JP4815925B2 - Coated sintered alloy - Google Patents

Coated sintered alloy Download PDF

Info

Publication number
JP4815925B2
JP4815925B2 JP2005217004A JP2005217004A JP4815925B2 JP 4815925 B2 JP4815925 B2 JP 4815925B2 JP 2005217004 A JP2005217004 A JP 2005217004A JP 2005217004 A JP2005217004 A JP 2005217004A JP 4815925 B2 JP4815925 B2 JP 4815925B2
Authority
JP
Japan
Prior art keywords
sintered alloy
binder phase
coated sintered
coating
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005217004A
Other languages
Japanese (ja)
Other versions
JP2007031779A (en
Inventor
克久 大友
竜也 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Tungaloy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tungaloy Corp filed Critical Tungaloy Corp
Priority to JP2005217004A priority Critical patent/JP4815925B2/en
Publication of JP2007031779A publication Critical patent/JP2007031779A/en
Application granted granted Critical
Publication of JP4815925B2 publication Critical patent/JP4815925B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は焼結合金の基材に被膜を被覆した被覆焼結合金に関する。その中でも、特にチップ、ドリル、エンドミルに代表される切削工具や各種の耐摩耗工具、耐摩耗部品に好適な被覆焼結合金に関する。 The present invention relates to a coated sintered alloy obtained by coating a sintered alloy substrate with a coating. In particular, the present invention relates to a coated sintered alloy suitable for cutting tools represented by chips, drills, end mills, various wear-resistant tools, and wear-resistant parts.

焼結合金の基材の表面にTiC、TiCN、TiN、(Ti,Al)N、Al23などの被膜を被覆してなる被覆焼結合金は、基材の高強度、高靱性と被膜の耐摩耗性、耐酸化性、潤滑性、耐溶着性などを兼備しているため、切削工具や耐摩耗工具,耐摩耗部品として多用されている。これまで、被膜の特性を十分に発揮させるために、被膜と基材との間の密着性について改善がなされてきた。このような被覆部材の従来技術としては、炭化タングステン基超硬合金または炭窒化チタン基サーメットからなる基体の表面に、窒化チタンからなる密着性物理蒸着被覆層を介して、TiとAlの複合窒化物からなる耐摩耗性物理蒸着被覆層を形成してなる表面被覆サーメット製切削工具がある(例えば、特許文献1参照。)。しかし、これは層間での剥離を起因とする突発的なチッピングや欠損が生じ短寿命になる場合があり、さらなる密着性の改善が求められている。 A coated sintered alloy obtained by coating the surface of a sintered alloy base material with a coating such as TiC, TiCN, TiN, (Ti, Al) N, Al 2 O 3, etc. has a high strength and high toughness of the base material. Because of its wear resistance, oxidation resistance, lubricity, and welding resistance, it is widely used as a cutting tool, wear-resistant tool, and wear-resistant part. Until now, in order to fully exhibit the characteristics of the coating, the adhesion between the coating and the substrate has been improved. As a prior art of such a covering member, composite nitriding of Ti and Al is performed on the surface of a substrate made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet via an adhesive physical vapor deposition coating layer made of titanium nitride. There is a surface-covered cermet cutting tool formed by forming a wear-resistant physical vapor deposition coating layer made of a material (see, for example, Patent Document 1). However, this may cause sudden chipping or chipping due to delamination between layers, resulting in a short life, and further improvement in adhesion is demanded.

特開平4−201002号公報JP-A-4-201002

近年、高速度、高送りの過酷な切削条件の要求が増えており、切削中に連続切削から断続切削へと大きく変化する加工条件なども増えている。また製造現場においては無人化が進み、長時間安定した加工ができる工具の要求が多くなっている。そのため信頼性の高く長時間加工できる工具が求められている。そこで本発明は、耐欠損性や耐チッピング性に優れ、長時間安定した加工が可能な被覆焼結合金の提供を目的とする。 In recent years, demands for severe cutting conditions of high speed and high feed are increasing, and machining conditions that greatly change from continuous cutting to intermittent cutting during cutting are also increasing. In addition, unmanned manufacturing is progressing at manufacturing sites, and there is an increasing demand for tools that can perform stable machining for a long time. Therefore, a highly reliable tool that can be processed for a long time is required. Accordingly, an object of the present invention is to provide a coated sintered alloy that is excellent in fracture resistance and chipping resistance and can be processed stably for a long time.

