JP2014071025A - 固液分離方法および固液分離装置 - Google Patents

固液分離方法および固液分離装置 Download PDF

Info

Publication number
JP2014071025A
JP2014071025A JP2012217995A JP2012217995A JP2014071025A JP 2014071025 A JP2014071025 A JP 2014071025A JP 2012217995 A JP2012217995 A JP 2012217995A JP 2012217995 A JP2012217995 A JP 2012217995A JP 2014071025 A JP2014071025 A JP 2014071025A
Authority
JP
Japan
Prior art keywords
solid
liquid
liquid separation
filter
inner container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012217995A
Other languages
English (en)
Inventor
Tsuneo Omura
恒雄 大村
Hiroshi Okabe
寛史 岡部
Shinichi Makino
新一 牧野
Kazuya Yamada
和矢 山田
Rei Chiba
怜 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012217995A priority Critical patent/JP2014071025A/ja
Publication of JP2014071025A publication Critical patent/JP2014071025A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Filtration Of Liquid (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

【課題】固液分離時間を長時間化させることなく、様々の粒子径を持ち高濃度の固形分を含有する固液懸濁液を固液分離可能な技術を提供する。
【解決手段】第1の固液分離装置50Aは、液体7は通過するが固形分11は通過しないろ布で作られる凹型状のろ布部を有し、このろ布部の上端から内容物が溢流しない高さを持つ内部容器1と内部容器1を収容する外部容器2とを有する固液分離槽3と、内部容器1に固液懸濁液12を導入する固液懸濁液供給ライン5と、固液分離槽3内で固液懸濁液12から固液分離して得られる液体7を固液分離槽3から外部へ抜き出す液体抜出ライン8と、を具備する。
【選択図】 図1

