JP2014009361A - 溶射材料及びその製造方法 - Google Patents

溶射材料及びその製造方法 Download PDF

Info

Publication number
JP2014009361A
JP2014009361A JP2012144462A JP2012144462A JP2014009361A JP 2014009361 A JP2014009361 A JP 2014009361A JP 2012144462 A JP2012144462 A JP 2012144462A JP 2012144462 A JP2012144462 A JP 2012144462A JP 2014009361 A JP2014009361 A JP 2014009361A
Authority
JP
Japan
Prior art keywords
yttrium
thermal spray
spray material
yof
oxyfluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012144462A
Other languages
English (en)
Other versions
JP5396672B2 (ja
Inventor
Naoki Fukagawa
直樹 深川
Yuki Nakajima
祐樹 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yttrium Co Ltd
Original Assignee
Nippon Yttrium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yttrium Co Ltd filed Critical Nippon Yttrium Co Ltd
Priority to JP2012144462A priority Critical patent/JP5396672B2/ja
Priority to KR1020147029850A priority patent/KR101591891B1/ko
Priority to EP13810681.0A priority patent/EP2868766B1/en
Priority to US14/117,160 priority patent/US9388485B2/en
Priority to PCT/JP2013/061019 priority patent/WO2014002580A1/ja
Publication of JP2014009361A publication Critical patent/JP2014009361A/ja
Application granted granted Critical
Publication of JP5396672B2 publication Critical patent/JP5396672B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/553Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on fluorides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3895Non-oxides with a defined oxygen content, e.g. SiOC, TiON
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

【課題】フレーム中に供給するときの流動性が良好であり、また均一な溶射膜が得られやすい溶射材料を提供すること。
【解決手段】本発明の溶射材料は、イットリウムのオキシフッ化物(YOF)を含む顆粒からなる。この顆粒は更にイットリウムのフッ化物(YF3)を含んでいてもよい。この顆粒の酸素含有量は0.3質量%〜13.1質量%であることが好適である。この顆粒の破壊強度は0.3MPa以上10MPa未満であることが好適である。この顆粒におけるイットリウム(Y)の一部は、イットリウム以外の希土類元素(Ln)の少なくとも1種によって置換されていてもよい。その場合のYとLnの合計に対するLnのモル分率は0.2以下であることが好適である。
【選択図】なし