本発明者らは、長年に亘り、被覆焼結合金について研究したところ、被覆前の基材の表面処理を最適化し、基材と被膜との界面における結合相の形状を凸状にすることで、基材と被膜間の剥離が生じにくくなり、その結果、耐欠損性、耐チッピング性が向上し、安定した長寿命加工が可能になることを見出した。 The present inventors have studied the coated sintered alloy for many years. By optimizing the surface treatment of the substrate before coating and making the shape of the binder phase at the interface between the substrate and the coating convex. It has been found that peeling between the substrate and the film is less likely to occur, and as a result, chipping resistance and chipping resistance are improved, and stable long-life processing becomes possible.

本発明は、結合相と硬質相とからなる焼結合金の基材の表面に周期律表4a、5a、6a族元素、Al、Siの炭化物、窒化物およびこれらの相互固溶体の中から選ばれた少なくとも1種の被膜を被覆した被覆焼結合金において、被覆焼結合金の断面組織を観察したときに、基材の結合相と被膜との界面の少なくとも1部に、凸状結合相が形成されている被覆焼結合金である。 The present invention is selected from periodic table 4a, 5a, 6a group elements, Al, Si carbides, nitrides and their mutual solid solutions on the surface of a sintered alloy base material comprising a binder phase and a hard phase. Further, in the coated sintered alloy coated with at least one kind of coating, when the cross-sectional structure of the coated sintered alloy is observed, a convex bonded phase is formed in at least a part of the interface between the bonded phase of the substrate and the coated film. It is a coated sintered alloy.

本発明の被覆焼結合金の基材は、Co、Ni、Feなどの鉄族金属を主成分とする結合相と周期律表4a、5a、6a族元素の炭化物、窒化物およびこれらの相互固溶体の中から選ばれた少なくとも1種の硬質相とからなる焼結合金である。硬質相は、周期律表4a、5a、6a族元素の炭化物、窒化物およびこれらの相互固溶体の中から選ばれた少なくとも1種からなり、WC、TiCNなどを挙げることができる。なお、結合相には、硬質相の成分、すなわち金属元素およびC,Nが微量固溶することができる。結合相への固溶量は、元素によって異なるが、20重量%以下である。 The base material of the coated sintered alloy of the present invention includes a binder phase mainly composed of an iron group metal such as Co, Ni, Fe, carbides, nitrides of periodic table elements 4a, 5a, 6a, and mutual solid solutions thereof. Is a sintered alloy composed of at least one hard phase selected from among the above. The hard phase is composed of at least one selected from carbides, nitrides, and mutual solid solutions of Group 4a, 5a, and 6a elements of the periodic table, and examples thereof include WC and TiCN. In the binder phase, the components of the hard phase, that is, metal elements and C, N can be dissolved in a small amount. The amount of solid solution in the binder phase varies depending on the element, but is 20% by weight or less.

本発明の被覆焼結合金は、焼結合金の基材の表面に、周期律表4a、5a、6a族元素、Al、Siの炭化物、窒化物およびこれらの相互固溶体の中から選ばれた少なくとも1種の被膜を被覆したもので、被覆焼結合金の断面組織を観察したときに、基材の結合相と被膜との界面の少なくとも1部、すなわち、基材の結合相と被膜との界面の全部またはその一部に凸状結合相が形成されている。凸状結合相が形成されると被膜と基材との密着性が向上する。なお、本発明において断面組織とは、被覆焼結合金の基材の表面に対して任意の垂直断面を観察したときの断面組織をいう。本発明の被覆焼結合金の一実施例の断面組織の概略図を図1に示す。本発明の被覆焼結合金の結合相と被膜との界面の一部には、略三角状の凸状結合相が形成されていることが分かる。 The coated sintered alloy of the present invention is at least selected from the periodic table 4a, 5a, 6a group elements, Al, Si carbides, nitrides and their mutual solid solutions on the surface of the sintered alloy base material. When the cross-sectional structure of the coated sintered alloy is observed, it is at least part of the interface between the binder phase of the substrate and the coating, that is, the interface between the binder phase of the substrate and the coating. A convex binder phase is formed on all or a part thereof. When the convex binder phase is formed, the adhesion between the coating and the substrate is improved. In the present invention, the cross-sectional structure refers to a cross-sectional structure when an arbitrary vertical cross section is observed with respect to the surface of the base material of the coated sintered alloy. A schematic diagram of a cross-sectional structure of an embodiment of the coated sintered alloy of the present invention is shown in FIG. It can be seen that a substantially triangular convex binder phase is formed at a part of the interface between the binder phase and the coating film of the coated sintered alloy of the present invention.