Description

本発明は、放射性物質に汚染された物質を湿式溶離法により除染した後の物質を固液分離する固液分離方法および固液分離装置に関する。
放射性物質が広範囲に飛散するような事態が生じた場合、放射性物質およびその放射性核種は広範囲にわたって耕作地などの土壌、建築物、河川などに付着または吸収されることになり、放射性物質による汚染が引き起こされる。放射性物質により土壌や河川が汚染されると、そこで栽培される農作物や生息する魚介類に放射性物質が蓄積され、経口摂取による内部被ばくが懸念される。
放射性核種として想定される物質には、例えば、放射性セシウム(Cs)の134Csや137Csがある。137Csは半減期が約30.2年と長く、汚染状態を放置しておくと、長期にわたり一般公衆が被ばくする可能性が高まる。そのため、汚染土壌から放射性物質を除去する技術の開発が求められている。
また、焼却により放射性物質の濃度が高くなった焼却灰、焼却飛灰などの処理方法は確立されておらず、課題となっていることから、湿式分級法、溶融処理法、湿式溶離法などの被ばく線量低減方法や除染方法の研究開発が進められている(例えば、平成23年度「除染技術実証試験事業」等)。
湿式溶離法は、水、酸性溶液、アルカリ性溶液などを用いて対象物質から放射性物質やその化合物(以下、「放射性物質等」と称する。)を溶解させ、水溶液中に抽出する方法である。除染率が低い対象は、繰り返し溶離することにより除染率向上が期待できる(非特許文献1参照)。
溶離後は、放射性物質等を溶離した後の対象物質と溶離液とを固液分離し、溶離液中の放射性物質を吸着剤などにより回収することで埋設処分が可能となるメリットがある。
また、湿式溶離法は、溶離液を変更することにより様々な対象を除染できることから特に注目されている。溶離液としては、シュウ酸や水が有望視されている。
湿式溶離法による除染速度は、主に対象物質から放射性物質等を溶離する時間と、放射性物質等を溶離した後の対象物質と溶離液とを固液分離する時間と、溶離液中の放射性物質を吸着剤などに吸着する時間に依存する。
固液分離方法は、ろ過法、圧搾法、沈降分離法、遠心分離法、浮上分離法などに大別される。
ろ過法は、細孔を有するろ布やフィルタに固液懸濁液を接触させ、清澄液と固形分とに分離する方法である。細孔径が大きいほど排液時間が速くなる一方、清澄液に含まれる固形分量が増加する。そのため、最適な細孔径とろ過面積とを選定することが課題となる。
圧搾法は、ろ過法に類似した固液分離方法であり、スラリー等の固液懸濁液を液体は通過するが、固体を通過させない隔壁内に収容し、これを圧縮脱水して圧縮ケークと液体とに分離する方法である。隔壁にはろ布をセットするのが通例であり、最適な細孔経とろ過面積とを選定することが課題となる。
沈降分離法、遠心分離法、浮上分離法は、いずれも固体と液体の比重差を利用した固液分離方法である。そのため比重差が小さいと分離に掛かる時間が長くなる問題がある。
一般的に固液分離工程では、これらのいずれかの方法またはいくつかの方法を組み合わせた方法が適用される。
例えば、特許文献1では、土粒子、汚染物質および含有水からなる汚染土壌に水を加えてスラリーとした後、沈降分離により沈降分離槽の上部から上澄み液を連続回収し、固液分離槽の下部から土を連続回収する方法を提案している。
また、特許文献2では、原水中のSS、BOD等の懸濁物質をろ材を用いたろ過による固液分離を提案しており、凝集剤沈殿工程を組み込むことで、懸濁物質の除去性能を向上させている。
特許第4372067号公報 特開2007−229658号公報
日本原子力学会「2012年春の年会」、L09、福井大学、2012年3月19日
しかしながら、特許文献1に記載される方法では、粒子径が大きい固形分については短時間で分離できるが粒子径が小さい固形分については沈降速度が小さくなるため、沈降分離に掛かる時間が長くなってしまうという課題がある。
また、特許文献2に記載される方法では、懸濁物質を沈殿させることで、ろ材の表面に懸濁物質のケーク層が生成されることとなり、ろ過に時間がかかるという課題がある。特に、放射性物質に汚染された土壌、汚泥、焼却灰、焼却飛灰の湿式処理では、固形分濃度を高くしなければ、放射性物質を含む溶離液量が増大するため、高い固形分濃度での固液分離、すなわち、時間を長く掛けて固液分離する必要が生じる。
本発明は、上述の事情を考慮してなされたものであり、固液分離時間を長時間化させることなく、様々の粒子径を持ち高濃度の固形分を含有する固液懸濁液を固液分離可能な固液分離方法および固液分離装置を提供することを目的とする。
本発明の実施形態に係る固液分離方法は、上述した課題を解決するため、液体は通過するが固形分は通過しないろ布で作られており上端から内容物が溢流しない高さを持つ内部容器と、この内部容器を収容する外部容器とを有する固液分離槽の前記内部容器に固液懸濁液を導入し、前記固液分離槽内で固液懸濁液を放置して固形分と液体とに固液分離した後、前記液体を抜き出す際に、前記液体の上澄み液を前記内部容器の側面のろ布によってろ過させて前記内部容器から排出することを特徴とする。
本発明の実施形態に係る固液分離装置は、上述した課題を解決するため、液体は通過するが固形分は通過しないろ布で作られる凹型状のろ布部を有し、このろ布部の上端から内容物が溢流しない高さを持つ内部容器と、この内部容器を収容する外部容器とを有する固液分離槽と、前記内部容器に固液懸濁液を導入する固液懸濁液供給ラインと、前記固液分離槽内で固液懸濁液から固液分離して得られる液体を前記固液分離槽から外部へ抜き出す液体抜出ラインと、を具備することを特徴とする。
本発明によれば、固液分離時間を長時間化させることなく、様々の粒子径を持ち高濃度の固形分を含有する固液懸濁液を固液分離することができる。
本発明の第1の実施形態に係る固液分離装置の説明図であり、(A)は第1の固液分離装置の全体構成を示す概略図、(B)は固液分離槽の矢印X方向からの矢視図。 本発明の第2の実施形態に係る固液分離装置の概略図。 本発明の第3の実施形態に係る固液分離装置の概略図。 本発明の第4の実施形態に係る固液分離装置の概略図。
本発明の実施形態に係る固液分離装置および固液分離方法について、図面を参照して説明する。
本発明の実施形態に係る固液分離装置および固液分離方法は、放射性物質に汚染された土壌、汚泥、焼却灰、焼却飛灰等の物質を湿式溶離法により除染した後の物質を固液分離する際に使用される。
[第1の実施形態]
<構成>
図1は、本発明の第1の実施形態に係る固液分離装置の一例である第1の固液分離装置50Aの説明図であり、図1(A)は第1の固液分離装置50Aの全体構成を示す概略図、(B)は固液分離槽3の矢印X方向からの矢視図である。
第1の固液分離装置50Aは、例えば、内部容器1と、内部容器1を収容する外部容器2を有する二重容器で構成される固液分離槽3と、固液懸濁液12を内部容器1に導入する固液懸濁液供給ライン5と、固液分離槽3から液体7を外部へ抜き出す液体抜出ライン8と、を具備する。
固液分離槽3の内部容器1は、液体7は通過するが固形分11は通過させないろ布を凹型状に形成したろ布部を有し、このろ布部の上端、すなわち、内部容器1の上端から固形分11および液体7が懸濁状態にある固液懸濁液12を溢流させない程度の高さが確保される。
ここで、液体7とは、水、酸性溶液、アルカリ溶液を意味する。酸性溶液としては、例えば、シュウ酸溶液が挙げられる。アルカリ溶液としては、例えば、硫酸アンモニウム水溶液が挙げられる。
また、固形分11とは、例えば、土壌や汚泥等の放射性物質が付着または吸収する可能性がある固体状の物質、並びに、その焼却灰および焼却飛灰を意味し、放射性物質で汚染されたものも含む。
ろ布は、プロセス条件の温度や液体への耐性、濡れ性が良好であることが望まれるため、第1の固液分離装置50Aでは、例えば、ポリプロピレンを材料とするろ布が使用される。また、ポリプロピレン以外にも、例えば、ポリエチレン、ポリエステル、ナイロンなどは、プロセス条件の温度や液体への耐性、濡れ性が良好であり、これらをポリプロピレンの代わりにろ布の材料として使用することができる。
ろ布の孔径としては、液体7は通過するが固形分11は通過しないような構造、例えば、固形分11の粒子径dがd1<d<d2であった場合、孔径がd1以下である網目状のケースが望まれる。
ろ布の孔径が小さすぎると、固形分11のつまりや液体7の排出時間が長くなるため、ろ布の孔径dはd1よりも若干大きいd3とすることができる。ここで、d3は固形物の質量基準粒子径積算分布の下方側1/100における粒子径に等しいものとする。
