JP2014216932A - 駆動装置及びスイッチング回路の制御方法 - Google Patents

駆動装置及びスイッチング回路の制御方法 Download PDF

Info

Publication number
JP2014216932A
JP2014216932A JP2013094312A JP2013094312A JP2014216932A JP 2014216932 A JP2014216932 A JP 2014216932A JP 2013094312 A JP2013094312 A JP 2013094312A JP 2013094312 A JP2013094312 A JP 2013094312A JP 2014216932 A JP2014216932 A JP 2014216932A
Authority
JP
Japan
Prior art keywords
voltage
electrode
switching element
diode
turned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013094312A
Other languages
English (en)
Other versions
JP5786890B2 (ja
Inventor
健 利行
Ken Togyo
健 利行
得郎 筒井
Tokuro Tsutsui
得郎 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2013094312A priority Critical patent/JP5786890B2/ja
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to CN201480022769.1A priority patent/CN105191133B/zh
Priority to KR1020157030114A priority patent/KR101782705B1/ko
Priority to PCT/JP2014/055326 priority patent/WO2014174901A1/ja
Priority to EP14788613.9A priority patent/EP2991227B1/en
Priority to US14/772,275 priority patent/US9628072B2/en
Priority to TW103110294A priority patent/TWI555331B/zh
Publication of JP2014216932A publication Critical patent/JP2014216932A/ja
Application granted granted Critical
Publication of JP5786890B2 publication Critical patent/JP5786890B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/567Circuits characterised by the use of more than one type of semiconductor device, e.g. BIMOS, composite devices such as IGBT
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/538Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a push-pull configuration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/017509Interface arrangements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/22Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral
    • H03K5/24Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being amplitude
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/30Modifications for providing a predetermined threshold before switching
    • H03K2017/307Modifications for providing a predetermined threshold before switching circuits simulating a diode, e.g. threshold zero
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Nonlinear Science (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Electronic Switches (AREA)
  • Inverter Devices (AREA)
  • Power Conversion In General (AREA)

Abstract

【課題】逆導通素子の通電の検出精度が下がりにくい、駆動装置を提供すること。
【解決手段】第1の電極と、第2の電極と、前記第1の電極と前記第2の電極との間に設けられた逆導通素子とを備えたスイッチング素子がハイサイドとローサイドに設けられたスイッチング回路(アーム回路50)を備えた駆動装置であって、前記第1の電極と前記第2の電極との間の電圧を前記スイッチング素子が両サイドともオフしている期間に検出した結果により、前記スイッチング素子のオンの許否を判定する判定部(Dフリップフロップ33,43及びAND回路35,45)を備えることを特徴とする、駆動装置。
【選択図】図1

