JP2014142370A - 光走査装置及び画像形成装置 - Google Patents

光走査装置及び画像形成装置 Download PDF

Info

Publication number
JP2014142370A
JP2014142370A JP2013008862A JP2013008862A JP2014142370A JP 2014142370 A JP2014142370 A JP 2014142370A JP 2013008862 A JP2013008862 A JP 2013008862A JP 2013008862 A JP2013008862 A JP 2013008862A JP 2014142370 A JP2014142370 A JP 2014142370A
Authority
JP
Japan
Prior art keywords
scanning
light beam
polygon mirror
rotary polygon
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013008862A
Other languages
English (en)
Inventor
Yukio Itami
幸男 伊丹
Yoshiaki Hayashi
善紀 林
Naoki Miyatake
直樹 宮武
Naoto Watanabe
直人 渡辺
Yukihisa Yokoyama
悠久 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2013008862A priority Critical patent/JP2014142370A/ja
Priority to US14/160,930 priority patent/US9019333B2/en
Publication of JP2014142370A publication Critical patent/JP2014142370A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

【課題】大型化や高コスト化を招くことなく、被走査面を高速で、精度良く光走査することができる光走査装置を提供する。
【解決手段】 鏡面数Nの回転多面鏡に入射する光束の主走査対応方向の幅dinが、回転多面鏡の反射面の主走査対応方向の幅より小さく、回転多面鏡の回転軸に直交する平面に正射影したとき、X軸方向に対する入射角θin、走査領域における走査開始位置での画角θs、走査終了位置での画角θe、θ1=(θin+θs)/2−360/(2×N)、θ2=(θin+θe)/2+360/(2×N)を用いて、回転多面鏡の外接円半径Rが、
【数1】
Figure 2014142370