固液分離槽3の底面には、内部容器1を通過して外部容器2内に溜まった液体7を外部へ抜き出す液体抜出ライン8が取り付けられている。また、液体抜出ライン8には、液体抜出ライン8を開閉する液体抜出用弁9が取り付けられている。
固液懸濁液12から分離された液体7は、液体抜出ライン8を通って固液分離槽3の外部へ排出され、液体回収槽10内に回収される。
固液懸濁液貯槽4は、固液分離前の固液懸濁液12を貯留する槽である。固液懸濁液12は固液懸濁液供給装置6によって固液懸濁液貯槽4から固液懸濁液供給ライン5を通って固液分離槽3の内部容器1内に供給される。
なお、内部容器1および外部容器2の大きさや形状には特に制限はないが、内部容器1と外部容器2の隙間部分の容積が小さい方が望ましい。
また、図1に示される内部容器1および外部容器2は、いずれも断面形状が円形状であるが、内部容器1を収容した状態で外部容器2を配置可能であれば、任意である。例えば、内部容器1や外部容器2の断面形状は多角形状に構成されても良い。また、内部容器1の断面が多角形状に、外部容器2の断面形状が円形状に構成されていても良い。
さらに、図1に示される内部容器1および外部容器2は、上部が開放された開放系の構成となっているが、固形分11の回収が可能であれば非開放系の構成でも良い。例えば、開閉が可能な蓋(図示せず)をつけても良い。
さらにまた、内部容器1は、必ずしも全体が液体7は通過するが固形分11は通過させないろ布で構成されている必要はなく、一部が金属で構成されていても良い。例えば、内側にろ布部を設置したかご状の構造物であって、当該構造物が液体の通過の抵抗にならないような貫通口が側面、底面を含む全面にあり、かつ十分な強度を有するもの(例えば金網状やパンチングメタル)であっても良い。
このように構成される第1の固液分離装置50Aは、固液懸濁液貯槽4から内部容器1内に導入された固液懸濁液を固液分離し、固形分11をほとんど含まない液体7を液体抜出ライン8から排出する、いわゆるバッチ式の固液分離装置になっている。
固形分11の回収は、内部容器1を外部容器2内から外へ取り出し、別途用意される固形分回収槽(図を省略)内で内部容器1を天地反転させて行う。このとき、水等の洗浄液により内部容器1を洗浄し、固形分11を回収しても良い。
なお、第1の固液分離装置50Aにおいて、固液分離槽3や固液懸濁液貯槽4を加熱する加熱装置13(13a,13b)が、適宜、追設されていても良い。固液分離槽3を加熱する固液分離槽用加熱装置13aは、固液分離槽3の外側および内側の少なくとも一方の側に取り付けられていれば良い。同様に、固液懸濁液貯槽4を加熱する固液懸濁液貯槽用加熱装置13bについても、固液懸濁液貯槽4の外側および内側の少なくとも一方の側に取り付けられていれば良い。
また、第1の固液分離装置50Aにおいても、後述する第2の固液分離装置50Bのように、固液分離槽3の内部を撹拌する撹拌装置14(図2)を、固液分離槽3や固液懸濁液貯槽4に、適宜、追設しても良い。
<作用>
次に、第1の固液分離装置50Aの作用について説明する。
第1の固液分離装置50Aを用いて固液分離方法を実施するに当たり、まず、液体7は通過するが固形分11は通過させないろ布を凹型状に形成したろ布部を有する内部容器1を外部容器2内に配置(収容)しておく。この状態で、固液懸濁液供給装置6を稼働させる。すると、固液懸濁液貯槽4内に貯留される固液懸濁液12は固液懸濁液供給ライン5を通って固液分離槽3の内部容器1内に導入される。
この時、必要により固液分離槽用加熱装置13aや固液懸濁液貯槽用加熱装置13bを稼働させて固液懸濁液12の温度を調整する。温度調整によって、固液懸濁液12の粘性係数を小さくすれば、固形分11の沈降時間を短くすることができる。
放射性物質で汚染された固形分11と液体7とを懸濁させることにより、固液懸濁液12から分離回収した液体7には放射性物質が含まれる。液体抜出ライン8から排出される液体7は、固形分11をほとんど含まない清浄な液体となる。
<効果>
第1の固液分離装置50Aおよび第1の固液分離装置50Aを用いた固液分離方法によれば、固液懸濁液12中の液体7を液体抜出ライン8から排出し、固形分11を固形分回収槽で回収されるため、液体7をほとんど含まない固形分11を回収することができる。
また、第1の固液分離装置50Aおよび第1の固液分離装置50Aを用いた固液分離方法によれば、内部容器1がろ布を通して内部容器1の底面のみならず側面からも液体7を排出可能に構成されるため、短時間で液体7をほとんど含まない固形分11を回収することができる。
[第2の実施形態]
<構成>
図2は、本発明の第2の実施形態に係る固液分離装置の一例である第2の固液分離装置50Bの概略図である。
第2の固液分離装置50Bは、第1の固液分離装置50Aに対して、固液分離槽3の内部容器1の内部を攪拌する攪拌装置14と、凝集剤15を溜めておく凝集剤貯槽16と、凝集剤供給ライン17と、凝集剤供給装置18と、をさらに具備する点で相違するが、その他の点は第1の固液分離装置50Aと実質的に相違しない。そこで、第2の実施形態では、第1の固液分離装置50Aに対する相違点を中心に説明し、第1の固液分離装置50Aの構成要素と相違しない構成要素については、同じ符号を付して説明を省略または簡略する。
攪拌装置14は、槽内の内容物を攪拌する機能を有する装置である。第2の固液分離装置50Bでは、少なくとも、固液分離槽3の内部容器1に導入される内容物を攪拌する攪拌装置14が設けられる。なお、図2には示されていないが、第2の固液分離装置50Bでは、固液懸濁液貯槽4に貯留される固液懸濁液12を攪拌する攪拌装置14を追設しても良い。
凝集剤15は、内部容器1の側面、すなわち、ろ布の表面に固形分11のケーク層が形成されるのを防止するために固液懸濁液12に添加される。凝集剤15は、凝集剤供給装置18によって凝集剤貯槽16から凝集剤供給ライン17を通って内部容器1内に供給される。
このように構成される第2の固液分離装置50Bは、固液懸濁液供給装置4で内部容器1内に導入された固液懸濁液と凝集剤供給装置18で内部容器1内に導入された凝集剤15とを攪拌装置14で攪拌した後、攪拌装置14を停止して固形分11を沈降分離させ、固形分11をほとんど含まない液体7を液体抜出ライン8で排出する、いわゆるバッチ式の固液分離装置になっている。
<作用>
次に、第2の固液分離装置50Bの作用について説明する。
第2の固液分離装置50Bを用いて固液分離方法を実施するに当たり、まず、液体7は通過するが固形分11は通過させないろ布を凹型状に形成したろ布部を有する内部容器1を外部容器2内に配置(収容)しておく。この状態で、固液懸濁液供給装置6を稼働させて、固液懸濁液貯槽4内に貯留される固液懸濁液12を固液分離槽3の内部容器1内に導入する。
続いて、凝集剤15を凝集剤貯槽16に入れておき、凝集剤供給装置18を稼働させる。すると、凝集剤貯槽16に貯留される凝集剤15は凝集剤供給ライン17を通って固液分離槽3の内部容器1内に導入される。
続いて、攪拌装置14で、固液懸濁液12と凝集剤15とを攪拌した後、攪拌を停止して沈降分離させる。この時、第1の固液分離装置50Aと同様に、必要に応じて固液分離槽用加熱装置13aや固液懸濁液貯槽用加熱装置13bを稼働させて固液懸濁液12の温度を調整する。
放射性物質で汚染された固形分11と液体7とを懸濁させることにより、固液懸濁液12から分離回収した液体7には放射性物質が含まれる。液体抜出ライン8から排出される液体7は、固形分11をほとんど含まない清浄な液体となる。
<効果>
第2の固液分離装置50Bおよび第2の固液分離装置50Bを用いた固液分離方法によれば、第1の固液分離装置50Aと同様の効果を奏するのに加えて、さらに、内部容器1の側面に固形分11のケーク層が形成されるのを防止するため、ろ布を通り抜ける(ろ過する)のに要する時間をより短縮できる。すなわち、第2の固液分離装置50Bおよび第2の固液分離装置50Bを用いた固液分離方法によれば、より短時間で液体7をほとんど含まない固形分11を回収することができる。
[第3の実施形態]
<構成>
図3は、本発明の第3の実施形態に係る固液分離装置の一例である第3の固液分離装置50Cの概略図である。