さらに断面組織の拡大した図2に示すように、略三角形状の凸状結合相の高さHn(n=1,2…)および間隔Ln(n=1,2…)を測定し、それらの平均高さHと平均間隔Lを求めたとき、平均高さHは、0.05μm<H<0.50μmの範囲にあり、平均間隔Lは、0.05μm<L<0.50μmの範囲にあると、基材と被膜との密着性が高くなるため好ましい。なお、Hが0.50μm以上になると被膜表面に凹凸を生じ、その凹凸を起点として損傷が進行しやすくなり、Hが0.05μm以下であると密着性を向上させる効果が低くなる。Lが0.05μm以下では、凸状結合相自体の強度が低下し、Lが0.50μm以上であると密着性を向上させる効果が低くなる。 Further, as shown in FIG. 2 in which the cross-sectional structure is enlarged, the height Hn (n = 1, 2,...) And the interval Ln (n = 1, 2,...) Of the substantially triangular convex binder phase are measured. When the average height H and the average interval L were obtained, the average height H was in the range of 0.05 μm <H <0.50 μm, and the average interval L was in the range of 0.05 μm <L <0.50 μm. When it exists, since the adhesiveness of a base material and a film becomes high, it is preferable. When H is 0.50 μm or more, unevenness is generated on the surface of the coating, and damage is likely to proceed starting from the unevenness. When H is 0.05 μm or less, the effect of improving the adhesiveness is reduced. When L is 0.05 μm or less, the strength of the convex binder phase itself decreases, and when L is 0.50 μm or more, the effect of improving the adhesion is reduced.

本発明の被覆焼結合金の被膜は(Ti,Al)Nを含むと、耐摩耗性に優れることからさらに好ましい。 When the coating of the coated sintered alloy of the present invention contains (Ti, Al) N, it is more preferable because it has excellent wear resistance.

本発明の被覆焼結合金の表面の算術平均粗さRaが0.02μm<Ra<0.30μmであるとき、表面の凹凸を起点とする損傷が低減し、より安定した加工が可能となるため好ましい。鏡面処理による焼結合金の表面粗さRaが0.02μmとなり、それ以上の精度での制御が難しいため下限値を0.02μm超とした。またRaが0.30μm以上になると表面の凹凸が大きくなり、それを起点とした損傷が大きくなるため上限値を0.30μm未満とした。 When the arithmetic average roughness Ra of the surface of the coated sintered alloy according to the present invention is 0.02 μm <Ra <0.30 μm, damage caused by surface irregularities is reduced, and more stable processing is possible. preferable. The surface roughness Ra of the sintered alloy by the mirror treatment is 0.02 μm, and control with higher accuracy is difficult, so the lower limit is set to more than 0.02 μm. Further, when Ra is 0.30 μm or more, the unevenness of the surface becomes large, and damage starting from that becomes large. Therefore, the upper limit value is set to less than 0.30 μm.

