JP2011167829A - Cutting tool for machining titanium alloy - Google Patents

Cutting tool for machining titanium alloy Download PDF

Info

Publication number
JP2011167829A
JP2011167829A JP2010036141A JP2010036141A JP2011167829A JP 2011167829 A JP2011167829 A JP 2011167829A JP 2010036141 A JP2010036141 A JP 2010036141A JP 2010036141 A JP2010036141 A JP 2010036141A JP 2011167829 A JP2011167829 A JP 2011167829A
Authority
JP
Japan
Prior art keywords
cutting edge
nose
cutting
titanium alloy
cutting blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010036141A
Other languages
Japanese (ja)
Inventor
Takahiko Makino
貴彦 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2010036141A priority Critical patent/JP2011167829A/en
Publication of JP2011167829A publication Critical patent/JP2011167829A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cutting tool for elongating a service life of the tool for cutting and machining a titanium alloy. <P>SOLUTION: The cutting tool is a throwaway tip 1 suitable for machining the titanium alloy having a structure in which a main surface is formed into a roughly plane shape in a rough polygon, the main surface forms a cutting face 2, a side face forms a flank 3, an intersecting ridge line between the cutting face 2 and the flank 3 forms a cutting blade 4, a corner of the roughly polygon-shaped main surface forms a nose 5, the cutting blade 4 of the nose 5 forms a nose cutting blade 4a, the cutting blade 4 positioned at an edge of the main surface in the rough polygon excepting the nose cutting blade 4a forms a straight line cutting blade 4b, at least a honing that is larger than the nose cutting blade 4a is formed at the straight line cutting blade 4b, the straight line cutting blade 4b is constituted of a base body 7 that is formed of cemented carbide and coated with a coating layer 8, and the nose cutting blade 4a is constituted of the base body 7 that is not coated with the coating layer 8. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、チタン合金加工用の切削工具に関する。   The present invention relates to a cutting tool for machining a titanium alloy.

難削材として知られているチタン合金は、航空機、宇宙開発、原子力発電などに使用される素材であり、その切削加工についても性能向上が求められている。このような課題に対して数多くの切削工具が提案され実用化されているが、その性能が不十分であり、更なる性能向上が図られている。   Titanium alloys, which are known as difficult-to-cut materials, are materials used for aircraft, space development, nuclear power generation, and the like. Many cutting tools have been proposed and put to practical use for such problems, but their performance is insufficient and further performance improvement is being attempted.

また、切削工具においては、切刃にホーニングをつけて切刃のチッピングを抑制する方法が取られているが、ホーニングをつけると切削時の切れ味は低下することから、ホーニング幅については種々の切削条件に応じてホーニング幅が決定されている。   In cutting tools, honing is applied to the cutting edge to suppress chipping of the cutting edge. However, when honing is applied, the sharpness during cutting is reduced. The honing width is determined according to the conditions.

例えば、特許文献1では、セラミックスローアウェイチップにおいて切刃のノーズ部の曲線切刃の面取り(Cホーニング)幅に比べてそれより離れた直線切刃部の面取り量を大きくしたスローアウェイチップが開示され、切刃のノーズ部付近におけるチッピングを抑制することが開示されている。   For example, Patent Document 1 discloses a throw-away tip in which a chamfering amount of a linear cutting edge portion farther than a chamfering width (C honing) width of a curved cutting edge in a nose portion of the cutting edge is increased in a ceramic low-away tip. It is disclosed that chipping in the vicinity of the nose portion of the cutting edge is suppressed.

また、特許文献2では、被覆層を成膜した後に被覆層の表面からブラシまたはブラスト処理してノーズ部において被削材と溶着しやすい被覆層を一部研磨した工具が開示され、工具寿命が延びることが記載されている。   Patent Document 2 discloses a tool in which a coating layer is formed and then a brush or blast treatment is performed from the surface of the coating layer to partially polish the coating layer that is likely to be welded to the work material at the nose portion. It is described as extending.

