 . Moreover, in order to improve the adhesiveness of a film | membrane and to make a hard film | membrane more smooth, it is preferable that the base-material temperature at the time of coating shall be 450-550 degreeC. Further, the furnace pressure during coating is preferably 0.40 to 0.70 Pa.

被覆時に基材に印加する負圧のバイアス電圧が小さくなると硬質皮膜の内部に空隙が発生し易くなる。また、負圧のバイアス電圧が大きくなると成膜と同時にエッチングが生じるため、成膜速度が遅くなるとともに皮膜の組成、膜厚の制御が困難となる。よって、スパッタリング法で硬質皮膜を被覆する際には、基材に印加する負圧のバイアス電圧を−80〜−160Vとすることが好ましい。   If the negative bias voltage applied to the substrate during coating is small, voids are likely to be generated inside the hard coating. Further, when the negative bias voltage is increased, etching occurs simultaneously with the film formation, so that the film formation rate becomes slow and it becomes difficult to control the composition and film thickness of the film. Therefore, when the hard film is coated by the sputtering method, the negative bias voltage applied to the substrate is preferably -80 to -160V.

基材には、一種類の混合粉末から形成した、組成が、WC(bal.)−Co(11質量%)−TaC(0.4質量%)−Cr(0.9質量%)の単層構造からなり、硬度が92.4HRAのソリッドエンドミル(Φ10×2枚刃 日立ツール株式会社製 HES2100)を準備した。
ソリッドエンドミルは、JIS R 6001(研削といし用研磨材の粒度)の粒度で♯400または♯1000のダイヤモンド砥石を用いて加工した。
加工後、ZYGO製の非接触表面形状測定機(NewViewTH7300)を用いて、逃げ面の算術平均粗さRaと最大高さ粗さRzを測定した。測定面積は0.28mm×0.21mmとした。
The base material was formed from one kind of mixed powder, and the composition was WC (bal.)-Co (11 mass%)-TaC (0.4 mass%)-Cr 3 C 2 (0.9 mass%). A solid end mill (Φ10 × 2-flute HES2100 manufactured by Hitachi Tool Co., Ltd.) having a hardness of 92.4 HRA was prepared.
The solid end mill was processed using a diamond grindstone of # 400 or # 1000 with a particle size of JIS R 6001 (grain size of abrasive for grinding wheel).
After processing, the arithmetic average roughness Ra and the maximum height roughness Rz of the flank were measured using a non-contact surface shape measuring machine (NewView TH 7300) manufactured by ZYGO. The measurement area was 0.28 mm × 0.21 mm.

WC平均粒径の測定には、Media Cybernetics社製の画像解析ソフト(Image−Pro Plus)を用いた。ソリッドエンドミルを鏡面研磨し、村上試薬で0.5分、王水で3分間エッチングして、電子顕微鏡を用いて倍率10k倍で観察を行った。そして、2mmの範囲に存在するWC粒子の円相当径の平均粒径を測定した。実施例で使用したソリッドエンドミルのWC平均粒径は約0.5μmであることを確認した。 For the measurement of the WC average particle diameter, image analysis software (Image-Pro Plus) manufactured by Media Cybernetics was used. The solid end mill was mirror-polished, etched with Murakami reagent for 0.5 minutes and with aqua regia for 3 minutes, and observed using an electron microscope at a magnification of 10k. And the average particle diameter of the equivalent circle diameter of the WC particle which exists in the range of 2 mm < 2 > was measured. It was confirmed that the WC average particle diameter of the solid end mill used in the examples was about 0.5 μm.