Description

本発明は、イットリウムを含む溶射材料及びその製造方法に関する。
半導体デバイスの製造におけるエッチング工程ではハロゲン系ガスが用いられる。これらのガスによるエッチング装置の腐食を防止するために、エッチング装置の内部は一般に、耐食性の高い物質を溶射することによってコーティングされている。そのような物質の一つとして、希土類元素を含む材料がしばしば用いられている。
希土類元素を含む溶射材料に関する従来の技術としては、例えば一次粒子の平均粒子径が10μm以下、アスペクト比が2以下、平均粒子径が20〜200μm、嵩べり度が30%以下である希土類元素のフッ化物の造粒粉末からなる溶射材料が知られている(特許文献1参照)。また、希土類元素(イットリウムを含む)含有化合物から形成され、破壊強度が10MPa以上、平均粒径が10〜80μmである溶射用球状粒子も知られている(特許文献2参照)。
特許文献1に記載の溶射材料は、結合剤を使用して希土類元素のフッ化物をスプレードライヤーで造粒し、これを600℃以下の温度で焼成することで製造される。同文献の〔0014〕段落には、「600℃を超えると明らかに重量減少があり、酸化による分解が起こっていることが判る。ゆえに、結合剤を燃焼除去するには600℃以下の温度で燃焼する必要がある。」と記載されている。すなわち同文献には、酸化による分解が起こって希土類元素のオキシフッ化物が生成しないようにするために、600℃以下の温度で焼成する必要があることが記載されている。同文献に記載の溶射材料は、造粒していない溶射材料に比べて粒子の流れ性は改善されているが、その流れ性は未だ十分に満足すべきものとは言えなかった。また、同文献に記載の溶射材料を用いて作製した溶射膜は、従来のセラミックス系(例えばアルミナ)溶射膜に比べてF系プラズマに対する耐食性が高いものの、Cl系プラズマに対する耐食性が低いという問題点もあった。
特許文献2の溶射用球状粒子は、希土類元素含有化合物の微粉末スラリーを造粒機によって造粒した後、化合物が酸化物の場合には1200℃〜1800℃で焼成することで製造される。しかし、酸化物以外の希土類元素含有化合物についての焼成条件等は同文献に記載されていない。
特開2002−115040号公報 特開2002−363724号公報
したがって本発明の課題は、前述した従来技術が有する種々の欠点を解消し得る溶射材料を提供することにある。
前記課題を解決すべく本発明者が鋭意研究したところ、驚くべきことに、特許文献1では含有を否定されている希土類元素のオキシフッ化物を用いることで、溶射顆粒の流動性が格段に改善され、またこの溶射顆粒を用いて作製した溶射膜がF系プラズマ及びCl系プラズマの双方に対して優れた耐食性を示し、プラズマエッチング時にエッチング作用によって削られて飛散するパーティクルが低減されることを本発明者は知見し、本発明を完成させた。
本発明は前記知見に基づきなされたものであり、イットリウムのオキシフッ化物(YOF)を含む顆粒からなる溶射材料を提供するものである。
また本発明は、前記溶射材料の好適な製造方法として、
イットリウムのフッ化物(YF3)を750℃〜1100℃にて酸素含有雰囲気中で焼成してイットリウムのオキシフッ化物(YOF)を得る第1工程と、
第1工程で得られたイットリウムのオキシフッ化物(YOF)を粉砕する第2工程と、
第2工程で得られた粉砕されたイットリウムのオキシフッ化物(YOF)を溶媒と混合してスラリーを得る第3工程と、
第3工程で得られたスラリーをスプレードライヤーで造粒して造粒物を得る第4工程と、
第4工程で得られた造粒物を300℃〜900℃の温度で焼成してイットリウムのオキシフッ化物(YOF)の顆粒を得る第5工程と、を含む溶射材料の製造方法を提供するものである。
本発明の溶射材料は、イットリウムのフッ化物を用いた溶射材料に場合に比べて顆粒の破壊強度が大きくなり、顆粒の流動性が良好になる。また本発明の溶射材料は、イットリウムのフッ化物を用いた溶射材料に場合に比べて融点が低くなる。これらの結果、本発明の溶射材料は、イットリウムのフッ化物を用いた溶射材料に場合に比べて均一な溶射膜が得られやすい。また、溶射膜にクラック等の欠陥が生じにくいものとなる。
図1は、実施例4で得られた溶射材料のX線回折図である。
以下本発明を、その好ましい実施形態に基づき説明する。本発明の溶射材料は、イットリウムのオキシフッ化物、すなわちYOFで表されるオキシフッ化イットリウムを含むものである。この溶射材料は、YOFのみから構成されていてもよく、あるいは後述するとおり、YOFに加えて他の物質を含んでいてもよい。
本発明の溶射材料は、YOFを含む顆粒からなる。本発明に言う顆粒とは、平均粒径が好ましくは20μm〜200μmである粒子のことである。この平均粒径は、25μm〜100μmであることが更に好ましい。顆粒の平均粒径が20μm以上であることによって、溶射時に溶射材料を効率的にフレーム中に供給することができる。一方、顆粒の平均粒径が200μm以下であることによって、溶射材料をフレーム中で完全に溶解させることができ、それによって溶射膜の平滑性を高めることができる。顆粒の平均粒径を上述の範囲内に設定するためには、例えば後述するスプレードライ法を採用し、造粒条件を適切に設定すればよい。
顆粒の平均粒径は、例えばレーザ回折・散乱式粒子径・粒度分布測定装置を用いて測定できる。そのような装置としては、例えば日機装株式会社製のマイクロトラックHRAを用いることができる。測定に際しては、試料を0.2質量%ヘキサメタリン酸ナトリウム水溶液に0.2g/L〜2g/Lの濃度で分散させる。分散時に超音波の照射を行うと顆粒の破壊が起こる懸念があるので、超音波の照射は行わない方が好ましい。小粒径側からの積算体積が50%となる粒径D50を平均粒径とする。
顆粒は、その平均粒径が上述の範囲を満たす限り、その形状に特に制限はない。後述するスプレードライ法によって顆粒を製造した場合には、その形状は一般に略球状となる。
顆粒からなる溶射材料は、その破壊強度が0.3MPa以上10MPa未満であることが好ましく、0.5MPa以上9MPa以下であることが更に好ましい。顆粒の破壊強度が0.3MPa以上であることによって、顆粒の破損を効果的に防止することができる。顆粒の破損が防止されることは、顆粒の流れ性の低下を防止し、溶射時に顆粒を効率的にフレーム中に供給できる点から有利である。一方、顆粒の破壊強度が10MPa未満であることによって、溶射材料がフレーム中で解砕されやすくなり、溶射材料をフレーム中で完全に溶解させやすくなる。それによって溶射膜の平滑性を高めることができる。顆粒の破壊強度を上述の範囲内に設定するためには、例えば後述するスプレードライ法を採用し、それによって得られた造粒物を焼成するときの焼成条件を適切に設定すればよい。
顆粒の破壊強度は例えば、平松、岡、木山、日本鉱業会誌Vol.81 No. 932, 1024-1030('65-42)「非整形試験片による岩石の引っ張り強さの迅速試験」の式(14−a)及び(14−b)に基づき測定することができる。具体的には以下の手順で測定する。目開き45μmの試験用網ふるいの上に目開き53μmの試験用網ふるいを重ねて、目開き53μmの網ふるいの上から顆粒を入れてふるいを行う。目開き53μmのふるいを通過し、かつ目開き45μmのふるいを通過しなかった顆粒を採取し、これを測定用の試料とする。(株)島津製作所製の微小圧縮試験機(MCTM−500)を用い、φ50μmの平面圧子によって試料の圧縮荷重を測定する。測定条件は、試験荷重9.8mN(1gf)、負荷速度:0.446mN/secとする。試料の圧縮荷重をP(単位:N)とし、粒径をd(単位:mm)とすると、顆粒の破壊強度St(単位:MPa)は以下の式(1)から算出される。
St=2.8P/(πd2) (1)
本発明の溶射材料は、YOFを含み、更にイットリウムのフッ化物、すなわちYF3で表されるフッ化イットリウムを含んでいてもよい。均一な溶射膜の形成や、酸素ラジカルに対する溶射膜の耐食性等を考慮すると、本発明の溶射材料は、YOFのみから構成されていることが好ましいが、本発明の効果を損なわない範囲においてYOFに加えてYF3が含まれていることに差し支えはない。YOF中にYF3が含有されている程度は、後述する本発明の溶射材料の製造方法における第1工程での焼成条件によって制御することができる。なお、本発明の溶射材料に含まれるフッ素の量を正確に測定することは容易でない。そこで本発明においては、溶射材料をX線回折測定し、YOFのメインピークに対するYF3のメインピークの相対強度の値から、YF3の含有量を推定している。
本発明の溶射材料はYOFを含んでいることから、酸素を含有している。溶射材料に含まれる酸素の量は、該溶射材料がYF3を含むか又は含まないかにかかわらず、0.3質量%〜13.1質量%であることが好ましい。溶射材料に含まれる酸素の含有量を0.3質量%以上とすることで、溶射時に溶射材料を安定に供給することができ、そのことによって平滑な溶射膜が得られやすくなる。一方、酸素の含有量を13.1質量%以下とすることで、溶射膜の耐食性を低下させる一因となる物質である酸化イットリウムが溶射材料中に生成することが効果的に防止され、そのことによって溶射膜の耐食性の低下を効果的に防止することができる。これらの観点から、溶射材料に含まれる酸素の量は0.4質量%〜10.0質量%であることが更に好ましく、0.5質量%〜5.0質量%であることが一層好ましい。溶射材料に含まれる酸素の量は、例えば後述する溶射材料の製造方法において、YF3を酸素含有雰囲気中で焼成するときの条件を適切に設定すればよい。
溶射材料に含まれる酸素の量は、例えば(株)堀場製作所製の酸素・窒素測定装置であるEMGA−920によって測定することができる。
本発明の溶射材料がYOFに加えてYF3を含んでいてもよいことは上述のとおりであるところ、該溶射材料はイットリウムの酸化物であるY23を極力含まないことが、溶射膜の耐食性等の観点、特に塩素系ガスに対する耐食性の観点から好ましい。溶射材料に含まれるY23の量を極力減らすためには、例えば後述する溶射材料の製造方法におけるの第1工程で、YF3を酸素含有雰囲気中で焼成するときの条件を適切に設定すればよい。
