JP2013216598A - Conduramine f-4 derivative or acid-added salt thereof inhibiting glycosidase, and method for producing the same - Google Patents

Conduramine f-4 derivative or acid-added salt thereof inhibiting glycosidase, and method for producing the same Download PDF

Info

Publication number
JP2013216598A
JP2013216598A JP2012087037A JP2012087037A JP2013216598A JP 2013216598 A JP2013216598 A JP 2013216598A JP 2012087037 A JP2012087037 A JP 2012087037A JP 2012087037 A JP2012087037 A JP 2012087037A JP 2013216598 A JP2013216598 A JP 2013216598A
Authority
JP
Japan
Prior art keywords
group
compound
derivative
general formula
reduced pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012087037A
Other languages
Japanese (ja)
Other versions
JP5848183B2 (en
Inventor
Shinichi Kuno
信一 久野
Masanori Yamaguchi
将憲 山口
Atsushi Takahashi
篤 高橋
Seiichiro Ogawa
誠一郎 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokko Chemical Industry Co Ltd
Original Assignee
Hokko Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokko Chemical Industry Co Ltd filed Critical Hokko Chemical Industry Co Ltd
Priority to JP2012087037A priority Critical patent/JP5848183B2/en
Publication of JP2013216598A publication Critical patent/JP2013216598A/en
Application granted granted Critical
Publication of JP5848183B2 publication Critical patent/JP5848183B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Furan Compounds (AREA)
  • Pyridine Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new conduramine F-4 derivative or its acid-added salt useful as a highly active glycosidase inhibitor, and to provide a method for producing the same.SOLUTION: A conduramine F-4 derivative or its acid-added salt is represented by general formula (1) or (2), wherein Rand Rare each H, alkyl, hydroxyalkyl, alkenyl, alkynyl, acyl, aryl, heteroaryl or aralkyl; Rand Rmay form a nonaromatic ring by combining with the nitrogen atoms binding thereto respectively; Rand Rare not H at the same time; Rto Rare each hydroxy or protected hydroxy; Rand Rmay form an acetal group by combining together; and Ris H or methyl.

Description

本発明は、グリコシダーゼ阻害活性を有する新規コンデュラミン誘導体およびその製造方法、さらにこの誘導体を有効成分とするグリコシダーゼ阻害剤に関する。   The present invention relates to a novel chondramine derivative having glycosidase inhibitory activity, a method for producing the same, and a glycosidase inhibitor containing the derivative as an active ingredient.

糖加水分解酵素、すなわちグリコシダーゼは生体内で重要な役割を担う酵素であり、その阻害剤は糖尿病治療薬や抗生剤等の医薬、殺菌剤等の農薬、また研究用試薬として有用であることから、これまで多くのグリコシダーゼ阻害剤が開発されてきた(非特許文献1参照)。   Glycosidase, or glycosidase, is an enzyme that plays an important role in vivo, and its inhibitors are useful as antidiabetic and antibiotic drugs, fungicides and other agricultural chemicals, and as research reagents. Many glycosidase inhibitors have been developed so far (see Non-Patent Document 1).

さらに近年、少量のグリコシダーゼ阻害剤が、難病指定されているライソゾーム病に対し治療効果を持つことが見出されている(特許文献1および非特許文献2参照)。すなわち、このようなグリコシダーゼ阻害剤の開発は、難病の治療薬開発へと繋がる可能性も大いに期待できる。   Furthermore, in recent years, it has been found that a small amount of a glycosidase inhibitor has a therapeutic effect on lysosomal disease designated as an intractable disease (see Patent Document 1 and Non-Patent Document 2). That is, the development of such glycosidase inhibitors can be greatly expected to lead to the development of therapeutic agents for intractable diseases.

一方、これまで知られているグリコシダーゼ阻害剤のなかでも、天然物由来のコンデュリトール(conduritol,cyclohex−5−ene−1,2,3,4−tetrol)中にある1個の水酸基をアミノ基に置き換えた有機化合物、すなわちコンデュラミン(conduramine,3− or 4−aminocyclohex−5−ene−1,2,4− or 1,2,3−triol)と呼ばれる下記構造式(4)および(5)

Figure 2013216598
で表される化合物が種々合成され、それらのうちあるものはグリコシダーゼ阻害活性を持つことが知られている(非特許文献3および非特許文献4参照)。さらに、これらのうちあるものは数種類のグリコシダーゼに対し阻害活性を持つ、いわゆる交差阻害活性を示す例が報告されている(非特許文献4参照)。 On the other hand, among the glycosidase inhibitors known so far, one hydroxyl group in a natural product-derived chondritol (conditol, cyclohex-5-ene-1,2,3,4-tetral) is converted to an amino acid. The following structural formulas (4) and (5) which are called organic compounds substituted with a group, that is, concuramin (conduramin, 3-or 4-aminocyclohex-5-ene-1,2,4-or 1,2,3-triol)
Figure 2013216598
It is known that various compounds represented by the above are synthesized, and some of them have glycosidase inhibitory activity (see Non-Patent Document 3 and Non-Patent Document 4). Furthermore, some of these have been reported to have so-called cross-inhibiting activity with respect to several types of glycosidases (see Non-Patent Document 4).

このようなコンデュラミン類の中でも、コンデュラミンF−4[1D−(1,2,4N/3)−4−amino−cyclohex−5−ene−1,2,3−triol]と呼ばれる下記構造式(6)

Figure 2013216598
で表される化合物は、そのシクロヘキセン環上のヒドロキシル基およびアミノ基の立体配置が糖類のベータ−ガラクトースに類似している。従って、コンデュラミンF−4の誘導
体は、特にベータ−ガラクトシダーゼをはじめとする種々のグリコシダーゼの良い阻害剤となることが期待される。 Among such chondramines, the following structural formula (6) referred to as chonduramin F-4 [1D- (1,2,4N / 3) -4-amino-cyclohex-5-ene-1,2,3-triol] )
Figure 2013216598
Is similar to the sugar beta-galactose in the configuration of hydroxyl and amino groups on the cyclohexene ring. Therefore, derivatives of Conduramin F-4 are expected to be good inhibitors of various glycosidases, particularly beta-galactosidase.

しかしながら、これまでベータ−D−ガラクトースに類似した光学活性なコンデュラミンF−4の有機合成自体は報告されているが(非特許文献5参照)、グリコシダーゼ阻害剤として扱われた例はなく、またさらにグリコシダーゼ阻害剤の開発を目的としてコンデュラミンF−4の誘導体が合成されたことはなかった。   However, although organic synthesis of optically active Conduramin F-4 similar to that of beta-D-galactose has been reported so far (see Non-Patent Document 5), no examples have been treated as glycosidase inhibitors, and further No derivative of Conduramin F-4 has been synthesized for the purpose of developing glycosidase inhibitors.

さらには、これまで光学活性なコンデュラミン類を合成する際は、天然物であるD−グルコースやL−クエブラキトール等の光学活性な糖類を出発物質とし、比較的長い製造工程を必要とするもの、または非光学活性な化合物を原料とし、その工程中に光学分割や微生物酸化を要する方法が報告されている(非特許文献3参照)が、光学活性なコンデュラミン類の合成に際し天然物であるクエルシトール類を出発物質とし、光学分割を必要とせず、かつ比較的短工程で簡便に製造する方法は知られていなかった。   Furthermore, when synthesizing optically active chonduramins so far, natural starting materials are optically active sugars such as D-glucose and L-quebrachitol, which require a relatively long production process. Alternatively, a method that uses a non-optically active compound as a raw material and requires optical resolution or microbial oxidation during the process has been reported (see Non-patent Document 3). Quercitol is a natural product in the synthesis of optically active chondramines. There is no known method for easily producing a product in a relatively short process without using an optical resolution as a starting material.