試料No.1〜7、10はDCスパッタリング法で硬質皮膜を被覆した。ターゲットには、1000mm×170mm、厚み12mmのターゲットを準備した。
成膜装置内のヒーターにより基材温度が500℃になった状態で90分間の加熱を行い、真空容器(チャンバー)内の圧力が4.5×10−3Paに達した後、Arガスを真空容器内に導入し、炉内の圧力を0.1Paとした。そして、基材に‐200Vの直流バイアス電圧を印加して、Arイオンによる基材のクリーニングを15分間実施した。
その後、容器内の圧力を1×10−3Paに真空排気して、基材の温度を500℃の一定とし、一定流量のArガス400ml/分のもとで、容器内の圧力が0.55PaになるようにNガスを導入した。そして、ターゲットへ投入する平均の電力密度を8.8W/cmとし、基材に負圧のバイアス電圧を印加して硬質皮膜を被覆した。
Sample No. Nos. 1 to 7 and 10 were coated with a hard film by a DC sputtering method. A target having a thickness of 1000 mm × 170 mm and a thickness of 12 mm was prepared.
After heating for 90 minutes with the substrate temperature at 500 ° C. by the heater in the film forming apparatus and the pressure in the vacuum vessel (chamber) reaches 4.5 × 10 −3 Pa, Ar gas is removed. It introduced in the vacuum vessel and the pressure in a furnace was 0.1 Pa. Then, a DC bias voltage of −200 V was applied to the substrate, and the substrate was cleaned with Ar ions for 15 minutes.
Thereafter, the pressure in the container is evacuated to 1 × 10 −3 Pa, the temperature of the base material is kept constant at 500 ° C., and the pressure in the container is set to 0. N 2 gas was introduced so as to be 55 Pa. The average power density applied to the target was 8.8 W / cm 2, and a negative bias voltage was applied to the substrate to coat the hard coating.

試料No.11〜15はアークイオンプレーティング法で硬質皮膜を被覆した。ターゲットには、φ105mm、厚み16mmのターゲットを準備した。上記のスパッタリング法と同様に、まずArイオンによる基材のクリーニングを5分間実施した。続いて、容器内の圧力を1×10−3Paに真空排気して、基材の温度を500℃の一定とし、容器内の圧力が3PaになるようにNガスを導入した。そして、基材に負圧のバイアス電圧を印加して、カソードに150Aの電流を供給して硬質皮膜を被覆した。
なお、試料No.12、14、15は、硬質皮膜の表面を平滑にするために、株式会社ヤマシタワークス製エアロラップ(登録商標)装置(AERO LAP YT−300)を使用して表面のドロップレットを除去した。
Sample No. Nos. 11 to 15 were coated with a hard film by an arc ion plating method. As a target, a target having a diameter of 105 mm and a thickness of 16 mm was prepared. Similar to the above sputtering method, the substrate was first cleaned with Ar ions for 5 minutes. Subsequently, the pressure in the container was evacuated to 1 × 10 −3 Pa, the temperature of the base material was kept constant at 500 ° C., and N 2 gas was introduced so that the pressure in the container was 3 Pa. Then, a negative bias voltage was applied to the substrate, and a current of 150 A was supplied to the cathode to coat the hard coating.
Sample No. In order to smooth the surface of the hard coating, Nos. 12, 14, and 15 removed surface droplets using an Aero Wrap (registered trademark) apparatus (AERO LAP YT-300) manufactured by Yamashita Towers Co., Ltd.

試料No.16は、硬質皮膜を被覆しなかった。各試料の作製条件について表1に示す。   Sample No. No. 16 did not coat the hard coating. Table 1 shows the production conditions of each sample.

株式会社エリオニクス製のナノインデンテーション装置を用いて皮膜表面の硬度を測定した。押込み荷重9.8mN、最大荷重保持時間1秒、荷重負荷後の除去速度0.49mN/秒の測定条件で10点測定し、値の大きい2点と、値の小さい2点を除いた6点の平均値から求めた。硬質皮膜の表面粗さをZYGO製の非接触表面形状測定機(NewViewTH7300)を用いて測定した。測定面積は0.28mm×0.21mmとした。硬質皮膜の組成は波長分散型電子線プローブ微小分析(WDS−EPMA)により測定した。硬質皮膜の組成、膜厚、硬度、表面粗さについて表2に示す。 The hardness of the coating surface was measured using a nanoindentation device manufactured by Elionix Co., Ltd. Ten points were measured under the measurement conditions of an indentation load of 9.8 mN, a maximum load holding time of 1 second, and a removal speed after loading of 0.49 mN / second, and 6 points excluding 2 points with a large value and 2 points with a small value. The average value was obtained. The surface roughness of the hard coating was measured using a non-contact surface profile measuring machine (NewView TH 7300) manufactured by ZYGO. The measurement area was 0.28 mm × 0.21 mm. The composition of the hard coating was measured by wavelength dispersive electron probe microanalysis (WDS-EPMA). Table 2 shows the composition, film thickness, hardness, and surface roughness of the hard coating.