本発明の溶射材料に含まれるY23の量を化学分析によって定量することは容易でないことから、本発明においては、溶射材料をX線回折測定したときの回折ピークの強度からY23の含有量を推定することとしている。詳細には、線源としてCu−Kα線を用いた溶射材料のX線回折測定を行い、2θ=20度〜40度の範囲に観察されるYOFの回折ピークのうち、最大強度のピークを100としたとき、Y23に由来する最大の回折ピークの相対強度を求める。この相対強度が10以下であることが好ましく、5以下であることが更に好ましく、1以下であることが一層好ましい。なおY23に由来する最大の回折ピークは通常2θ=29.1度付近に観察される。
本発明の溶射材料においては、イットリウム(Y)の一部がイットリウム以外の希土類元素(Ln)の少なくとも1種によって置換されていてもよい。こうすることで、溶射膜の各種の特性、例えば耐熱性、耐摩耗性及び耐食性などを一層高めることができる。イットリウム以外の希土類元素(Ln)としては、Sc、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuから選択される少なくとも1種の元素が挙げられる。これらの元素のうち、特にサマリウム(Sm)、ガドリニウム(Gd)、ジスプロシウム(Dy)、エルビウム(Er)及びイッテルビウム(Yb)から選択される少なくとも1種の元素を用いると、耐熱性、耐摩耗性及び耐食性などが更に一層高まるので好ましい。
イットリウム(Y)の一部がイットリウム以外の希土類元素(Ln)で置換されている場合、溶射材料におけるYとLnの合計に対するLnのモル分率は0.01以上0.2以下であることが好ましく、0.02以上0.1以下であることが更に好ましい。希土類元素(Ln)のモル分率をこの範囲内に設定することで、溶射膜の耐熱性、耐摩耗性及び耐食性などを更に一層高めることが可能になる。イットリウム(Y)の一部をイットリウム以外の希土類元素(Ln)で置換するには、例えば後述する本発明の溶射材料の製造方法における第1工程で用いられる原料として、フッ化イットリウムと希土類フッ化物とを併用すればよい。
本発明の溶射材料で用いているYOFは、イットリウム系の溶射材料として従来提案されていた物質あるイットリウムのフッ化物に比べて顆粒の破壊強度を大きくできるという利点を有するので、溶射時に溶射材料を効率的にフレーム中に供給することができる。またYOFは、イットリウムのフッ化物に比べて融点が低いので、より均一な溶射膜を形成できるという利点もある。更に、イットリウムのフッ化物は、クリーニングガスによるプラズマ中の酸素ラジカルにアタックされやすく、そのアタックによってオキシフッ化物に変質しやすい。その結果、溶射膜中にクラック等の欠陥が生じやすい。これに対してYOFは、クリーニングガスによるプラズマ中の酸素ラジカルにアタックされにくいので、溶射膜に欠陥が生じにくく、パーティクル発生がほとんどないという利点がある。
次に本発明の溶射材料の好適な製造方法について説明する。本製造方法は、以下の第1工程〜第5工程に大別される。以下、各工程について詳述する。
・第1工程:イットリウムのフッ化物(YF3)を750℃〜1100℃にて酸素含有雰囲気中で焼成してイットリウムのオキシフッ化物(YOF)を得る。
・第2工程:第1工程で得られたイットリウムのオキシフッ化物(YOF)を粉砕する。
・第3工程:第2工程で得られた粉砕されたイットリウムのオキシフッ化物(YOF)を溶媒と混合してスラリーを得る。
・第4工程:第3工程で得られたスラリーをスプレードライヤーで造粒して造粒物を得る。
・第5工程第4工程で得られた造粒物を300℃〜900℃の温度で焼成してイットリウムのオキシフッ化物(YOF)の顆粒を得る。
〔第1工程〕
本工程においては、原料としてイットリウムのフッ化物であるフッ化イットリウム(YF3)を用いる。またフッ化イットリウムにおけるイットリウムの一部が、イットリウム以外の希土類元素(Ln)の少なくとも1種によって置換されている希土類元素置換フッ化イットリウムを用いることもできる。以下の説明においては、これらを総称して「フッ化イットリウム等」と言う。また、イットリウム及びイットリウム以外の希土類元素(Ln)を総称して「イットリウム等」と言う。更に、オキシフッ化イットリウム及びオキシフッ化イットリウムにおけるイットリウムの一部が、イットリウム以外の希土類元素(Ln)の少なくとも1種によって置換されている希土類元素置換オキシフッ化イットリウムを総称して「オキシフッ化イットリウム等」と言う。
フッ化イットリウム等は、種々の方法で合成することができる。特に湿式合成を行うことが、均一な高純度品が容易に得られるという点から好ましい。フッ化イットリウム等は、例えばイットリウム等の酸化物、炭酸塩及び水酸化物等の酸に可溶なイットリウム等の化合物を、硝酸若しくは塩酸によって溶解した液、又はイットリウム等の硝酸塩及び塩化物等の水溶性化合物を、水若しくは水及び酸によって溶解した液と、フッ化水素酸及びフッ化アンモニウム等のフッ素含有水溶性化合物とを混合して、フッ化イットリウム等の沈殿を生成させ、この沈殿の洗浄及びろ過を行い、更に乾燥することで得られる。別の方法として、イットリウム等の炭酸塩、シュウ酸塩、水酸化物又は酸化物などを水でスラリーとなし、このスラリーにフッ素含有水溶性化合物を添加して、フッ化イットリウム等の沈殿を生成させ、この沈殿の洗浄及びろ過を行い、更に乾燥することで得られる。
本工程においては、フッ化イットリウム等の焼成を行い、それによってイットリウム等のオキシフッ化物であるオキシフッ化イットリウム等を生成させる。オキシフッ化イットリウム等の生成の程度は、以下に述べる焼成条件によって適切に制御できる。一般的に言って、焼成温度を高めるか、又は焼成時間を長くすると、オキシフッ化イットリウム等の生成の程度が高まり、フッ化イットリウム等の残存量は少なくなる。焼成温度を更に高めるか、又は焼成時間を更に長くすると、酸化イットリウム等が副生し始める。
本工程におけるフッ化イットリウム等の焼成温度は750℃〜1100℃であることが好ましい。焼成温度を750℃以上とすることで、溶射材料における酸素含有量を十分に高くすることができ、オキシフッ化イットリウム等を十分に生成させることができる。一方、焼成温度を1100℃以下とすることで、酸化イットリウムの過剰生成を抑制することができる。酸化イットリウムの過剰生成は、溶射膜の耐食性を低下させる観点から極力避けるべきものである。これらの観点から、フッ化イットリウム等の焼成温度は800℃〜1050℃であることが更に好ましく、850℃〜1000℃であることが一層好ましい。
焼成時間は、焼成温度が上述の範囲内であることを条件として、1時間〜48時間、特に2時間〜36時間とすることが、オキシフッ化イットリウム等を十分に生成させる点、及び酸化イットリウムの過剰生成を抑制する点から好ましい。
焼成雰囲気は、フッ化イットリウム等を原料としてオキシフッ化イットリウム等を生成させる観点から、酸素含有雰囲気とすることが望ましい。酸素含有雰囲気としては、大気を用いることが雰囲気調整が不要である点から簡便である。
以上のとおり、本工程によれば焼成の程度に応じて、フッ化イットリウム等を含むか又は含まないオキシフッ化イットリウム等が得られる。そこで以下の説明においては、フッ化イットリウム等を含むか又は含まないオキシフッ化イットリウム等を総称して「オキシフッ化イットリウム類」と言う。
〔第2工程〕
本工程では、第1工程で得られたオキシフッ化イットリウム類を粉砕する。粉砕には、乾式粉砕及び湿式粉砕のいずれもが使用可能である。粉砕は1段階で実施してもよく、あるいは2段階以上で実施してもよい。特に、第1工程で得られたオキシフッ化イットリウム類が塊状になっている場合には、2段階以上の粉砕を行い、かつ各段階で適合した粉砕機を使用することが好ましい。2段階以上の粉砕を行う場合には、コストと手間の点から2段階での粉砕を行うことが好ましい。
本工程において、乾式粉砕を行わない直接湿式粉砕又は乾式粉砕後に湿式粉砕を行う場合には、本工程と、次に述べる第3工程とを兼ねて実施することが可能である。乾式粉砕を行う場合には、例えば擂潰機、ジェットミル、ボールミル、ハンマーミル及びピンミルなどの各種乾式粉砕機を用いることができる。一方、湿式粉砕を行う場合には、例えばボールミルやビーズミルなどの各種湿式粉砕機を用いることができる。
本工程におけるオキシフッ化イットリウム類の粉砕の程度は、レーザ回折・散乱式粒子径・粒度分布測定装置を用いて測定したD50が0.3〜5μmとなる程度であることが好ましい。この程度の粉砕を行うことで、均一な顆粒を製造できるとともに、顆粒の破壊強度を高くすることができる。これらの観点から、D50は0.5〜3μmであることが更に好ましい。
〔第3工程〕
本工程では、第2工程で得られた、粉砕されたオキシフッ化イットリウム類を溶媒に撹拌混合してスラリーを得る。溶媒の種類に特に制限はなく、例えば水や各種の有機溶媒を用いることができる。本工程の次に行うスプレードライヤー法で造粒物を首尾よく得る点から、スラリー中におけるオキシフッ化イットリウム類の濃度は100g/L〜2000g/L、特に200g/L〜1500g/Lとすることが好ましい。スラリーの濃度をこの範囲内に設定することで、エネルギーの過度の消費を抑制することができ、またスラリーの粘度が適切なものになって噴霧を安定させることができる。なお、上述した特許文献1においては、スラリー中に結合剤を添加することを必須としていたが、本製造方法によれば結合剤を使用しなくても十分な破壊強度を有する顆粒が得られる。尤も、本製造方法において結合剤を用いることは妨げられない。
〔第4工程〕
本工程では、第3工程で得られたスラリーを、スプレードライヤーで造粒してオキシフッ化イットリウム類の造粒物を得る。スプレードライヤーを運転するときのアトマイザーの回転数は5000min-1〜30000min-1とすることが好ましい。回転数を5000min-1以上とすることで、スラリー中でのオキシフッ化イットリウム類の分散を十分に行うことができ、それによって均一な造粒物を得ることができる。一方、回転数を30000min-1以下とすることで、目的とする粒径の顆粒が得られやすくなる。これらの観点から、アトマイザー回転数は6000min-1〜25000min-1とすることが更に好ましい。
スプレードライヤーを運転するときの入口温度は150℃〜300℃とすることが好ましい。入口温度を150℃以上とすることで、固形分の乾燥を十分に行うことができ、残存する水分が少ない顆粒を得やすくなる。一方、入口温度を300℃以下とすることで、無駄なエネルギーの消費を抑制できる。