特開平01−188202号公報Japanese Patent Laid-Open No. 01-188202 特開平08−011005号公報Japanese Patent Application Laid-Open No. 08-011005

しかし、難削材と言われるチタン合金の切削加工においては、切削熱による切刃の温度上昇が他の被削材に比べて高く、化学的に活性で被覆層が反応により基体もろともチッピングして基体がえぐられてしまう可能性があり、しかも、切屑が鋸刃状になって切屑の進行で工具の表面に再度衝突する部分にチッピングや欠損が生じやすいという問題があった。   However, in the cutting of titanium alloys, which are said to be difficult to cut materials, the temperature rise of the cutting edge due to cutting heat is higher than that of other work materials, and it is chemically active and the coating layer reacts to chip the substrate. Further, there is a possibility that the base body may be removed, and there is a problem that chipping or chipping is likely to occur at a portion where the chip becomes a saw blade and collides with the surface of the tool again due to the progress of the chip.

すなわち、特許文献1の切削工具のようにホーニング幅を調整するだけでは不十分であり、特に、切削によって発生した切屑が再度衝突しやすいノーズから離れた直線切刃においては摩耗が進行しやすく、工具寿命を延ばすことができなかった。   That is, it is not sufficient to adjust the honing width just like the cutting tool of Patent Document 1, and wear tends to proceed especially in a straight cutting blade away from a nose where chips generated by cutting easily collide, The tool life could not be extended.

また、特許文献2のノーズ切刃における被覆層を研磨除去する方法では、切刃先端の鋭利さが損なわれて、かえって直線切刃よりもノーズ切刃のほうがホーニング幅が大きくなってしまい、切れ味が悪くなる結果、切刃における反応が進行して溶着から欠損に至ることが多かった。   Further, in the method of polishing and removing the coating layer on the nose cutting edge of Patent Document 2, the sharpness of the cutting edge tip is lost, and the honing width of the nose cutting edge becomes larger than the straight cutting edge. As a result, the reaction at the cutting edge progressed, and welding often led to defects.

本発明は、上記の課題に対して、チタン合金の切削加工用において工具寿命が延びる切削工具を提供する。   The present invention provides a cutting tool with which the tool life is extended in the cutting of a titanium alloy with respect to the above problems.

本発明のチタン合金加工用切削工具は、主面が多角形形状の平板状をなし、前記主面がすくい面を、側面が逃げ面を、前記すくい面と前記逃げ面との交差稜線部が切刃を、前記多角形形状の主面の角部がノーズ部を、該ノーズ部の切刃がノーズ切刃を、該ノーズ切刃以外の前記多角形形状の主面の辺部に位置する切刃が直線切刃を構成するチタン合金加工用の切削工具であって、少なくとも前記直線切刃には前記ノーズ切刃よりも大きいホーニングが形成され、かつ、前記ノーズ切刃は表面が超硬合金からなる基体にて構成されるとともに、前記直線切刃は前記基体の表面に被覆された被覆層にて構成されているものである。   The cutting tool for machining titanium alloy according to the present invention has a main surface in a polygonal flat plate shape, the main surface being a rake face, a side face being a flank face, and a cross ridge line portion between the rake face and the flank face. The corner of the polygonal main surface is positioned at the nose, the cutting edge of the nose is positioned at the nose cutting edge, and the side of the polygonal main surface other than the nose cutting edge. A cutting tool for machining a titanium alloy in which the cutting edge constitutes a straight cutting edge, at least the straight cutting edge is formed with a honing larger than the nose cutting edge, and the nose cutting edge has a carbide surface The linear cutting blade is constituted by a coating layer coated on the surface of the substrate.

ここで、前記ノーズ切刃にもホーニングが形成されて、前記すくい面側から見た際のホーニング幅が0.01〜0.025mmであり、前記直線切刃における前記ホーニング幅が0.02〜0.05mmであることが望ましい。   Here, honing is formed also in the nose cutting edge, and the honing width when viewed from the rake face side is 0.01 to 0.025 mm, and the honing width in the straight cutting edge is 0.02 to 0.02 mm. It is desirable to be 0.05 mm.

また、前記被覆層は、前記直線切刃における厚みが1.5〜3μmであり、Ti1−a−b−c−dAlSi(C1−x)(ただし、MはNb、Mo、Ta、Hf、Yから選ばれる1種以上、0.45≦a≦0.55、0.01≦b≦0.1、0.01≦c≦0.05、0.01≦d≦0.1、0≦x≦1)からなることが望ましい。 Further, the covering layer is 1.5~3μm thickness in the straight cutting edge, Ti 1-a-b- c-d Al a W b Si c M d (C x N 1-x) ( provided that , M is one or more selected from Nb, Mo, Ta, Hf, and Y, 0.45 ≦ a ≦ 0.55, 0.01 ≦ b ≦ 0.1, 0.01 ≦ c ≦ 0.05, 0 .01 ≦ d ≦ 0.1, 0 ≦ x ≦ 1).