以下の条件で切削試験を行った。切削試験による逃げ面の損傷状態および皮膜損傷幅について表2に示す。
切削方法:側面切削
被削材:チタン合金(Ti−6Al−4V 溶体化処理)
切込み:軸方向6mm、径方向0.3mm
切削速度:60m/min
一刃送り量0.04mm/tooth
切削油:水溶性切削油
切削距離:1m
A cutting test was performed under the following conditions. Table 2 shows the flank damage state and film damage width in the cutting test.
Cutting method: Side cutting Work material: Titanium alloy (Ti-6Al-4V solution treatment)
Cutting depth: 6mm in the axial direction, 0.3mm in the radial direction
Cutting speed: 60 m / min
Single blade feed 0.04mm / tooth
Cutting oil: Water-soluble cutting oil Cutting distance: 1m

本発明例である試料No.1〜7は硬質皮膜の損傷が少なくなった。図1と図2に本発明例である試料No.1と比較例である試料No.10の硬質皮膜を被覆前の工具の逃げ面における表面プロファイルを示す。本発明例は凹凸が少なく平滑な表面状態であることが確認される。本発明例は、基材を平滑研磨したことで硬質皮膜が平滑になり、切削加工中に応力集中が少なく皮膜の摩耗が抑制されたと推定される。
本発明例を同一組成で比較した場合、膜厚が薄い方が皮膜内部に蓄熱し難いため硬質皮膜の損傷が抑制される傾向にあった。また、膜厚がほぼ同じである試料No.3、6、7の比較から、硬質皮膜の金属部分がチタンからなる窒化物は摩耗幅が特に少ない傾向にあった。これは、金属部分の原子比率でチタンを多く含有する硬質皮膜は、他の組成系の皮膜に比べて熱伝導率が高くなり皮膜に蓄積される熱が減少して皮膜への熱衝撃が減少したたためと推定される。
そして、本発明例の被覆切削工具の構造を確認するため断面観察を行った。図3に試料No.1の断面観察写真を示す。本発明例の基材は均一な組織形態であることが確認される。また、基材と硬質皮膜の界面が平滑であり、スパッタリング法で被覆した硬質皮膜であるため、アークイオンプレーティング法で被覆した硬質皮膜のようなドロップレットは確認されない。
従来、硬質皮膜の早期破壊が発生していたチタン合金の切削加工において、本発明例の被覆切削工具を用いることで硬質皮膜の損傷が抑制されることが確認された。
Sample No. which is an example of the present invention. 1 to 7 showed less damage to the hard coating. 1 and 2 show the sample No. as an example of the present invention. 1 and sample No. 1 as a comparative example. The surface profile in the flank of the tool before coating | coated 10 hard films is shown. It is confirmed that the example of the present invention has a smooth surface state with few irregularities. In the present invention example, it is presumed that the hard coating became smooth by smooth polishing of the base material, the stress concentration was small during the cutting process, and the wear of the coating was suppressed.
When the examples of the present invention were compared with the same composition, damage to the hard coating tended to be suppressed because the thinner the film, the less likely it was to store heat inside the coating. Sample Nos. Having almost the same film thickness. From the comparison of 3, 6, and 7, the nitride in which the metal portion of the hard film is made of titanium tended to have a particularly small wear width. This is because the hard coating containing a large amount of titanium in the atomic ratio of the metal part has a higher thermal conductivity than the coatings of other composition systems, and the heat accumulated in the coating is reduced, reducing the thermal shock to the coating. Presumably because
And cross-sectional observation was performed in order to confirm the structure of the coated cutting tool of the example of the present invention. In FIG. The cross-sectional observation photograph of 1 is shown. It is confirmed that the base material of the present invention example has a uniform tissue form. Further, since the interface between the base material and the hard film is smooth and the hard film is coated by the sputtering method, droplets such as the hard film coated by the arc ion plating method are not confirmed.
Conventionally, it has been confirmed that damage to the hard coating is suppressed by using the coated cutting tool of the present invention example in the cutting of a titanium alloy in which early destruction of the hard coating has occurred.