を満足する。
【選択図】図9

Description

本発明は、光走査装置及び画像形成装置に係り、更に詳しくは、被走査面を光によって走査する光走査装置、及び該光走査装置を備える画像形成装置に関する。
電子写真の画像記録では、レーザを用いた画像形成装置が広く用いられている。一般的に、この画像形成装置は、感光性を有するドラムの表面をレーザ光で走査し、該ドラムの表面に潜像を形成するための光走査装置を備えている。
上記光走査装置は、光源、偏向器前光学系、回転多面鏡、及び走査光学系などを有している。光源から射出されたレーザ光は、偏向器前光学系を介して回転多面鏡に入射し、回転多面鏡の反射面で偏向された後、走査光学系を介してドラムに導光される。なお、回転多面鏡の反射面は、「偏向反射面」とも呼ばれている。
回転多面鏡にレーザ光を入射させる方式として、アンダーフィルドタイプとオーバーフィルドタイプがある。以下では、便宜上、アンダーフィルドタイプを「UFタイプ」、オーバーフィルドタイプを「OFタイプ」ともいう。
UFタイプでは、主走査方向に対応する方向に関して、上記偏向反射面の長さよりも入射光の幅が小さい(例えば、特許文献1参照)。この場合、入射光のすべてが偏向反射面で反射される。
OFタイプでは、主走査方向に対応する方向に関して、上記偏向反射面の長さよりも入射光の幅が大きい(例えば、特許文献2参照)。この場合、入射光における周辺の光は偏向反射面に入射しない。
近年、画像形成装置に対して、さらなる画像形成の高速化、及びさらなる画像の高品質化への要求が高まっている。
しかしながら、従来の画像形成装置では、大型化や高コスト化を招くことなく、要求されるレベルの高速化及び高品質化を実現するのは困難であった。
本発明は、光源から射出され、N個の反射面を有する回転多面鏡で反射された光束によって、被走査面を主走査方向に沿って走査する光走査装置において、前記回転多面鏡に入射する光束の前記主走査方向に対応する方向の幅が、前記回転多面鏡の反射面の前記主走査方向に対応する方向の幅より小さく、前記回転多面鏡の回転軸に直交する平面に正射影したとき、前記回転多面鏡に入射する光束の前記主走査方向に対応する方向の幅din、基準軸方向に対する入射角θin、走査領域における走査開始位置での画角θs、走査終了位置での画角θe、θ1=(θin+θs)/2−360/(2×N)、θ2=(θin+θe)/2+360/(2×N)を用いて、前記回転多面鏡の外接円半径Rが、
Figure 2014142370
を満足することを特徴とする光走査装置である。
なお、本明細書においては「走査領域」とは、被走査面上において、光走査によって画像(潜像を含む)が形成される領域を意味している。
本発明の光走査装置によれば、大型化や高コスト化を招くことなく、被走査面を高速で、精度良く光走査することができる。
本発明の一実施形態に係る複合機の概略構成を説明するための図である。 図1における光走査装置の構成を説明するための図(その1)である。 図1における光走査装置の構成を説明するための図(その2)である。 図1における光走査装置の構成を説明するための図(その3)である。 図1における光走査装置の構成を説明するための図(その4)である。 光偏向器に入射する光束の入射角θinを説明するための図である。 光偏向器に入射する光束の幅dinを説明するための図である。 面1〜面6を説明するための図である。 走査光束が走査領域における走査開始位置に向かうタイミングでの、回転多面鏡に対する入射光束と走査光束とを説明するための図である。 走査光束が走査領域の中央位置に向かうタイミングでの、回転多面鏡に対する入射光束と走査光束とを説明するための図である。 走査光束が走査領域における走査終了位置に向かうタイミングでの、回転多面鏡に対する入射光束と走査光束とを説明するための図である。 図12(A)〜図12(D)は、それぞれ本実施形態における開口板の例を説明するための図である。 図13(A)及び図13(B)は、それぞれ従来の開口板を説明するための図である。 B1(x1,y1)及びθ1を説明するための図である。 B2(x2,y2)及びθ2を説明するための図である。 dbを説明するための図である。 N=4のときのケラレ率kと回転多面鏡の大きさとの関係を説明するための図(その1)である。 N=4のときのケラレ率kと回転多面鏡の大きさとの関係を説明するための図(その2)である。 N=5のときのケラレ率kと回転多面鏡の大きさとの関係を説明するための図(その1)である。 N=5のときのケラレ率kと回転多面鏡の大きさとの関係を説明するための図(その2)である。 N=6のときのケラレ率kと回転多面鏡の大きさとの関係を説明するための図(その1)である。 N=6のときのケラレ率kと回転多面鏡の大きさとの関係を説明するための図(その2)である。 N=7のときのケラレ率kと回転多面鏡の大きさとの関係を説明するための図(その1)である。 N=7のときのケラレ率kと回転多面鏡の大きさとの関係を説明するための図(その2)である。 N=8のときのケラレ率kと回転多面鏡の大きさとの関係を説明するための図(その1)である。 N=8のときのケラレ率kと回転多面鏡の大きさとの関係を説明するための図(その2)である。 変形例1を説明するための図(その1)である。 変形例1を説明するための図(その2)である。 変形例1を説明するための図(その3)である。 変形例2を説明するための図(その1)である。 変形例2を説明するための図(その2)である。 変形例2を説明するための図(その3)である。 変形例2を説明するための図(その4)である。 変形例2を説明するための図(その5)である。 図35(A)〜図35(D)は、それぞれ開口板の変形例を説明するための図である。
以下、本発明の一実施形態を図1〜図26に基づいて説明する。図1には、一実施形態に係る画像形成装置としての複合機2000の概略構成が示されている。
この複合機2000は、複写機、プリンタ、及びファクシミリの機能を有し、本体装置1001、読取装置1002、及び自動原稿給紙装置1003などを備えている。
本体装置1001は、4色(ブラック、シアン、マゼンタ、イエロー)を重ね合わせてフルカラーの画像を形成するタンデム方式の多色カラープリンタであり、光走査装置2010、4つの感光体ドラム(2030a、2030b、2030c、2030d)、4つのクリーニングユニット(2031a、2031b、2031c、2031d)、4つの帯電装置(2032a、2032b、2032c、2032d)、4つの現像ローラ(2033a、2033b、2033c、2033d)、中間転写ベルト2040、転写ローラ2042、定着ローラ2050、給紙コロ2054、排紙ローラ2058、給紙トレイ2060、排紙トレイ2070、通信制御装置2080、及び上記各部を統括的に制御するプリンタ制御装置2090などを備えている。
読取装置1002は、本体装置1001の上側に配置され、原稿を読み取る。すなわち、読取装置1002は、いわゆるスキャナ装置である。ここで読み取られた原稿の画像情報は、本体装置1001のプリンタ制御装置2090に送られる。
自動原稿給紙装置1003は、読取装置1002の上側に配置され、セットされた原稿を読取装置1002に向けて送り出す。この自動原稿給紙装置1003は、一般にADF(Auto Document Feeder)と呼ばれている。
通信制御装置2080は、ネットワークなどを介した上位装置(例えばパソコン)との双方向の通信、及び公衆回線を介したデータ通信を制御する。
プリンタ制御装置2090は、CPU、該CPUにて解読可能なコードで記述されたプログラム及び該プログラムを実行する際に用いられる各種データが格納されているROM、作業用のメモリであるRAM、アナログデータをデジタルデータに変換するA/D変換回路などを有している。そして、プリンタ制御装置2090は、読取装置1002からの画像情報あるいは通信制御装置2080を介した画像情報を光走査装置2010に送る。