第3の固液分離装置50Cは、第1の固液分離装置50Aに対して、液体回収槽10内にある固形分11をわずかに含む液体7を回収する液体回収ライン19と、液体供給装置20と、フィルタ21と、清澄液22を抜き出す清澄液抜出ライン23と、清澄液回収槽24と、ろ過助剤25を溜めておくろ過助剤貯槽26と、ろ過助剤25をフィルタ21に供給するろ過助剤供給装置27と、ろ過助剤貯槽26とフィルタ21の間をろ過助剤25が通過するろ過助剤循環ライン28と、をさらに具備する点で相違する。
しかしながら、第3の固液分離装置50Cは、第1の固液分離装置50Aに対して上記相違点を有する以外は第1の固液分離装置50Aと実質的に相違しない。そこで、第3の実施形態では、第1の固液分離装置50Aに対する相違点を中心に説明し、第1の固液分離装置50Aの構成要素と相違しない構成要素については、同じ符号を付して説明を省略または簡略する。
液体回収ライン19は、固液分離槽3から液体抜出ライン8を通って液体回収槽10内に回収された液体7をフィルタ21へ導く流路である。液体7は、液体供給装置20によって、液体回収槽10から液体回収ライン19を通ってフィルタ21へ送り出される。
フィルタ21は、液体7をろ過してわずかに残る固形分11を除去する。フィルタ21を通液した後の液体7である清澄液22は、固液分離槽3で回収した液体7よりも固形分11を含まない清浄な液体となる。清澄液22は、フィルタ21から清澄液抜出ライン23に導かれて清澄液回収槽24内に回収される。
ろ過助剤25は、フィルタ21で液体7をろ過する際にろ過性改善や、ろ材の目詰まり防止のために使用される。ろ過助剤25は、珪藻土などの無機物であることが好ましい。ろ過助剤貯槽26に貯留されるろ過助剤25は、ろ過助剤供給装置27によって、フィルタ21へ供給される。
ろ過助剤循環ライン28は、ろ過助剤貯槽26とフィルタ21との間をろ過助剤25が循環する流路である。ろ過助剤貯槽26からフィルタ21に供給されたろ過助剤25のうちフィルタ21を通過したものは、ろ過助剤循環ライン28を通ってろ過助剤貯槽26に戻される。
このように構成される第3の固液分離装置50Cは、固液懸濁液供給装置4で内部容器1内に導入された固液懸濁液12を固液分離し、液体抜出ライン8で排出される固形分11をほとんど含まない液体7を、さらに、フィルタ21に通液することで清澄液22を回収する、いわゆるバッチ式の固液分離装置になっている。
なお、第3の固液分離装置50Cは、攪拌装置14と、凝集剤貯槽16と、凝集剤供給ライン17と、凝集剤供給装置18と、をさらに具備する構成であっても良い。
<作用>
次に、第3の固液分離装置50Cの作用について説明する。
第3の固液分離装置50Cを用いて固液分離方法を実施するに当たり、まず、液体7は通過するが固形分11は通過させないろ布を凹型状に形成したろ布部を有する内部容器1を外部容器2内に配置(収容)しておく。この状態で、固液懸濁液供給装置6を稼働させて、固液懸濁液貯槽4内に貯留される固液懸濁液12を固液分離槽3の内部容器1内に導入する。
続いて、ろ過助剤貯槽26にろ過助剤25を入れた状態で、ろ過助剤供給装置27を稼働させ、ろ過助剤貯槽26に貯留されるろ過助剤25をフィルタ21内に供給し、プリコートさせる。
プリコートが完了したら、液体供給装置20を稼動させて、液体回収槽10に回収される液体7をフィルタ21へ導く。液体7はフィルタ21で内部容器1のろ布を通過した細かい固形分11がろ過された後、清澄液22として清澄液回収槽24内に回収される。
なお、第3の固液分離装置50Cを使用した結果、フィルタ21に掛かる差圧が上昇してきたら、液体供給装置20やろ過助剤供給装置27などで水を供給し、逆洗を実施することで差圧を解消する。差圧解消のために使用される水として、清澄液22を使用しても良い。
<効果>
第3の固液分離装置50Cおよび第3の固液分離装置50Cを用いた固液分離方法によれば、第1の固液分離装置50Aと同様の効果を奏することに加えて、さらに、清澄液22は固形分11の含有量が固液分離槽3で回収される液体7よりも少ないため、液中に含まれる放射性物質を回収する吸着装置(図示せず)に通液した際に生じる差圧上昇をより小さく抑えることができる。
[第4の実施形態]
<構成>
図4は、本発明の第4の実施形態に係る固液分離装置の一例である第4の固液分離装置50Dの概略図である。
第4の固液分離装置50Dは、第1の固液分離装置50Aに対して、固液分離槽3内にある固液懸濁液を回収する固液懸濁液回収ライン29と、固液懸濁液回収装置30と、フィルタプレス31と、ケーク32を抜き出すケーク抜出ライン33と、ケーク回収槽34と、フィルタプレス31によって分離された分離液を抜き出す分離液抜出ライン35と、をさらに具備する点で相違する。
しかしながら、第4の固液分離装置50Dは、第1の固液分離装置50Aに対して上記相違点を有する以外は第1の固液分離装置50Aと実質的に相違しない。そこで、第4の実施形態では、第1の固液分離装置50Aに対する相違点を中心に説明し、第1の固液分離装置50Aの構成要素と相違しない構成要素については、同じ符号を付して説明を省略または簡略する。
固液懸濁液回収ライン29は、固液分離槽3内にある固液懸濁液12を固液分離槽3からフィルタプレス31へ導く流路である。固液懸濁液回収装置30によって、固液分離槽3内にある固液懸濁液12が固液懸濁液回収ライン29を通ってフィルタプレス31へ送られる。
フィルタプレス31は、固液懸濁液12からケーク32を分離して回収する。フィルタプレス31が分離したケーク32は、ケーク抜出ライン33を介してケーク回収槽34内に集められる。ケーク32は、固液分離槽3で回収した固形分11よりも水分が少ない清浄な固体となる。
分離液抜出ライン35は、フィルタプレス31で分離された分離液を抜き出して固液分離槽3内に戻す流路である。
このように構成される第4の固液分離装置50Dは、固液懸濁液供給装置4で内部容器1内に導入された固液懸濁液12を固液分離し、固形分11をほとんど含まない液体7の一部を液体抜出ライン8で排出した後、内部容器1内に残った固液懸濁液12をフィルタプレス31に供給し、分離液とケーク32を回収する、いわゆるバッチ式の固液分離装置になっている。
なお、第4の固液分離装置50Dは、フィルタプレス31を具備すると説明したが、フィルタプレス31の代わりに遠心脱水機を具備しても良い。
また、第4の固液分離装置50Dは、攪拌装置14と、凝集剤貯槽16と、凝集剤供給ライン17と、凝集剤供給装置18と、をさらに具備する構成であっても良い。
さらに、第4の固液分離装置50Dは、液体回収ライン19と、液体供給装置20と、フィルタ21と、清澄液抜出ライン23と、清澄液回収槽24と、ろ過助剤貯槽26と、ろ過助剤供給装置27と、ろ過助剤循環ライン28と、をさらに具備する構成であっても良い。
<作用>
次に、第4の固液分離装置50Dの作用について説明する。
第4の固液分離装置50Dを用いて固液分離方法を実施するに当たり、まず、液体7は通過するが固形分11は通過させないろ布を凹型状に形成したろ布部を有する内部容器1を外部容器2内に配置(収容)しておく。この状態で、固液懸濁液供給装置6を稼働させて、固液懸濁液貯槽4内に貯留される固液懸濁液12を固液分離槽3の内部容器1内に導入する。
続いて、固液分離槽3内にある固液懸濁液12が固液懸濁液回収装置30によって、固液懸濁液回収ライン29を通ってフィルタプレス31へ送られる。フィルタプレス31は、固液懸濁液12からケーク32を分離して回収し、ケーク32はケーク抜出ライン33を介してケーク回収槽34内に集められる。固液懸濁液12からケーク32を分離した後の分離液は分離液抜出ライン35を介して固液分離槽3内に戻される。
<効果>
第4の固液分離装置50Dおよび第4の固液分離装置50Dを用いた固液分離方法によれば、第1の固液分離装置50Aと同様の効果を奏することに加えて、さらに、ケーク32を分離して回収することができる。ケーク32は、固液分離槽3で回収した固形分11よりも水分が少ない清浄な固体であるため、元の固形分11に放射性物質を含む場合、分離後の固形分中の放射能濃度をさらに低減することができる。
以下に実施例を示す。なお、本発明は以下に示す実施例に限定されて解釈されるものではない。
(実施例1)
内径55mm、高さ250mmのビーカに底面のみをろ布、あるいは底面および側面を全てろ布で製作した容器を入れた。容器は内径40mm、高さ250mmとし、ろ布は通気性25cm3/cm2/sec at 124.5 Paのものを使用した。容器内に土壌5g、水250mLを入れて良く攪拌した後、内部容器を外部容器内から取り出し、排水が完了する時間を測定した。土壌の粒度分布割合を表1に、固液分離時間(排水完了時間)の測定結果を表2に示す。