比較例である試料No.10は基材の表面粗さが粗く、スパッタリング法で被覆した硬質皮膜の算術平均粗さRaも100nm以上となり、硬質皮膜の微小割れが発生して本発明よりも損傷が大きくなった。
アークイオンプレーティング法で被覆した試料No.11〜15は、いずれも早期に硬質皮膜の割れが発生して皮膜損傷幅が大きくなった。試料No.12、14、15は表面を平滑化したが、硬質皮膜の内部に含まれるドロップレットが起点となり皮膜破壊が発生した。
硬質皮膜を被覆していない試料No.16は、エッジダレが発生した。

Sample No. which is a comparative example. In No. 10, the surface roughness of the base material was rough, and the arithmetic average roughness Ra of the hard film coated by the sputtering method was 100 nm or more, causing micro cracks in the hard film, resulting in greater damage than in the present invention.
Sample No. coated with arc ion plating method As for 11-15, the crack of a hard film generate | occur | produced early | quickly, and the film damage width became large. Sample No. Nos. 12, 14, and 15 smoothed the surface, but the coating contained was broken starting from the droplets contained inside the hard coating.
Sample No. not coated with hard coating In No. 16, edge sagging occurred.

Claims (10)

WC基超硬合金を基材とする切削工具の少なくとも刃先部に硬質皮膜が形成された被覆切削工具であって、前記基材はWC平均粒径が0.2〜3.0μmであり、かつ、単層構造であり、前記硬質皮膜はスパッタリング法で形成され、前記硬質皮膜の算術平均粗さRaが60nm以下であることを特徴とするチタン又はチタン合金加工用の被覆切削工具。   A coated cutting tool in which a hard film is formed on at least a cutting edge portion of a cutting tool based on a WC-based cemented carbide, wherein the base material has a WC average particle size of 0.2 to 3.0 μm, and A coated cutting tool for machining titanium or titanium alloy, wherein the hard coating is formed by a sputtering method, and the arithmetic average roughness Ra of the hard coating is 60 nm or less. 前記硬質皮膜は算術平均粗さRaが60nm以下の基材に形成されたものであることを特徴とする請求項1に記載のチタン又はチタン合金加工用の被覆切削工具。   2. The coated cutting tool for machining titanium or titanium alloy according to claim 1, wherein the hard film is formed on a base material having an arithmetic average roughness Ra of 60 nm or less. 前記硬質皮膜の膜厚が3.0μm以下であることを特徴とする請求項1または2に記載のチタン又はチタン合金加工用の被覆切削工具。   The coated cutting tool for machining titanium or titanium alloy according to claim 1 or 2, wherein the hard coating has a thickness of 3.0 µm or less. 前記硬質皮膜は金属部分の原子比率でチタンを85%(原子%)以上を含有することを特徴とする請求項1ないし3の何れかに記載のチタン又はチタン合金加工用の被覆切削工具。   4. The coated cutting tool for machining titanium or titanium alloy according to claim 1, wherein the hard coating contains 85% (atomic%) or more of titanium in an atomic ratio of a metal portion. 前記硬質皮膜は窒化物であることを特徴とする請求項4に記載のチタン又はチタン合金加工用の被覆切削工具。   5. The coated cutting tool for machining titanium or titanium alloy according to claim 4, wherein the hard film is a nitride. WC平均粒径が0.2〜3.0μmの単層構造からなるWC基超硬合金を基材とする切削工具の少なくとも刃先部を算術平均粗さRaが60nm以下にする工程と、
前記基材の表面に算術平均粗さRaが60nm以下になるよう硬質皮膜をスパッタリング法で被覆する工程と、を有することを特徴とするチタン又はチタン合金加工用被覆切削工具の製造方法。
A step of setting an arithmetic average roughness Ra to 60 nm or less at least a cutting edge portion of a cutting tool based on a WC-based cemented carbide having a single layer structure having a WC average particle size of 0.2 to 3.0 μm;
And a step of coating the surface of the substrate with a hard film by sputtering so that the arithmetic average roughness Ra is 60 nm or less.
前記スパッタリング法で膜厚が3.0μm以下の硬質皮膜を被覆することを特徴とする請求項6に記載のチタン又はチタン合金加工用被覆切削工具の製造方法。   The method for producing a coated cutting tool for machining titanium or titanium alloy according to claim 6, wherein a hard film having a thickness of 3.0 µm or less is coated by the sputtering method. 前記硬質皮膜は金属部分の原子比率でチタンを85%(原子%)以上を含有することを特徴とする請求項6または7に記載のチタン又はチタン合金加工用被覆切削工具の製造方法。   The method for manufacturing a coated cutting tool for machining titanium or titanium alloy according to claim 6 or 7, wherein the hard coating contains 85% (atomic%) or more of titanium in an atomic ratio of a metal portion. 前記硬質皮膜は窒化物であることを特徴とする請求項8に記載のチタン又はチタン合金加工用被覆切削工具の製造方法。   The method for manufacturing a coated cutting tool for machining titanium or a titanium alloy according to claim 8, wherein the hard coating is a nitride. 請求項1ないし5の何れかに記載の被覆切削工具を用いてミーリング加工することを特徴とするチタン又はチタン合金の加工方法。