さらに、前記基体が、3〜6質量%のCoからなる結合相と、平均粒径が0.1〜0.9μmのWCからなる硬質相とにて構成され、かつ、前記ノーズ切刃において、前記基体の表面におけるCo含有量が内部におけるCo含有量に対する比率で0.6〜0.95であるとともに、前記基体の表面における前記WC相の平均粒径が内部における前記WC相の平均粒径に対する比率で1.05〜1.6であることが望ましい。   Further, the base is composed of a binder phase composed of 3 to 6% by mass of Co and a hard phase composed of WC having an average particle size of 0.1 to 0.9 μm, and in the nose cutting blade, The Co content on the surface of the substrate is 0.6 to 0.95 as a ratio to the Co content inside, and the average particle size of the WC phase on the surface of the substrate is the average particle size of the WC phase inside. It is desirable that the ratio is 1.05 to 1.6.

上記本発明のチタン合金加工用切削工具によれば、ノーズ切刃においては被覆層に比べて被削材との反応が起こりにくい超硬合金基体が表面に存在する状態で被削材と接触するとともに刃先がシャープであることから、被削材との反応が起こりにくく、ノーズ切刃が異常に摩耗することがない。そして、ノーズ切刃で発生した切屑を衝突させて切屑を分断する直線切刃ではノーズ切刃に比べて大きいホーニングが形成されているので、切屑の衝突によって直線切刃がチッピングすることなく、工具寿命を延ばすことができる。   According to the titanium alloy machining cutting tool of the present invention, the nose cutting blade contacts the work material in a state in which a cemented carbide base that is less likely to react with the work material than the coating layer is present on the surface. At the same time, since the cutting edge is sharp, reaction with the work material hardly occurs, and the nose cutting edge does not wear abnormally. And since the honing that is larger than the nose cutting blade is formed in the linear cutting blade that collides the chips generated by the nose cutting blade and divides the chip, the tool does not chip the linear cutting blade due to the collision of the chip. Life can be extended.

ここで、ノーズ切刃にもホーニングが形成されてすくい面側から見た際のホーニング幅が0.01〜0.025mmであり、直線切刃におけるホーニング幅が0.02〜0.05mmであることが、各部位における耐欠損性を高めることができる。   Here, honing is formed on the nose cutting edge and the honing width when viewed from the rake face side is 0.01 to 0.025 mm, and the honing width at the straight cutting edge is 0.02 to 0.05 mm. Therefore, the defect resistance in each part can be improved.

また、被覆層の直線切刃における厚みが1.5〜3μmであることが、直線切刃における耐摩耗性および耐欠損性をともに満足できる点で望ましく、被覆層がTi1−a−b−c−dAlSi(C1−x)(ただし、MはNb、Mo、Ta、Hf、Yから選ばれる1種以上、0.45≦a≦0.55、0.01≦b≦0.1、0.01≦c≦0.05、0.01≦d≦0.1、0≦x≦1)からなる場合には、被覆層を厚く形成しても被覆層が高い内部応力によって早期に欠損することなく、耐チッピング性も良好である。 Moreover, it is desirable that the thickness of the coating layer at the straight cutting edge is 1.5 to 3 μm from the viewpoint that both the wear resistance and fracture resistance of the straight cutting blade can be satisfied, and the coating layer is made of Ti 1-ab- c-d Al a W b Si c M d (C x N 1-x) ( however, M is Nb, Mo, Ta, Hf, 1 or more selected from Y, 0.45 ≦ a ≦ 0.55, 0.01 ≦ b ≦ 0.1, 0.01 ≦ c ≦ 0.05, 0.01 ≦ d ≦ 0.1, 0 ≦ x ≦ 1), the coating layer may be formed thick. The coating layer is not chipped early due to high internal stress, and the chipping resistance is also good.