本発明の被覆焼結合金は、熱フィラメントプラズマ源によるスパッタ法での基材の表面処理が可能な電極を装備したアークイオンプレーティング装置を用いて作製することができる。すなわち、基材をアークイオンプレーティング装置に装入し、熱フィラメントプラズマ源によるガスイオンボンバード処理と、それとプラズマ密度が異なるアーク放電方式による金属ボンバード処理を組み合わせて、それぞれのボンバード処理における基材への印加電圧、時間を調整することで、基材の結合相の表面形状を制御することができる。熱フィラメントプラズマ源によるボンバード処理として、具体的にはArボンバード処理などを挙げることができる。また、アーク放電方式によるボンバード処理として、具体的には、Tiボンバード処理、TiAlボンバード処理、Nbボンバード処理、Zrボンバード処理などの金属ボンバード処理を挙げることができる。 The coated sintered alloy of the present invention can be produced using an arc ion plating apparatus equipped with an electrode capable of surface treatment of a substrate by sputtering using a hot filament plasma source. That is, the base material is inserted into an arc ion plating apparatus, and a gas ion bombard process using a hot filament plasma source and a metal bombard process using an arc discharge method having a different plasma density are combined to form a base material in each bombard process. The surface shape of the binder phase of the substrate can be controlled by adjusting the applied voltage and time. Specific examples of the bombardment process using a hot filament plasma source include an Ar bombard process. Specific examples of the bombardment treatment by the arc discharge method include Ti bombardment treatment, TiAl bombardment treatment, Nb bombardment treatment, Zr bombardment treatment, and the like.

このとき、基材のスパッタ率が、熱フィラメントプラズマ源によるボンバード処理よりもアーク放電方式によるボンバード処理が2倍以上になるように印加電圧を調整する。その際、印加電圧が小さいとエッチング速度が遅くなり作業効率が著しく低下し、印加電圧を大きくしすぎると、制御可能な時間が極端に短くなるため、具体的には、熱フィラメントプラズマ源によるボンバード処理では印加電圧を150V〜350V、アーク放電方式では印加電圧を600V〜1000Vにすると好ましく、基材の形状や個数によって処理時間を調整すると、本発明品を製造することができる。 At this time, the applied voltage is adjusted so that the sputtering rate of the base material is twice or more in the bombarding process by the arc discharge method than in the bombarding process by the hot filament plasma source. At that time, if the applied voltage is small, the etching rate is slowed down and the working efficiency is remarkably reduced.If the applied voltage is too large, the controllable time becomes extremely short. In the treatment, the applied voltage is preferably 150 V to 350 V, and in the arc discharge method, the applied voltage is preferably 600 V to 1000 V. The product of the present invention can be produced by adjusting the treatment time depending on the shape and number of base materials.

本発明の被覆焼結合金は、被膜と基材との高い密着性が安定して得られるため、突発的な欠損やチッピングが抑えられ、安定した長寿命加工が可能になる。そのため無人化作業での信頼性が向上し、作業効率の向上が可能となる。 In the coated sintered alloy of the present invention, high adhesion between the coating and the substrate can be obtained stably, so that sudden breakage and chipping are suppressed, and stable long-life processing is possible. Therefore, the reliability in the unmanned work is improved, and the work efficiency can be improved.

基材としてK20相当超硬合金製チップSDKN1203AETNを用意し、熱フィラメントによるArボンバードが可能な電極および4極のターゲット着装が可能なアークイオンプレーティング装置(以下、AIP装置という。)を使用した。基材をAIP装置内に装入して1×10-3Paの真空とし、AIP装置内のヒーターで500℃まで加熱した後、表1に示す条件で基材の表面処理をおこなった。その後、表2に示す構成の被膜をコーティングした。被膜は、各被膜の金属成分のターゲットを用い、必要に応じてN2またはCH4を雰囲気として導入し、圧力:2.66Pa、バイアス電圧:50Vという条件で被覆した。 A K20 equivalent cemented carbide chip SDKN1203AETN was prepared as a substrate, and an arc ion plating apparatus (hereinafter referred to as an AIP apparatus) capable of mounting an Ar bombardment with a hot filament and a four-pole target was used. The base material was charged into the AIP apparatus to make a vacuum of 1 × 10 −3 Pa, heated to 500 ° C. with a heater in the AIP apparatus, and then the base material was surface-treated under the conditions shown in Table 1. Then, the film of the structure shown in Table 2 was coated. The coating was performed under the conditions of pressure: 2.66 Pa and bias voltage: 50 V using a target of the metal component of each coating, introducing N 2 or CH 4 as an atmosphere as necessary.