Figure 2014071025
Figure 2014071025
表2に示されるように、底面および側面を全てろ布で作成した容器で固液分離を実施する場合(排水完了時間:80sec)、底面のみをろ布とした容器を使用した場合(排水完了時間:150sec)に比べて大幅に排出時間を減少できることがわかる。
なお、土壌と水の固液懸濁液について、固液懸濁液供給ラインと、液体抜出ラインと、内部容器内の固形分回収装置を具備する固液分離装置を用いて分離を実施しても、上記と同様の結果が得られる。
また、内部容器が内側にろ布を設置したかご状である金網状の固液分離装置によって分離を実施しても、上記と同様の結果が得られる。
(実施例2)
内径55mm、高さ250mmのビーカに底面および側面を全てろ布で製作した容器を入れた。容器は内径40mm、高さ250mmとし、ろ布は通気性25cm3/cm2/sec at 124.5 Paのものを使用した。容器内に土壌5g、水250mLを入れて良く攪拌した後、珪藻土を主成分とし有機物を含まない凝集剤Aを25mg添加して、さらに攪拌した後、30秒静置した。内部容器を外部容器内から取り出し、排水が完了する時間を測定した。測定結果を表3に示す。
Figure 2014071025
表3に示されるように、凝集剤を添加しない場合(排水完了時間:80sec)と比較して、凝集剤を添加した場合(排水完了時間:静置時間を含めて40sec)には、大幅に排出時間を減少できる。
また、上澄み液の一部または全部を排出機で排出することでさらに大幅に排出時間を減少できる。
さらに、土壌と水の固液懸濁液について、固液懸濁液供給ラインと、液体抜出ラインと、内部容器内の固形分回収装置と、固液分離槽に凝集剤供給装置と内部容器内の固液懸濁液を混合する撹拌装置とを具備する固液分離装置によって分離を実施しても、上記と同様の結果が得られる。
さらにまた、内部容器が内側にろ布を設置したかご状である金網状の固液分離装置によって分離を実施しても上記と同様の結果が得られる。
(実施例3)
土壌10g、80℃の0.5Mシュウ酸200mL、シラスもしくは珪藻土を主成分とし有機物を含まない凝集剤を50〜200mg/L添加して混合し、メスシリンダーに入れて30秒静置した後、上澄み液の濃度を測定して、固形分除去率(%)(=(1 − 上澄み濃度/初期濃度)×100)を評価した。測定結果を表4に示す。
Figure 2014071025
表4に示すように、凝集剤を添加することで大幅に固形分除去率が減少する。従ってろ布で作成した容器により固液分離を行った場合、シラスもしくは珪藻土を主成分とし有機物を含まない凝集剤を添加することにより排出時間を減少できる。
また、凝集剤を固液懸濁液1Lに対して50〜200mg添加することで排出時間を減少できる。
液体は、温度が高いほど粘性係数が小さくなる。そのため固形物の沈降速度が高くなる。従って温度が高いほど固液分離時間が速くなる。水の沸点に近い80〜95℃程度が好ましい。
さらに、土壌と水の固液懸濁液について、固液懸濁液供給ラインと、液体抜出ラインと、内部容器内の固形分回収装置と、固液分離槽に凝集剤供給装置と内部容器内の固液懸濁液を混合する撹拌装置とを具備する固液分離装置によって分離を実施しても、上記と同様の結果が得られる。
(実施例4)
最高粒子径が20μm以下の土壌を含む土壌懸濁液をスプリングフィルタに1分当たり1リットル(=1L/min)で通水したときの固形分除去率を測定した。固形分除去率の測定は、珪藻土でのプリコート無し、珪藻土でのプリコート有り、および逆洗後の珪藻土でのプリコート(再プリコート)有りの場合で行った。測定結果を表5に示す。なお、プリコートには、珪藻土を10g使用した。また、逆洗後の再プリコートには、逆洗水に含まれる固形物をろ過助剤とした。
Figure 2014071025
表5に示されるように、珪藻土によるプリコートがなくても約40%の土壌を除去できる。しかし、珪藻土をプリコートした場合、さらに除去率が上昇し、99%の固形分を除去することができる。
表5に示されるように、差圧が生じたことを想定し、逆洗後、逆洗水に含まれる土壌および珪藻土をプリコートしてから、固形分除去を実施すると、97%の固形分を除去することができる。
固液分離槽の液体抜出ラインに逆洗再生式のフィルタを設置することで、上記と同様の結果が得られる。
(実施例5)
土壌5g、水100mLを孔径0.45μmのミリポアフィルタをセットした加圧ホルダに入れて加圧ろ過を実施した。排水が止まるまでに回収できた水量と圧力の関係を表6に示す。
Figure 2014071025
表6に示されるように、圧力を掛けるほど土壌に残る水量が減ることがわかる。
また、固液分離槽の内部容器内の固形分回収装置としてフィルタプレスを具備することで上記と同様の結果が得られる。
(実施例6)
内径55mm、高さ250mmのビーカに底面および側面を全てろ布で製作した容器を入れた。容器は内径40mm、高さ250mmとし、ろ布は通気性25cm3/cm2/sec、50cm3/cm2/sec、120cm3/cm2/secのものを使用した(いずれもat 124.5 Pa)。容器内に土壌5g、水250mlを入れて良く攪拌した後、内部容器を外部容器内から取り出し、排水が完了する時間を測定した。排水完了時間へのろ布通気性の影響を表7に示す。
Figure 2014071025
表7に示されるように、ろ布の通気性が良い(数値が大きい)ほど排水完了時間は短くなることがわかる。
固形分は底面からの漏洩量が多いため、細孔が細かいろ布を側面、細孔が粗いろ布を底面とした内部容器としても固液分離が可能である。
固形分は底面からの漏洩量が多いため、底面に貫通穴が形成されない非貫通部を設けた内部容器(底面に孔を設けない構成の内部容器)としても固液分離が可能である。
土壌は、例えば表1に示すような粒度分布がある。そこで、下方側質量基準積算量が目標とする固形分除去率に等しくなる粒子経よりもろ布の孔径を小さくすると良い。例えば固形分除去率99%を目標とする場合、固形物の質量基準粒子径積算分布の下方側1/100における粒子径よりもろ布の孔径を小さくする。
(実施例7)
ろ布を80℃、0.5Mシュウ酸に150時間浸漬した後、当該ろ布を加圧ホルダにセットし、水100mLを入れ、90mL排出されるまでの時間を測定した。結果を表8に示す。
Figure 2014071025
表8に示されるように、通気性が高いろ布ではポリエチレン製でもシュウ酸浸漬の影響を受けないが、通気性が低いと排水完了時間が増加する。一方、ポリエステル製はシュウ酸浸漬の影響を受けない。以上のことからポリエチレン製でも良いが、ポリエステル製のろ布が好ましい。
以上、第1〜4の固液分離装置50A〜50Dおよび第1〜4の固液分離装置50A〜50Dを用いた固液分離方法によれば、固形分濃度、固形分密度、固形分粒子径によらず、固液分離時間を大幅に短縮できる。また、固形分を内部容器ごと回収できるため、固液分離槽からの固形分回収が容易かつ短時間で実施できる。
なお、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、追加、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1…内部容器、2…外部容器、3…固液分離槽、4…固液懸濁液貯槽、5…固液懸濁液供給ライン、6…固液懸濁液供給装置、7…液体、8…液体抜出ライン、9…液体抜出用弁、10…液体回収槽、11…固形分、12…固液懸濁液、13…加熱装置、13a…固液分離槽用加熱装置、13b…固液懸濁液貯槽用加熱装置、14…攪拌装置、15…凝集剤、16…凝集剤貯槽、17…凝集剤供給ライン、18…凝集剤供給装置、19…液体回収ライン、20…液体供給装置、21…フィルタ、22…清澄液、23…清澄液抜出ライン、24…清澄液回収槽、25…ろ過助剤、26…ろ過助剤貯槽、27…ろ過助剤供給装置、28…ろ過助剤循環ライン、29…固液懸濁液回収ライン、30…固液懸濁液回収装置、31…フィルタプレス、32…ケーク、33…ケーク抜出ライン、34…ケーク回収槽、35…分離液抜出ライン、50A…第1の固液分離装置、50B…第2の固液分離装置、50C…第3の固液分離装置、50D…第4の固液分離装置。