Description

本発明は、逆導通素子を備えたスイッチング素子が設けられたスイッチング回路を備えた駆動装置、及び該スイッチング回路の制御方法に関する。
従来、ダイオード素子が逆導通接続されたIGBT素子を備えた半導体装置が知られている(例えば、特許文献1参照)。この半導体装置は、ダイオードセンス素子に接続されるセンス抵抗によってダイオード素子の通電を検出し、ダイオード素子に電流が流れている場合、IGBT素子の駆動を停止するフィードバック回路を備えている。
特開2012−19550号公報
しかしながら、センス抵抗に流れる電流及びセンス抵抗の抵抗値は小さく、センス抵抗から得られる電圧値は小さいため、IGBT素子に逆導通接続されたダイオード素子の通電の検出精度は下がりやすい。本発明は、逆導通素子の通電の検出精度が下がりにくい、駆動装置及びスイッチング回路の制御方法の提供を目的とする。
上記目的を達成するため、本発明は、
第1の電極と、第2の電極と、前記第1の電極と前記第2の電極との間に設けられた逆導通素子とを備えたスイッチング素子がハイサイドとローサイドに設けられたスイッチング回路と、
前記第1の電極と前記第2の電極との間の電圧を前記スイッチング素子が両サイドともオフしている期間に検出した結果により、前記スイッチング素子のオンの許否を判定する判定部とを備えた、駆動装置を提供するものである。
また、上記目的を達成するため、本発明は、
第1の電極と、第2の電極と、前記第1の電極と前記第2の電極との間に設けられた逆導通素子とを備えたスイッチング素子がハイサイドとローサイドに設けられたスイッチング回路の制御方法であって、
前記第1の電極と前記第2の電極との間の電圧を前記スイッチング素子が両サイドともオフしている期間に検出した結果により、前記スイッチング素子のオンの許否を判定することを特徴とする、スイッチング回路の制御方法を提供するものである。
本発明によれば、逆導通素子の通電の検出精度が下がりにくい。
第1の実施形態の駆動装置を示した構成図 スイッチング素子が両サイドともオフしている期間に流れる電流を示した図 スイッチング素子のオンが許可されたときのタイミングチャート スイッチング素子のオンが禁止されたときのタイミングチャート 第2の実施形態の駆動装置を示した構成図
図1は、第1の実施形態の駆動装置1の構成を示した図である。駆動装置1は、上アーム10及び下アーム20をオンオフ駆動することによって、誘導性の負荷70(例えば、モータ、リアクトルなど)を駆動する半導体回路である。駆動装置1は、上アーム10と下アーム20とが中間ノード51を介して直列に接続されたスイッチング回路として、アーム回路50を備えている。負荷70の一端は、中間ノード51に接続される。
駆動装置1は、上アーム10と、上アーム10の駆動を制御する第1の駆動制御回路30と、下アーム20と、下アーム20の駆動を制御する第2の駆動制御回路40とを備えている。上アーム10は、駆動制御回路30と共通の基板上の半導体素子でもよいし、駆動制御回路30とは別の基板上の半導体素子でもよい。下アーム20についても同様である。また、上アーム10は、下アーム20と共通の基板上の半導体素子でもよいし、下アーム20とは別の基板上の半導体素子でもよい。
駆動装置1は、集積回路によって構成された半導体デバイスであるが、ディスクリート部品によって構成された半導体デバイスでもよい。
駆動装置1の使用例として、インバータ、電源装置などが挙げられる。例えば、インバータは、複数の駆動装置1を備えてよく、3つの駆動装置1を備えた場合、三相インバータとして機能する。
上アーム10は、中間ノード51に対して第1の電源電位部61側のハイサイドに設けられたスイッチング素子であり、下アーム20は、中間ノード51に対して第2の電源電位部62側のローサイドに設けられたスイッチング素子である。上アーム10と下アーム20は、電源電位部61と電源電位部62との間で直列に接続されている。
電源電位部61は、例えば、バッテリやコンバータ等の電源の正極端子に導電的に接続される高電位部である。電源電位部61よりも低電位の電源電位部62は、例えば、バッテリやコンバータ等の電源の負極端子又は車体アース部に導電的に接続される低電位部(いわゆる、グランドGND)である。電源電位部61と電源電位部62との間の電圧が、上アーム10及び下アーム20の電源電圧VHに相当し、電源電圧VHが、上アーム10と下アーム20とが直列に接続されたアーム回路50の両端に印加される。
上アーム10及び下アーム20は、絶縁ゲート型電圧制御半導体素子であって、オンオフ動作する素子である。上アーム10及び下アーム20は、それぞれ、制御電極と、第1の主電極と、第2の主電極とを有する素子であり、その具体例として、IGBT,MOSFETなどのパワートランジスタ素子が挙げられる。図1には、上アーム10及び下アーム20の一例として、IGBTが図示されている。
以下、説明の便宜上、上アーム10及び下アーム20がIGBTであるとして、説明する。MOSFETの場合であれば、「コレクタ」を「ドレイン」に、「エミッタ」を「ソース」に置き換えて読むとよい。
上アーム10のゲート電極Gは、例えば、ゲート電極Gに直列接続された不図示のゲート抵抗を介して、駆動制御回路30に接続される制御電極である。上アーム10のコレクタ電極Cは、電源電位部61に接続される第1の主電極である。上アーム10のエミッタ電極Eは、中間ノード51及び下アーム20を介して、電源電位部62に接続される第2の主電極である。
下アーム20のゲート電極Gは、例えば、ゲート電極Gに直列接続された不図示のゲート抵抗を介して、駆動制御回路40に接続される制御電極である。下アーム20のコレクタ電極Cは、中間ノード51及び上アーム10を介して、電源電位部61に接続される第1の主電極である。下アーム20のエミッタ電極Eは、電源電位部62に接続される第2の主電極である。
上アーム10は、コレクタ電極Cとエミッタ電極Eとの間に設けられた逆導通素子として、逆導通用のダイオード11を備えている。ダイオード11は、上アーム10に逆導通接続された素子であって、上アーム10のコレクタ電極Cに接続されたカソードと、上アーム10のエミッタ電極Eに接続されたアノードとを有している。
下アーム20は、コレクタ電極Cとエミッタ電極Eとの間に設けられた逆導通素子として、逆導通用のダイオード21を備えている。ダイオード21は、下アーム20に逆導通接続された素子であって、下アーム20のコレクタ電極Cに接続されたカソードと、下アーム20のエミッタ電極Eに接続されたアノードとを有している。
上アーム10及び下アーム20は、例えば、ダイオード内蔵IGBTである。この場合、上アーム10は、ダイオード11を内蔵するIGBTであり、下アーム20は、ダイオード21を内蔵するIGBTである。