さらに、前記基体が、3〜6質量%のCoからなる結合相と、平均粒径が0.1〜0.9μmのWC相とにて構成され、かつ、前記ノーズ切刃において、前記基体の表面におけるCo含有量が内部におけるCo含有量に対する比率で0.6〜0.95であるとともに、前記基体の表面における前記WC相の平均粒径が内部における前記WC相の平均粒径に対する比率で1.05〜1.6であることが、基体表面での熱伝導性を改善できるととも
に、被削材の溶着も抑制できる点で望ましい。
Further, the substrate is composed of a binder phase composed of 3 to 6% by mass of Co and a WC phase having an average particle diameter of 0.1 to 0.9 μm, and in the nose cutting edge, The Co content on the surface is 0.6 to 0.95 as a ratio to the Co content in the inside, and the average particle diameter of the WC phase on the surface of the substrate is a ratio to the average particle diameter of the WC phase inside. 1.05-1.6 is desirable in that the thermal conductivity on the substrate surface can be improved and the welding of the work material can also be suppressed.

本発明のチタン合金加工用切削工具の好適例であるスローアウェイチップの一例についての概略斜視図である。It is a schematic perspective view about an example of the throw away tip which is a suitable example of the cutting tool for titanium alloy processing of this invention. 図1のスローアウェイチップにおける(a)A−A断面図、(b)B−B断面図である。It is (a) AA sectional drawing in the throw away tip of FIG. 1, (b) It is BB sectional drawing.

本発明のチタン合金加工用切削工具の好適例であるスローアウェイチップの一例についての概略斜視図である図1、および図1のスローアウェイチップにおける(a)A−A断面図、(b)B−B断面図を基に説明する。   FIG. 1 is a schematic perspective view of an example of a throw-away tip that is a preferred example of the cutting tool for machining titanium alloy of the present invention, and (a) AA cross-sectional view of the throw-away tip of FIG. The description will be made based on the -B cross-sectional view.

図1、2のスローアウェイチップ(以下、チップと略す。)1は、主面が多角形形状の平板状をなし、この主面がすくい面2を、側面が逃げ面3を、すくい面2と逃げ面3との交差稜線部が切刃4を、前記多角形形状の主面の角部がノーズ部5を、ノーズ部5の切刃がノーズ切刃4aを、ノーズ切刃4a以外の前記多角形形状の主面の辺部に位置する切刃が直線切刃4bを構成している。ここで、本発明における上記多角形形状とは、角部に丸みのあるノーズ部を具備する形状である。   1 and 2, the throwaway tip (hereinafter abbreviated as “chip”) 1 is a flat plate having a polygonal main surface, the main surface is a rake surface 2, the side surface is a relief surface 3, and the rake surface 2. And the flank 3 intersecting ridge line part is the cutting edge 4, the corner of the polygonal main surface is the nose part 5, the cutting edge of the nose part 5 is the nose cutting edge 4a, and other than the nose cutting edge 4a. The cutting edge located on the side of the polygonal main surface constitutes a straight cutting edge 4b. Here, the polygonal shape in the present invention is a shape having a nose portion with rounded corners.

そして、図1、2によれば、少なくとも直線切刃4bにはノーズ切刃4aよりも大きいホーニングが形成され、かつ、ノーズ切刃4aは表面が超硬合金からなる基体7にて構成されるとともに、直線切刃4bは基体7の表面に被覆された被覆層8にて構成されている。この構成により、ノーズ切刃4aにおいては被覆層8に比べて被削材との反応が起こりにくい超硬合金基体7が表面に存在する状態で被削材と接触するとともにノーズ切刃4aがシャープであることから、被削材との反応が起こりにくく、ノーズ切刃4aが異常に摩耗することがない。そして、ノーズ切刃4aで発生した切屑を衝突させて切屑を分断する直線切刃4bではノーズ切刃4aに比べて大きいホーニングが形成されているので、切屑の衝突によって直線切刃4bがチッピングすることなく、工具寿命を延ばすことができる。   1 and 2, at least the straight cutting edge 4b is formed with a honing larger than the nose cutting edge 4a, and the nose cutting edge 4a is composed of a base 7 made of cemented carbide. At the same time, the straight cutting edge 4 b is constituted by a coating layer 8 coated on the surface of the base body 7. With this configuration, in the nose cutting edge 4a, the cemented carbide substrate 7 that is less likely to react with the work material than the coating layer 8 is in contact with the work material in a state where the cemented carbide base 7 exists on the surface, and the nose cutting edge 4a is sharp. Therefore, the reaction with the work material hardly occurs and the nose cutting edge 4a is not abnormally worn. And since the honing which is larger than the nose cutting edge 4a is formed in the linear cutting edge 4b which collides the chips generated by the nose cutting edge 4a and divides the cutting chips, the linear cutting edge 4b is chipped by the collision of the cutting chips. Without extending the tool life.