感光体ドラム2030a、帯電装置2032a、現像ローラ2033a、及びクリーニングユニット2031aは、組として使用され、ブラックの画像を形成する画像形成ステーション(以下では、便宜上「Kステーション」ともいう)を構成する。
感光体ドラム2030b、帯電装置2032b、現像ローラ2033b、及びクリーニングユニット2031bは、組として使用され、マゼンタの画像を形成する画像形成ステーション(以下では、便宜上「Mステーション」ともいう)を構成する。
感光体ドラム2030c、帯電装置2032c、現像ローラ2033c、及びクリーニングユニット2031cは、組として使用され、シアンの画像を形成する画像形成ステーション(以下では、便宜上「Cステーション」ともいう)を構成する。
感光体ドラム2030d、帯電装置2032d、現像ローラ2033d、及びクリーニングユニット2031dは、組として使用され、イエローの画像を形成する画像形成ステーション(以下では、便宜上「Yステーション」ともいう)を構成する。
各感光体ドラムはいずれも、その表面に感光層が形成されている。各感光体ドラムの表面がそれぞれ被走査面である。各感光体ドラムは、不図示の回転機構により、図1における面内で矢印方向に回転する。
各帯電装置は、対応する感光体ドラムの表面をそれぞれ均一に帯電させる。
光走査装置2010は、プリンタ制御装置2090からの多色の画像情報(ブラック画像情報、シアン画像情報、マゼンタ画像情報、イエロー画像情報)に基づいて色毎に変調された光により、対応する帯電された感光体ドラムの表面をそれぞれ走査する。これにより、画像情報に対応した潜像が各感光体ドラムの表面にそれぞれ形成される。ここで形成された潜像は、感光体ドラムの回転に伴って対応する現像装置の方向に移動する。なお、この光走査装置2010の構成については後述する。
各現像ローラは、回転に伴って、対応するトナーカートリッジ(図示省略)からのトナーが、その表面に薄く均一に塗布される。そして、各現像ローラの表面のトナーは、対応する感光体ドラムの表面に接すると、該表面における光が照射された部分にだけ移行し、そこに付着する。すなわち、各現像ローラは、対応する感光体ドラムの表面に形成された潜像にトナーを付着させて顕像化させる。ここでトナーが付着した像(トナー画像)は、感光体ドラムの回転に伴って中間転写ベルト2040の方向に移動する。
イエロー、マゼンタ、シアン、ブラックの各トナー画像は、所定のタイミングで中間転写ベルト2040上に順次転写され、重ね合わされてカラー画像が形成される。
給紙トレイ2060には記録紙が格納されている。この給紙トレイ2060の近傍には給紙コロ2054が配置されており、該給紙コロ2054は、記録紙を給紙トレイ2060から1枚ずつ取り出す。該記録紙は、所定のタイミングで中間転写ベルト2040と転写ローラ2042との間隙に向けて送り出される。これにより、中間転写ベルト2040上のカラー画像が記録紙に転写される。カラー画像が転写された記録紙は、定着ローラ2050に送られる。
定着ローラ2050では、熱と圧力とが記録紙に加えられ、これによってトナーが記録紙上に定着される。トナーが定着された記録紙は、排紙ローラ2058を介して排紙トレイ2070に送られ、排紙トレイ2070上に順次積み重ねられる。
各クリーニングユニットは、対応する感光体ドラムの表面に残ったトナー(残留トナー)を除去する。残留トナーが除去された感光体ドラムの表面は、再度対応する帯電装置に対向する位置に戻る。
次に、前記光走査装置2010の構成について説明する。
光走査装置2010は、一例として図2〜図5に示されるように、2つの光源(2200A、2200B)、4つのカップリングレンズ(2201a、2201b、2201c、2201d)、4つの開口板(2202a、2202b、2202c、2202d)、4つのシリンドリカルレンズ(2204a、2204b、2204c、2204d)、光偏向器2104、4つの走査レンズ(2105a、2105b、2105c、2105d)、8枚の折り返しミラー(2106A、2106B、2107a、2107b、2107c、2107d、2108a、2108d)、不図示の同期検知センサ及び走査制御装置などを備えている。そして、これらは、光学ハウジングの所定位置に組み付けられている。
なお、ここでは、XYZ3次元直交座標系において、各感光体ドラムの長手方向(回転軸方向)に沿った方向をY軸方向、光偏向器2104の回転軸に沿った方向をZ軸方向として説明する。また、以下では、便宜上、各光学部材及び光束における主走査方向に対応する方向を「主走査対応方向」と略述し、副走査方向に対応する方向を「副走査対応方向」と略述する。
光源2200Aと光源2200Bは、X軸方向に関して離れた位置に配置されている。各光源は、いずれも2つの発光部を有しており、少なくともZ軸方向に関して離間している2つの光束を射出する。
ここでは、光源2200Aから射出される2つの光束のうち、+Z側の光束を「光束La」といい、−Z側の光束を「光束Lb」という。また、光源2200Bから射出される2つの光束のうち、+Z側の光束を「光束Ld」といい、−Z側の光束を「光束Lc」という。
カップリングレンズ2201aは、光源2200Aから射出された光束Laの光路上に配置され、該光束を略平行光束とする。
カップリングレンズ2201bは、光源2200Aから射出された光束Lbの光路上に配置され、該光束を略平行光束とする。
カップリングレンズ2201cは、光源2200Bから射出された光束Lcの光路上に配置され、該光束を略平行光束とする。
カップリングレンズ2201dは、光源2200Bから射出された光束Ldの光路上に配置され、該光束を略平行光束とする。
シリンドリカルレンズ2204aは、カップリングレンズ2201aを介した光束Laの光路上に配置され、該光束をZ軸方向に関して集光する。
シリンドリカルレンズ2204bは、カップリングレンズ2201bを介した光束Lbの光路上に配置され、該光束をZ軸方向に関して集光する。
シリンドリカルレンズ2204cは、カップリングレンズ2201cを介した光束Lcの光路上に配置され、該光束をZ軸方向に関して集光する。
シリンドリカルレンズ2204dは、カップリングレンズ2201dを介した光束Ldの光路上に配置され、該光束をZ軸方向に関して集光する。
開口板2202aは、開口部を有し、シリンドリカルレンズ2204aを介した光束Laを整形する。
開口板2202bは、開口部を有し、シリンドリカルレンズ2204bを介した光束Lbを整形する。
開口板2202cは、開口部を有し、シリンドリカルレンズ2204cを介した光束Lcを整形する。
開口板2202dは、開口部を有し、シリンドリカルレンズ2204dを介した光束Ldを整形する。
各開口板の開口部を通過した光束は、光偏向器2104に入射する。
各光源と光偏向器2104との間の光路上に配置されている光学系は、「偏向器前光学系」とも呼ばれている。
光偏向器2104は、2段構造の回転多面鏡を有している。各回転多面鏡には6面の鏡面がそれぞれ形成されており、各鏡面が偏向反射面である。そして、1段目(下段)の回転多面鏡では、開口板2202bの開口部を通過した光束Lb及び開口板2202cの開口部を通過した光束Lcがそれぞれ偏向され、2段目(上段)の回転多面鏡では、開口板2202aの開口部を通過した光束La及び開口板2202dの開口部を通過した光束Ldがそれぞれ偏向されるように配置されている。
ここでは、光束La及び光束Lbは光偏向器2104の+X側に偏向され、光束Lc及び光束Ldは光偏向器2104の−X側に偏向される。
走査レンズ2105a及び走査レンズ2105bは、光偏向器2104の+X側に配置され、走査レンズ2105c及び走査レンズ2105dは、光偏向器2104の−X側に配置されている。
そして、走査レンズ2105aと走査レンズ2105bはZ軸方向に積層され、走査レンズ2105aは2段目の回転多面鏡に対向し、走査レンズ2105bは1段目の回転多面鏡に対向している。また、走査レンズ2105cと走査レンズ2105dはZ軸方向に積層され、走査レンズ2105cは1段目の回転多面鏡に対向し、走査レンズ2105dは2段目の回転多面鏡に対向している。