Milling using the coated cutting tool according to any one of claims 1 to 5, characterized in that a titanium or titanium alloy processing method.

JP2014131016A 2013-06-26 2014-06-26 Coated cutting tool for milling titanium or titanium alloy and method of manufacturing the same Active JP6510771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014131016A JP6510771B2 (en) 2013-06-26 2014-06-26 Coated cutting tool for milling titanium or titanium alloy and method of manufacturing the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2013133801 2013-06-26
JP2013133801 2013-06-26
JP2013144286 2013-07-10
JP2013144286 2013-07-10
JP2014131016A JP6510771B2 (en) 2013-06-26 2014-06-26 Coated cutting tool for milling titanium or titanium alloy and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2015033757A true JP2015033757A (en) 2015-02-19
JP6510771B2 JP6510771B2 (en) 2019-05-08

Family

ID=52542664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014131016A Active JP6510771B2 (en) 2013-06-26 2014-06-26 Coated cutting tool for milling titanium or titanium alloy and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP6510771B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065397A1 (en) * 2017-09-27 2019-04-04 三菱日立ツール株式会社 Coated cutting tool

Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210871A (en) * 1975-07-15 1977-01-27 Sumitomo Electric Ind Ltd Composite coating tip
JPH01132756A (en) * 1987-11-18 1989-05-25 Kobe Steel Ltd Method for coating of wear-resistant film
JPH02243201A (en) * 1989-03-17 1990-09-27 Taisei Koki Kk Manufacture of fiber and device thereof
JPH0482626A (en) * 1990-07-25 1992-03-16 Nibetsukusu Kk Fiber manufacturing device
JPH04236765A (en) * 1991-01-14 1992-08-25 Mitsubishi Materials Corp Cutting tool of hard layer-coated cemented carbide and its production
JPH04240005A (en) * 1991-01-14 1992-08-27 Mitsubishi Materials Corp Cutting tool made of hard layer covering sintered hard alloy and manufacture thereof
JPH04348823A (en) * 1991-03-18 1992-12-03 Mitsubishi Materials Corp Cutting tool made of rigid layer-covered cemented carbide
JPH09323205A (en) * 1996-06-05 1997-12-16 Hitachi Tool Eng Ltd Multilayer coated hard tool
JP2000297364A (en) * 1999-04-14 2000-10-24 Agency Of Ind Science & Technol AlTi SERIES ALLOY SPUTTERING TARGET, WEAR RESISTANT AlTi SERIES ALLOY HARD FILM AND FORMATION OF THE FILM
JP2001234328A (en) * 2000-02-25 2001-08-31 Toshiba Tungaloy Co Ltd Combined hard coating member
JP2002346812A (en) * 2001-05-25 2002-12-04 Ngk Spark Plug Co Ltd Cutting tool and tool with holder
JP2003159611A (en) * 2001-11-22 2003-06-03 Kyocera Corp Ball end mill and its manufacturing method
JP2005068499A (en) * 2003-08-26 2005-03-17 Tohoku Tokushuko Kk Metallic product provided with hard film having excellent adhesion, method of producing the metallic product, and cutting tool and die coated with the hard film
JP2005213636A (en) * 2004-02-02 2005-08-11 Kobe Steel Ltd Combined film deposition apparatus and sputtering vapor source
JP2005262389A (en) * 2004-03-18 2005-09-29 Sumitomo Electric Hardmetal Corp Surface-coated cutting tool for processing titanium alloy
JP2006116633A (en) * 2004-10-20 2006-05-11 Osg Corp Hard film coated tool, coating film and film coating method
JP2008238314A (en) * 2007-03-27 2008-10-09 Kyocera Corp Cutting tool, its manufacturing method, and cutting method
JP2008254116A (en) * 2007-04-04 2008-10-23 Sumitomo Electric Ind Ltd Surface coated cutting tool
JP2008284637A (en) * 2007-05-16 2008-11-27 Sumitomo Electric Ind Ltd Coated cutting tool
JP2008284638A (en) * 2007-05-16 2008-11-27 Sumitomo Electric Ind Ltd Coated cutting tool
JP2009061539A (en) * 2007-09-05 2009-03-26 Sumitomo Electric Ind Ltd Amorphous carbon film coating tool
JP2009082993A (en) * 2007-09-27 2009-04-23 Kyocera Corp Surface-coated tool
JP2011167829A (en) * 2010-02-22 2011-09-01 Kyocera Corp Cutting tool for machining titanium alloy
JP2012092433A (en) * 2010-09-27 2012-05-17 Hitachi Tool Engineering Ltd Durable coating tool and method of manufacturing the same
JP2013018110A (en) * 2011-06-17 2013-01-31 Hitachi Tool Engineering Ltd Multi-edge endmill
JP2013031923A (en) * 2007-01-18 2013-02-14 Kennametal Inc Milling cutter and milling insert with coolant delivery
JP2013237120A (en) * 2012-05-15 2013-11-28 Mitsubishi Materials Corp Wc-based cemented carbide cutting tool excellent in chipping resistance