ここで、ノーズ切刃4aにもホーニングが形成されてすくい面2側から見た際のホーニング幅が0.01〜0.025mmであり、直線切刃4bにおけるホーニング幅が0.02〜0.05mmであることが、各部位における耐欠損性を高めることができる点で望ましい。前記ノーズ切刃4aにおけるホーニング幅/前記直線切刃4bにおけるホーニング幅の比が0.37〜0.7であることが、耐欠損性と耐摩耗性のバランスがよい。   Here, honing is formed on the nose cutting edge 4a so that the honing width when viewed from the rake face 2 side is 0.01 to 0.025 mm, and the honing width at the straight cutting edge 4b is 0.02 to 0.02. It is desirable that the thickness is 05 mm in that the fracture resistance at each part can be improved. The ratio of the honing width in the nose cutting edge 4a / the honing width in the straight cutting edge 4b is 0.37 to 0.7, which provides a good balance between fracture resistance and wear resistance.

また、被覆層8の直線切刃7bにおける厚みが1.5〜3μmであることが、直線切刃7bにおける耐摩耗性および耐欠損性をともに満足できる点で望ましく、被覆層8がTi1−a−b−c−dAlSi(C1−x)(ただし、MはNb、Mo、Ta、Hf、Yから選ばれる1種以上、0.45≦a≦0.55、0.01≦b≦0.1、0.01≦c≦0.05、0.01≦d≦0.1、0≦x≦1)からなる場合には、被覆層8を厚く形成しても被覆層8が高い内部応力によって早期に欠損することなく、耐チッピング性も良好である。 Further, the thickness of the linear cutting edge 7b of the coating layer 8 is 1.5~3μm is both in terms of satisfying desirable abrasion resistance and chipping resistance in the straight cutting edge 7b, the coating layer 8 is Ti 1- a-b-c-d Al a W b Si c M d (C x N 1-x) ( however, M is Nb, Mo, Ta, Hf, 1 or more selected from Y, 0.45 ≦ a ≦ 0.55, 0.01 ≦ b ≦ 0.1, 0.01 ≦ c ≦ 0.05, 0.01 ≦ d ≦ 0.1, 0 ≦ x ≦ 1). Even if it is formed thick, the coating layer 8 is not lost early due to high internal stress, and the chipping resistance is also good.

さらに、基体7が、Coを3〜6質量%からなる結合相と、平均粒径が0.1〜0.9μmのWCからなる硬質相とにて構成され、かつ、ノーズ切刃4aにおいて、前記基体の表面におけるCo含有量が内部におけるCo含有量に対する比率で0.6〜0.95であるとともに、前記基体の表面における前記WC相の平均粒径が内部における前記WC相の平均粒径に対する比率で1.05〜1.6であることが、基体表面での熱伝導性を改善で
きるとともに、被削材の溶着も抑制できる点で望ましい。
Further, the substrate 7 is composed of a binder phase composed of 3 to 6% by mass of Co and a hard phase composed of WC having an average particle diameter of 0.1 to 0.9 μm, and in the nose cutting edge 4a, The Co content on the surface of the substrate is 0.6 to 0.95 as a ratio to the Co content inside, and the average particle size of the WC phase on the surface of the substrate is the average particle size of the WC phase inside. A ratio of 1.05 to 1.6 is desirable in that heat conductivity on the surface of the substrate can be improved and welding of the work material can be suppressed.

なお、このような本発明のチタン合金加工用切削工具の加工形態は、ドリル、エンドミル、切削チップ、フライス加工用刃先交換型チップ、旋削用刃先交換型チップ、メタルソー、歯切工具、リーマ、タップなどが挙げられる。   The machining mode of the cutting tool for machining titanium alloy according to the present invention includes a drill, an end mill, a cutting tip, a milling cutting edge replaceable chip, a turning cutting edge replaceable chip, a metal saw, a gear cutting tool, a reamer, and a tap. Etc.