光偏向器2104で偏向された光束Laは、走査レンズ2105a、折り返しミラー2106A、折り返しミラー2107a、及び折り返しミラー2108aを介して、感光体ドラム2030aに照射され、光スポットが形成される。
光偏向器2104で偏向された光束Lbは、走査レンズ2105b、折り返しミラー2106A、及び折り返しミラー2107bを介して、感光体ドラム2030bに照射され、光スポットが形成される。
光偏向器2104で偏向された光束Lcは、走査レンズ2105c、折り返しミラー2106B、及び折り返しミラー2107cを介して、感光体ドラム2030cに照射され、光スポットが形成される。
光偏向器2104で偏向された光束Ldは、走査レンズ2105d、折り返しミラー2106B、折り返しミラー2107d、及び折り返しミラー2108dを介して、感光体ドラム2030dに照射され、光スポットが形成される。
各感光体ドラム上の光スポットは、光偏向器2104の回転に伴って該感光体ドラムの長手方向に移動する。このときの光スポットの移動方向が「主走査方向」であり、感光体ドラムの回転方向が「副走査方向」である。
光偏向器2104と各感光体ドラムとの間の光路上に配置されている光学系は、「走査光学系」とも呼ばれている。
ここで、図6に示されるように、Z軸に直交する平面に正射影したとき、光源から射出され、光偏向器2104に入射する光束の進行方向とX軸方向(基準軸方向)とのなす角をθinと表記する。ここでは、θin=60°となるように設定されている。
また、図7に示されるように、開口板の開口部を通過した光束の主走査対応方向に関する幅をdinと表記する。この光束が光偏向器2104に入射する。ここでは、din=4mmとなるように設定されている。
なお、6つの偏向反射面を区別する必要があるときは、反時計まわりに面1、面2、面3、面4、面5、面6とする(図8参照)。
次に、光源2200Aから射出され、光偏向器2104に入射する光束(以下では、「入射光束」と略述する)と、光偏向器2104で偏向されて、対応する感光体ドラムの走査領域に向かう光束(以下では、「走査光束」と略述する)について図9〜図11を用いて説明する。ここでは、回転多面鏡の面1で反射された光束が、対応する感光体ドラムの走査領域に向かうものとする。
図9には、走査光束が走査領域における走査開始位置に向かうタイミングでの、回転多面鏡に対する入射光束と反射光束とが示されている。このとき、入射光束の全てが回転多面鏡の面1に入射するのではなく、入射光束の一部は面6に入射するように設定されている。そこで、主走査対応方向に関して、走査光束の幅dsは、入射光束の幅dinよりも小さくなる。すなわち、光偏向器2104では、入射光束の一部が「ケラレ」ることとなる。この場合、ケラレ率kは、(din−ds)/dinで示される。
このとき、走査光束の進行方向とX軸方向とのなす角θsは、40°である。この角度θsは、走査光束が走査領域における走査開始位置に向かうタイミングでの画角である。
図10には、走査光束が走査領域の中央位置に向かうタイミングでの、回転多面鏡に対する入射光束と走査光束とが示されている。このとき、入射光束の全てが回転多面鏡の面1に入射するように設定されている。そこで、主走査対応方向に関して、走査光束の幅dcは、入射光束の幅dinと同じである。すなわち、光偏向器2104では、入射光束の「ケラレ」はない。
図11には、走査光束が走査領域における走査終了位置に向かうタイミングでの、回転多面鏡に対する入射光束と反射光束とが示されている。このとき、入射光束の全てが回転多面鏡の面1に入射するのではなく、入射光束の一部は面2に入射するように設定されている。そこで、主走査対応方向に関して、走査光束の幅deは、入射光束の幅dinよりも小さくなる。すなわち、光偏向器2104では、入射光束の一部が「ケラレ」ることとなる。この場合、ケラレ率kは、(din−de)/dinで示される。
このとき、走査光束の進行方向とX軸方向とのなす角θeは、−40.0°である。この角度θeは、走査光束が走査領域における走査終了位置に向かうタイミングでの画角である。
|θs|+|θe|は、いわゆる走査画角に対応する角度であり、ここでは80°である。
感光体ドラムの走査領域における走査開始位置は、主走査方向に関する該走査領域の一側端部であり、感光体ドラムの走査領域における走査終了位置は、主走査方向に関する該走査領域の他側端部である。
なお、光源2200Bから射出され、光偏向器2104に入射する光束についても、上記光源2200Aから射出された光束の場合と同様に設定されている。
図12(A)〜図12(D)には、本実施形態における開口板として用いることができる開口板の例が示されている。本実施形態における開口板の開口部は、副走査対応方向に関する長さ(開口幅)が、主走査対応方向における両端部分で、主走査対応方向における中央部分よりも小さくなる形状を有している。この場合は、走査領域の両端部と中央部での光量差及びスポット径の差を小さくすることができる。
なお、比較例として、図13(A)には、従来のUFタイプの光走査装置で用いられている開口板の例が示され、図13(B)には、従来のOFタイプの光走査装置で用いられている開口板の例が示されている。
次に、本実施形態において、回転多面鏡の大きさを導出する過程について説明する。ここでは、Z軸方向に直交する平面内で、回転多面鏡の中心を原点とするxy座標系を用いる。x座標値はX軸方向に関する位置を示し、y座標値はY軸方向に関する位置を示す。また、回転多面鏡に外接する円の半径をR、回転多面鏡に内接する円の半径をA、回転多面鏡における鏡面の数をNとする。さらに、回転多面鏡の面1で反射された光束が、対応する感光体ドラムの走査領域に向かうものとする。
そして、走査光束が走査領域における走査開始位置に向かうタイミングでの、面1と面6の境界部B1のxy座標系における座標値を(x1,y1)とする(図14参照)。このとき、原点と境界部B1とを結ぶ線分のX軸方向からの傾斜角をθ1とする。xy座標系において、原点と境界部B1とを結ぶ線分の長さはRである。
さらに、走査光束が走査領域における走査終了位置に向かうタイミングでの、面1と面2の境界部B2のxy座標系における座標値を(x2,y2)とする(図15参照)。このとき、原点と境界部B2とを結ぶ線分のX軸方向からの傾斜角をθ2とする。
また、入射光束において、境界部B1と境界部B2の間の領域に入射する光束の主走査対応方向に関する幅をdbとする(図16参照)。
座標x1は、次の(1)式で示すことができる。
x1=Rcosθ1 ……(1)
座標y1は、次の(2)式で示すことができる。
y1=Rsinθ1 ……(2)
θ1は、次の(3)式で示すことができる。
θ1=(θin+θs)/2−360/(2×N) ……(3)
座標x2は、次の(4)式で示すことができる。
x2=Rcosθ2 ……(4)
座標y2は、次の(5)式で示すことができる。
y2=Rsinθ2 ……(5)
θ2は、次の(6)式で示すことができる。
θ2=(θin+θe)/2+360/(2×N) ……(6)
境界部B2を通り、入射光束の進行方向に平行な直線は、次の(7)式で示すことができる。
y=tanθin×x+b ……(7)
上記(7)式におけるbは、次の(8)式で示される。
b=Rsinθ2−tanθin×Rcosθ2 ……(8)
境界部B1と上記(7)式の直線との距離dは、次の(9)式で示される。
Figure 2014142370
上記(9)式に、上記(1)式、(2)式、(8)式を代入すると、次の(10)式を得ることができる。
Figure 2014142370
上記(10)式から、次の(11)式を得ることができる。
Figure 2014142370