〔第5工程〕
本工程では、第4工程で得られた造粒物を焼成してオキシフッ化イットリウム類の造粒顆粒を得る。この焼成の程度に応じて、顆粒の破壊強度を制御することができる。詳細には、焼成温度は300℃〜900℃であることが好ましい。焼成温度を300℃以上とすることで、造粒された顆粒の破壊強度を十分に高くすることができる。一方、焼成温度を900℃以下とすることで、造粒された顆粒の破壊強度が過度に高くなることを防止することができる。これらの観点から、焼成温度は350℃〜800℃とすることが更に好ましく、400℃〜700℃とすることが一層好ましい。
焼成時間は、焼成温度が上述の範囲内であることを条件として、1時間〜48時間とすることが更に好ましく、2時間〜36時間とすることが一層好ましい。焼成は、一般に大気雰囲気下で行うことが簡便であるが、それ以外の雰囲気下、例えば不活性雰囲気下で焼成を行ってもよい。
このようにして得られた溶射材料は、各種の溶射、例えばプラズマ溶射に好適に用いられる。溶射の対象となる基材としては、例えばアルミニウム等の各種の金属、アルミニウム合金等の各種の合金、アルミナ等の各種のセラミックス、石英などが用いられる。また、本発明の溶射材料は、溶射材料としてだけではなく、その他の用途、例えばセラミックス部品の材料としても好適に用いることができる。詳細には、本発明の溶射材料を、例えば通常のプレス法、CIP、HIP法等で製造されるセラミックス部品の原料として用いると、平滑性や耐パーティクル性などに優れたセラミックス部品を得ることができる。そのようなセラミックス部品は、例えば電子材料やその焼成時の治具に好適に用いられる。
以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。特に断らない限り、「%」は「質量%」を意味する。
〔実施例1〕
本実施例ではYOF及びYF3からなる顆粒からなる溶射材料を、以下の(ア)〜(エ)の工程にしたがい製造した。
(ア)第1工程
(i)フッ化イットリウムの湿式合成
99.9%酸化イットリウム300kgを、撹拌した純水400L中に投入してスラリーを得た。そこへ15mol/Lの硝酸水溶液を5L/分の速度で550L添加した後、30分間撹拌を続けた。その後、真空ろ過を行い、Y23換算で270g/Lの溶解液1100Lを得た。
この溶解液を撹拌しながら、50%フッ化水素酸300Lを5L/分の速度で添加してフッ化イットリウムの沈殿を生成させた。沈殿の沈降、上澄液抜出、純水添加及びリパルプの各操作を2回実施した後、再度、沈降、上澄液抜出を行った。このようにして得られた泥状物を、ポリ四フッ化エチレン製のバットに入れて150℃で48時間乾燥させた。次いで、乾燥物を粉砕してフッ化イットリウムを得た。このフッ化イットリウムについてX線回折測定を行ったところ、YF3の回折ピークのみが観察され、オキシフッ化イットリウム(YOF)の回折ピークは観察されなかった。
(ii)フッ化イットリウムの焼成
(i)で得られたフッ化イットリウムをアルミナ製の容器に入れ、大気雰囲気下、電気炉中で焼成した。焼成温度及び焼成時間は表1に示すとおりとした。
(イ)第2工程及び第3工程
第1工程で得られた焼成品を純水とともにビーズミルに入れて湿式粉砕した。マイクロトラックHRAにて測定したD50が1.0μm〜2.0μmになるように粉砕を実施した。粉砕後、更に純水加えて濃度調整を行い500g/Lのスラリーとなした。
(ウ)第4工程
第3工程で得られたスラリーを、スプレードライヤー(大河原化工機(株)製)を用いて造粒・乾燥し、造粒物を得た。スプレードライヤーの操作条件は以下のとおりとした。
・スラリー供給速度:300mL/min
・アトマイザー回転数:9000min-1
・入口温度:200℃
(エ)第5工程
第4工程で得られた造粒物をアルミナ製の容器に入れ、大気雰囲気下、電気炉中で焼成して造粒顆粒を得た。焼成温度は600℃、焼成時間は12時間とした。顆粒の平均粒径D50を上述の方法で測定したところ約50μmであった(以下に述べる実施例及び比較例でもほぼ同じ値であった。)。形状は略球状であった。このようにして、目的とする溶射材料を得た。
〔実施例2ないし11及び比較例1〕
実施例1の第1工程におけるフッ化イットリウムの焼成を、表1に示す条件で行う以外は実施例1と同様にして溶射材料を得た。
〔比較例2〕
本比較例では酸化イットリウムの溶射材料を製造した。市販の酸化イットリウムを用い、実施例1における第2工程〜第4工程と同様の工程を行った。次いで、実施例1における第5工程と同様の工程を行った。ただし焼成温度を1300℃とした。このようにして目的とする溶射材料を得た。
Figure 2014009361
〔実施例12〕
本実施例は、イットリウムの一部がイットリウム以外の希土類元素(Ln)によって置換された溶射材料を製造した例である。
(ア)第1工程
(i)イットリウム及びサマリウムのフッ化物の湿式合成
実施例1における第1工程で用いた酸化イットリウムに代えて、酸化イットリウムと酸化サマリウムとの混合物を用いた。両者の使用量は以下の表2に示すとおりとした。この混合物を撹拌した純水40L中に投入してスラリーを得た。そこへ15mol/Lの硝酸水溶液を5L/分の速度で55L添加した後、30分間撹拌を続けた。この溶解液を撹拌しながら、50%フッ化水素酸30Lを5L/分の速度で添加して沈殿を生成させた。沈殿の沈降、上澄液抜出、純水添加及びリパルプの各操作を2回実施した後、再度、沈降、上澄液抜出を行った。このようにして得られた泥状物を、ポリ四フッ化エチレン製のバットに入れて150℃で48時間乾燥させた。次いで、乾燥物を粉砕してイットリウム及びサマリウムのフッ化物を得た。
(ii)イットリウム及びサマリウムのフッ化物の焼成
(i)で得られたフッ化物をアルミナ製の容器に入れ、大気雰囲気下、電気炉中で焼成した。焼成温度は900℃、焼成時間は12時間とした。
(イ)第2工程〜第5工程
実施例1と同様にした。これによって、目的とする溶射材料を得た。
〔実施例13ないし16〕
本実施例も、実施例12と同様に、イットリウムの一部がイットリウム以外の希土類元素(Ln)のによって置換された溶射材料を製造した例である。実施例12において、第1工程で用いた酸化サマリウムに代えて、以下の表2に示す希土類酸化物を、同表に示す割合で用いた。これ以外は実施例12と同様にして、目的とする溶射材料を得た。
Figure 2014009361
〔評価〕
実施例及び比較例で得られた溶射材料について上述した方法で顆粒の破壊強度及び酸素含有量を測定した。また、以下に述べる方法でX線回折測定を行い、X線回折図を得た。得られたX線回折図に基づき、YF3、YFO及びY23の各メインピークについて相対強度を算出した。得られたX線回折図の代表例として、実施例4で得られた溶射材料のX線回折図を図1に示す。また、以下に述べる方法で、形成された溶射膜の表面粗さを測定した。更に、以下に述べる方法で、溶射時に顆粒を供給するときの流動性を評価し、パーティクルの発生数を測定した。それらの結果を以下の表3に示す。
〔X線回折測定〕
・装置:UltimaIV(株式会社リガク製)
・線源:CuKα線
・管電圧:40kV
・管電流:40mA
・スキャン速度:2度/min
・ステップ:0.02度
・スキャン範囲:2θ=20度〜40度
〔溶射膜の表面粗さ〕
基材として100mm角のアルミニウム合金板を使用した。この基材の表面にプラズマ溶射を行った。溶射材料の供給装置として、プラズマテクニック製のTWIN−SYSTEM 10−Vを用いた。プラズマ溶射装置として、スルザーメテコ製のF4を用いた。撹拌回転数50%、キャリアガス流量2.5L/min、供給目盛10%、プラズマガスAr/H2、出力35kW、装置−基材間距離150mmの条件で、膜厚約100μmになるようにプラズマ溶射を行った。これによって得られた溶射膜の表面の算術平均粗さ(Ra)及び最大高さ粗さ(Rz)(JIS B 0601:2001)を、触針式表面粗さ測定器(JIS B0651:2001)で測定した。
〔溶射時に顆粒を供給するときの流動性〕
上述した「溶射膜の表面粗さ」の測定を行うために行ったプラズマ溶射において、溶射材料の供給装置に顆粒を供給したときの流動性を目視観察し、以下の基準で評価した。
・“非常に良”:顆粒の流動に全く脈動がなく均一に流れている。
・“良”:顆粒の流動に脈動が若干あるが実用上問題がない。
・“不良”:顆粒の流動に脈動が大きく、場合によっては途中で掃除が必要である。
〔パーティクルの発生数〕
プラズマ溶射を行った100mm角のアルミニウム合金における溶射膜にプラズマエッチングを行った。プラズマエッチングを行うに際しては、チャンバー内には直径3インチのシリコンウエハーを載置しておいた。エッチング作用によって削られて飛散し、シリコンウエハーの表面に付着したパーティクルのうち、粒径が約0.2μm以上のものの数を、拡大鏡を用いて計測した。プラズマエッチング条件は以下のとおり、F系プラズマとした。
・雰囲気ガス CHF3:Ar:O2=80:160:100mL/min
・高周波電力:1300W
・圧力:4Pa
・温度:60℃
・エッチング時間:20時間
また、雰囲気ガスのCHF3をHClに変更してCl系プラズマとした場合についても同様の計測を実施した。
Figure 2014009361
表3における実施例1ないし11の対比から明らかなとおり、第1工程におけるフッ化イットリウムの焼成温度が高くなるほどオキシフッ化イットリウムの生成量が増加することが判る。また、実施例10と実施例11との対比から明らかなとおり、第1工程における焼成温度を1125℃に設定した場合、12時間の焼成ではフッ化イットリウムは消失していないが、24時間の焼成を行うとフッ化イットリウムが消失することが判る。
また、表3に示す結果から明らかなとおり、各実施例の溶射材料は比較例の溶射材料よりも破壊強度が高いことが判る。また、各実施例の溶射材料は比較例の溶射材料よりも流動性が高く、各実施例の溶射材料を用いて溶射を行うと、表面の凹凸の程度が低い溶射膜が得られることが判る。更に、各実施例の溶射材料を用いると、比較例の溶射材料を用いた場合よりもパーティクルの発生の程度が低くなることが判る。すなわち、実施例の溶射材料を用いて得られた溶射膜は、F系プラズマだけでなく、Cl系プラズマに対しても優れた耐食性を示すことが判る。