Patent Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210871A (en) * 1975-07-15 1977-01-27 Sumitomo Electric Ind Ltd Composite coating tip
JPH01132756A (en) * 1987-11-18 1989-05-25 Kobe Steel Ltd Method for coating of wear-resistant film
JPH02243201A (en) * 1989-03-17 1990-09-27 Taisei Koki Kk Manufacture of fiber and device thereof
JPH0482626A (en) * 1990-07-25 1992-03-16 Nibetsukusu Kk Fiber manufacturing device
JPH04236765A (en) * 1991-01-14 1992-08-25 Mitsubishi Materials Corp Cutting tool of hard layer-coated cemented carbide and its production
JPH04240005A (en) * 1991-01-14 1992-08-27 Mitsubishi Materials Corp Cutting tool made of hard layer covering sintered hard alloy and manufacture thereof
JPH04348823A (en) * 1991-03-18 1992-12-03 Mitsubishi Materials Corp Cutting tool made of rigid layer-covered cemented carbide
JPH09323205A (en) * 1996-06-05 1997-12-16 Hitachi Tool Eng Ltd Multilayer coated hard tool
JP2000297364A (en) * 1999-04-14 2000-10-24 Agency Of Ind Science & Technol AlTi SERIES ALLOY SPUTTERING TARGET, WEAR RESISTANT AlTi SERIES ALLOY HARD FILM AND FORMATION OF THE FILM
JP2001234328A (en) * 2000-02-25 2001-08-31 Toshiba Tungaloy Co Ltd Combined hard coating member
JP2002346812A (en) * 2001-05-25 2002-12-04 Ngk Spark Plug Co Ltd Cutting tool and tool with holder
JP2003159611A (en) * 2001-11-22 2003-06-03 Kyocera Corp Ball end mill and its manufacturing method
JP2005068499A (en) * 2003-08-26 2005-03-17 Tohoku Tokushuko Kk Metallic product provided with hard film having excellent adhesion, method of producing the metallic product, and cutting tool and die coated with the hard film
JP2005213636A (en) * 2004-02-02 2005-08-11 Kobe Steel Ltd Combined film deposition apparatus and sputtering vapor source
JP2005262389A (en) * 2004-03-18 2005-09-29 Sumitomo Electric Hardmetal Corp Surface-coated cutting tool for processing titanium alloy
JP2006116633A (en) * 2004-10-20 2006-05-11 Osg Corp Hard film coated tool, coating film and film coating method
JP2013031923A (en) * 2007-01-18 2013-02-14 Kennametal Inc Milling cutter and milling insert with coolant delivery
JP2008238314A (en) * 2007-03-27 2008-10-09 Kyocera Corp Cutting tool, its manufacturing method, and cutting method
JP2008254116A (en) * 2007-04-04 2008-10-23 Sumitomo Electric Ind Ltd Surface coated cutting tool
JP2008284638A (en) * 2007-05-16 2008-11-27 Sumitomo Electric Ind Ltd Coated cutting tool
JP2008284637A (en) * 2007-05-16 2008-11-27 Sumitomo Electric Ind Ltd Coated cutting tool
JP2009061539A (en) * 2007-09-05 2009-03-26 Sumitomo Electric Ind Ltd Amorphous carbon film coating tool
JP2009082993A (en) * 2007-09-27 2009-04-23 Kyocera Corp Surface-coated tool
JP2011167829A (en) * 2010-02-22 2011-09-01 Kyocera Corp Cutting tool for machining titanium alloy
JP2012092433A (en) * 2010-09-27 2012-05-17 Hitachi Tool Engineering Ltd Durable coating tool and method of manufacturing the same
JP2013018110A (en) * 2011-06-17 2013-01-31 Hitachi Tool Engineering Ltd Multi-edge endmill
JP2013237120A (en) * 2012-05-15 2013-11-28 Mitsubishi Materials Corp Wc-based cemented carbide cutting tool excellent in chipping resistance