回転多面鏡に外接する円の半径が、上記(11)式において、d=dinとしたときのRであれば、走査光束が走査領域における走査開始位置に向かうタイミング及び走査終了位置に向かうタイミングのいずれであっても、入射光束の全てが面1で反射される。一方、d<dinとしたときのRであれば、走査光束が走査開始位置に向かうタイミングあるいは走査終了位置に向かうタイミングで、入射光束の一部が「ケラレ」る。すなわち、次の(12)式が、走査光束が走査開始位置に向かうタイミングあるいは走査終了位置に向かうタイミングで、入射光束の一部が「ケラレ」るための条件式である。
Figure 2014142370
ところで、入射光束の一部が「ケラレ」ると、走査光束の光量が低下し、画像における濃度低下を招くおそれがある。この場合、対応する走査タイミングで光源の出力を上げるような光量補正を行うことにより、画像濃度の均一性を保つことができる。なお、レーザ光の光強度は、ガウス分布に近いため、ケラレ率kに比例して走査光束の光量が低下するわけではないが、ケラレ率kが小さいほど光量補正が容易である。具体的には、ケラレ率kが0.2以下であれば、光量補正が容易である。
従来、fθレンズやfθミラーを介したレーザ光は、そのビーム強度が像高によって異なる特性であるシェーディング特性を有している。このシェーディング特性は、通常10数%あることが知られている(例えば、特開2011‐198919号公報参照)。なお、像高とは、感光体ドラムにおける主走査方向に関する位置であり、感光体ドラムの中心を基準としている。
像高によってビーム強度が異なるのは、光源から射出されてから被走査面に到達するまでにレーザ光が介するガラス、レンズ、ミラー等の光学素子の反射率や透過率(すなわち、光利用効率)がレーザ光の入射角によって異なることや、fθレンズの厚みが像高で異なることなどに起因する。
光学レンズは、像高が大きくなるに従い透過率が小さくなるので、どの像高位置でも像高0の位置と同じ強度の光量で露光されるように、像高に合わせて光源から射出されるレーザ光の光量を補正している。このような補正は、「シェーディング補正」と呼ばれている。
本実施形態では、入射光束のケラレによる光量の低下が従来のシェーディング特性に重畳されるため、入射光束のケラレによる光量の低下を考慮したシェーディング補正が必要となる。
従来、シェーディング補正では8ビットのDAC(D/A変換器)が用いられ、±25%の範囲内を0.2%刻みで光量補正が可能である。原理的には、DACのビット数を上げれば補正範囲を広げることは可能であるが、高コスト化を招く。ケラレ率が0.2の場合は、新たに入射光束のケラレによる光量の低下(10数%)が加わって、補正範囲が20数%になるが、この範囲であれば、高コスト化を招くことなく、従来のシェーディング補正をそのまま用いることができる。そこで、ケラレ率としては0.2以下とするのが好ましい。
また、シェーディング補正の範囲が広くなるほど、1走査中での光量制御範囲が大きくなり、走査端における光量低下に対し、発光素子の駆動電流を大きくしなければならない。出力が大きい発光素子を使用すればこれに対応できるが、高コスト化を招く。一方、従来と同じ発光素子を用いる場合、極端な光量増加は寿命を低下させるおそれがあるため、新たな光量増加は10数%程度に抑えるのが好ましい。そこで、ケラレ率としては0.2以下とするのが好ましい。
さらに、画像形成の際、走査開始位置を揃えるために、本実施形態においても同期検知センサが設けられている。通常、同期検知センサは走査開始の画角より、数°〜10°程度外側になる画角で設けられるが、本実施形態では入射光束のケラレにより、画角1°に対し、2〜3%の割合で光量が低下し、同期検知位置では10数%〜30%程度の光量低下が発生する。この光量低下に対しては、同期検知センサの感度を上げることで対応可能であるが、高コスト化を招く。一方、従来と同様の同期検知センサ及び発光素子を用いる場合、同期検知位置での光量低下は50%以下にするのが好ましく、画像形成の走査端での光量低下は10数%程度に抑えるのが好ましい。そこで、ケラレ率としては0.2以下とするのが好ましい。
走査光束が走査開始位置に向かうタイミングと、走査光束が走査終了位置に向かうタイミングとでケラレ率kが等しい場合には、図16におけるdbは、(1−2k)dinとなる。そこで、上記(11)式におけるdに(1−2k)dinを代入すると、次の(13)式が得られる。
Figure 2014142370
図17〜図26には、種々のNについて、上記(13)式から得られたケラレ率kと回転多面鏡の大きさとの関係が示されている。なお、図17、図19、図21、図23、図25における符号Aは、回転多面鏡の内接円半径を示している。N=4の場合が図17及び図18に示され、N=5の場合が図19及び図20に示され、N=6の場合が図21及び図22に示されている。また、N=7の場合が図23及び図24に示され、N=8の場合が図25及び図26に示されている。
ところで、感光体ドラム上での主走査方向のビーム径を60〜100μmとするには、走査光束の主走査対応方向に関する幅は3〜4mmが必要である。
ケラレ率kは0.2以下に抑えることが好ましい。そこで、次の(14)式が満足されるように、回転多面鏡の外接円半径を設定することで、適切な光量補正を容易に行うことが可能である。
Figure 2014142370
本実施形態では、図21におけるmodel2〜model5のいずれかが採用されている。
A3サイズの記録紙に対応可能な従来のUFタイプの画像形成装置では、N=6の回転多面鏡が用いられる場合、R≒20mm、回転数は35000〜40000rpm以下であった。
本実施形態では、図21及び図22に示されるように、ケラレ率k=0.1のとき、R≒10mm、ケラレ率k=0.2のとき、R≒8mmの回転多面鏡を用いることができる。このように、本実施形態では、回転多面鏡の外接円半径を従来の1/2以下にすることができ、そのため、回転数を60000〜70000rpmまであげることが可能となる。
さらに、例えば、副走査方向の画素密度が1200dpiの画像を形成する場合、従来の画像形成装置では、1つの感光体ドラムに4ビームを用いた書き込みが必要であったとすると、本実施形態では、回転多面鏡の回転数を従来の2倍にすることができるため、1つの感光体ドラムに2ビームを用いた書き込みで良い。そこで、本実施形態では、従来の画像形成装置に対して光源数を半減することができる。
なお、特許文献1に開示されている光束分割方式でも、光源数の半減が可能である。しかしながら、光束を2分割する光学素子が必要になるほか、書き込み対象の感光体ドラムの切り替え制御が複雑になるため、光束分割方式は、本実施形態より高コストである。
ところで、回転多面鏡で「ケラレ」た光束は、不要なゴースト光となる。本実施形態では、走査光束が走査終了位置に向かうタイミングで「ケラレ」た光束が光源に戻り、光源の発振状態を不安定にするおそれがある。そこで、ゴースト光が、書き込み中に光源に戻らないように入射光束の入射角θinを設定するのが好ましい。ここでは、次の(15)式が満足されるように設定されている。
|θin|+|θe|<720/N ……(15)
例えば、N=6の場合は、|θin|+|θe|が120°より小さく、N=7の場合は、|θin|+|θe|が102.8°より小さく、N=8の場合は、|θin|+|θe|が90°より小さく設定するのが好ましい。なお、図17、図19、図21、図23、図25では、上記(15)式の条件が満足されている。
本実施形態における光走査装置2010は、従来のUFタイプの光走査装置よりも、回転多面鏡を小型化することができる。そのため、消費電力を増加させることなく、回転多面鏡を高速で回転させることが可能となる。そして、光源数を増加させることなく、すなわち、高コスト化を招くことなく、画像形成の高速化や画素密度の高密度化に対応することができる。
また、光走査装置2010は、従来のOFタイプの光走査装置よりも、走査画角を大きくすることができる。そのため、大型化を招くことなく、画像形成の高速化や画素密度の高密度化に対応することができる。