Claims (21)

  1. 液体は通過するが固形分は通過しないろ布で作られており上端から内容物が溢流しない高さを持つ内部容器と、この内部容器を収容する外部容器とを有する固液分離槽の前記内部容器に固液懸濁液を導入し、
    前記固液分離槽内で固液懸濁液を放置して固形分と液体とに固液分離した後、前記液体を抜き出す際に、前記液体の上澄み液を前記内部容器の側面のろ布によってろ過させて前記内部容器から排出することを特徴とする固液分離方法。
  2. 前記内部容器に前記固液懸濁液を導入した後、前記固液懸濁液に懸濁される固形分の沈降を促す凝集剤を前記内部容器内の前記固液懸濁液に添加することを特徴とする請求項1記載の固液分離方法。
  3. 前記凝集剤は、シラスまたは珪藻土を主成分とする無機系凝集剤であることを特徴とする請求項2記載の固液分離方法。
  4. 前記凝集剤の添加量は、前記固液懸濁液1Lに対して50〜200mgであることを特徴とする請求項2または3記載の固液分離方法。
  5. 前記固液懸濁液の温度を80〜95℃の間に調整することを特徴とする請求項4記載の固液分離方法。
  6. 前記固液分離槽内で固液懸濁液を放置して固形分と液体とに固液分離した後、前記固液分離槽から抜き出される前記液体に含まれる残留固形分を、前記固液分離槽の後段に設けたフィルタで前記液体の液体成分と前記残留固形分とを分離することを特徴とする請求項1ないし5の何れか1項に記載の固液分離方法。
  7. 前記フィルタを用いて前記液体を液体成分と前記残留固形分とを分離する際に、前記フィルタに前記残留固形分が蓄積して流動抵抗が増加した場合に、前記フィルタを通過させた処理液および清浄な水の何れか一方を洗浄液として逆流させて、前記フィルタを逆洗して再生することを特徴とする請求項6記載の固液分離方法。
  8. 前記固液分離槽の後段に設けたフィルタは、ろ過助剤をプリコートする形式のフィルタであることを特徴とする請求項7記載の固液分離方法。
  9. 前記フィルタを逆洗して再生した後、前記フィルタの逆洗液に含まれる固形分をろ過助剤として再度プリコートする運用を行い、再度プリコートした後に前記フィルタの流動抵抗が増加していた場合、前記逆洗液を系統外に分離することを特徴とする請求項8記載の固液分離方法。
  10. 前記固液分離槽の内部容器内に残った固形分と、前記固液分離槽の後段にフィルタが設けられている場合には当該フィルタを通過させた処理液および清浄な水の何れか一方を洗浄液として逆流させて、前記フィルタを逆洗して再生した後の前記フィルタの逆洗液と、を脱水して脱水固形物を得ることを特徴とする請求項1ないし9の何れか1項に記載の固液分離方法。
  11. 前記液体の上澄み液の少なくとも一部を排出機で排出することを特徴とする請求項1ないし10の何れか1項に記載の固液分離方法。
  12. 液体は通過するが固形分は通過しないろ布で作られる凹型状のろ布部を有し、このろ布部の上端から内容物が溢流しない高さを持つ内部容器と、この内部容器を収容する外部容器とを有する固液分離槽と、
    前記内部容器に固液懸濁液を導入する固液懸濁液供給ラインと、
    前記固液分離槽内で固液懸濁液から固液分離して得られる液体を前記固液分離槽から外部へ抜き出す液体抜出ラインと、を具備することを特徴とする固液分離装置。
  13. 前記固液懸濁液に懸濁される固形分の沈降を促す凝集剤を前記内部容器内に供給する凝集剤供給装置と、
    前記内部容器内に導入される内容物を撹拌する撹拌装置とをさらに具備することを特徴とする請求項12記載の固液分離装置。
  14. 前記内部容器は、前記ろ布部の外側にさらにかご状構造体を有し、このかご状構造体は、固液懸濁液から固液分離して得られる液体が通過する際に抵抗とならない貫通口が側面および底面を含む全面にわたって設けられて構成されることを特徴とする請求項12または13記載の固液分離装置。
  15. 前記内部容器の前記ろ布部は、前記凹型状の底面に位置するろ布の細孔を前記凹型状の側面に位置するろ布の細孔よりも粗く構成したことを特徴とする請求項12ないし14の何れか1項に記載の固液分離装置。
  16. 前記内部容器の底面に貫通穴が形成されない非貫通部を設けたことを特徴とする請求項12ないし15の何れか1項に記載の固液分離装置。
  17. 前記ろ布は、孔経が固形物の質量基準粒子径積算分布の下方側1/100における粒子径よりも小さいろ布が使用されることを特徴とする請求項12ないし16の何れか1項に記載の固液分離装置。
  18. 前記ろ布は、材質をポリプロピレンおよびポリエステルから選択される1種類以上を含む材料であることを特徴とする請求項12ないし17の何れか1項に記載の固液分離装置。
  19. 前記固液分離槽の後段に前記固液分離槽内で固液懸濁液から固液分離して得られる液体からさらに残留固形分を分離する逆洗再生式のフィルタを前記固液分離槽の後段に設けたことを特徴とする請求項12ないし18の何れか1項に記載の固液分離装置。
  20. 前記内部容器内の固形分を回収するフィルタプレスおよび遠心脱水機の何れか一方をさらに具備し、前記逆洗再生式のフィルタを逆洗する際に生じる逆洗液を前記逆洗再生式のフィルタから排出するラインを設けたことを特徴とする請求項12ないし19の何れか1項に記載の固液分離装置。
  21. 前記固液分離槽を加熱する加熱装置をさらに具備することを特徴とする請求項12ないし20の何れか1項に記載の固液分離装置。
JP2012217995A 2012-09-28 2012-09-28 固液分離方法および固液分離装置 Pending JP2014071025A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012217995A JP2014071025A (ja) 2012-09-28 2012-09-28 固液分離方法および固液分離装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012217995A JP2014071025A (ja) 2012-09-28 2012-09-28 固液分離方法および固液分離装置