Figure 0004815925
Figure 0004815925

Figure 0004815925
Figure 0004815925

試料番号1〜19の被覆焼結合金工具について、基材表面に対して任意の垂直断面を鏡面研磨して断面組織をFE−SEMで観察した。断面組織を組成像で観察すると、結合相と被膜との界面が容易に観察できる。界面に凸状結合相の存在する場合、凸状結合相の平均高さHと平均間隔Lを測定し、表2に併記した。さらに、被覆焼結合金工具の表面の算術平均粗さRaを測定し、表2に併記した。 For the coated sintered alloy tools of sample numbers 1 to 19, an arbitrary vertical cross section was mirror-polished with respect to the substrate surface, and the cross-sectional structure was observed with FE-SEM. When the cross-sectional structure is observed with a composition image, the interface between the binder phase and the coating can be easily observed. When a convex binder phase was present at the interface, the average height H and average interval L of the convex binder phase were measured and listed in Table 2. Further, the arithmetic average roughness Ra of the surface of the coated sintered alloy tool was measured and listed in Table 2.

試料番号1〜19の被覆焼結合金工具を用いて、被削材:SCM440、切削速度:200m/min、切り込み:2.0mm、送り:0.2mm/toothの条件で乾式フライス試験を行った。工具寿命は、逃げ面摩耗量VB=0.3mmに達するまでとした。切削長4mまでに逃げ面摩耗量VB=0.3mmに達しない場合は、切削長4m時の逃げ面摩耗量VBを測定した。これらの結果を表3に示す。 Using the coated sintered alloy tools of Sample Nos. 1 to 19, dry milling tests were performed under the conditions of work material: SCM440, cutting speed: 200 m / min, cutting depth: 2.0 mm, feed rate: 0.2 mm / tooth. . The tool life was set to reach the flank wear amount VB = 0.3 mm. When the flank wear amount VB did not reach 0.3 mm by the cutting length of 4 m, the flank wear amount VB at the cutting length of 4 m was measured. These results are shown in Table 3.

Figure 0004815925
Figure 0004815925

以上のように、基材の結合相と被膜との界面の結合相形状を制御した発明品は、比較品と比べて安定した長寿命加工が可能であった。 As described above, the inventive product in which the shape of the binder phase at the interface between the binder phase of the substrate and the coating was controlled was capable of stable long-life processing as compared with the comparative product.

基材としてP30相当超硬合金製チップWPMT080615ZSRを用意した。基材をAIP装置内に装入して1×10-3Paの真空とし、AIP装置内のヒーターで500℃まで加熱した後、表4に示す条件で基材の表面処理をおこなった。その後、表5に示す構成の被膜をコーティングした。被膜は、各被膜の金属成分のターゲットを用い、雰囲気としてN2を導入し、圧力:2.66Pa、バイアス電圧:80Vという条件で被覆した。 A P30 equivalent cemented carbide chip WPMT080615ZSR was prepared as a substrate. The base material was charged into the AIP apparatus to make a vacuum of 1 × 10 −3 Pa, heated to 500 ° C. with a heater in the AIP apparatus, and then the base material was surface treated under the conditions shown in Table 4. Then, the film of the structure shown in Table 5 was coated. The film was coated under the conditions of pressure: 2.66 Pa and bias voltage: 80 V using a target of the metal component of each film, introducing N 2 as an atmosphere.

Figure 0004815925
Figure 0004815925

Figure 0004815925
Figure 0004815925

試料番号20〜25の被覆焼結合金工具について、基材表面に対して任意の垂直断面を鏡面研磨して得られた断面組織をFE−SEMで観察した。基材の結合相と被膜との界面に凸状結合相が存在する場合、凸状結合相の平均高さHと平均間隔Lを測定し、表5に併記した。さらに、被覆焼結合金工具表面の算術平均粗さRaを測定し、表5に併記した。 Regarding the coated sintered alloy tools of sample numbers 20 to 25, the cross-sectional structure obtained by mirror polishing an arbitrary vertical cross section with respect to the substrate surface was observed with an FE-SEM. When a convex binder phase was present at the interface between the binder phase of the substrate and the coating, the average height H and average interval L of the convex binder phase were measured and listed in Table 5. Further, the arithmetic average roughness Ra of the surface of the coated sintered alloy tool was measured and shown in Table 5.