ダイオード内蔵IGBTとは、IGBT素子とダイオード素子とが共通の半導体基板に設けられた逆導通IGBT(RC(Reverse Conducting)‐IGBT)である。ダイオード内蔵IGBTは、ダイオード素子のアノード電極とIGBT素子のエミッタ電極とを共通電極とし、ダイオード素子のカソード電極とIGBT素子のコレクタ電極とを共通電極とした構造を有している。
なお、ダイオード11は、上アーム10に並列に追加接続されたダイオードでもよいし、コレクタ電極Cとエミッタ電極Eとの間に形成される寄生素子であるボディダイオードでもよい。ダイオード21についても同様である。
駆動制御回路30は、外部から供給される指令信号S1に従って、不図示のゲート抵抗を介して、上アーム10のゲート電極Gのゲート電圧Vge1を、上アーム10をオン又はオフさせる電圧値に制御する制御信号S9を出力する駆動回路34を備えている。駆動制御回路30は、例えば、駆動回路34を備えた駆動ICである。ゲート電圧Vge1は、上アーム10のゲート電極Gとエミッタ電極Eとの間に印加される制御電圧である。上アーム10は、ゲート電圧Vge1の電圧値に応じて、オン又はオフする。
駆動制御回路40は、例えば、外部から供給される指令信号S2に従って、不図示のゲート抵抗を介して、下アーム20のゲート電極Gのゲート電圧Vge2を、下アーム20をオン又はオフさせる電圧値に制御する制御信号S10を出力する駆動回路44を備えている。駆動制御回路40は、例えば、駆動回路44を備えた駆動ICである。ゲート電圧Vge2は、下アーム20のゲート電極Gとエミッタ電極Eとの間に印加される制御電圧である。下アーム20は、ゲート電圧Vge2の電圧値に応じて、オン又はオフする。
駆動回路34は、指令信号S1に従って、上アーム10を周期的にオンオフさせる駆動部である。駆動回路34は、例えば、上アーム10が周期的にオンオフするように、パルス変調された指令信号S1に従って、上アーム10をパルス変調方式で繰り返しオンオフさせる制御信号S9を出力する。パルス変調の具体例として、パルス幅変調(PWM)、パルス周波数変調(PFM)などが挙げられる。駆動回路44についても同様である。
指令信号S1,S2は、例えば、CPU等を備えるマイクロコンピュータから供給される信号である。なお、駆動制御回路30,40自体が、マイクロコンピュータであってもよい。
駆動制御回路30は、ダイオード11の通電状態をモニタし、ダイオード11の通電が検出されない場合、上アーム10がオンすることを許可し、ダイオード11の通電が検出された場合、上アーム10がオンすることを禁止する。この制御により、所定電流値以上の電流がダイオード11に流れている期間に、上アーム10のオンを要求する指令信号S1が駆動回路34に入力されても、駆動回路34が上アーム10の状態をオフからオンに切り替えることを防止できる。
同様に、駆動制御回路40は、ダイオード21の通電状態をモニタし、ダイオード21の通電が検出されない場合、下アーム20がオンすることを許可し、ダイオード21の通電が検出された場合、下アーム20がオンすることを禁止する。この制御により、所定電流値以上の電流がダイオード21に流れている期間に、下アーム20のオンを要求する指令信号S2が駆動回路44に入力されても、駆動回路44が下アーム20の状態をオフからオンに切り替えることを防止できる。
図2は、指令信号S1,S2によって上アーム10と下アーム20の両アームが共にオフしている期間(デッドタイム)に、アーム回路50に流れる電流を示した図である。デッドタイムでは、ダイオード11に流れるフリーホイール電流I1と、ダイオード21に流れるフリーホイール電流I2とのいずれか一方が発生している。Vce1は、上アーム10のコレクタ電極Cとエミッタ電極Eとの間の電圧を表し、Vce2は、下アーム20のコレクタ電極Cとエミッタ電極Eとの間の電圧を表す。VF1は、ダイオード11の順方向電圧を表し、VF2は、ダイオード21の順方向電圧を表す。
デッドタイム中、ダイオード11の通電時の電圧Vce1は(図2(a)参照)、フリーホイール電流I1が流れることにより、順方向電圧VF1(上アーム10のエミッタ電極Eを基準電位ゼロとすると、−VF1)に等しくなる。一方、デッドタイム中、ダイオード11の非通電時の電圧Vce1は(図2(b)参照)、フリーホイール電流I2が流れることにより、電源電圧VHに等しくなる。なお、ダイオード11の非通電時の電圧Vce1は、厳密には、電源電圧VHから順方向電圧VF2を引いた電圧であるが、電源電圧VHは順方向電圧VF2よりも十分大きいため、電源電圧VHに等しいとする。
このように、ダイオード11の通電時の電圧Vce1とダイオード11の非通電時の電圧Vce1との電圧差は大きい。そして、ダイオード11に流れる電流の電流値の大小にかかわらず、ダイオード11が通電していれば、デッドタイム中の電圧Vce1は−VF1に等しくなり、ダイオード11が通電していなければ、デッドタイム中の電圧Vce1はVHに等しくなる。
これらの点に着目し、駆動制御回路30は、デッドタイム中の電圧Vce1が所定値よりも高いのか低いのかを検出することによって、ダイオード11の通電の有無を検出し、駆動回路34が上アーム10をオンすることの許否を判定する。
フリーホイール電流I1,I2の電流値が比較的小さくても、ダイオード11の通電時と非通電時との電圧Vce1の電圧差は上記の通り大きい。そのため、デッドタイム中の電圧Vce1を検出することによりダイオード11の通電有無を検出することで、ダイオード11の通電有無の検出精度が下がりにくい。その結果、上アーム10のオンの許否の判定精度が向上し、例えば、ダイオード11が通電しているにもかかわらず、上アーム10のオンを誤って許可することを防止できる。
特に、上アーム10がダイオード内蔵IGBTの場合、ダイオード11に電流が流れている期間に上アーム10がオンすると、ダイオード11の順方向電圧VF1が増加し、ダイオード11の順方向損失が増大する。しかしながら、駆動制御回路30は、デッドタイム中の電圧Vce1をモニタし、ダイオード11の通電が検出された場合、上アーム10のオンを禁止する。このため、フリーホイール電流I1,I2の電流値の大小にかかわらず、フリーホイール電流I1,I2の電流値が比較的小さいときでも、ダイオード11の順方向損失の増大を抑制できる。その結果、例えば、駆動装置1を備える電子制御装置の消費電力を低減でき、ひいては、その電子制御装置を搭載する車両の燃費向上に寄与できる。