Publications (1)

Publication Number Publication Date
JP2014071025A true JP2014071025A (ja) 2014-04-21

Family

ID=50746356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012217995A Pending JP2014071025A (ja) 2012-09-28 2012-09-28 固液分離方法および固液分離装置

Country Status (1)

Country Link
JP (1) JP2014071025A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104147814A (zh) * 2014-08-28 2014-11-19 邓鑫 一种处理尾矿的节电节水方法
CN104174189A (zh) * 2014-08-28 2014-12-03 邓鑫 一种处理尾矿的节能方法
JP2015225066A (ja) * 2014-05-30 2015-12-14 株式会社 エー・イー・エル 放射能汚染水中の放射性汚染物質の除去方法
JP2021124437A (ja) * 2020-02-07 2021-08-30 株式会社東芝 汚染懸濁液処理装置
KR102361564B1 (ko) * 2021-02-23 2022-02-14 한전케이피에스 주식회사 제염장치 및 이를 이용한 제염방법

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5657899A (en) * 1979-10-16 1981-05-20 Duskin Franchise Co Regeneration recovery of high boiling point used oil
JPS62254811A (ja) * 1986-04-25 1987-11-06 Toei Plant Kk 濾過効率の優れた濾過機
JPH06309A (ja) * 1992-06-19 1994-01-11 Makino Milling Mach Co Ltd 濾過機の脱水方法および装置
JPH07971A (ja) * 1993-06-07 1995-01-06 Yoshikawa Enbi Kogyosho:Kk 廃液の処理方法及び装置
JPH08318105A (ja) * 1995-05-23 1996-12-03 Japan Organo Co Ltd 除濁濾過装置
JPH1062595A (ja) * 1996-08-20 1998-03-06 Toshiba Eng Co Ltd 放射性廃液処理装置
JPH10332887A (ja) * 1997-05-29 1998-12-18 Toshiba Corp 放射性廃棄物処理用ろ過濃縮装置およびその運転方法と、放射性廃棄物処理設備およびその処理方法
JPH11507124A (ja) * 1995-03-10 1999-06-22 ヴアツテンフアル・アクチエボラーグ 放射性廃棄物を取り扱う方法および装置
JPH11244628A (ja) * 1998-03-02 1999-09-14 Tokuyama Corp 濾過方法
JP2000084321A (ja) * 1998-09-08 2000-03-28 Tokyo Flow Meter Kenkyusho:Kk 環境保全型プレコート濾過システム
JP2002224934A (ja) * 2001-01-31 2002-08-13 Mori Seiki Co Ltd 加工液供給装置及びこれを備えた工作機械
JP2004057934A (ja) * 2002-07-29 2004-02-26 Chiyoda Kohan Co Ltd 有機塩素化合物の無害化方法
JP2005000820A (ja) * 2003-06-12 2005-01-06 Toshiba Plant Systems & Services Corp 排水の処理方法及び処理装置
JP2005211822A (ja) * 2004-01-30 2005-08-11 Furukawa:Kk 廃液処理システム
JP2006035178A (ja) * 2004-07-30 2006-02-09 Victon Kogyo:Kk 汚泥回収装置、汚泥回収システム、及び汚泥回収処理方法
JP2007136400A (ja) * 2005-11-22 2007-06-07 Subaru Enterprise Co Ltd 排泥水の減容処理方法
JP3169911U (ja) * 2011-06-13 2011-08-25 株式会社北陽 フロック処理装置
JP2012055862A (ja) * 2010-09-10 2012-03-22 Toda Kogyo Corp 水質浄化剤及びその製造方法、並びに水処理方法