また、本発明におけるチタン合金とは、たとえば、Ti−6Al−4V(HB=310)、Ti−5Al−2.5Sn、Ti−6Al−2Sn−4Zr−2Mo、Ti−3Al−8V−6Cr−4Mo−4Zr、Ti−10V−2Fe−3Al、Ti−13V−11Cr−3Al等を挙げることができ、特に硬度110〜450HB(ブリネル硬さ)のものを切削する際にも良好な切削加工が可能である。   The titanium alloy in the present invention is, for example, Ti-6Al-4V (HB = 310), Ti-5Al-2.5Sn, Ti-6Al-2Sn-4Zr-2Mo, Ti-3Al-8V-6Cr-4Mo. -4Zr, Ti-10V-2Fe-3Al, Ti-13V-11Cr-3Al, etc., and particularly good cutting can be performed even when cutting with a hardness of 110 to 450 HB (Brinell hardness). is there.

(製造方法)
上記のチップを製造する方法について、その具体的な一例を挙げて説明する。まず、原料粉末を所定の割合に混合して所定の形状に成形して焼成する。次に、この焼結体に対して、所望によって主面(すくい面)の表面研削加工(両頭研削)やバレル加工を施した後、ノーズ切刃に治具や金属箔等のフィルムをマスキングして、ホーニング幅はノーズ切刃よりも直線切刃のほうが大きくなるように切刃部分にホーニング加工を施す。すなわち、ノーズ切刃にはバレル加工の際に形成されるホーニングのみがついた構成からなることが望ましい。
(Production method)
A method for manufacturing the above chip will be described with a specific example. First, raw material powders are mixed at a predetermined ratio, formed into a predetermined shape, and fired. Next, the sintered body is subjected to surface grinding (double-head grinding) or barrel machining of the main surface (rake face) as desired, and then a film such as a jig or metal foil is masked on the nose cutting edge. Thus, honing is applied to the cutting edge so that the straightening edge is larger than the nose cutting edge. That is, it is desirable that the nose cutting edge has a configuration with only honing formed during barrel processing.

そして、焼成後の基体に被覆層を形成する。被覆層の成膜方法としてはイオンプレーティング法等の物理蒸着(PVD)法が好適に適応可能である。本発明によれば、被覆層を成膜する際に、ノーズ切刃部分を治具や金属箔等のフィルムにてマスキングした状態で成膜処理をする。   Then, a coating layer is formed on the fired substrate. A physical vapor deposition (PVD) method such as an ion plating method can be suitably applied as a method for forming the coating layer. According to the present invention, when the coating layer is formed, the film forming process is performed in a state where the nose cutting edge portion is masked with a film such as a jig or a metal foil.

平均粒径1.5μmのWC粉末に対して、所定量のCo粉末、Cr粉末およびVC粉末を混合し、CNMG120412のスローアウェイチップ形状に成形し、真空焼成した後、両頭研磨を施し、さらに、一部の試料については、ノーズ切刃を治具でマスキングして、表1に示すようなホーニング加工を行った。なお、表1においては、後述する被覆層を成膜した後のチップについて、ホーニング幅をすくい面から見た幅で測定した。 A predetermined amount of Co powder, Cr 3 C 2 powder and VC powder are mixed with WC powder with an average particle size of 1.5 μm, formed into a throw-away tip shape of CNMG120212, vacuum-fired, and then double-ended. Further, some samples were subjected to honing as shown in Table 1 by masking the nose cutting edge with a jig. In Table 1, with respect to the chip after forming a coating layer to be described later, the honing width was measured by the width seen from the rake face.

その後、ノーズ切刃部分にチタン箔をマスキングした状態で試料を成膜装置内に載置して、窒素(N)ガスをチャンバ内に導入してPVD法によって表2に示す被覆層を成膜してチップを作製した。 Thereafter, the sample was placed in the film forming apparatus with the nose cutting edge masked with titanium foil, and nitrogen (N 2 ) gas was introduced into the chamber to form the coating layer shown in Table 2 by the PVD method. Membranes were used to make chips.

得られたチップをホルダに装着して以下の切削試験を行って切削性能を評価した。結果は表2に示した。
(耐摩耗性試験)
切削方法:外径連続加工
被削材 :Ti−6Al−4V
切削速度:60m/分
送り :0.2mm/rev
切込み :0.5mm
切削状態:湿式
形状:CNMG120412
評価方法:80分を上限として切削を行い、欠損が生じるまでの加工時間および寿命に達した時の切刃の状態を評価した。
The obtained chip was mounted on a holder and the following cutting test was performed to evaluate the cutting performance. The results are shown in Table 2.
(Abrasion resistance test)
Cutting method: Outer diameter continuous machining work material: Ti-6Al-4V
Cutting speed: 60 m / min Feed: 0.2 mm / rev
Cutting depth: 0.5mm
Cutting state: wet shape: CNMG120212
Evaluation method: Cutting was performed with an upper limit of 80 minutes, and the state of the cutting edge when the working time and the life until the chipping occurred were evaluated.