同様に、デッドタイム中、ダイオード21の通電時の電圧Vce2は(図2(b)参照)、フリーホイール電流I2が流れることにより、順方向電圧VF2(下アーム20のエミッタ電極Eを基準電位ゼロとすると、−VF2)に等しくなる。一方、デッドタイム中、ダイオード21の非通電時の電圧Vce2は(図2(a)参照)、フリーホイール電流I1が流れることにより、電源電圧VHに等しくなる。なお、ダイオード21の非通電時の電圧Vce2は、厳密には、電源電圧VHから順方向電圧VF1を引いた電圧であるが、電源電圧VHは順方向電圧VF1よりも十分大きいため、電源電圧VHに等しいとする。
このように、ダイオード21の通電時の電圧Vce2とダイオード21の非通電時の電圧Vce2との電圧差は大きい。そして、ダイオード21に流れる電流の電流値の大小にかかわらず、ダイオード21が通電していれば、デッドタイム中の電圧Vce2は−VF2に等しくなり、ダイオード21が通電していなければ、デッドタイム中の電圧Vce2はVHに等しくなる。
これらの点に着目し、駆動制御回路40は、デッドタイム中の電圧Vce2が所定値よりも高いのか低いのかを検出することによって、ダイオード21の通電の有無を検出し、駆動回路44が下アーム20をオンすることの許否を判定する。
フリーホイール電流I1,I2の電流値が比較的小さくても、ダイオード21の通電時と非通電時との電圧Vce2の電圧差は上記の通り大きい。そのため、デッドタイム中の電圧Vce2を検出することによりダイオード21の通電有無を検出することで、ダイオード21の通電有無の検出精度が下がりにくい。その結果、下アーム20のオンの許否の判定精度が向上し、例えば、ダイオード21が通電しているにもかかわらず、下アーム20のオンを誤って許可することを防止できる。
特に、下アーム20がダイオード内蔵IGBTの場合、ダイオード21に電流が流れている期間に下アーム20がオンすると、ダイオード21の順方向電圧VF2が増加し、ダイオード21の順方向損失が増大する。しかしながら、駆動制御回路40は、デッドタイム中の電圧Vce2をモニタし、ダイオード21の通電が検出された場合、下アーム20のオンを禁止する。このため、フリーホイール電流I1,I2の電流値の大小にかかわらず、フリーホイール電流I1,I2の電流値が比較的小さいときでも、ダイオード21の順方向損失の増大を抑制できる。その結果、例えば、駆動装置1を備える電子制御装置の消費電力を低減でき、ひいては、その電子制御装置を搭載する車両の燃費向上に寄与できる。
トランジスタのコレクタ−エミッタ間の電圧Vceは、デッドタイムに限らなければ、ダイオード通電時には、−VF(例えば、−1V)になり、ダイオード非通電時には、トランジスタのオン電圧Von(例えば、1V)又は電源電圧VH(例えば、600V)になる。つまり、電圧Vceは、3通りの電圧値に変化する。特に、−VFとVonとの電圧差は微小なため、両者を正確に検出することは容易ではない。しかしながら、本発明の実施形態では、電圧Vceのモニタ期間をデッドタイムに限定することで、電圧Vceは、ダイオード通電時の−VFとダイオード非通電時のVHとのいずれかであるため、ダイオードの通電状態を大きな電圧変化の検出で判定できる。
図1において、駆動制御回路30は、上アーム10のコレクタ電極Cとエミッタ電極Eとの間の電圧Vce1を検出する電圧検出部として、コンパレータ31を備えている。コンパレータ31は、上アーム10の電圧Vce1を常時モニタするモニタ回路であり、電圧Vce1の大きさに応じて変化する電圧検出信号S5を出力する。コンパレータ31は、上アーム10のコレクタ電極Cに接続される非反転入力部と、上アーム10のエミッタ電極Eに閾値電圧生成部32を介して接続される反転入力部とを有している。閾値電圧生成部32は、一定の閾値電圧Vth1を生成してコンパレータ31の反転入力部に印加する回路である。閾値電圧生成部32は、例えば、抵抗分圧回路によって閾値電圧Vth1を生成する。閾値電圧Vth1は、「−VF1<Vth1<VH」の電圧範囲内の電圧値に設定される。
コンパレータ31は、電圧Vce1が閾値電圧Vth1よりも小さいとき、ローレベルの電圧検出信号S5を出力する。特に、コンパレータ31は、デッドタイム中にダイオード11が通電している時、電圧Vce1は閾値電圧Vth1よりも小さい−VF1に等しくなるので、ローレベルの電圧検出信号S5を出力する。逆に、コンパレータ31は、電圧Vce1が閾値電圧Vth1よりも大きいとき、ハイレベルの電圧検出信号S5を出力する。特に、コンパレータ31は、デッドタイム中にダイオード11が通電していない時、電圧Vce1は閾値電圧Vth1よりも大きなVHに等しくなるので、ハイレベルの電圧検出信号S5を出力する。
同様に、駆動制御回路40は、下アーム20のコレクタ電極Cとエミッタ電極Eとの間の電圧Vce2を検出する電圧検出部として、コンパレータ41を備えている。コンパレータ41は、下アーム20の電圧Vce2を常時モニタするモニタ回路であり、電圧Vce2の大きさに応じて変化する電圧検出信号S6を出力する。コンパレータ41は、下アーム20のコレクタ電極Cに接続される非反転入力部と、下アーム20のエミッタ電極Eに閾値電圧生成部42を介して接続される反転入力部とを有している。閾値電圧生成部42は、一定の閾値電圧Vth2を生成してコンパレータ41の反転入力部に印加する回路である。閾値電圧生成部42は、例えば、抵抗分圧回路によって閾値電圧Vth2を生成する。閾値電圧Vth2は、「−VF2<Vth2<VH」の電圧範囲内の電圧値に設定される。
コンパレータ41は、電圧Vce2が閾値電圧Vth2よりも小さいとき、ローレベルの電圧検出信号S6を出力する。特に、コンパレータ41は、デッドタイム中にダイオード21が通電している時、電圧Vce2は閾値電圧Vth2よりも小さい−VF2に等しくなるので、ローレベルの電圧検出信号S6を出力する。逆に、コンパレータ41は、電圧Vce2が閾値電圧Vth2よりも大きいとき、ハイレベルの電圧検出信号S6を出力する。特に、コンパレータ41は、デッドタイム中にダイオード21が通電していない時、電圧Vce2は閾値電圧Vth2よりも大きなVHに等しくなるので、ハイレベルの電圧検出信号S6を出力する。
駆動制御回路30は、電圧Vce1をデッドタイムに検出した結果により、上アーム10のオンの許否を判定する判定部として、Dフリップフロップ33及びAND回路35を備えている。Dフリップフロップ33及びAND回路35は、上アーム10のオンを要求する指令信号S1に基づいて、上アーム10のオンの許否を判定する論理回路である。Dフリップフロップ33は、上アーム10のオンを要求する指令信号S1の入力タイミングに同期して、コンパレータ31から出力される電圧検出信号S5をラッチすることで、デッドタイム中にコンパレータ31によって検出された電圧Vce1を取得できる。Dフリップフロップ33は、この取得結果により、上アーム10のオンの許否を判定し、上アーム10のオンを要求する指令信号S1の次の入力があるまで、その許否判定結果を維持する。