ところで、光走査装置2010を組立てる際に、走査領域と光学的に等価な位置にビーム径検出器を配置し、走査領域の両端におけるビーム径が同等になるように、回転多面鏡への入射光束の入射位置が調整される。なお、光走査装置2010を組立てる際に、走査領域と光学的に等価な位置に光パワーメータ等の光量検出器を配置し、走査領域の両端における光強度が同等になるように、回転多面鏡への入射光束の入射位置が調整されても良い。
以上説明したように、本実施形態に係る光走査装置2010によると、2つの光源(2200A、2200B)、偏向器前光学系、光偏向器2104、及び走査光学系などを備えている。
光偏向器2104は、入射光束の主走査対応方向の幅dinが、各鏡面(反射面)の主走査対応方向の幅より小さく、外接円半径Rが上記(12)式を満足する回転多面鏡を有している。
このとき、走査光束が走査領域の中央部に向かうタイミングでは、入射光束の全てが、一の反射面で反射され、走査光束が走査領域における走査開始位置に向かうタイミング及び走査終了位置に向かうタイミングの少なくとも一方では、入射光束の一部が「ケラレ」ることとなる。
この場合、回転多面鏡を小型化するとともに、走査画角を大きくすることができる。そこで、大型化や高コスト化を招くことなく、被走査面を高速で、精度良く光走査することができる。
また、本実施形態では、回転多面鏡の外接円半径Rは、上記(14)式を満足している。この場合は、適切な光量補正を容易に行うことが可能である。
また、本実施形態では、上記(15)式が満足されるように設定されている。この場合は、回転多面鏡で「ケラレ」た光束が光源に戻るのを抑制することができる。そこで、別途、戻り光対策を行う必要がない。
また、偏向器前光学系は、光源から射出された光束を整形する開口部を有する4つの開口板(2202a、2202b、2202c、2202d)を含んでいる。各開口板の開口部は、副走査対応方向に関する開口幅が、主走査対応方向に関して中央部よりも両端部のほうが小さい形状である。この場合は、走査領域における中央部に対する両端部での光量低下を抑制することができる。
そして、複合機2000は、光走査装置2010を備えているため、結果として、大型化や高コスト化を招くことなく、高品質の画像を高速で形成することができる。
なお、上記実施形態では、dinが4mmの場合について説明したがこれに限定されるものではなく、dinが各鏡面(反射面)の主走査対応方向の幅より小さく、外接円半径Rが上記(12)式を満足する回転多面鏡を光偏向器2104が有していれば良い。一例として、dinが3.5mmの場合が図27〜図29に示されている。
図27には、走査光束が走査領域における走査開始位置に向かうタイミングでの、回転多面鏡に対する入射光束と走査光束とが示されている。このとき、ds=3.2mmであり、ds<dinの関係にある。そして、走査光束の進行方向とX軸方向とのなす角θsは、40°である。
図28には、走査光束が走査領域の中央位置に向かうタイミングでの、回転多面鏡に対する入射光束と走査光束とが示されている。このとき、dc=3.5mmであり、dc=dinの関係にある。
図29には、走査光束が走査領域における走査終了位置に向かうタイミングでの、回転多面鏡に対する入射光束と走査光束とが示されている。このとき、de=3.5mmであり、de=dinの関係にある。そして、走査光束の進行方向とX軸方向とのなす角θeは、−40°である。
この場合、走査領域における走査開始位置に向かうタイミングでは、入射光束は光偏向器2104で「ケラレ」るが、走査領域における走査終了位置に向かうタイミングでは、入射光束は光偏向器2104で「ケラレ」ない。この場合の走査画角は80°である。
また、上記実施形態では、N=6の場合について説明したがこれに限定されるものではなく、dinが各鏡面(反射面)の主走査対応方向の幅より小さく、外接円半径Rが上記(12)式を満足する回転多面鏡を光偏向器2104が有していれば良い。一例として、N=7の場合が図30に示されている。
ここでは、入射光束の進行方向とX軸方向とのなす角θinは、60°となるように設定されている。また、7つの偏向反射面を区別する必要があるときは、反時計まわりに面1、面2、面3、面4、面5、面6、面7とする(図31参照)。そして、一例として、dinが3.5mmの場合が図32〜図34に示されている。
図32には、走査光束が走査領域における走査開始位置に向かうタイミングでの、回転多面鏡に対する入射光束と走査光束とが示されている。このとき、ds=3.5mmであり、ds=dinの関係にある。そして、走査光束の進行方向とX軸方向とのなす角θsは、36°である。
図33には、走査光束が走査領域の中央位置に向かうタイミングでの、回転多面鏡に対する入射光束と走査光束とが示されている。このとき、dc=3.5mmであり、dc=dinの関係にある。
図34には、走査光束が走査領域における走査終了位置に向かうタイミングでの、回転多面鏡に対する入射光束と走査光束とが示されている。このとき、de=3.35mmであり、de<dinの関係にある。また、走査光束の進行方向とX軸方向とのなす角θeは、−36°である。
この場合、走査領域における走査終了位置に向かうタイミングでは、入射光束は光偏向器2104で「ケラレ」るが、走査領域における走査開始位置に向かうタイミングでは、入射光束は光偏向器2104で「ケラレ」ない。この場合の走査画角は72°である。
このように、反射光束が走査開始位置に向かうタイミング、又は反射光束が走査終了位置に向かうタイミングで「ケラレ」る場合、上記dbは、(1−k)dinとなる。そこで、上記(11)式におけるdに(1−k)dinを代入すると、次の(16)式が得られる。
Figure 2014142370
そして、ケラレ率kを0.2以下に抑えるには、次の(17)式が満足されるように、回転多面鏡の外接円半径Rを設定すれば良い。
Figure 2014142370
ところで、走査領域における走査開始位置に向かうタイミング及び走査終了位置に向かうタイミングのいずれかで、入射光束が光偏向器2104で「ケラレ」る場合、開口板の開口部は、副走査対応方向に関する長さ(開口幅)が、主走査対応方向における入射光束の「ケラレ」る側に対応する端部で、主走査対応方向における中央部分よりも小さくなる形状を有していても良い(図35(A)〜図35(D)参照)。
また、上記実施形態において、光源にモノリシックな端面発光レーザアレイや面発光レーザアレイを用いても良い。
また、上記実施形態では、それぞれ2つの発光部を有する2つの光源が用いられる場合について説明したが、これに限定されるものではない。例えば、それぞれ1つの発光部を有する4つの光源を用いても良い。
また、上記実施形態では、画像形成装置として複合機の場合について説明したが、これに限定されるものではない。画像形成装置が、単独の複写機、プリンタ、及びファクシミリ装置であっても良い。
また、レーザ光によって発色する媒体(例えば、用紙)に直接、レーザ光を照射する画像形成装置であっても良い。
また、像担持体として銀塩フィルムを用いた画像形成装置であっても良い。この場合には、光走査により銀塩フィルム上に潜像が形成され、この潜像は通常の銀塩写真プロセスにおける現像処理と同等の処理で可視化することができる。そして、通常の銀塩写真プロセスにおける焼付け処理と同等の処理で印画紙に転写することができる。このような画像形成装置は光製版装置や、CTスキャン画像等を描画する光描画装置として実施できる。
2000…複合機(画像形成装置)、2010…光走査装置、2030a,2030b,2030c,2030d…感光体ドラム(像担持体)、2104…光偏向器、2105a,2105b,2105c,2105d…走査レンズ(走査光学系の一部)、2200A,2200B…光源、2201a,2201b,2201c,2201d…カップリングレンズ、2202a,2202b,2202c,2202d…開口板、2204a,2204b,2204c,2204d…シリンドリカルレンズ。
特開2005−92129号公報 特開平10−206778号公報