試料番号20〜25の被覆焼結工具を用いて、被削材:SKD11、切削速度:150m/min、切り込み:1.0mm、送り:1.0mm/toothの条件で乾式フライス試験を行った。工具寿命は、逃げ面摩耗量VB=0.3mmに達するまでとした。切削長40mまでに逃げ面摩耗量VB=0.3mmに達しない場合は、切削長40m時の逃げ面摩耗量VBを測定した。これらの結果を表6に示す。 Using the coated sintered tools of sample numbers 20 to 25, a dry milling test was performed under the conditions of a work material: SKD11, a cutting speed: 150 m / min, a cutting depth: 1.0 mm, and a feed rate: 1.0 mm / tooth. The tool life was set to reach the flank wear amount VB = 0.3 mm. When the flank wear amount VB did not reach 0.3 mm by the cutting length of 40 m, the flank wear amount VB at the cutting length of 40 m was measured. These results are shown in Table 6.

Figure 0004815925
Figure 0004815925

以上のように、基材の結合相と被膜との界面の結合相形状を制御した発明品は、比較品と比べて安定した長寿命加工が可能であった。 As described above, the inventive product in which the shape of the binder phase at the interface between the binder phase of the substrate and the coating was controlled was capable of stable long-life processing as compared with the comparative product.

本発明の被覆焼結合金の一実施例における断面組織の概略図Schematic of cross-sectional structure in one embodiment of the coated sintered alloy of the present invention 本発明の被覆焼結合金の一実施例における断面組織の拡大図Enlarged view of cross-sectional structure in one embodiment of the coated sintered alloy of the present invention

符号の説明Explanation of symbols

1…被膜
2…結合相
3…硬質相
Hn…凸状結合相の高さ
Ln…凸状結合相の間隔
DESCRIPTION OF SYMBOLS 1 ... Film 2 ... Binder phase 3 ... Hard phase Hn ... Height of convex binder phase Ln ... Interval of convex binder phase

Claims (3)

結合相と硬質相とからなる焼結合金の基材の表面に周期律表4a、5a、6a族元素、Al、Siの炭化物、窒化物およびこれらの相互固溶体の中から選ばれた少なくとも1種の被膜を被覆した被覆焼結合金において、被覆焼結合金の断面組織を観察したときに、基材の結合相と被膜との界面の少なくとも1部に、凸状結合相が形成され、凸状結合相は略三角形状をなし、略三角形状の凸状結合相の平均高さHは、0.05μm<H<0.50μmの範囲にあり、略三角形状の凸状結合相の平均間隔Lは、0.05μm<L<0.50μmの範囲にある被覆焼結合金。 At least one selected from periodic table 4a, 5a, 6a group elements, Al, Si carbides, nitrides and their mutual solid solutions on the surface of a sintered alloy base material comprising a binder phase and a hard phase. in coated sintered alloy in which the coating coating, when observing the coated sintered alloy sectional structure, at least a portion of the interface between the binder phase and a coating of a substrate, convex binder phase is formed, a convex shape The binder phase has a substantially triangular shape, and the average height H of the substantially triangular convex binder phase is in the range of 0.05 μm <H <0.50 μm, and the average interval L between the substantially triangular convex binder phases. Is a coated sintered alloy in the range of 0.05 μm <L <0.50 μm . 被膜は、(Ti,Al)Nを含む請求項1に記載の被覆焼結合金。 The coated sintered alloy according to claim 1, wherein the coating contains (Ti, Al) N. 被覆焼結合金の表面の算術平均粗さRaは、0.02μm<Ra<0.30μmである請求項1または2に記載の被覆焼結合金。
3. The coated sintered alloy according to claim 1, wherein the arithmetic average roughness Ra of the surface of the coated sintered alloy is 0.02 μm <Ra <0.30 μm.
JP2005217004A 2005-07-27 2005-07-27 Coated sintered alloy Active JP4815925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005217004A JP4815925B2 (en) 2005-07-27 2005-07-27 Coated sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005217004A JP4815925B2 (en) 2005-07-27 2005-07-27 Coated sintered alloy