国際公開第03/022797号パンフレットInternational Publication No. 03/022797 Pamphlet

Chemical Reviews、2002年、102巻、p.515−554Chemical Reviews, 2002, 102, p. 515-554 Assay and Drug Development Technologies、2011年、9巻、p.213−235Assay and Drug Development Technologies, 2011, Vol. 9, p. 213-235 Tetrahedron、2006年、62巻、p.2733−2768Tetrahedron, 2006, 62, p. 2733-2768 Bioorganic and Medicinal Chemistry、2006年、14巻、p.6255−6282Bioorganic and Medicinal Chemistry, 2006, 14, p. 6255-6282 Bulletin of the Chemical Society of Japan、1998年、71巻、p.259−272Bulletin of the Chemical Society of Japan, 1998, 71, p. 259-272

医薬、農薬および研究用試薬としての応用が期待されるグリコシダーゼ阻害剤として、高活性を持つ新規化合物が切望されていた。本発明はこのような課題を解決すべくなされたものである。   As glycosidase inhibitors expected to be used as pharmaceuticals, agricultural chemicals and research reagents, new compounds with high activity have been eagerly desired. The present invention has been made to solve such problems.

本発明者らは上記課題を解決するために鋭意研究した。特に、グリコシダーゼの阻害剤としてこれまで注目されてこなかったコンデュラミンF−4[1D−(1,2,4N/3)−4−amino−cyclohex−5−ene−1,2,3−triol]をシード化合物とし、(+)−プロト−クエルシトール[1L−(1,3,4/2,5)−cyclohexane−1,2,3,4,5−pentol]を原料とした合成中間体から様々なコンデュラミンF−4誘導体を製造した。結果、本発明物質であるコンデュラミンF−4誘導体は、グリコシダーゼ、特にベータ−ガラクトシダーゼおよびベータ−グルコシダーゼに対して、強力な阻害活性を示すことを見出し、本発明を完成した。   The present inventors have intensively studied to solve the above problems. In particular, Conduramin F-4 [1D- (1,2,4N / 3) -4-amino-cyclohex-5-ene-1,2,3-triol], which has not been noticed as an inhibitor of glycosidase, has been used. Various synthetic intermediates using (+)-proto-quercitol [1L- (1,3,4,2,5) -cyclohexane-1,2,3,4,5-pentol] as a seed compound A chonduramin F-4 derivative was prepared. As a result, it was found that the Conduramin F-4 derivative, which is the substance of the present invention, exhibits a strong inhibitory activity against glycosidases, particularly beta-galactosidase and beta-glucosidase, and completed the present invention.