Claims (13)

  1. イットリウムのオキシフッ化物(YOF)を含む顆粒からなる溶射材料。
  2. 前記顆粒が更にイットリウムのフッ化物(YF3)を含む請求項1に記載の溶射材料。
  3. 酸素含有量が0.3質量%〜13.1質量%である請求項1又は2に記載の溶射材料。
  4. 破壊強度が0.3MPa以上10MPa未満である請求項1ないし3のいずれか一項に記載の溶射材料。
  5. イットリウム(Y)の一部がイットリウム以外の希土類元素(Ln)の少なくとも1種によって置換されており、YとLnの合計に対するLnのモル分率が0.2以下である請求項1ないし4のいずれか一項に記載の溶射材料。
  6. イットリウム以外の希土類元素(Ln)が、サマリウム(Sm)、ガドリニウム(Gd)、ジスプロシウム(Dy)、エルビウム(Er)及びイッテルビウム(Yb)から選択される少なくとも1種である請求項5に記載の溶射材料。
  7. 請求項1ないし6のいずれか一項に記載の溶射材料の製造方法であって、
    イットリウムのフッ化物(YF3)を750℃〜1100℃にて酸素含有雰囲気中で焼成してイットリウムのオキシフッ化物(YOF)を得る第1工程と、
    第1工程で得られたイットリウムのオキシフッ化物(YOF)を粉砕する第2工程と、
    第2工程で得られた粉砕されたイットリウムのオキシフッ化物(YOF)を溶媒と混合してスラリーを得る第3工程と、
    第3工程で得られたスラリーをスプレードライヤーで造粒して造粒物を得る第4工程と、
    第4工程で得られた造粒物を300℃〜900℃の温度で焼成してイットリウムのオキシフッ化物(YOF)の顆粒を得る第5工程と、を含む溶射材料の製造方法。
  8. 第1工程で用いるイットリウムのフッ化物(YF3)を湿式合成によって得る請求項7に記載の製造方法。
  9. 第1工程における酸素含有雰囲気が大気である請求項7又は8に記載の溶射材料の製造方法。
  10. 第1工程で得られたイットリウムのオキシフッ化物(YOF)を、第2工程において直接湿式粉砕するか又は乾式粉砕後に湿式粉砕して、イットリウムのオキシフッ化物(YOF)のスラリーを得る請求項7ないし9のいずれか一項に記載の溶射材料の製造方法。
  11. 第1工程において、イットリウムのフッ化物(YF3)を焼成して、イットリウムのフッ化物(YF3)を含むイットリウムのオキシフッ化物(YOF)を得る請求項7ないし10のいずれか一項に記載の溶射材料の製造方法。
  12. 第1工程で用いるイットリウムのフッ化物(YF3)として、イットリウム(Y)の一部がイットリウム以外の希土類元素(Ln)の少なくとも1種によって置換されたものを用いる請求項7ないし11のいずれか一項に記載の製造方法。
  13. イットリウム以外の希土類元素(Ln)が、サマリウム(Sm)、ガドリニウム(Gd)、ジスプロシウム(Dy)、エルビウム(Er)及びイッテルビウム(Yb)から選択される少なくとも1種である請求12に記載の製造方法。
JP2012144462A 2012-06-27 2012-06-27 溶射材料及びその製造方法 Active JP5396672B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012144462A JP5396672B2 (ja) 2012-06-27 2012-06-27 溶射材料及びその製造方法
KR1020147029850A KR101591891B1 (ko) 2012-06-27 2013-04-12 용사 재료 및 그 제조방법
EP13810681.0A EP2868766B1 (en) 2012-06-27 2013-04-12 Thermal spray material and method for manufacturing same
US14/117,160 US9388485B2 (en) 2012-06-27 2013-04-12 Thermal spray material and process for preparing same
PCT/JP2013/061019 WO2014002580A1 (ja) 2012-06-27 2013-04-12 溶射材料及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012144462A JP5396672B2 (ja) 2012-06-27 2012-06-27 溶射材料及びその製造方法