Publications (2)

Publication Number Publication Date
JP2007031779A JP2007031779A (en) 2007-02-08
JP4815925B2 true JP4815925B2 (en) 2011-11-16

Family

ID=37791385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005217004A Active JP4815925B2 (en) 2005-07-27 2005-07-27 Coated sintered alloy

Country Status (1)

Country Link
JP (1) JP4815925B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6459391B2 (en) * 2013-10-31 2019-01-30 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance
EP3153259B1 (en) 2014-06-06 2020-05-06 Sumitomo Electric Hardmetal Corp. Surface-coated tool and method for manufacturing same
JPWO2018181272A1 (en) * 2017-03-29 2020-02-06 京セラ株式会社 Coated and cutting tools
JP7321412B2 (en) * 2019-01-09 2023-08-07 Ntkカッティングツールズ株式会社 surface coated cutting tools

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03219078A (en) * 1990-01-24 1991-09-26 Mitsubishi Materials Corp Diamond-coated cutting tool and its production
JP2560541B2 (en) * 1990-11-28 1996-12-04 三菱マテリアル株式会社 Surface coated cermet cutting tool
JP3110890B2 (en) * 1992-09-29 2000-11-20 京セラ株式会社 Coated cemented carbide
JP3643639B2 (en) * 1996-03-05 2005-04-27 日本特殊陶業株式会社 Cemented carbide structure, manufacturing method thereof and cutting tool using the same
JP2000212743A (en) * 1999-01-27 2000-08-02 Toshiba Tungaloy Co Ltd Surface coated sintered alloy excellent in peeling resistance and its production
JP3944342B2 (en) * 1999-04-23 2007-07-11 日立ツール株式会社 Coated cutting tool
JP2002346812A (en) * 2001-05-25 2002-12-04 Ngk Spark Plug Co Ltd Cutting tool and tool with holder
JP3963810B2 (en) * 2001-10-04 2007-08-22 住友電工ハードメタル株式会社 Amorphous carbon coated tool and manufacturing method thereof
JP2003251503A (en) * 2001-12-26 2003-09-09 Sumitomo Electric Ind Ltd Surface covering cutting tool
JP4330859B2 (en) * 2002-09-11 2009-09-16 株式会社タンガロイ Coated cemented carbide and method for producing the same

Also Published As

Publication number Publication date
JP2007031779A (en) 2007-02-08

Similar Documents

Publication Publication Date Title
KR102268364B1 (en) Surface-coated cutting tool and manufacturing method thereof
JP5008984B2 (en) Surface-coated cutting tool and method for manufacturing surface-coated cutting tool
JP5063831B2 (en) Cutting tools
JP5111379B2 (en) Cutting tool, manufacturing method thereof and cutting method
JP2008240079A (en) Coated member
JP5348223B2 (en) Covering member
KR20070026386A (en) Surface coating cutting tool with coating film having intensity distribution of compression stress
JP2009220238A (en) Amorphous carbon coated tool
JP2006181706A (en) Surface coated cutting tool and manufacturing method thereof
JP5286625B2 (en) Surface-coated cutting tool and manufacturing method thereof
JPH07237010A (en) Surface coated cutting tool with excellent wear resistance
JP4815925B2 (en) Coated sintered alloy
JP6155204B2 (en) Hard coating and method for forming the same
JP2017159409A (en) Surface-coated cutting tool exerting excellent wear resistance
JP2007136597A (en) Coating member
JP5995091B2 (en) Surface coated cutting tool with excellent adhesion strength and chipping resistance
JP2005022064A (en) Coating drilling tool
JP2011104737A (en) Surface coated cutting tool
KR20210118093A (en) hard film cutting tool
JP4535249B2 (en) Method of manufacturing a surface-coated cemented carbide cutting tool that exhibits high wear resistance with a hard coating layer in high-speed cutting
JP4908767B2 (en) Surface covering member and cutting tool
JP6510771B2 (en) Coated cutting tool for milling titanium or titanium alloy and method of manufacturing the same
JP4697389B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP2926882B2 (en) Surface-coated hard member with excellent wear resistance
JP2012166320A (en) Surface coated cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110815

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4815925

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250