すなわち、本発明によれば、
[1]下記一般式(1)で表されるコンデュラミンF−4誘導体またはその酸付加塩。

Figure 2013216598
式中、R1、R2はそれぞれ独立に水素原子またはアルキル基(連続しない-CH2−が-O-に置き換えられてもよい)、ヒドロキシアルキル基、アルケニル基、アルキニル基、アシル基、アリール基、ヘテロアリール基またはアラルキル基を表し、アラルキル基に含まれるアリール基はヘテロアリール基であってもよい。R1及びR2は、それぞれが結合している窒素原子と一緒になって非芳香環を形成してもよい。ただし、R1及びR2は双方が同時に水素原子であることはない。
3〜R5はそれぞれ独立にヒドロキシル基または保護されたヒドロキシル基を示す。また、R4とR5は一緒になって、アセタール基を形成してもよい。
6は水素原子またはメチル基を表す。
[2]下記一般式(2)で表されるコンデュラミンF−4誘導体またはその酸付加塩。
Figure 2013216598
式中、R1、R2はそれぞれ独立に水素原子またはアルキル基(連続しない-CH2−が-O-に置き換えられてもよい)、ヒドロキシアルキル基、アルケニル基、アルキニル基、アシル基、アリール基、ヘテロアリール基またはアラルキル基を表し、アラルキル基に含まれるアリール基はヘテロアリール基であってもよい。R1及びR2は、それぞれが結合している窒素原子と一緒になって非芳香環を形成してもよい。ただし、R1及びR2は双方が同時に水素原子であることはない。
6は水素原子またはメチル基を表す。
[3](+)−プロト−クエルシトールを出発原料とし、1位、2位、3位および4位のヒドロキシル基の保護化、5位のヒドロキシル基の脱離基への変換、次いで5位のヒドロキシル基の脱離を行い、得られたシクロヘキセン誘導体に対し1位および2位の脱保護、1,2−ジオールのエポキシ化、続いて得られたエポキシドにアミンを開環付加させる工程を含むことを特徴とする、[1]に記載の一般式(1)で表されるコンデュラミンF−4誘導体のうち、R6が水素原子であるものの製造方法。
[4] [3]に記載の方法によりコンデュラミンF−4誘導体を製造し、得られたコンデュラミンF−4誘導体に酸性物質を作用させる、[1]に記載の一般式(1)で表されるコンデュラミンF−4誘導体のうち、R6が水素原子であるものの酸付加塩の製造方法。
[5](+)−プロト−クエルシトールを出発原料とし、1位、2位、3位および4位のヒドロキシル基の保護化、5位のヒドロキシル基の脱離基への変換、次いで5位のヒドロキシル基の脱離を行い、得られたシクロヘキセン誘導体に対し1位および2位の脱保護、1,2−ジオールのエポキシ化、続いて得られたエポキシドにアミンを開環付加させ、さらに3,4位の脱保護を行う工程を含むことを特徴とする、[2]に記載の一般式(2)で表されるコンデュラミンF−4誘導体のうち、R6が水素原子であるものの製造方法。
[6] [5]に記載の方法によりコンデュラミンF−4誘導体を製造し、得られたコンデュラミンF−4誘導体に酸性物質を作用させる、[2]に記載の一般式(2)で表されるコンデュラミンF−4誘導体のうち、R6が水素原子であるものの酸付加塩の製造方法。
[7](+)−プロト−クエルシトールを出発原料とし、下記構造式(3)で表される物質に変換した後、1級ブロモ基の還元、二級ブロモ基のアキシアル体の分離、続いて該アキ
シアル体の2級ブロモ基にアミンを求核付加させる工程を含むことを特徴とする、[1]に記載の一般式(1)で表されるコンデュラミンF−4誘導体のうち、R6がメチル基であるものの製造方法。
Figure 2013216598
式中、Bzはベンゾイル基を表す。
[8] [7]に記載の方法によりコンデュラミンF−4誘導体を製造し、得られたコンデュラミンF−4誘導体に酸性物質を作用させる、[1]に記載の一般式(1)で表されるコンデュラミンF−4誘導体のうち、R6がメチル基であるものの酸付加塩の製造方法。
[9](+)−プロト−クエルシトールを出発原料とし、下記構造式(3)で表される物質に変換した後、1級ブロモ基の還元、二級ブロモ基のアキシアル体の分離、続いて該アキシアル体の2級ブロモ基にアミンを求核付加させ、さらに保護されたヒドロキシル基の脱保護を行う工程を含むことを特徴とする、[2]に記載の一般式(2)で表されるコンデュラミンF−4誘導体のうち、R6がメチル基であるものの製造方法。
Figure 2013216598
式中、Bzはベンゾイル基を表す。
[10] [9]に記載の方法によりコンデュラミンF−4誘導体を製造し、得られたコンデュラミンF−4誘導体に酸性物質を作用させる、[2]に記載の一般式(2)で表されるコンデュラミンF−4誘導体のうち、R6がメチル基であるものの酸付加塩の製造方法。
[11][1]または[2]に記載のコンデュラミンF−4誘導体、またはその酸付加塩を有効成分とするグリコシダーゼ阻害剤、
が提示される。 That is, according to the present invention,
[1] A chondramine F-4 derivative represented by the following general formula (1) or an acid addition salt thereof.
Figure 2013216598
In the formula, R 1 and R 2 are each independently a hydrogen atom or an alkyl group (discontinuous —CH 2 — may be replaced by —O—), a hydroxyalkyl group, an alkenyl group, an alkynyl group, an acyl group, an aryl group Represents an aryl group, a heteroaryl group or an aralkyl group, and the aryl group contained in the aralkyl group may be a heteroaryl group. R 1 and R 2 may form a non-aromatic ring together with the nitrogen atom to which each is bonded. However, R 1 and R 2 are not both hydrogen atoms at the same time.
R 3 to R 5 each independently represent a hydroxyl group or a protected hydroxyl group. R 4 and R 5 may be combined to form an acetal group.
R 6 represents a hydrogen atom or a methyl group.
[2] A chonduramin F-4 derivative represented by the following general formula (2) or an acid addition salt thereof.
Figure 2013216598
In the formula, R 1 and R 2 are each independently a hydrogen atom or an alkyl group (discontinuous —CH 2 — may be replaced by —O—), a hydroxyalkyl group, an alkenyl group, an alkynyl group, an acyl group, an aryl group Represents an aryl group, a heteroaryl group or an aralkyl group, and the aryl group contained in the aralkyl group may be a heteroaryl group. R 1 and R 2 may form a non-aromatic ring together with the nitrogen atom to which each is bonded. However, R 1 and R 2 are not both hydrogen atoms at the same time.
R 6 represents a hydrogen atom or a methyl group.
[3] Using (+)-proto-quercitol as a starting material, protecting the hydroxyl groups at positions 1, 2, 3, and 4; converting the hydroxyl group at the 5-position to a leaving group; It includes the steps of removing the hydroxyl group, deprotecting the 1- and 2-positions of the resulting cyclohexene derivative, epoxidizing the 1,2-diol, and subsequently subjecting the resulting epoxide to ring-opening addition of an amine. Among the corduramine F-4 derivatives represented by the general formula (1) according to [1], wherein R 6 is a hydrogen atom.
[4] Conduramin F-4 derivative is produced by the method described in [3], and an acidic substance is allowed to act on the obtained Conduramin F-4 derivative. It is represented by the general formula (1) described in [1]. A method for producing an acid addition salt of a chondramine F-4 derivative, wherein R 6 is a hydrogen atom.
[5] Using (+)-proto-quercitol as a starting material, protecting the hydroxyl groups at positions 1, 2, 3, and 4; converting the hydroxyl group at the 5 position to a leaving group; Removal of the hydroxyl group, 1- and 2-position deprotection of the resulting cyclohexene derivative, epoxidation of 1,2-diol, followed by ring-opening addition of an amine to the resulting epoxide, A process for producing a derivative of Conduramin F-4 represented by the general formula (2) according to [2], wherein R 6 is a hydrogen atom, comprising a step of deprotecting the 4-position.
[6] Conduramin F-4 derivative is produced by the method described in [5], and an acidic substance is allowed to act on the obtained Conduramin F-4 derivative. The compound is represented by the general formula (2) described in [2]. A method for producing an acid addition salt of a chondramine F-4 derivative, wherein R 6 is a hydrogen atom.
[7] Using (+)-proto-quercitol as a starting material and converting it to a substance represented by the following structural formula (3), followed by reduction of the primary bromo group, separation of the secondary bromo group axial form, Of the chonduramin F-4 derivative represented by the general formula (1) according to [1], including a step of nucleophilic addition of an amine to the secondary bromo group of the axial form, R 6 is A method for producing a methyl group.
Figure 2013216598
In the formula, Bz represents a benzoyl group.
[8] Conduramin F-4 derivative is produced by the method described in [7], and an acidic substance is allowed to act on the obtained Conduramin F-4 derivative. It is represented by the general formula (1) described in [1]. A method for producing an acid addition salt of a chondramine F-4 derivative, wherein R 6 is a methyl group.
[9] Using (+)-proto-quercitol as a starting material and converting it to a substance represented by the following structural formula (3), followed by reduction of a primary bromo group, separation of an axial form of a secondary bromo group, It is represented by the general formula (2) described in [2], which comprises a step of nucleophilic addition of an amine to the secondary bromo group of the axial form and further deprotection of the protected hydroxyl group. Of the Conduramin F-4 derivative, wherein R 6 is a methyl group.
Figure 2013216598
In the formula, Bz represents a benzoyl group.
[10] Conduramin F-4 derivative is produced by the method described in [9], and an acidic substance is allowed to act on the obtained Conduramin F-4 derivative. It is represented by the general formula (2) described in [2]. A method for producing an acid addition salt of a chondramine F-4 derivative, wherein R 6 is a methyl group.
[11] A glycosidase inhibitor comprising as an active ingredient the conduramin F-4 derivative according to [1] or [2], or an acid addition salt thereof,
Is presented.

本発明により提供される上記一般式(1)で表されるコンデュラミンF−4誘導体およびその酸付加塩、ならびに一般式(2)で表されるコンデュラミンF−4誘導体およびその酸付加塩は、医薬、農薬、また研究用試薬として期待される高活性グリコシダーゼ阻害剤として有用である。   The corduramine F-4 derivative represented by the above general formula (1) and its acid addition salt provided by the present invention, and the corduramine F-4 derivative represented by the general formula (2) and its acid addition salt are pharmaceuticals. It is useful as a highly active glycosidase inhibitor that is expected as a pesticide and a research reagent.

また、上記一般式(1)および一般式(2)で表される本発明物質は、(+)−プロト−クエルシトールを原料とする中間体から容易に製造することが出来る。すなわち、本発明により、一般式(1)で表されるコンデュラミンF−4誘導体およびその酸付加塩、ならびに一般式(2)で表されるコンデュラミンF−4誘導体およびその酸付加塩を簡便、安価に提供することが可能である。   In addition, the substance of the present invention represented by the above general formula (1) and general formula (2) can be easily produced from an intermediate using (+)-proto-quercitol as a raw material. That is, according to the present invention, the corduramine F-4 derivative represented by the general formula (1) and its acid addition salt, and the corduramine F-4 derivative represented by the general formula (2) and its acid addition salt can be easily and inexpensively. Can be provided.