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
S. PAIDEY, 外1名: "Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review", MATERIALS SCIENCE AND ENGINEERING, vol. A342, JPN6019011212, 2003, pages 58 - 79, ISSN: 0004007218 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065397A1 (en) * 2017-09-27 2019-04-04 三菱日立ツール株式会社 Coated cutting tool
JPWO2019065397A1 (en) * 2017-09-27 2020-02-27 三菱日立ツール株式会社 Coated cutting tool
CN110944776A (en) * 2017-09-27 2020-03-31 三菱日立工具株式会社 Coated cutting tool
CN110944776B (en) * 2017-09-27 2021-09-14 株式会社Moldino Coated cutting tool
US11224921B2 (en) 2017-09-27 2022-01-18 Moldino Tool Engineering, Ltd. Coated cutting tool

Also Published As

Publication number Publication date
JP6510771B2 (en) 2019-05-08

Similar Documents

Publication Publication Date Title
JP4846872B2 (en) Sputtering target and manufacturing method thereof
JP6525310B2 (en) Coated tools
JP6337944B2 (en) Coated tool
JP5176621B2 (en) Amorphous carbon coated tool
JP5286625B2 (en) Surface-coated cutting tool and manufacturing method thereof
JP5286626B2 (en) Surface-coated cutting tool and manufacturing method thereof
WO2019035220A1 (en) Coated cutting tool
JP6034579B2 (en) Durable coated tool
JP6064987B2 (en) Coated rotating tool and manufacturing method thereof
WO2014156699A1 (en) Coated cutting tool
JP6385233B2 (en) Coated cutting tool
WO2013129320A1 (en) Covered rotary tool and manufacturing method therefor
JP6308298B2 (en) Manufacturing method of coated tool
JP4815925B2 (en) Coated sintered alloy
JP2015033757A (en) Coated cutting tool for processing titanium or titanium alloy, manufacturing method of the same and processing method of titanium or titanium alloy using the same
JP2010207921A (en) Surface coated cutting tool exhibiting excellent chip dischargeability
JP6528936B2 (en) Method of manufacturing coated tool
JP5471842B2 (en) Surface coated cutting tool
JP2012139795A (en) Surface coated cutting tool with hard coating layer exhibiting superior resistance against peeling and chipping in high speed cutting of soft hard-to-cut material
JP5240665B2 (en) Surface-coated cutting tool with excellent chip evacuation
JP2015174196A (en) Manufacturing method of coated cutting tool
JP5229487B2 (en) Surface-coated cutting tool with excellent chip evacuation
JP2017056498A (en) Carbide tool and manufacturing method of the same
JP2021112805A (en) Coated cutting tool
JP2003103405A (en) Cutter and tool with holder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190405

R150 Certificate of patent or registration of utility model

Ref document number: 6510771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350