Figure 2011167829
Figure 2011167829

Figure 2011167829
Figure 2011167829

表1、2に示される結果から、被覆層を形成しない試料No.7では、直線切刃において境界摩耗が大きくなった。逆に、チップ全体に被覆層を形成した試料No.8では、ノーズ切刃において溶着が激しくクレータ摩耗の進行が速かった。また、切刃のホーニング幅が全体均一な試料No.9およびノーズ切刃のホーニング幅が直線切刃のホーニング幅より大きい試料No.10では、いずれも境界損傷が大きかった。さらに、ホーニングを形成しなかった試料No.11では、切削を開始してすぐに直線切刃で欠損が発生した。   From the results shown in Tables 1 and 2, sample no. In No. 7, boundary wear became large in the straight cutting edge. On the other hand, Sample No. with a coating layer formed on the entire chip. In No. 8, the nose cutting edge was heavily welded and the crater wear progressed rapidly. In addition, the sample No. in which the honing width of the cutting blade is uniform throughout. 9 and the nose cutting edge have a larger honing width than the straight cutting edge. No. 10 had significant boundary damage. Furthermore, sample No. which did not form a honing. In No. 11, a defect occurred with a straight cutting edge immediately after cutting was started.

これに対し、本発明の要件を満たしている試料No.1〜6では、いずれも工具寿命の長いものであった。   On the other hand, the sample No. satisfying the requirements of the present invention. 1 to 6 all had a long tool life.

1 スローアウェイチップ(チップ)
2 すくい面
3 逃げ面
4 切刃
4a ノーズ切刃
4b 直線切刃
5 ノーズ部
7 基体
8 被覆層
1 Throw away tip (chip)
2 rake face 3 flank face 4 cutting edge 4a nose cutting edge 4b straight cutting edge 5 nose part 7 base 8 coating layer

Claims (4)

主面が多角形形状の平板状をなし、前記主面がすくい面を、側面が逃げ面を、前記すくい面と前記逃げ面との交差稜線部が切刃を、前記多角形形状の主面の角部がノーズ部を、該ノーズ部の切刃がノーズ切刃を、該ノーズ切刃以外の前記多角形形状の主面の辺部に位置する切刃が直線切刃を構成するチタン合金加工用の切削工具であって、少なくとも前記直線切刃には前記ノーズ切刃よりも大きいホーニングが形成され、かつ、前記ノーズ切刃は表面が超硬合金からなる基体にて構成されるとともに、前記直線切刃は前記基体の表面に被覆された被覆層にて構成されているチタン合金加工用切削工具。   The main surface is a polygonal flat plate, the main surface is a rake face, the side surface is a flank face, the intersection ridge line portion between the rake face and the flank face is a cutting edge, and the polygon-shaped main face is Titanium alloy in which the corner of the nose part forms a nose part, the cutting edge of the nose part forms a nose cutting edge, and the cutting edge located on the side of the principal surface of the polygonal shape other than the nose cutting edge forms a straight cutting edge A cutting tool for processing, wherein at least the straight cutting edge is formed with a honing larger than the nose cutting edge, and the nose cutting edge is composed of a base body made of a cemented carbide, The straight cutting edge is a cutting tool for machining a titanium alloy, which is composed of a coating layer coated on the surface of the substrate. 前記ノーズ切刃にもホーニングが形成されて、前記すくい面側から見た際のホーニング幅が0.010〜0.025mmであり、前記直線切刃におけるホーニング幅が0.020〜0.050mmである請求項1記載のチタン合金加工用切削工具。   Honing is formed also in the nose cutting edge, the honing width when viewed from the rake face side is 0.010 to 0.025 mm, and the honing width in the straight cutting edge is 0.020 to 0.050 mm. The titanium alloy machining cutting tool according to claim 1. 前記被覆層は、前記直線切刃における厚みが1.5〜3μmであり、Ti1−a−b−c−dAlSi(C1−x)(ただし、MはNb、Mo、Ta、Hf、Yから選ばれる1種以上、0.45≦a≦0.55、0.01≦b≦0.1、0.01≦c≦0.05、0.01≦d≦0.1、0≦x≦1)からなる請求項1または2記載のチタン合金加工用切削工具。 The coating layer has a thickness in the straight cutting edge is 1.5~3μm, Ti 1-a-b -c-d Al a W b Si c M d (C x N 1-x) ( however, M Is one or more selected from Nb, Mo, Ta, Hf and Y, 0.45 ≦ a ≦ 0.55, 0.01 ≦ b ≦ 0.1, 0.01 ≦ c ≦ 0.05, 0.01 The cutting tool for machining a titanium alloy according to claim 1 or 2, wherein ≦ d ≦ 0.1 and 0 ≦ x ≦ 1). 前記基体が、3〜6質量%のCoからなる結合相と、平均粒径が0.1〜0.9μmのWCからなる硬質相とにて構成され、かつ、前記ノーズ切刃において、前記基体の表面におけるCo含有量が内部におけるCo含有量に対する比率で0.6〜0.95であるとともに、前記基体の表面における前記WC相の平均粒径が内部における前記WC相の平均粒径に対する比率で1.05〜1.6である請求項1乃至3のいずれか記載のチタン合金加工用切削工具。   The base is composed of a binder phase made of 3 to 6% by mass of Co and a hard phase made of WC having an average particle size of 0.1 to 0.9 μm. The Co content on the surface of the substrate is 0.6 to 0.95 as a ratio to the Co content in the interior, and the average particle size of the WC phase on the surface of the substrate is a ratio to the average particle size of the WC phase inside The cutting tool for machining a titanium alloy according to any one of claims 1 to 3, wherein the cutting tool is 1.05 to 1.6.
JP2010036141A 2010-02-22 2010-02-22 Cutting tool for machining titanium alloy Pending JP2011167829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010036141A JP2011167829A (en) 2010-02-22 2010-02-22 Cutting tool for machining titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010036141A JP2011167829A (en) 2010-02-22 2010-02-22 Cutting tool for machining titanium alloy