本発明化合物(B1〜B24)のウシ肝臓由来ベータ−ガラクトシダーゼに対する阻害活性Inhibitory activity of the compounds of the present invention (B1-B24) on beta-galactosidase derived from bovine liver 本発明化合物(B1〜B24)のアーモンド由来ベータ−グルコシダーゼに対する阻害活性Inhibitory activity of the compounds (B1 to B24) of the present invention against almond-derived beta-glucosidase

本発明物質であるグリコシダーゼ阻害剤は、上記一般式(1)で示されるコンデュラミンF−4誘導体およびその酸付加塩、また上記一般式(2)で示されるコンデュラミンF−4誘導体およびその酸付加塩のうち少なくとも一つを含んでなるが、これらを複数含んでいてもよい。 The glycosidase inhibitor, which is the substance of the present invention, comprises a corduramine F-4 derivative represented by the above general formula (1) and an acid addition salt thereof, and a corduramine F-4 derivative represented by the above general formula (2) and an acid addition salt thereof. Although at least one is included, multiple of these may be included.

上記一般式(1)または一般式(2)の式中、R1、R2はそれぞれ独立に水素原子またはアルキル基、アルキルエーテル基、アルケニル基、アルキニル基、アシル基、アリール基、またはアラルキル基を表す。ただし、R1及びR2は特に双方が同時に水素原子であることはなく、どちらか一方が上記の官能基であり、他方が水素原子または同様の官能基である。また、R1及びR2は、それぞれが結合している窒素原子と一緒になって非芳香環(好ましくは3〜8員環)を形成してもよい。 In the general formula (1) or general formula (2), R 1 and R 2 are each independently a hydrogen atom or an alkyl group, an alkyl ether group, an alkenyl group, an alkynyl group, an acyl group, an aryl group, or an aralkyl group. Represents. However, R 1 and R 2 are not particularly hydrogen atoms at the same time, one of them is the above functional group, and the other is a hydrogen atom or a similar functional group. R 1 and R 2 may form a non-aromatic ring (preferably a 3- to 8-membered ring) together with the nitrogen atom to which each is bonded.

アルキル基としては炭素数1〜23の直鎖または分岐したアルキル基、もしくはシクロアルカンを含むアルキル基が好ましく、特に炭素数1〜15のものが好ましい。なお、アルキル基においては、連続しない−CH2−が−O−に置き換えられてもよい。すなわち、−R−(OR´)n−OR´´のように表示されるものであってもよい。ここでのR、R´はいずれも直鎖または分岐したアルキレン基を表し、R´´はアルキル基を表す。nは0〜4の整数を表すが、特に0〜1が好ましい。これらR、R´、R´´は、硫黄や窒素等のヘテロ原子を含んでいてもよい。また、アルキル基はヒドロキシル基を含むヒドロキシアルキル基であってもよい。 As the alkyl group, a linear or branched alkyl group having 1 to 23 carbon atoms or an alkyl group containing a cycloalkane is preferable, and an alkyl group having 1 to 15 carbon atoms is particularly preferable. In the alkyl group, non-continuous —CH 2 — may be replaced by —O—. That is, it may be displayed as -R- (OR ') n- OR ". Here, R and R ′ both represent a linear or branched alkylene group, and R ″ represents an alkyl group. n represents an integer of 0 to 4, but 0 to 1 is particularly preferable. These R, R ′, and R ″ may contain a hetero atom such as sulfur and nitrogen. The alkyl group may be a hydroxyalkyl group containing a hydroxyl group.

アルケニル基またはアルキニル基としては、炭素数2〜23、好ましくは炭素数2〜15のもので、炭素原子同士の二重結合、三重結合を複数有していてもよい。   The alkenyl group or alkynyl group has 2 to 23 carbon atoms, preferably 2 to 15 carbon atoms, and may have a plurality of double bonds or triple bonds between carbon atoms.

アシル基としては、一般に−CO−Rで表される官能基を持つものであればいずれのものでもよい。上記に示したRの部分は前述のアルキル基、アルケニル基、アルキニル基、また後述のアリール基、アラルキル基のいずれかを表すものである。炭素数は2〜23、特に2〜15のものが好ましい。   Any acyl group may be used as long as it generally has a functional group represented by —CO—R. The R portion shown above represents any one of the above-mentioned alkyl group, alkenyl group, alkynyl group, aryl group and aralkyl group described later. The number of carbon atoms is preferably 2 to 23, particularly preferably 2 to 15.

アリール基としては、炭素数6〜23のものであり、特に炭素数6〜15のものが好ましい。例えばフェニル基やナフチル基が例示され、これらアリール基にアルキル基、アシル基、アミノ基、スルホン基やハロゲン基などの置換基を有するものも含まれる。さらに環内に窒素、酸素、硫黄原子などヘテロ原子を含むヘテロアリール基も含まれる。   As an aryl group, it is a C6-C23 thing, and a C6-C15 thing is especially preferable. For example, a phenyl group and a naphthyl group are exemplified, and those having a substituent such as an alkyl group, an acyl group, an amino group, a sulfone group, or a halogen group are also included in these aryl groups. Furthermore, heteroaryl groups containing heteroatoms such as nitrogen, oxygen, sulfur atoms in the ring are also included.

上記アラルキル基は、前述のアルキル基にアリール基が接続した官能基である。このアラルキル基に含まれるアルキル基の部分は、前述のように直鎖や分岐したものが例示される。また、このアラルキル基に含まれるアリール基についても、前述したような特徴を持つアルキル基、アルキルエーテル基またはアシル基などの置換基を有するものが含まれる。さらに環内に窒素、酸素、硫黄原子などヘテロ原子を含むヘテロアリール基も含まれる。炭素数は7〜23のものが好ましく、特には7〜18のものが好ましい。   The aralkyl group is a functional group in which an aryl group is connected to the aforementioned alkyl group. As for the part of the alkyl group contained in this aralkyl group, those linear or branched as described above are exemplified. The aryl group contained in the aralkyl group also includes those having a substituent such as an alkyl group, an alkyl ether group, or an acyl group having the characteristics described above. Furthermore, heteroaryl groups containing heteroatoms such as nitrogen, oxygen, sulfur atoms in the ring are also included. The number of carbon atoms is preferably 7 to 23, and particularly preferably 7 to 18.

式中、R3〜R5はそれぞれ独立にヒドロキシル基または保護されたヒドロキシル基を示すが、水への溶解度等を考慮すると、特にはヒドロキシル基であることが好ましい。ヒドロキシル基の保護基としては、アルキル基(メチル基、エチル基等)、アシル基(アセチル基、ピバロイル基、ベンゾイル基、トルオイル基等)、シリル基(トリメチルシリル基
、トリエチルシリル基、トリイソプロピルシリル基、tert−ブチルジメチルシリル基等)、アラルキル基(ベンジル基、フェネチル基等)、アルコキシアルキル基(メトキシメチル基、エトキシメチル基、ブトキシメチル基等)、アラルキルオキシアルキル基(ベンジルオキシメチル基等)が例示される。
また、R4とR5は一緒になって、アセタール基(イソプロピリデン基、シクロヘキシリデン基、ベンジリデン基等)を形成してもよい。アセタール基のうち、特にはイソプロピリデン基が、安定性、取り扱い及び脱離の容易性の観点から好ましいが、これに限定はされない。
In the formula, R 3 to R 5 each independently represent a hydroxyl group or a protected hydroxyl group, but considering the solubility in water and the like, a hydroxyl group is particularly preferable. Protecting groups for hydroxyl groups include alkyl groups (methyl group, ethyl group, etc.), acyl groups (acetyl group, pivaloyl group, benzoyl group, toluoyl group, etc.), silyl groups (trimethylsilyl group, triethylsilyl group, triisopropylsilyl group) , Tert-butyldimethylsilyl group, etc.), aralkyl groups (benzyl group, phenethyl group, etc.), alkoxyalkyl groups (methoxymethyl group, ethoxymethyl group, butoxymethyl group, etc.), aralkyloxyalkyl groups (benzyloxymethyl group, etc.) Is exemplified.
R 4 and R 5 may be combined to form an acetal group (an isopropylidene group, a cyclohexylidene group, a benzylidene group, etc.). Of the acetal groups, an isopropylidene group is particularly preferable from the viewpoints of stability, handling, and ease of removal, but is not limited thereto.