Publications (2)

Publication Number Publication Date
JP2014009361A true JP2014009361A (ja) 2014-01-20
JP5396672B2 JP5396672B2 (ja) 2014-01-22

Family

ID=49782758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012144462A Active JP5396672B2 (ja) 2012-06-27 2012-06-27 溶射材料及びその製造方法

Country Status (5)

Country Link
US (1) US9388485B2 (ja)
EP (1) EP2868766B1 (ja)
JP (1) JP5396672B2 (ja)
KR (1) KR101591891B1 (ja)
WO (1) WO2014002580A1 (ja)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014040634A (ja) * 2012-08-22 2014-03-06 Shin Etsu Chem Co Ltd 希土類元素オキシフッ化物粉末溶射材料及び希土類元素オキシフッ化物溶射部材
JP2015110844A (ja) * 2015-03-03 2015-06-18 信越化学工業株式会社 希土類元素オキシフッ化物粉末溶射材料及び希土類元素オキシフッ化物溶射部材
JP2016138309A (ja) * 2015-01-27 2016-08-04 日本イットリウム株式会社 溶射用粉末及び溶射材料
JP2016211071A (ja) * 2015-05-08 2016-12-15 東京エレクトロン株式会社 溶射用材料、溶射皮膜および溶射皮膜付部材
JP2016211072A (ja) * 2015-05-08 2016-12-15 東京エレクトロン株式会社 溶射用材料、溶射皮膜および溶射皮膜付部材
JP2016211070A (ja) * 2015-05-08 2016-12-15 東京エレクトロン株式会社 溶射用材料、溶射皮膜および溶射皮膜付部材
JP2017061737A (ja) * 2015-09-25 2017-03-30 株式会社フジミインコーポレーテッド 溶射材料
KR20170048177A (ko) * 2015-10-23 2017-05-08 신에쓰 가가꾸 고교 가부시끼가이샤 불화이트륨 용사 재료 및 옥시불화이트륨 성막 부품, 및 그들의 제조 방법
JP2017186678A (ja) * 2017-07-12 2017-10-12 信越化学工業株式会社 希土類元素オキシフッ化物粉末溶射材料及び希土類元素オキシフッ化物溶射部材
JP2017218345A (ja) * 2016-06-07 2017-12-14 三井金属鉱業株式会社 焼結体
KR20180000309A (ko) * 2016-06-22 2018-01-02 니혼도꾸슈도교 가부시키가이샤 옥시불화이트륨 용사막 및 그 제조방법, 및 용사부재
JP2018053356A (ja) * 2016-09-21 2018-04-05 日本特殊陶業株式会社 フッ化イットリウム系溶射膜及びその製造方法、並びに、溶射膜付き基材及びその製造方法
JP2018511943A (ja) * 2015-03-18 2018-04-26 インテグリス・インコーポレーテッド フッ化アニールした膜でコーティングした物品
KR20180051387A (ko) * 2016-11-07 2018-05-16 도쿄엘렉트론가부시키가이샤 용사용 재료와 용사 피막 부착 부재
JP2019026902A (ja) * 2017-07-31 2019-02-21 日本特殊陶業株式会社 溶射材料及びその製造方法
KR20190027880A (ko) 2016-07-14 2019-03-15 신에쓰 가가꾸 고교 가부시끼가이샤 서스펜션 플라스마 용사용 슬러리, 희토류산 불화물 용사막의 형성 방법 및 용사 부재
JP2019515139A (ja) * 2016-05-03 2019-06-06 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 保護金属オキシフッ化物コーティング
JP2019137923A (ja) * 2019-05-21 2019-08-22 信越化学工業株式会社 イットリウムオキシフッ化物粉末溶射材料、及びイットリウムオキシフッ化物溶射部材の製造方法
KR20190132275A (ko) 2018-05-18 2019-11-27 신에쓰 가가꾸 고교 가부시끼가이샤 분무 재료, 분무된 부재 및 제조 방법
JP2020056115A (ja) * 2016-11-07 2020-04-09 東京エレクトロン株式会社 溶射用材料、溶射皮膜および溶射皮膜付部材
KR20220129022A (ko) 2020-01-16 2022-09-22 신에쓰 가가꾸 고교 가부시끼가이샤 용사 재료
KR20220151610A (ko) 2020-03-06 2022-11-15 도카로 가부시키가이샤 신규한 텅스텐계 용사 피막 및 그것을 얻기 위한 용사용 재료
KR20230124032A (ko) 2020-12-22 2023-08-24 신에쓰 가가꾸 고교 가부시끼가이샤 희토류 산화물 용사 재료 및 그 제조 방법, 그리고희토류 산화물 용사막 및 그 형성 방법