Dフリップフロップ33は、デッドタイム中に検出された電圧Vce1が所定値と比較された結果に基づいて、上アーム10のオンの許否を判定する。
Dフリップフロップ33は、デッドタイムに検出された電圧Vce1が閾値電圧Vth1以上の電源電圧VHに等しいことが検出された場合、ダイオード11が通電していないと判定し、上アーム10のオンを許可するハイレベルの許否判定信号S7を出力する。
一方、Dフリップフロップ33は、デッドタイムに検出された電圧Vce1が閾値電圧Vth1未満の順方向電圧VF1に等しいことが検出された場合、ダイオード11が通電していると判定し、上アーム10のオンを禁止するローレベルの許否判定信号S7を出力する。これにより、駆動回路34が、上アーム10のオンを要求する指令信号S1に従って、上アーム10をオンさせるハイレベルの制御信号S9を出力しても、上アーム10のオンはAND回路35によって禁止される。上アーム10のオンを禁止するローレベルの許否判定信号S7がDフリップフロップ33から出力されている期間、上アーム10をオフさせるローレベルのゲート電圧Vge1が、AND回路35により、駆動制御回路30から出力される。これにより、上アーム10のオンを要求する指令信号S1が入力されても、上アーム10はオンせずにオフ状態が維持される。
駆動制御回路40に構成されるDフリップフロップ43及びAND回路45も、上述のDフリップフロップ33及びAND回路35と同様である。
図3は、デッドタイム中の電流がダイオード21に流れていない図2(a)の場合において、下アーム20のオンがDフリップフロップ43及びAND回路45により許可されたときのタイミングチャートである。期間t2−t4及び期間t6−t8が、デッドタイムである。図3について、図1及び図2(a)を参照して説明する。
上アーム10のオフを要求する指令信号S1が駆動回路34に入力されてから、上アーム10が実際にオフするまで、タイムラグt1−t2が存在する。同様に、下アーム20のオンを要求する指令信号S2が駆動回路44に入力されてから、下アーム20が実際にオンするまで、タイムラグt3−t4が存在する。したがって、上アーム10と下アーム20が両方ともオフしているデッドタイムは、期間t2−t4に相当する。
下アーム20のオンを要求する指令信号S2が駆動回路44に入力されるタイミングt3は、デッドタイムt2−t4内に存在する。この点を利用して、Dフリップフロップ43は、下アーム20のオンを要求する指令信号S2の立ち上がり入力エッジをトリガーに電圧Vce2を検出することで、デッドタイムt2−t4内のタイミングt3での電圧Vce2を確実に検出することができる。
タイミングt2で上アーム10がオンからオフに切り替わるが、図2(a)に示されるようにフリーホイール電流I1がダイオード11に流れ始めると、電圧Vce2は、タイミングt2の前後で、電源電圧VHのまま、ほぼ変化しない。そして、デッドタイムt2−t4でも、電圧Vce2は、フリーホイール電流I1がダイオード11に流れ続けるため、電源電圧VHに等しい。
したがって、Dフリップフロップ43は、コンパレータ41から出力されるハイレベルの電圧検出信号S6をタイミングt3でラッチし、下アーム20のオンを許可するハイレベルの許否判定信号S8を出力する。Dフリップフロップ43は、少なくとも、下アーム20のオンを要求する指令信号S2の次周期の立ち上がり入力エッジまで、下アーム20のオンを許可するハイレベルの許否判定信号S8を継続的に出力する。下アーム20のオンが許可されている期間、指令信号S2の要求どおりに、下アーム20はオン又はオフする。
図4は、デッドタイム中の電流がダイオード21に流れている図2(b)の場合において、下アーム20のオンがDフリップフロップ43及びAND回路45により禁止されたときのタイミングチャートである。期間t2−t4及び期間t6−t8が、デッドタイムである。図4について、図1及び図2(b)を参照して説明する。
タイミングt2で上アーム10がオンからオフに切り替わるが、図2(b)に示されるようにフリーホイール電流I2がダイオード21に流れ始めると、電圧Vce2は、タイミングt2で、VHから−VF2に変化する。そして、デッドタイムt2−t4でも、電圧Vce2は、フリーホイール電流I2がダイオード21に流れ続けるため、−VF2に等しい。
したがって、Dフリップフロップ43は、コンパレータ41から出力されるローレベルの電圧検出信号S6をタイミングt3でラッチし、下アーム20のオンを禁止するローレベルの許否判定信号S8を出力する。Dフリップフロップ43は、少なくとも、下アーム20のオンを要求する指令信号S2の次周期の立ち上がり入力エッジまで、下アーム20のオンを禁止するローレベルの許否判定信号S8を継続的に出力する。下アーム20のオンが禁止されている期間、指令信号S2が入力されても、ゲート電圧Vge2はAND回路45によりローレベルに固定され、下アーム20はオンせずにオフ状態で固定される。
Dフリップフロップ33及びAND回路35が、上アーム10のオンの許否を判定する場合についても上記同様である。
例えば、図3において、下アーム20のオフを要求する指令信号S2が駆動回路44に入力されてから、下アーム20が実際にオフするまで、タイムラグt5−t6が存在する。同様に、上アーム10のオンを要求する指令信号S1が駆動回路34に入力されてから、上アーム10が実際にオンするまで、タイムラグt7−t8が存在する。したがって、上アーム10と下アーム20が両方ともオフしているデッドタイムは、期間t6−t8に相当する。
上アーム10のオンを要求する指令信号S1が駆動回路34に入力されるタイミングt7は、デッドタイムt6−t8内に存在する。この点を利用して、Dフリップフロップ33は、上アーム10のオンを要求する指令信号S1の立ち上がり入力エッジをトリガーに電圧Vce1を検出することで、デッドタイムt6−t8内のタイミングt7での電圧Vce1を確実に検出することができる。
タイミングt6で下アーム20がオンからオフに切り替わるが、図2(a)に示されるようにフリーホイール電流I1がダイオード11に流れ始めると、電圧Vce1は、タイミングt6で、VHから−VF1に変化する。そして、デッドタイムt6−t8でも、電圧Vce1は、フリーホイール電流I1がダイオード11に流れ続けるため、−VF1に等しい。