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5657899A (en) * 1979-10-16 1981-05-20 Duskin Franchise Co Regeneration recovery of high boiling point used oil
JPS62254811A (ja) * 1986-04-25 1987-11-06 Toei Plant Kk 濾過効率の優れた濾過機
JPH06309A (ja) * 1992-06-19 1994-01-11 Makino Milling Mach Co Ltd 濾過機の脱水方法および装置
JPH07971A (ja) * 1993-06-07 1995-01-06 Yoshikawa Enbi Kogyosho:Kk 廃液の処理方法及び装置
JPH11507124A (ja) * 1995-03-10 1999-06-22 ヴアツテンフアル・アクチエボラーグ 放射性廃棄物を取り扱う方法および装置
JPH08318105A (ja) * 1995-05-23 1996-12-03 Japan Organo Co Ltd 除濁濾過装置
JPH1062595A (ja) * 1996-08-20 1998-03-06 Toshiba Eng Co Ltd 放射性廃液処理装置
JPH10332887A (ja) * 1997-05-29 1998-12-18 Toshiba Corp 放射性廃棄物処理用ろ過濃縮装置およびその運転方法と、放射性廃棄物処理設備およびその処理方法
JPH11244628A (ja) * 1998-03-02 1999-09-14 Tokuyama Corp 濾過方法
JP2000084321A (ja) * 1998-09-08 2000-03-28 Tokyo Flow Meter Kenkyusho:Kk 環境保全型プレコート濾過システム
JP2002224934A (ja) * 2001-01-31 2002-08-13 Mori Seiki Co Ltd 加工液供給装置及びこれを備えた工作機械
JP2004057934A (ja) * 2002-07-29 2004-02-26 Chiyoda Kohan Co Ltd 有機塩素化合物の無害化方法
JP2005000820A (ja) * 2003-06-12 2005-01-06 Toshiba Plant Systems & Services Corp 排水の処理方法及び処理装置
JP2005211822A (ja) * 2004-01-30 2005-08-11 Furukawa:Kk 廃液処理システム
JP2006035178A (ja) * 2004-07-30 2006-02-09 Victon Kogyo:Kk 汚泥回収装置、汚泥回収システム、及び汚泥回収処理方法
JP2007136400A (ja) * 2005-11-22 2007-06-07 Subaru Enterprise Co Ltd 排泥水の減容処理方法
JP2012055862A (ja) * 2010-09-10 2012-03-22 Toda Kogyo Corp 水質浄化剤及びその製造方法、並びに水処理方法
JP3169911U (ja) * 2011-06-13 2011-08-25 株式会社北陽 フロック処理装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015225066A (ja) * 2014-05-30 2015-12-14 株式会社 エー・イー・エル 放射能汚染水中の放射性汚染物質の除去方法
CN104147814A (zh) * 2014-08-28 2014-11-19 邓鑫 一种处理尾矿的节电节水方法
CN104174189A (zh) * 2014-08-28 2014-12-03 邓鑫 一种处理尾矿的节能方法
JP2021124437A (ja) * 2020-02-07 2021-08-30 株式会社東芝 汚染懸濁液処理装置
JP7273740B2 (ja) 2020-02-07 2023-05-15 株式会社東芝 汚染懸濁液処理装置
KR102361564B1 (ko) * 2021-02-23 2022-02-14 한전케이피에스 주식회사 제염장치 및 이를 이용한 제염방법

Similar Documents

Publication Publication Date Title
JP2014071025A (ja) 固液分離方法および固液分離装置
JP5769082B2 (ja) 放射性物質汚染土壌の洗浄処理方法
JP2016147212A (ja) 汚染土壌浄化装置
JP6009850B2 (ja) 放射性物質に汚染された汚染水の除染装置および除染方法
JP2019103989A (ja) 汚染土壌の洗浄分級処理方法
CN106830119A (zh) 含油污水的磁性吸附处理装置
CA3048919C (en) Method and apparatus for metal removal from drinking water
CN103380085B (zh) 水处理装置及水处理方法
JP6112475B2 (ja) 抽出装置
CN205740576U (zh) 一种用于含油废水的油水分离处理装置
JP6028545B2 (ja) セシウムの回収方法
JP2018025464A (ja) 放射性物質除去システム及び放射性物質除去方法
TW201336788A (zh) 氟回收裝置、氟回收系統及氟回收方法
JP2020011222A (ja) 土壌浄化システム
JP6478194B2 (ja) 濁水中セシウム除去装置および方法
JP2015054287A (ja) 汚泥処理方法
JP6497513B2 (ja) 汚染土壌処理装置および汚染土壌処理方法
JP6319622B2 (ja) 飛灰洗浄装置および飛灰洗浄方法
JP6327741B2 (ja) 濁水中セシウム除去装置および方法
JP5715992B2 (ja) 放射性セシウム含有水の処理方法、飛灰の処理方法、放射性セシウム含有水の処理装置及び飛灰の処理装置
JP5818670B2 (ja) 油分含有排水処理装置
JP6090095B2 (ja) 飛灰洗浄装置および飛灰洗浄方法
JP2016064323A (ja) 泥水処理システムおよび泥水処理方法
JP6385141B2 (ja) 放射能汚染水中の放射性汚染物質の除去方法
JP5742032B2 (ja) ろ過装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160607