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5495165B1 (ja) * 2012-12-04 2014-05-21 日本イットリウム株式会社 溶射材料
US10196536B2 (en) 2013-03-13 2019-02-05 Fujimi Incorporated Slurry for thermal spraying, thermal spray coating, and method for forming thermal spray coating
WO2014142018A1 (ja) 2013-03-13 2014-09-18 株式会社 フジミインコーポレーテッド 溶射用スラリー、溶射皮膜、及び溶射皮膜の形成方法
US20150307715A1 (en) * 2013-08-08 2015-10-29 Nippon Yttrium Co., Ltd. Slurry for thermal spraying
WO2016035870A1 (ja) 2014-09-03 2016-03-10 株式会社フジミインコーポレーテッド 溶射用スラリー、溶射皮膜および溶射皮膜の形成方法
JP5927656B2 (ja) * 2014-11-08 2016-06-01 リバストン工業株式会社 皮膜付き基材、その製造方法、その皮膜付き基材を含む半導体製造装置部材
JP5911036B1 (ja) * 2014-11-21 2016-04-27 日本イットリウム株式会社 焼結体
JP5932072B1 (ja) * 2015-02-12 2016-06-08 三菱日立パワーシステムズ株式会社 溶射粒子の製造方法及び溶射粒子の使用方法
CN107250082B (zh) * 2015-03-05 2018-10-12 日本钇股份有限公司 烧结用材料以及用于制造烧结用材料的粉末
KR20160124992A (ko) * 2015-04-20 2016-10-31 삼성전자주식회사 기판 제조 장치, 및 그의 세라믹 박막 코팅 방법
US10106466B2 (en) 2015-05-08 2018-10-23 Tokyo Electron Limited Thermal spray material, thermal spray coating and thermal spray coated article
TWI751106B (zh) * 2015-05-08 2022-01-01 日商東京威力科創股份有限公司 熔射用材料、熔射被膜及附熔射被膜之構件
US10138167B2 (en) 2015-05-08 2018-11-27 Tokyo Electron Limited Thermal spray material, thermal spray coating and thermal spray coated article
KR101861983B1 (ko) 2015-09-07 2018-05-28 미쓰이금속광업주식회사 옥시불화이트륨, 안정화 옥시불화이트륨 제조용 원료 분말 및 안정화 옥시불화이트륨의 제조 방법
JP6741410B2 (ja) 2015-09-25 2020-08-19 株式会社フジミインコーポレーテッド 溶射用スラリー、溶射皮膜および溶射皮膜の形成方法
JP6706894B2 (ja) * 2015-09-25 2020-06-10 株式会社フジミインコーポレーテッド 溶射材料
JP5996756B2 (ja) * 2015-10-15 2016-09-21 株式会社フジミインコーポレーテッド 溶射用材料
JP6681168B2 (ja) * 2015-10-20 2020-04-15 株式会社フジミインコーポレーテッド 溶射用スラリー、溶射皮膜および溶射皮膜の形成方法
JP6742341B2 (ja) * 2015-12-28 2020-08-19 日本イットリウム株式会社 成膜用材料
US9957192B2 (en) 2016-03-29 2018-05-01 Applied Materials, Inc. Low temperature fluoride glasses and glazes
US9999907B2 (en) * 2016-04-01 2018-06-19 Applied Materials, Inc. Cleaning process that precipitates yttrium oxy-flouride
JP6443380B2 (ja) * 2016-04-12 2018-12-26 信越化学工業株式会社 イットリウム系フッ化物溶射皮膜、及び該溶射皮膜を含む耐食性皮膜
US10538845B2 (en) * 2016-06-22 2020-01-21 Ngk Spark Plug Co., Ltd. Yttrium oxyfluoride sprayed coating and method for producing the same, and sprayed member
TWM563652U (zh) * 2016-10-13 2018-07-11 美商應用材料股份有限公司 用於電漿處理裝置的腔室部件及包含其之裝置
US10087109B2 (en) 2016-11-10 2018-10-02 Toto Ltd. Structure
US10081576B2 (en) * 2016-11-10 2018-09-25 Toto Ltd. Structure
CN109923092B (zh) * 2016-12-20 2022-04-01 三井金属矿业株式会社 稀土氟氧化物烧结体以及其制造方法
CN110382730B (zh) 2017-03-01 2022-09-23 信越化学工业株式会社 喷镀被膜、喷镀用粉、喷镀用粉的制造方法和喷镀被膜的制造方法
US20180327892A1 (en) 2017-05-10 2018-11-15 Applied Materials, Inc. Metal oxy-flouride films for chamber components
WO2018217062A1 (ko) 2017-05-26 2018-11-29 아이원스 주식회사 플로라이드화 이트륨 옥사이드 코팅막의 형성 방법 및 이에 따른 플로라이드화 이트륨 옥사이드 코팅막
KR102106533B1 (ko) * 2017-05-26 2020-05-06 아이원스 주식회사 플로라이드화 이트륨 옥사이드 코팅막의 형성 방법 및 이에 따른 플로라이드화 이트륨 옥사이드 코팅막
KR102027128B1 (ko) * 2017-08-11 2019-10-01 (주)단단 Yof계 분말의 제조방법
KR102080153B1 (ko) * 2017-11-29 2020-02-24 주식회사 싸이노스 습식 코팅재 조성물, 플라즈마 내성 코팅층의 제조방법, 플라즈마 공정챔버 부품 및 그 제조방법
JP7124798B2 (ja) * 2018-07-17 2022-08-24 信越化学工業株式会社 成膜用粉末、皮膜の形成方法、及び成膜用粉末の製造方法
KR102091744B1 (ko) * 2018-08-09 2020-03-20 (주)석경에이티 균일한 입자직경을 가지는 박막 코팅용 이트륨 옥시플루오라이드 또는 이트륨 플루오라이드 분말 및 그들의 제조방법
JP6699701B2 (ja) * 2018-10-16 2020-05-27 信越化学工業株式会社 イットリウム系フッ化物溶射皮膜、該溶射皮膜を形成するための溶射材料、該溶射皮膜の形成方法、及び該溶射皮膜を含む耐食性皮膜
KR20210135225A (ko) 2019-03-07 2021-11-12 닛폰 이트륨 가부시키가이샤 소결체
KR102319854B1 (ko) * 2019-12-27 2021-11-01 (주)케이디엠씨 용사재료 제조방법
JP7420093B2 (ja) 2021-01-28 2024-01-23 信越化学工業株式会社 成膜用材料及び成膜用スラリー

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4057433A (en) * 1974-03-05 1977-11-08 Rem Metals Corporation Oxyfluoride-type mold for casting molten reactive and refractory metals
US6039894A (en) * 1997-12-05 2000-03-21 Sri International Production of substantially monodisperse phosphor particles
US6685991B2 (en) 2000-07-31 2004-02-03 Shin-Etsu Chemical Co., Ltd. Method for formation of thermal-spray coating layer of rare earth fluoride
JP3523222B2 (ja) 2000-07-31 2004-04-26 信越化学工業株式会社 溶射材料およびその製造方法
EP1239055B1 (en) 2001-03-08 2017-03-01 Shin-Etsu Chemical Co., Ltd. Thermal spray spherical particles, and sprayed components
JP3894313B2 (ja) * 2002-12-19 2007-03-22 信越化学工業株式会社 フッ化物含有膜、被覆部材及びフッ化物含有膜の形成方法
JP3735671B2 (ja) 2003-06-11 2006-01-18 独立行政法人産業技術総合研究所 溶射皮膜の形成方法
EP1992430A1 (en) * 2007-05-15 2008-11-19 Treibacher Industrie AG Yttria-based refractory composition
US9017765B2 (en) 2008-11-12 2015-04-28 Applied Materials, Inc. Protective coatings resistant to reactive plasma processing
JP5861612B2 (ja) 2011-11-10 2016-02-16 信越化学工業株式会社 希土類元素フッ化物粉末溶射材料及び希土類元素フッ化物溶射部材
JP5939084B2 (ja) * 2012-08-22 2016-06-22 信越化学工業株式会社 希土類元素オキシフッ化物粉末溶射材料の製造方法
JP5636573B2 (ja) * 2013-01-18 2014-12-10 日本イットリウム株式会社 溶射材料