さらに式中、R6は水素原子またはメチル基を表す。R6が水素原子の場合は、前述のコンデュラミン類と同じ環骨格を有しているが、R6がメチル基である化合物も、本発明においてはコンデュラミンF−4の5−メチル化体と見なし、コンデュラミンF−4誘導体として扱う。 In the formula, R 6 represents a hydrogen atom or a methyl group. When R 6 is a hydrogen atom, it has the same ring skeleton as the above-mentioned corduramines, but a compound in which R 6 is a methyl group is also regarded as a 5-methylated product of chondramine F-4 in the present invention. , Treated as a Conduramin F-4 derivative.

本発明の化合物は主に酵素阻害剤として用いられることが期待されるので、その観点からある程度の水溶性を有することが好ましい。ところで、上記一般式(1)および一般式(2)で表される化合物はその窒素原子上に酸付加し、塩とすることが出来る。このように本発明の化合物の酸付加した塩は、水溶性が増すと共に、塩となることで固体としてより取り扱いが容易になることが期待され、特に好ましい。このような酸付加塩の作成に用いられる酸性物質の例としては、無機酸(硫酸、硝酸、燐酸、ハロゲン化水素酸(塩酸、臭化水素酸等))および有機酸(酢酸、プロパン酸、メタンスルホン酸、ベンゼンスルホン酸、トルエンスルホン酸、シュウ酸、マレイン酸、マロン酸、コハク酸、フマル酸、マンデル酸、酒石酸、リンゴ酸、アスコルビン酸、クエン酸、乳酸、酪酸、サリチル酸、ニコチン酸等)が好ましいが、これに限定はされない。   Since the compound of the present invention is expected to be mainly used as an enzyme inhibitor, it preferably has some water solubility from that viewpoint. By the way, the compounds represented by the above general formulas (1) and (2) can be acidified on the nitrogen atom to form a salt. As described above, the acid-added salt of the compound of the present invention is particularly preferable because it is expected that the water-solubility is increased and that it becomes easier to handle as a solid by becoming a salt. Examples of acidic substances used to make such acid addition salts include inorganic acids (sulfuric acid, nitric acid, phosphoric acid, hydrohalic acids (hydrochloric acid, hydrobromic acid, etc.)) and organic acids (acetic acid, propanoic acid, Methanesulfonic acid, benzenesulfonic acid, toluenesulfonic acid, oxalic acid, maleic acid, malonic acid, succinic acid, fumaric acid, mandelic acid, tartaric acid, malic acid, ascorbic acid, citric acid, lactic acid, butyric acid, salicylic acid, nicotinic acid, etc. ) Is preferred, but not limited thereto.

<本発明化合物の調製 R6が水素原子である場合>
上記一般式(1)で示される本発明化合物のうち、R6が水素原子であるものの調製は、(+)−プロト−クエルシトールを出発原料とし、1位、2位、3位および4位のヒドロキシル基の保護化、5位のヒドロキシル基の脱離基への変換、次いで5位のヒドロキシル基の脱離を行い、得られたシクロヘキセン誘導体に対し1位および2位の脱保護、1,2−ジオールのエポキシ化、続いて得られたエポキシドにアミンを開環付加させることにより行うことができる。
上記一般式(2)で表される本発明化合物のうち、R6が水素原子であるものも同様の工程により得ることができる。
<Preparation of the compound of the present invention when R 6 is a hydrogen atom>
Among the compounds of the present invention represented by the above general formula (1), those in which R 6 is a hydrogen atom are prepared using (+)-proto-quercitol as a starting material at the 1st, 2nd, 3rd and 4th positions. Protection of the hydroxyl group, conversion of the hydroxyl group at the 5-position to a leaving group, followed by elimination of the hydroxyl group at the 5-position, and deprotection of the 1- and 2-positions of the resulting cyclohexene derivative, -Epoxidation of diols, followed by ring opening addition of amines to the resulting epoxides.
Among the compounds of the present invention represented by the general formula (2), those in which R 6 is a hydrogen atom can also be obtained by the same process.