Publications (1)

Publication Number Publication Date
JP2011167829A true JP2011167829A (en) 2011-09-01

Family

ID=44682474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010036141A Pending JP2011167829A (en) 2010-02-22 2010-02-22 Cutting tool for machining titanium alloy

Country Status (1)

Country Link
JP (1) JP2011167829A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015033757A (en) * 2013-06-26 2015-02-19 日立金属株式会社 Coated cutting tool for processing titanium or titanium alloy, manufacturing method of the same and processing method of titanium or titanium alloy using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015033757A (en) * 2013-06-26 2015-02-19 日立金属株式会社 Coated cutting tool for processing titanium or titanium alloy, manufacturing method of the same and processing method of titanium or titanium alloy using the same

Similar Documents

Publication Publication Date Title
JP4500810B2 (en) Surface-coated cubic boron nitride sintered body tool and manufacturing method thereof
JP5125646B2 (en) Cubic boron nitride sintered tool
EP2614906B1 (en) Cutting tool
CN103878555A (en) Excellent Cubic Boron Nitride Ultrahigh Pressure Sintering Material Surface Coated Cutting Tool
JP2009056540A (en) Surface-coated cutting tool, of which hard coating layer achieves excellent chipping resistance
JP6206695B1 (en) tool
JP5517577B2 (en) Cutting tool for grooving
JPWO2015076401A1 (en) Coated tool
JP5835306B2 (en) Cemented carbide and surface-coated cutting tool using the same
JP2005103658A (en) Throwaway tip
JP2011167829A (en) Cutting tool for machining titanium alloy
JP2009214196A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent resistance to defect
JP2009107028A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance
JP2018030206A (en) Surface coated cutting tool and method for manufacturing the same
JP5612382B2 (en) Cutting insert
JP5424911B2 (en) Cutting tools
CN116490308A (en) Diamond tool
JP5099587B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
WO2018037647A1 (en) Cutting tool and manufacturing method thereof
JP5835305B2 (en) Cemented carbide and surface-coated cutting tool using the same
JP2001152209A (en) High adhesion surface coated sintered member and its producing method
JP5287019B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5094293B2 (en) Cutting tools
JP4084678B2 (en) Surface-coated cutting tool and manufacturing method thereof
JP2023142141A (en) Cutting tool and cutting tool manufacturing method