したがって、Dフリップフロップ33は、コンパレータ31から出力されるローレベルの電圧検出信号S5をタイミングt7でラッチし、上アーム10のオンを禁止するローレベルの許否判定信号S7を出力する。Dフリップフロップ33は、少なくとも、上アーム10のオンを要求する指令信号S1の次周期の立ち上がり入力エッジまで、上アーム10のオンを禁止するローレベルの許否判定信号S7を継続的に出力する。上アーム10のオンが禁止されている期間、指令信号S1が入力されても、ゲート電圧Vge1はAND回路35によりローレベルに固定され、上アーム10はオンせずにオフ状態で固定される。
一方、タイミングt6で下アーム20がオンからオフに切り替わるが、図2(b)に示されるようにフリーホイール電流I2がダイオード12に流れ始めると、電圧Vce1は、タイミングt6の前後で、電源電圧VHのまま、ほぼ変化しない。そして、デッドタイムt6−t8でも、電圧Vce1は、フリーホイール電流I2がダイオード21に流れ続けるため、電源電圧VHに等しい。
したがって、Dフリップフロップ33は、コンパレータ31から出力されるハイレベルの電圧検出信号S5をタイミングt7でラッチし、上アーム10のオンを許可するハイレベルの許否判定信号S7を出力する。Dフリップフロップ33は、少なくとも、上アーム10のオンを要求する指令信号S1の次周期の立ち上がり入力エッジまで、上アーム10のオンを許可するハイレベルの許否判定信号S7を継続的に出力する。上アーム10のオンが許可されている期間、指令信号S1の要求どおりに、上アーム10はオン又はオフする。
なお、指令信号S1,S2の周波数は、誘導性の負荷70に流れる正弦波電流の周波数よりも十分に高い。そのため、本発明の実施形態のように、デッドタイム毎にダイオードの通電状態を判定し、上アーム又は下アームをオフしても、負荷70に流れる正弦波電流に与える影響はほとんどない。
図5は、第2の実施形態の駆動装置2の構成を示した図である。上述の実施形態と同様の構成及び効果についての説明は省略又は簡略する。駆動装置2では、レベルシフト回路54,55が、図1の駆動装置1の構成に追加されている。駆動装置2は、電圧Vce1のレベルをシフトするレベルシフト部として、レベルシフト回路54を備え、電圧Vce2のレベルをシフトするレベルシフト部として、レベルシフト回路55を備えている。
レベルシフト回路54は、上アーム10のコレクタ電極Cと基準電圧源63との間に接続されたダイオード12を備えている。基準電圧源63は、電源電圧VHよりも低い基準電圧VB1を出力する。基準電圧源63のグランドは、駆動制御回路30のコンパレータ31のグランドであり、例えば、上アーム10のエミッタ電極E又は中間ノード51である。
基準電圧VB1は、例えば、コンパレータ31の検出可能電圧範囲内の電圧(例えば、12V)に設定される。基準電圧源63が、例えば、基準電圧VB1を調整可能なフローティング電源であると、コンパレータ31の検出可能電圧範囲内の任意の電圧に調整できる。
ダイオード12のカソードは、上アーム10のコレクタ電極Cに接続され、その接続点は、コレクタ電極Cの直近が好ましい。ダイオード12のアノードは、抵抗13を介して、基準電圧源63にプルアップ接続されている。ダイオード12のアノードと抵抗13との接続ノード52は、コンパレータ31の非反転入力部に接続される。ダイオード12が直列接続される個数は、一つでも複数でもよい。
レベルシフト回路55は、下アーム20のコレクタ電極Cと基準電圧源64との間に接続されたダイオード22を備えている。基準電圧源64は、電源電圧VHよりも低い基準電圧VB2を出力する。基準電圧源64のグランドは、駆動制御回路40のコンパレータ41のグランドであり、例えば、下アーム20のエミッタ電極E又は電源電位部62である。
基準電圧VB2は、例えば、コンパレータ41の検出可能電圧範囲内の電圧(例えば、12V)に設定される。基準電圧源64が、例えば、基準電圧VB2を調整可能なフローティング電源であると、コンパレータ41の検出可能電圧範囲内の任意の電圧に調整できる。基準電圧VB2の電圧値は、基準電圧VB1と同じでもよいし、異なってもよい。
ダイオード22のカソードは、下アーム20のコレクタ電極Cに接続され、その接続点は、コレクタ電極Cの直近が好ましい。ダイオード22のアノードは、抵抗23を介して、基準電圧源64にプルアップ接続されている。ダイオード22のアノードと抵抗23との接続ノード53は、コンパレータ41の非反転入力部に接続される。ダイオード22が直列接続される個数は、一つでも複数でもよい。
デッドタイム中、ダイオード11が通電せずにダイオード21が通電しているとき、電圧Vce1はVHに等しい。そのため、VB1<VHの関係が成立することにより、ダイオード12はオフする。その結果、コンパレータ31の非反転入力部側の入力電圧はVB1となるため、ダイオード11の非通電状態を、コンパレータ31の検出可能電圧範囲内の電圧で検出できる。
一方、デッドタイム中、ダイオード21が通電せずにダイオード11が通電しているとき、電圧Vce1は−VF1に等しい。そのため、VB1>−VF1の関係が成立することにより、ダイオード12はオンする。その結果、ダイオード12の順方向電圧とダイオード11の順方向電圧とが相殺されるため、コンパレータ31の非反転入力部側の入力電圧は負電圧にはならず0Vとなる。したがって、ダイオード11の通電状態を、コンパレータ31の検出可能電圧範囲内の電圧で検出できる。
デッドタイム中のレベルシフト回路55とコンパレータ41との関係も、上記同様である。
レベルシフト回路54,55を備えることによって、駆動制御回路30,40の耐圧を下げることができる。特に、ダイオード12,22の順方向電圧によって、逆導通用のダイオード11,21で発生する負電圧(−VF)を、相殺できるため、コンパレータ31,41の回路構成を簡易化できる。
以上、駆動装置及びスイッチング回路の制御方法を実施形態例により説明したが、本発明は上記実施形態例に限定されるものではない。他の実施形態例の一部又は全部との組み合わせや置換などの種々の変形及び改良が、本発明の範囲内で可能である。
例えば、スイッチング素子は、IGBTに限らず、Nチャネル型のMOSFETでもよいし、Pチャネル型のMOSFETでもよい。
1,2 駆動装置
10 上アーム
11,12,21,22 ダイオード
13,23 抵抗
20 下アーム
30,40 駆動制御回路
31,41 コンパレータ
32,42 閾値電圧生成部
33,43 Dフリップフロップ
34,44 駆動回路
35,45 AND回路
50 アーム回路
51 中間ノード
52,53 接続ノード
54,55 レベルシフト回路
61,62 電源電位部
63,64 基準電圧源
70 負荷