まず、出発原料である(+)−プロト−クエルシトールのヒドロキシル基のうち、5位の部分を遊離させたまま、残りの1、2、3、4位のヒドロキシル基を選択的に保護する工程について説明する。
ヒドロキシル基の保護基としては、上記した一般にヒドロキシル基の保護基として用いられる保護基が用いられ、また、保護基の種類はすべて同じであってもよいし、2種以上の異なった保護基を含んでいてもよい。さらに、環状アセタール型、環状ケタール型などのように複数の水酸基を1個の保護基で保護してもよい。好ましくは適当な酸を触媒として用い、環状アセタール型保護基によって、(+)−プロト−クエルシトールのトランス配置1、2位のヒドロキシル基、およびシス配置3、4位のヒドロキシル基をそれぞれ位置選択的に保護する方法が取られる。このように光学活性な天然物を出発物質としているのであれば、合成工程中に光学分割等の操作を必要とせず、光学活性な本発明化合物を容易に得ることが可能となる。この場合、酸触媒としては例えば硫酸や塩酸などの鉱酸、パラ-トルエンスルホン酸やカンファースルホン酸などの有機酸、三フッ化ホウ素、トリメチルシリルトリフラート、イットリビウムトリフラート、スカンジウムトリフラート、塩化鉄、塩化ジルコニウムなどのルイス酸を、(+)−プロト−クエルシトールに対し0.
1〜1当量用いることが出来るが、コスト面、収率等の点から塩酸、パラ-トルエンスルホン酸またはカンファースルホン酸を反応原料の0.05〜0.25当量用いることが好ましい。また、反応試剤としては、例えばベンズアルデヒド、アルファ、アルファ−ジメトキシトルエン、アセトン、2,2−ジメトキシプロパン、シクロヘキサノン、1,1−ジメトキシシクロヘキサンなどが挙げられ、特にアルファ、アルファ−ジメトキシトルエン、2,2−ジメトキシプロパン、1,1−ジメトキシシクロヘキサンなどの試剤を用いるならば、これらを(+)−プロト−クエルシトール5〜20当量加えることによって反応を進行させることが出来る。さらにコスト面、収率等の点を考慮すると、2,2−ジメトキシプロパンを8〜12当量用いることが好ましい。反応溶媒としてはこの反応に悪影響を及ぼさない溶媒が使用できるが、例えばアセトンまたはN,N−ジメチルホルムアミドをそれぞれ独立に用いるか、混合して用いることが出来る。容量としては、アセトンを単独で用いる場合、原料である(+)−プロト−クエルシトールを1重量部としてアセトンを30〜120重量部、より好ましくは50〜70重量部用いる。一方、N,N−ジメチルホルムアミドを単独またはアセトンと混合して用いる場合は、総量が5〜10重量部になるように用いることが好ましい。特に混合溶媒である際、N,N−ジメチルホルムアミドとアセトンの容積比は、N,N−ジメチルホルムアミド対アセトンが1対1〜1.5対1の比率であることが好ましい。通常、反応温度は特に限定されず、常温(5〜35℃)、あるいは加熱(溶媒の種類等にもよるがN,N−ジメチルホルムアミドとアセトンの混合溶媒を上記の比の範囲内で用いる場合、70〜80℃が適当である)下に反応が行われる。反応終了後は、減圧濃縮、分液操作など一般的な方法により処理し、カラムクロマトグラフィーおよび再結晶法等の公知の方法によって精製する。
First, regarding the step of selectively protecting the remaining hydroxyl groups at 1, 2, 3, and 4 positions while leaving the 5 position portion out of the starting hydroxyl group of (+)-proto-quercitol explain.
As the protecting group for the hydroxyl group, the protecting groups generally used as the protecting group for the hydroxyl group described above are used, and the types of the protecting groups may be the same, or two or more different protecting groups may be used. May be included. Further, a plurality of hydroxyl groups may be protected with one protective group such as a cyclic acetal type and a cyclic ketal type. Preferably, an appropriate acid is used as a catalyst, and the cyclic configuration of the (+)-proto-quercitol, the hydroxyl group at the 1-position, the hydroxyl group at the 1-position, and the hydroxyl group at the cis-configuration 3, 4 position are regioselectively selected by a cyclic acetal-type protecting group. Protective measures are taken. Thus, if an optically active natural product is used as a starting material, an optically active compound of the present invention can be easily obtained without requiring an operation such as optical resolution during the synthesis step. In this case, the acid catalyst includes, for example, mineral acids such as sulfuric acid and hydrochloric acid, organic acids such as para-toluenesulfonic acid and camphorsulfonic acid, boron trifluoride, trimethylsilyl triflate, yttrium triflate, scandium triflate, iron chloride, chloride Lewis acids, such as zirconium, are reduced to 0.
Although 1 to 1 equivalent can be used, it is preferable to use 0.05 to 0.25 equivalent of hydrochloric acid, para-toluenesulfonic acid or camphorsulfonic acid from the viewpoint of cost, yield and the like. Examples of the reaction reagent include benzaldehyde, alpha, alpha-dimethoxytoluene, acetone, 2,2-dimethoxypropane, cyclohexanone, 1,1-dimethoxycyclohexane, and the like. In particular, alpha, alpha-dimethoxytoluene, 2,2 If reagents such as -dimethoxypropane and 1,1-dimethoxycyclohexane are used, the reaction can be allowed to proceed by adding 5 to 20 equivalents of (+)-proto-quercitol. Furthermore, in consideration of cost and yield, it is preferable to use 8 to 12 equivalents of 2,2-dimethoxypropane. As the reaction solvent, a solvent that does not adversely affect the reaction can be used. For example, acetone or N, N-dimethylformamide can be used independently or in combination. When acetone is used alone, 30 to 120 parts by weight, more preferably 50 to 70 parts by weight of acetone is used with 1 part by weight of (+)-proto-quercitol as a raw material. On the other hand, when N, N-dimethylformamide is used alone or mixed with acetone, the total amount is preferably 5 to 10 parts by weight. In particular, when the solvent is a mixed solvent, the volume ratio of N, N-dimethylformamide to acetone is preferably 1 to 1.5 to 1 for N, N-dimethylformamide to acetone. Usually, the reaction temperature is not particularly limited, and when using a mixed solvent of N, N-dimethylformamide and acetone within the above-mentioned ratio range depending on the normal temperature (5 to 35 ° C.) or heating (depending on the type of the solvent). 70-80 ° C is suitable). After completion of the reaction, the reaction is performed by a general method such as concentration under reduced pressure or liquid separation operation, and purified by a known method such as column chromatography or recrystallization.

以下、スキーム1にしたがって、本発明化合物(R6=水素原子)の調製の具体例について説明する。ただし、本発明化合物およびその調製法は以下の態様には限定されない。 Hereinafter, specific examples of the preparation of the compound of the present invention (R 6 = hydrogen atom) will be described according to Scheme 1. However, this invention compound and its preparation method are not limited to the following aspects.

<スキーム1:A1〜A23およびB1〜B23の製造スキーム>

Figure 2013216598
スキーム1中、R1、R2は上記の通りであり、Msはメシル(メタンスルホニル)基を表す。 <Scheme 1: Production scheme of A1 to A23 and B1 to B23>
Figure 2013216598
In Scheme 1, R 1 and R 2 are as described above, and Ms represents a mesyl (methanesulfonyl) group.

まず、(+)−プロト−クエルシトールの1位、2位、3位および4位のヒドロキシル基の保護化であるが、これについては、上記の方法において、反応試剤として2,2−ジメトキシプロパンを用いることにより、(+)−プロト−クエルシトールから1,2:3,4−Di−O−イソプロピリデン−(+)−プロト−クエルシトール(下記スキーム1の化合物6)を得ることが出来る。   First, the hydroxyl group at the 1-position, 2-position, 3-position and 4-position of (+)-proto-quercitol is protected. In this method, 2,2-dimethoxypropane is used as a reaction reagent in the above method. By using it, 1,2: 3,4-Di-O-isopropylidene-(+)-proto-quercitol (compound 6 of the following scheme 1) can be obtained from (+)-proto-quercitol.

続いて、1,2:3,4−Di−O−イソプロピリデン−(+)−プロト−クエルシトール(化合物6)中にある無保護の5位ヒドロキシル基を適当な脱離基に変換して化合物7とし、さらに適当な塩基を用いて化合物7中の脱離基を脱離させ、環内に二重結合を持つ化合物8を得ることが出来る。続いて適当な強さをもつ酸触媒により、化合物8のトランス配置にある1位と2位の保護基を選択的に加溶媒分解し化合物9(シクロヘキセン誘導体)を得、その後、化合物9中のトランス−ジオールを適当な試薬によってエポキシ化し、化合物10が得られる。化合物10に望みのアミノ基を付加させることによって、上記一般式(1)で表される本発明化合物のうち、R6が水素原子であるもの(例えばスキーム1中の化合物1´)を得ることが出来る。また、得られた本発明化合物に、上記した適当な酸を作用させれば、酸付加塩2’を得ることが出来る。同時に3位と4位も脱保護させることができる。
これらヒドロキシル基の脱離基への変換、塩基による脱離、トランス−ジオールの脱保護、エポキシ化、アミノ化、およびアミノ基への酸付加は当業者であれば容易に行うことが出来る。
Subsequently, the unprotected 5-position hydroxyl group in 1,2: 3,4-Di-O-isopropylidene-(+)-proto-quercitol (compound 6) is converted to a suitable leaving group The compound 8 having a double bond in the ring can be obtained by removing the leaving group from the compound 7 using a suitable base. Subsequently, the protecting groups at the 1-position and 2-position in the trans configuration of compound 8 are selectively solvolyzed with an acid catalyst having an appropriate strength to obtain compound 9 (cyclohexene derivative). Trans-diol is epoxidized with a suitable reagent to give compound 10. By adding a desired amino group to compound 10, among the compounds of the present invention represented by the above general formula (1), R 6 is a hydrogen atom (for example, compound 1 ′ in Scheme 1). I can do it. The acid addition salt 2 ′ can be obtained by reacting the obtained compound of the present invention with the appropriate acid described above. At the same time, the third and fourth positions can be deprotected.
Those skilled in the art can easily convert these hydroxyl groups into leaving groups, elimination with bases, deprotection of trans-diols, epoxidation, amination, and acid addition to amino groups.