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10435569B2 (en) 2012-08-22 2019-10-08 Shin-Etsu Chemical Co., Ltd. Rare earth element oxyflouride powder spray material and sprayed article
JP2014040634A (ja) * 2012-08-22 2014-03-06 Shin Etsu Chem Co Ltd 希土類元素オキシフッ化物粉末溶射材料及び希土類元素オキシフッ化物溶射部材
JP2016138309A (ja) * 2015-01-27 2016-08-04 日本イットリウム株式会社 溶射用粉末及び溶射材料
JP2015110844A (ja) * 2015-03-03 2015-06-18 信越化学工業株式会社 希土類元素オキシフッ化物粉末溶射材料及び希土類元素オキシフッ化物溶射部材
JP2018511943A (ja) * 2015-03-18 2018-04-26 インテグリス・インコーポレーテッド フッ化アニールした膜でコーティングした物品
US10961617B2 (en) 2015-03-18 2021-03-30 Entegris, Inc. Articles coated with fluoro-annealed films
JP2016211071A (ja) * 2015-05-08 2016-12-15 東京エレクトロン株式会社 溶射用材料、溶射皮膜および溶射皮膜付部材
JP2016211072A (ja) * 2015-05-08 2016-12-15 東京エレクトロン株式会社 溶射用材料、溶射皮膜および溶射皮膜付部材
JP2016211070A (ja) * 2015-05-08 2016-12-15 東京エレクトロン株式会社 溶射用材料、溶射皮膜および溶射皮膜付部材
JP2017061737A (ja) * 2015-09-25 2017-03-30 株式会社フジミインコーポレーテッド 溶射材料
JP2017082325A (ja) * 2015-10-23 2017-05-18 信越化学工業株式会社 フッ化イットリウム溶射材料及びオキシフッ化イットリウム成膜部品並びにそれらの製造方法
KR102276661B1 (ko) * 2015-10-23 2021-07-13 신에쓰 가가꾸 고교 가부시끼가이샤 불화이트륨 용사 재료 및 옥시불화이트륨 성막 부품, 및 그들의 제조 방법
KR102276663B1 (ko) * 2015-10-23 2021-07-13 신에쓰 가가꾸 고교 가부시끼가이샤 불화이트륨 용사 재료 및 옥시불화이트륨 성막 부품, 및 그들의 제조 방법
KR20210088495A (ko) * 2015-10-23 2021-07-14 신에쓰 가가꾸 고교 가부시끼가이샤 불화이트륨 용사 재료 및 옥시불화이트륨 성막 부품, 및 그들의 제조 방법
KR102409820B1 (ko) * 2015-10-23 2022-06-16 신에쓰 가가꾸 고교 가부시끼가이샤 불화이트륨 용사 재료 및 옥시불화이트륨 성막 부품, 및 그들의 제조 방법
JP2018184664A (ja) * 2015-10-23 2018-11-22 信越化学工業株式会社 フッ化イットリウム溶射材料及びオキシフッ化イットリウム成膜部品
KR20210019477A (ko) * 2015-10-23 2021-02-22 신에쓰 가가꾸 고교 가부시끼가이샤 불화이트륨 용사 재료 및 옥시불화이트륨 성막 부품, 및 그들의 제조 방법
KR20170048177A (ko) * 2015-10-23 2017-05-08 신에쓰 가가꾸 고교 가부시끼가이샤 불화이트륨 용사 재료 및 옥시불화이트륨 성막 부품, 및 그들의 제조 방법
JP2019515139A (ja) * 2016-05-03 2019-06-06 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 保護金属オキシフッ化物コーティング
JP2022084788A (ja) * 2016-05-03 2022-06-07 アプライド マテリアルズ インコーポレイテッド 保護金属オキシフッ化物コーティング
JP2017218345A (ja) * 2016-06-07 2017-12-14 三井金属鉱業株式会社 焼結体
KR20180000309A (ko) * 2016-06-22 2018-01-02 니혼도꾸슈도교 가부시키가이샤 옥시불화이트륨 용사막 및 그 제조방법, 및 용사부재
KR102364003B1 (ko) * 2016-06-22 2022-02-16 니혼도꾸슈도교 가부시키가이샤 옥시불화이트륨 용사막 및 그 제조방법, 및 용사부재
KR20220148320A (ko) 2016-07-14 2022-11-04 신에쓰 가가꾸 고교 가부시끼가이샤 서스펜션 플라스마 용사용 슬러리, 희토류산 불화물 용사막의 형성 방법 및 용사 부재
KR20190027880A (ko) 2016-07-14 2019-03-15 신에쓰 가가꾸 고교 가부시끼가이샤 서스펜션 플라스마 용사용 슬러리, 희토류산 불화물 용사막의 형성 방법 및 용사 부재
JP2018053356A (ja) * 2016-09-21 2018-04-05 日本特殊陶業株式会社 フッ化イットリウム系溶射膜及びその製造方法、並びに、溶射膜付き基材及びその製造方法
JP2020056115A (ja) * 2016-11-07 2020-04-09 東京エレクトロン株式会社 溶射用材料、溶射皮膜および溶射皮膜付部材
KR20180051387A (ko) * 2016-11-07 2018-05-16 도쿄엘렉트론가부시키가이샤 용사용 재료와 용사 피막 부착 부재
KR102425887B1 (ko) 2016-11-07 2022-07-28 도쿄엘렉트론가부시키가이샤 용사용 재료와 용사 피막 부착 부재
JP2017186678A (ja) * 2017-07-12 2017-10-12 信越化学工業株式会社 希土類元素オキシフッ化物粉末溶射材料及び希土類元素オキシフッ化物溶射部材
JP6993807B2 (ja) 2017-07-31 2022-02-04 日本特殊陶業株式会社 溶射材料の製造方法
JP2019026902A (ja) * 2017-07-31 2019-02-21 日本特殊陶業株式会社 溶射材料及びその製造方法
KR20190132275A (ko) 2018-05-18 2019-11-27 신에쓰 가가꾸 고교 가부시끼가이샤 분무 재료, 분무된 부재 및 제조 방법
US10767251B2 (en) 2018-05-18 2020-09-08 Shin-Etsu Chemical Co., Ltd. Spray material, sprayed member and making method
JP2019137923A (ja) * 2019-05-21 2019-08-22 信越化学工業株式会社 イットリウムオキシフッ化物粉末溶射材料、及びイットリウムオキシフッ化物溶射部材の製造方法
KR20220129022A (ko) 2020-01-16 2022-09-22 신에쓰 가가꾸 고교 가부시끼가이샤 용사 재료
KR20220151610A (ko) 2020-03-06 2022-11-15 도카로 가부시키가이샤 신규한 텅스텐계 용사 피막 및 그것을 얻기 위한 용사용 재료
KR20230124032A (ko) 2020-12-22 2023-08-24 신에쓰 가가꾸 고교 가부시끼가이샤 희토류 산화물 용사 재료 및 그 제조 방법, 그리고희토류 산화물 용사막 및 그 형성 방법

Also Published As

Publication number Publication date
EP2868766B1 (en) 2019-01-09
WO2014002580A1 (ja) 2014-01-03
KR20150005931A (ko) 2015-01-15
EP2868766A1 (en) 2015-05-06
JP5396672B2 (ja) 2014-01-22
US20150096462A1 (en) 2015-04-09
EP2868766A4 (en) 2016-02-24
KR101591891B1 (ko) 2016-02-04
US9388485B2 (en) 2016-07-12

Similar Documents

Publication Publication Date Title
JP5396672B2 (ja) 溶射材料及びその製造方法
JP5636573B2 (ja) 溶射材料
JP5668260B1 (ja) プラズマ溶射用スラリー
JP5495165B1 (ja) 溶射材料
JP6510824B2 (ja) 溶射用粉末及び溶射材料
JP6742341B2 (ja) 成膜用材料
JP7069469B2 (ja) 成膜用又は焼結用粉末
JP2018076546A (ja) 溶射用材料、溶射皮膜および溶射皮膜付部材
JP6388153B2 (ja) 溶射材料
JP6668024B2 (ja) 溶射材料
JP2024028425A (ja) 溶射皮膜、溶射部材、溶射皮膜の形成方法、及び溶射部材の製造方法
JP7380966B2 (ja) コールドスプレー用材料
JP2020056115A (ja) 溶射用材料、溶射皮膜および溶射皮膜付部材
JPWO2020217552A1 (ja) 成膜用又は焼結用粉末
WO2024053257A1 (ja) 成膜用材料及び皮膜の製造方法
JP2022071737A (ja) コールドスプレー用粉末、コールドスプレー膜及び膜の製造方法
JP2021102546A (ja) 半導体製造装置用耐食材料
JP2018184334A (ja) 成膜用材料の製造方法
JP2008063574A (ja) ユーロピウム賦活酸化イットリウム及びその製造方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131003

R150 Certificate of patent or registration of utility model

Ref document number: 5396672

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250