Claims (15)

  1. 第1の電極と、第2の電極と、前記第1の電極と前記第2の電極との間に設けられた逆導通素子とを備えたスイッチング素子がハイサイドとローサイドに設けられたスイッチング回路と、
    前記第1の電極と前記第2の電極との間の電圧を前記スイッチング素子が両サイドともオフしている期間に検出した結果により、前記スイッチング素子のオンの許否を判定する判定部とを備えた、駆動装置。
  2. 前記制御部は、前記期間に検出された前記電圧が所定値と比較された結果に基づいて、前記スイッチング素子のオンの許否を判定する、請求項1に記載の駆動装置。
  3. 前記判定部は、前記期間に検出された前記電圧が前記所定値未満である場合、前記スイッチング素子のオンを禁止する、請求項2に記載の駆動装置。
  4. 前記判定部は、前記期間に検出された前記電圧が前記逆導通素子の順方向電圧に等しいことが検出された場合、前記スイッチング素子のオンを禁止する、請求項1から3のいずれか一項に記載の駆動装置。
  5. 前記判定部は、前記期間に検出された前記電圧が前記所定値以上である場合、前記スイッチング素子のオンを許可する、請求項2又は3に記載の駆動装置。
  6. 前記判定部は、前記期間に検出された前記電圧が前記スイッチング素子の電源電圧に等しいことが検出された場合、前記スイッチング素子のオンを許可する、請求項1から5のいずれか一項に記載の駆動装置。
  7. 前記判定部は、前記スイッチング素子のオンを要求する指令信号に基づいて、前記許否を判定する、請求項1から6のいずれか一項に記載の駆動装置。
  8. 前記電圧は、前記指令信号に同期して検出される、請求項7に記載の駆動装置。
  9. 前記判定部は、前記指令信号の次の入力があるまで、前記許否の判定結果を維持する、請求項7又は8に記載の駆動装置。
  10. 前記判定部は、前記スイッチング素子のオンを要求する指令信号があっても、前記スイッチング素子のオンが禁止されている場合、前記スイッチング素子をオンさせない、請求項1から9のいずれか一項に記載の駆動装置。
  11. 前記スイッチング素子のオンを要求する指令信号に従って、前記スイッチング素子をオンする駆動部を備え、
    前記判定部は、前記駆動部が前記スイッチング素子をオンすることの許否を判定する、請求項1から10のいずれか一項に記載の駆動装置。
  12. 前記電圧のレベルをシフトするレベルシフト部と、
    前記レベルシフト部の出力電圧が入力される電圧検出部とを備え、
    前記レベルシフト部は、前記第1の電極と前記第2の電極とのうち高電位側の電極と、前記スイッチング素子の電源電圧よりも低い基準電圧を出力する基準電圧源との間に接続されたダイオードを備える、請求項1から11のいずれか一項に記載の駆動装置。
  13. 前記電圧検出部は、コンパレータである、請求項12に記載の駆動装置。
  14. 前記スイッチング素子は、ダイオード内蔵IBGTである、請求項1から13のいずれか一項に記載の駆動装置。
  15. 第1の電極と、第2の電極と、前記第1の電極と前記第2の電極との間に設けられた逆導通素子とを備えたスイッチング素子がハイサイドとローサイドに設けられたスイッチング回路の制御方法であって、
    前記第1の電極と前記第2の電極との間の電圧を前記スイッチング素子が両サイドともオフしている期間に検出した結果により、前記スイッチング素子のオンの許否を判定することを特徴とする、スイッチング回路の制御方法。
JP2013094312A 2013-04-26 2013-04-26 駆動装置及びスイッチング回路の制御方法 Active JP5786890B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2013094312A JP5786890B2 (ja) 2013-04-26 2013-04-26 駆動装置及びスイッチング回路の制御方法
KR1020157030114A KR101782705B1 (ko) 2013-04-26 2014-03-03 구동 장치 및 스위칭 회로의 제어 방법
PCT/JP2014/055326 WO2014174901A1 (ja) 2013-04-26 2014-03-03 駆動装置及びスイッチング回路の制御方法
EP14788613.9A EP2991227B1 (en) 2013-04-26 2014-03-03 Driving device and switching circuit control method
CN201480022769.1A CN105191133B (zh) 2013-04-26 2014-03-03 驱动装置及开关电路的控制方法
US14/772,275 US9628072B2 (en) 2013-04-26 2014-03-03 Driving device and switching circuit control method
TW103110294A TWI555331B (zh) 2013-04-26 2014-03-19 Drive device and switching circuit control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013094312A JP5786890B2 (ja) 2013-04-26 2013-04-26 駆動装置及びスイッチング回路の制御方法