以下、5位のヒドロキシル基の脱離基への変換以降の工程について、より具体的に説明する。
化合物6中にある5位ヒドロキシル基の脱離基への変換は、有機合成化学において一般に用いられる試薬を用いて行うことが出来る。例えば、塩化メシル、塩化トシル等の酸塩化物または無水トリフルオロメタンスルホン酸等の酸無水物を1〜10当量、好ましくは2〜5当量用い、また、ピリジン、トリエチルアミン等の適当な塩基を、用いる酸塩化物または酸無水物よりも過剰な範囲で、2〜20当量、好ましくは3〜15当量を作用させることによって行う。反応溶媒としては、前述のピリジンを溶媒として用いることも可能であり、この場合、5〜40重量部、好ましくは10〜30重量部用いる。その他にもジクロロメタン、クロロホルム等も溶媒として使用することが出来る。反応温度としては、低温(−78℃〜5℃)から常温(5〜35℃)また加熱下(60〜120℃)に反応が行われる。反応終了後は、減圧濃縮、分液操作等、一般的な方法により処理し、カラムクロマトグラフィーおよび再結晶法等の公知の方法によって精製する。これに限定はされないが、酸塩化物として塩化メシルを用いた場合、スキーム1に示した化合物7を得ることが出来る。
Hereinafter, the steps after the conversion of the hydroxyl group at the 5-position to the leaving group will be described more specifically.
Conversion of the 5-position hydroxyl group in compound 6 to a leaving group can be performed using a reagent generally used in organic synthetic chemistry. For example, 1-10 equivalents, preferably 2-5 equivalents, of acid chlorides such as mesyl chloride and tosyl chloride or acid anhydrides such as trifluoromethanesulfonic anhydride are used, and an appropriate base such as pyridine and triethylamine is used. It is carried out by reacting 2 to 20 equivalents, preferably 3 to 15 equivalents, in an excess range than the acid chloride or acid anhydride. As the reaction solvent, the above-mentioned pyridine can be used as a solvent. In this case, 5 to 40 parts by weight, preferably 10 to 30 parts by weight are used. In addition, dichloromethane, chloroform and the like can also be used as a solvent. As the reaction temperature, the reaction is carried out from a low temperature (−78 ° C. to 5 ° C.) to a normal temperature (5-35 ° C.) or under heating (60 to 120 ° C.). After completion of the reaction, the reaction is performed by a general method such as concentration under reduced pressure or liquid separation operation, and purified by a known method such as column chromatography or recrystallization. Although not limited thereto, when mesyl chloride is used as the acid chloride, compound 7 shown in Scheme 1 can be obtained.

得られた化合物7は、適当な嵩高い塩基、例えばジアザビシクロウンデセン、ジアザビシクロノネン等、を2〜20当量、好ましくは5〜10当量作用させることにより脱離基部分をE2脱離させ、化合物8を得ることが出来る。通常、本発明中におけるこの脱離反応は置換基を有していないメチレン側からのみ生じ、目的の化合物8を容易に得ることが出来る。反応溶媒としてはベンゼン、トルエン等の反応を妨害せず、かつ後述の理由によりある程度沸点が高い溶媒が好ましく、これを10〜50重量部、好ましくは15〜35重量部用いる。反応温度としては、通常、常温(5〜35℃)から加熱(60〜120℃)下に反応が行われるが、迅速に反応を進めるためには加熱下に反応を行うことが好ましい。反応終了後は、減圧濃縮、分液操作等、一般的な方法により処理し、カラムクロマトグラフィーおよび再結晶法等の公知の方法によって精製した後、化合物8を得ることが出
来る。
The resulting compound 7 is capable of removing E2 from the leaving group by reacting 2 to 20 equivalents, preferably 5 to 10 equivalents, of a suitable bulky base such as diazabicycloundecene or diazabicyclononene. Compound 8 can be obtained. Usually, this elimination reaction in the present invention occurs only from the methylene side having no substituent, and the target compound 8 can be easily obtained. As the reaction solvent, a solvent such as benzene and toluene that does not interfere with the reaction and has a somewhat high boiling point for the reasons described later is used, and this is used in an amount of 10 to 50 parts by weight, preferably 15 to 35 parts by weight. The reaction temperature is usually from normal temperature (5 to 35 ° C.) to heating (60 to 120 ° C.), but it is preferable to carry out the reaction under heating in order to rapidly proceed the reaction. After completion of the reaction, compound 8 can be obtained after treatment by a general method such as concentration under reduced pressure or liquid separation operation and purification by a known method such as column chromatography or recrystallization method.

化合物8のような1,2−ジオールおよび3,4−ジオールが、特にそれぞれ同一のアセタール基によって保護されている場合、適当な酸を用いることにより、トランス配置にある1,2−ジオールのみを選択的に脱保護化出来ることが知られている。このような目的のために用いられる酸触媒としては、例えばピリジニウム−パラ−トルエンスルホナート等の弱酸を0.05当量〜0.5当量、より好ましくは0.1〜0.25当量用いる。溶媒は、容易に加溶媒分解を生じさせるためにメタノール、エタノール等のプロトン性極性溶媒が好ましく、これらを20〜80重量部、好ましくは40〜60重量部用いる。反応温度としては、通常、低温下(−5℃〜5℃)または常温(5〜35℃)で反応が行われる。反応終了後は、減圧濃縮、分液操作等、一般的な方法により処理し、カラムクロマトグラフィーおよび再結晶法等の公知の方法によって精製し、化合物9が得られる。   When 1,2-diol and 3,4-diol such as compound 8 are each protected by the same acetal group, by using an appropriate acid, only 1,2-diol in the trans configuration can be obtained. It is known that it can be selectively deprotected. As an acid catalyst used for this purpose, for example, a weak acid such as pyridinium-para-toluenesulfonate is used in an amount of 0.05 equivalent to 0.5 equivalent, more preferably 0.1 to 0.25 equivalent. The solvent is preferably a protic polar solvent such as methanol or ethanol in order to easily cause solvolysis, and these are used in an amount of 20 to 80 parts by weight, preferably 40 to 60 parts by weight. As reaction temperature, reaction is normally performed under low temperature (-5 degreeC-5 degreeC) or normal temperature (5-35 degreeC). After completion of the reaction, the compound 9 is obtained by treating by a general method such as concentration under reduced pressure, liquid separation operation, etc., and purifying by a known method such as column chromatography and recrystallization method.