Claims (5)

  1. 光源から射出され、N個の反射面を有する回転多面鏡で反射された光束によって、被走査面を主走査方向に沿って走査する光走査装置において、
    前記回転多面鏡に入射する光束の前記主走査方向に対応する方向の幅が、前記回転多面鏡の反射面の前記主走査方向に対応する方向の幅より小さく、
    前記回転多面鏡の回転軸に直交する平面に正射影したとき、前記回転多面鏡に入射する光束の前記主走査方向に対応する方向の幅din、基準軸方向に対する入射角θin、走査領域における走査開始位置での画角θs、走査終了位置での画角θe、θ1=(θin+θs)/2−360/(2×N)、θ2=(θin+θe)/2+360/(2×N)を用いて、前記回転多面鏡の外接円半径Rが、
    Figure 2014142370
    を満足することを特徴とする光走査装置。
  2. 前記回転多面鏡の外接円半径Rが
    Figure 2014142370
    を満足することを特徴とする請求項1に記載の光走査装置。
  3. 前記入射角θinの絶対値と前記走査終了位置での画角θeの絶対値の和が、720/Nよりも小さいことを特徴とする請求項1又は2に記載の光走査装置。
  4. 前記光源と前記回転多面鏡との間の光路上に配置され、前記光源から射出された光束を整形する開口部を有する開口板を更に備え、
    前記開口部は、前記主走査方向に直交する副走査方向に対応する方向に関する開口幅が、前記主走査方向に対応する方向に関して、少なくとも一側の端部で中央部よりも小さい形状であることを特徴とする請求項1〜3のいずれか一項に記載の光走査装置。
  5. 少なくとも1つの像担持体と、
    前記少なくとも1つの像担持体を画像情報によって変調された光束により走査する請求項1〜4のいずれか一項に記載の光走査装置と、を備える画像形成装置。
JP2013008862A 2013-01-22 2013-01-22 光走査装置及び画像形成装置 Pending JP2014142370A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013008862A JP2014142370A (ja) 2013-01-22 2013-01-22 光走査装置及び画像形成装置
US14/160,930 US9019333B2 (en) 2013-01-22 2014-01-22 Optical scanning apparatus and image forming apparatus utilizing a rotational polygon mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013008862A JP2014142370A (ja) 2013-01-22 2013-01-22 光走査装置及び画像形成装置