Publications (2)

Publication Number Publication Date
JP2014216932A true JP2014216932A (ja) 2014-11-17
JP5786890B2 JP5786890B2 (ja) 2015-09-30

Family

ID=51791486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013094312A Active JP5786890B2 (ja) 2013-04-26 2013-04-26 駆動装置及びスイッチング回路の制御方法

Country Status (7)

Country Link
US (1) US9628072B2 (ja)
EP (1) EP2991227B1 (ja)
JP (1) JP5786890B2 (ja)
KR (1) KR101782705B1 (ja)
CN (1) CN105191133B (ja)
TW (1) TWI555331B (ja)
WO (1) WO2014174901A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015082702A (ja) * 2013-10-21 2015-04-27 トヨタ自動車株式会社 半導体装置の駆動制御装置
JP2016149715A (ja) * 2015-02-13 2016-08-18 トヨタ自動車株式会社 駆動装置
WO2017037917A1 (ja) * 2015-09-03 2017-03-09 三菱電機株式会社 電力変換装置
JP2017139622A (ja) * 2016-02-03 2017-08-10 株式会社東芝 ゲート制御回路および電源回路
US9793825B2 (en) 2013-10-31 2017-10-17 Toyota Jidosha Kabushiki Kaisha Power conversion device with a voltage generation part that is configured to supply current to a sense diode and a sense resistor in select situations
JP2017212600A (ja) * 2016-05-25 2017-11-30 富士電機株式会社 異常検出装置
US10163890B2 (en) 2017-02-23 2018-12-25 Toyota Jidosha Kabushiki Kaisha Semiconductor device
US10256232B2 (en) 2017-02-23 2019-04-09 Toyota Jidosha Kabushiki Kaisha Semiconductor device including a switching element and a sense diode
JP2019198031A (ja) * 2018-05-11 2019-11-14 富士電機株式会社 トーテムポール回路用駆動装置
WO2021255850A1 (ja) * 2020-06-17 2021-12-23 三菱電機株式会社 電力変換装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9948290B2 (en) * 2011-08-26 2018-04-17 General Electric Company Reverse conduction mode self turn-off gate driver
TWI496403B (zh) * 2013-08-07 2015-08-11 Richtek Technology Corp 電壓轉換控制器及電壓轉換電路
US9780648B2 (en) * 2014-08-30 2017-10-03 Ixys Corporation Synchronous sensing of inductor current in a buck converter control circuit
US9608545B1 (en) * 2016-03-02 2017-03-28 Faraday & Future Inc. Switching interference suppression in motor driving circuits using space vector pulse width modulation (PWM)
CN106383543B (zh) * 2016-11-22 2018-01-30 亿嘉和科技股份有限公司 一种开关控制电路及控制方法
JP6673192B2 (ja) * 2016-12-27 2020-03-25 株式会社デンソー 電力変換回路の制御装置
JP6780596B2 (ja) * 2017-07-18 2020-11-04 トヨタ自動車株式会社 スイッチング回路
CN107634752A (zh) * 2017-09-20 2018-01-26 北京集创北方科技股份有限公司 驱动装置和驱动方法
FR3083391B1 (fr) * 2018-06-29 2021-05-07 Valeo Equip Electr Moteur Procede de diagnostic d'un pont de puissance connecte a une machine electrique tournante
FR3083390B1 (fr) * 2018-06-29 2021-05-14 Valeo Equip Electr Moteur Procede de diagnostic d'un pont de puissance connecte a une machine electrique tournante
JP6451890B1 (ja) 2018-07-25 2019-01-16 富士電機株式会社 駆動装置およびスイッチング装置
JP7295647B2 (ja) * 2019-02-05 2023-06-21 ローム株式会社 ブリッジ出力回路、電源装置及び半導体装置
US10784857B1 (en) * 2019-05-31 2020-09-22 Texas Instruments Incorporated Adaptive gate drivers and related methods and systems
JP7296331B2 (ja) * 2020-03-18 2023-06-22 株式会社 日立パワーデバイス ゲート駆動装置およびゲート駆動方法、パワー半導体モジュール、並びに電力変換装置
JP7406520B2 (ja) * 2021-03-22 2023-12-27 株式会社 日立パワーデバイス 上アーム駆動回路、電力変換装置の駆動回路、電力変換装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007014059A (ja) * 2005-06-28 2007-01-18 Toyota Motor Corp スイッチング回路
JP2008072848A (ja) * 2006-09-14 2008-03-27 Mitsubishi Electric Corp 半導体装置
JP2009268054A (ja) * 2007-09-05 2009-11-12 Denso Corp 半導体装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6580627B2 (en) 2001-01-29 2003-06-17 International Rectifier Corporation Voltage sensing with high and low side signals for deadtime compensation and shutdown for short circuit protection
US7091752B2 (en) * 2003-09-30 2006-08-15 Power Integrations, Inc. Method and apparatus for simplifying the control of a switch
DE102008045410B4 (de) * 2007-09-05 2019-07-11 Denso Corporation Halbleitervorrichtung mit IGBT mit eingebauter Diode und Halbleitervorrichtung mit DMOS mit eingebauter Diode
US20100079192A1 (en) * 2008-09-29 2010-04-01 Bernhard Strzalkowski Drive for a half-bridge circuit
DE102009030738A1 (de) * 2009-06-26 2010-12-30 Siemens Aktiengesellschaft Verfahren zur Ansteuerung eines rückwärts leitfähigen IGBT
JP5829102B2 (ja) 2011-10-31 2015-12-09 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 超音波診断装置及びその制御プログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007014059A (ja) * 2005-06-28 2007-01-18 Toyota Motor Corp スイッチング回路
JP2008072848A (ja) * 2006-09-14 2008-03-27 Mitsubishi Electric Corp 半導体装置
JP2009268054A (ja) * 2007-09-05 2009-11-12 Denso Corp 半導体装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015082702A (ja) * 2013-10-21 2015-04-27 トヨタ自動車株式会社 半導体装置の駆動制御装置
US9793825B2 (en) 2013-10-31 2017-10-17 Toyota Jidosha Kabushiki Kaisha Power conversion device with a voltage generation part that is configured to supply current to a sense diode and a sense resistor in select situations
JP2016149715A (ja) * 2015-02-13 2016-08-18 トヨタ自動車株式会社 駆動装置
DE102016102182A1 (de) 2015-02-13 2016-08-18 Toyota Jidosha Kabushiki Kaisha Ansteuereinheit
US10312904B2 (en) 2015-09-03 2019-06-04 Mitsubishi Electric Corporation Power converter
WO2017037917A1 (ja) * 2015-09-03 2017-03-09 三菱電機株式会社 電力変換装置
JPWO2017037917A1 (ja) * 2015-09-03 2017-08-31 三菱電機株式会社 電力変換装置
JP2017139622A (ja) * 2016-02-03 2017-08-10 株式会社東芝 ゲート制御回路および電源回路
JP2017212600A (ja) * 2016-05-25 2017-11-30 富士電機株式会社 異常検出装置
US10163890B2 (en) 2017-02-23 2018-12-25 Toyota Jidosha Kabushiki Kaisha Semiconductor device
US10256232B2 (en) 2017-02-23 2019-04-09 Toyota Jidosha Kabushiki Kaisha Semiconductor device including a switching element and a sense diode
JP2019198031A (ja) * 2018-05-11 2019-11-14 富士電機株式会社 トーテムポール回路用駆動装置
JP7095388B2 (ja) 2018-05-11 2022-07-05 富士電機株式会社 トーテムポール回路用駆動装置
WO2021255850A1 (ja) * 2020-06-17 2021-12-23 三菱電機株式会社 電力変換装置
JPWO2021255850A1 (ja) * 2020-06-17 2021-12-23
JP7214052B2 (ja) 2020-06-17 2023-01-27 三菱電機株式会社 電力変換装置

Also Published As

Publication number Publication date
CN105191133A (zh) 2015-12-23
WO2014174901A1 (ja) 2014-10-30
KR20150133253A (ko) 2015-11-27
KR101782705B1 (ko) 2017-09-27
US9628072B2 (en) 2017-04-18
TW201509128A (zh) 2015-03-01
US20160036433A1 (en) 2016-02-04
EP2991227A4 (en) 2016-09-21
EP2991227A1 (en) 2016-03-02
TWI555331B (zh) 2016-10-21
JP5786890B2 (ja) 2015-09-30
EP2991227B1 (en) 2018-10-03
CN105191133B (zh) 2018-09-04

Similar Documents

Publication Publication Date Title
JP5786890B2 (ja) 駆動装置及びスイッチング回路の制御方法
US9590616B2 (en) Drive control device
US10644689B2 (en) Transistor drive circuit and motor drive control apparatus
JP6170119B2 (ja) 電源スイッチを駆動するためのシステムおよび方法
US9575113B2 (en) Insulated-gate bipolar transistor collector-emitter saturation voltage measurement
JP6498473B2 (ja) スイッチ駆動回路
JP5831528B2 (ja) 半導体装置
US20120293218A1 (en) Drive circuit for voltage-control type of semiconductor switching device
US20040041619A1 (en) Mosgate driver integrated circuit with adaptive dead time
US10469057B1 (en) Method for self adaption of gate current controls by capacitance measurement of a power transistor
TWI574018B (zh) 半導體裝置及其控制方法
JP6428939B2 (ja) 半導体装置
JP2008278552A (ja) ブリッジ回路における縦型mosfet制御方法
JP6302760B2 (ja) 劣化診断機能を有する電力変換装置
US20160241242A1 (en) Drive unit
US20160269007A1 (en) Semiconductor device
US20170149426A1 (en) Switching circuit
JP5939281B2 (ja) 駆動制御装置
JP2011024382A (ja) ゲート駆動回路
JP2018029433A (ja) トランジスタ駆動回路及びモータ駆動制御装置
JP2011229327A (ja) スイッチング制御回路
JP2013169030A (ja) スイッチング素子の制御回路及びスイッチング素子の制御方法
CN112640307B (zh) 用于运行igbt的方法和栅极驱动器
JP2019022119A (ja) トランジスタ駆動回路

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150713

R151 Written notification of patent or utility model registration

Ref document number: 5786890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250