Publications (1)

Publication Number Publication Date
JP2014142370A true JP2014142370A (ja) 2014-08-07

Family

ID=51423742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013008862A Pending JP2014142370A (ja) 2013-01-22 2013-01-22 光走査装置及び画像形成装置

Country Status (1)

Country Link
JP (1) JP2014142370A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9279979B2 (en) 2014-05-22 2016-03-08 Ricoh Company, Limited Optical scanning device and image forming apparatus
JP2016224141A (ja) * 2015-05-28 2016-12-28 株式会社リコー 光走査装置、画像形成装置及び光走査装置の調整方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05273481A (ja) * 1992-03-27 1993-10-22 Fuji Xerox Co Ltd 光ビーム走査装置
JP2000028944A (ja) * 1998-07-10 2000-01-28 Toshiba Corp 光学装置
US20090310203A1 (en) * 2008-06-17 2009-12-17 Samsung Electronics Co., Ltd. Light scanning unit and image forming apparatus comprising the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05273481A (ja) * 1992-03-27 1993-10-22 Fuji Xerox Co Ltd 光ビーム走査装置
JP2000028944A (ja) * 1998-07-10 2000-01-28 Toshiba Corp 光学装置
US20090310203A1 (en) * 2008-06-17 2009-12-17 Samsung Electronics Co., Ltd. Light scanning unit and image forming apparatus comprising the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9279979B2 (en) 2014-05-22 2016-03-08 Ricoh Company, Limited Optical scanning device and image forming apparatus
JP2016224141A (ja) * 2015-05-28 2016-12-28 株式会社リコー 光走査装置、画像形成装置及び光走査装置の調整方法

Similar Documents

Publication Publication Date Title
JP6244663B2 (ja) 光走査装置及び画像形成装置
JP6210293B2 (ja) 光走査装置及び画像形成装置
JP5945894B2 (ja) 光走査装置及び画像形成装置
JP2006259336A (ja) 光走査装置および画像形成装置
JP2013152258A (ja) 光走査装置及び画像形成装置
JP5505870B2 (ja) 光走査装置及び画像形成装置
JP2014142432A (ja) 光走査装置及び画像形成装置
JP6149531B2 (ja) 光走査装置及び画像形成装置
JP5397621B2 (ja) 光走査装置及び画像形成装置
JP5333070B2 (ja) 光走査装置と画像形成装置
JP2014142370A (ja) 光走査装置及び画像形成装置
JP6061086B2 (ja) 光走査装置及び画像形成装置
JP6439925B2 (ja) 光走査装置及び画像形成装置
JP2014137471A (ja) 光走査装置及び画像形成装置
JP2013041011A (ja) 光走査装置及び画像形成装置
JP4594040B2 (ja) 光走査装置及びそれを用いた画像形成装置
JP5489074B2 (ja) 画像形成装置
JP6217966B2 (ja) 光走査装置及び画像形成装置
JP6304476B2 (ja) 光走査装置及び画像形成装置
JP5751528B2 (ja) 画像形成装置
JP2013160971A (ja) 光走査装置及び画像形成装置
JP2010224197A (ja) 光源装置、光走査装置及び画像形成装置
JP2010256576A (ja) 光学走査装置及びそれを備えた画像形成装置
JP2010197705A (ja) 光走査装置及び画像形成装置
JP2005031194A (ja) 光走査装置及びそれを用いた画像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161005

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170328