化合物9中の無保護のジオールは、適当な溶媒中、マーティン−スルフランと呼称される有機合成試薬を作用させることにより、エポキシドに変換出来ることが公知である(Journal of the American Chemical Society、1974年、96巻、p.4604−4611)。このとき生成するエポキシドは、その反応機構から、立体的に混みあっているほうのヒドロキシル基の配座側にエポキシドが選択的に生成されることが期待でき、化合物10がほぼ単一物質として得られる。用いるマーティン−スルフランの容量は1当量〜2当量、好ましくは1.1〜1.5当量である。また、溶媒としてはジクロロメタン、クロロホルム等、反応の進行を妨げない溶媒が用いられ、その容量は25〜150重量部、好ましくは50〜100重量部である。反応温度としては、通常、低温下(−5℃〜5℃)または常温(5〜35℃)で反応が行われるが、これに限定はされない。反応終了後は、減圧濃縮、分液操作等、一般的な方法により処理し、カラムクロマトグラフィーおよび再結晶法等の公知の方法によって精製することにより、化合物10が得られる。   It is known that the unprotected diol in compound 9 can be converted to an epoxide by the action of an organic synthesis reagent called Martin-sulfuran in a suitable solvent (Journal of the American Chemical Society, 1974). 96, p. 4604-4611). The epoxide produced at this time can be expected to be selectively produced on the conformation side of the sterically crowded hydroxyl group from the reaction mechanism, and the compound 10 is obtained as a substantially single substance. It is done. The volume of Martin-sulfuran used is 1 equivalent to 2 equivalents, preferably 1.1 to 1.5 equivalents. Moreover, as a solvent, a solvent that does not hinder the progress of the reaction, such as dichloromethane and chloroform, is used, and its volume is 25 to 150 parts by weight, preferably 50 to 100 parts by weight. As the reaction temperature, the reaction is usually performed at a low temperature (−5 ° C. to 5 ° C.) or normal temperature (5-35 ° C.), but is not limited thereto. After completion of the reaction, compound 10 is obtained by treatment by a general method such as concentration under reduced pressure or liquid separation operation and purification by a known method such as column chromatography or recrystallization.

上記の方法に順ずるか、または一般に光延反応として知られる有機合成反応条件下に置くことによっても、ジオールからエポキシドが得られることも知られている(Journal of Organic Chemistry、1981年、46巻、p.2381−2383)ので、これを利用して化合物9から化合物10に変換することが出来る。この際に用いる試薬の容量は、アゾジカルボン酸ジエチルやアゾジカルボン酸ジイソプロピル等のいわゆる光延試薬を1.5〜8当量、好ましくは2〜4当量用い、トリフェニルホスフィン等のリン化合物を2〜8当量、好ましくは2〜4当量用いる。また、溶媒としてはテトラヒドロフラン等、反応の進行を妨げない溶媒が用いられ、その容量は10〜50重量部、好ましくは20〜30重量部である。反応温度としては、通常、常温(5〜35℃)で行われるが、これに限定はされない。反応終了後は、減圧濃縮、分液操作等、一般的な方法により処理し、カラムクロマトグラフィーおよび再結晶法等の公知の方法によって精製することにより、化合物10が得られる。   It is also known that epoxides can be obtained from diols by following the above method or by subjecting them to organic synthesis reaction conditions commonly known as Mitsunobu reaction (Journal of Organic Chemistry, 1981, Vol. 46, p.2381-2383), which can be used to convert compound 9 to compound 10. The volume of the reagent used here is 1.5 to 8 equivalents, preferably 2 to 4 equivalents of a so-called Mitsunobu reagent such as diethyl azodicarboxylate or diisopropyl azodicarboxylate, and 2 to 8 of a phosphorus compound such as triphenylphosphine. Equivalents, preferably 2-4 equivalents are used. Further, as the solvent, a solvent such as tetrahydrofuran that does not hinder the progress of the reaction is used, and the volume thereof is 10 to 50 parts by weight, preferably 20 to 30 parts by weight. The reaction temperature is usually performed at room temperature (5-35 ° C.), but is not limited thereto. After completion of the reaction, compound 10 is obtained by treatment by a general method such as concentration under reduced pressure or liquid separation operation and purification by a known method such as column chromatography or recrystallization.

本発明中の化合物10は、上記のいずれの方法においても得ることが可能である。前者のマーティン−スルフランを用いる方法のほうが反応は短時間で終了するが、試薬が比較的高価であるためコストが高くなる。後者の光延反応を用いる方法では、反応時間が長くなる傾向があるが、試薬のコストは比較的低く抑えることが出来る。実施者の都合によって両者を使い分けることが可能である。   Compound 10 in the present invention can be obtained by any of the above methods. In the former method using Martin-sulfuran, the reaction is completed in a shorter time, but the cost is higher because the reagent is relatively expensive. In the latter method using the Mitsunobu reaction, the reaction time tends to be long, but the cost of the reagent can be kept relatively low. It is possible to use both according to the convenience of the practitioner.

得られた化合物10を、例えば好ましくはアセトニトリル、N,N−ジメチルホルムアミド等の非プロトン性極性溶媒中において望みのアミンと作用させると、化合物10中のエポキシドの開環を伴ってアミノ付加体を得ることが出来る。このアミノ化反応は化合物10中にある、より反応性が高く、立体的に混みあっていないアリル位側から選択的に生
じるので、目的物質である一般式(1)で表される本発明化合物のうちR6が水素原子であるものを容易に得ることが出来る。通常は化合物10に対してアミンを過剰に用い、2〜8当量、より好ましくは2.5〜5当量用いる。用いる溶媒としては、前述のように非プロトン性極性溶媒が好ましいが、精製の際に溶媒を減圧留去することを考慮すると、低沸点のアセトニトリルを用いることが特に好ましく、容量としては30〜100重量部、さらに好ましくは50〜70重量部用いる。反応温度としては、通常、常温(5〜35℃)または加温下(50℃〜85℃)で行われるが、適度に反応を加速させつつ、副反応を抑制するために50℃〜70℃の範囲で行うことが好ましい。反応終了後は、減圧濃縮、分液操作等、一般的な方法により処理し、カラムクロマトグラフィーおよび再結晶法等の公知の方法によって精製することにより、一般式(1)で表される本発明化合物のうち、R6が水素原子であるもの(例えばスキーム1中の化合物1´)を得ることが出来る。
When the obtained compound 10 is allowed to react with a desired amine, for example, preferably in an aprotic polar solvent such as acetonitrile or N, N-dimethylformamide, an amino adduct is obtained with ring opening of the epoxide in compound 10. Can be obtained. Since this amination reaction is selectively generated from the allylic position that is more reactive and is not sterically crowded in the compound 10, the compound of the present invention represented by the general formula (1) as the target substance Of these, those in which R 6 is a hydrogen atom can be easily obtained. Usually, the amine is used in excess with respect to Compound 10, and 2 to 8 equivalents, more preferably 2.5 to 5 equivalents are used. As the solvent to be used, an aprotic polar solvent is preferable as described above, but considering that the solvent is distilled off under reduced pressure during purification, it is particularly preferable to use acetonitrile having a low boiling point, and the volume is 30 to 100. Part by weight, more preferably 50 to 70 parts by weight is used. The reaction temperature is usually room temperature (5-35 ° C.) or under heating (50 ° C.-85 ° C.), but 50 ° C.-70 ° C. to suppress side reactions while appropriately accelerating the reaction. It is preferable to carry out in the range. After completion of the reaction, the present invention represented by the general formula (1) is processed by a general method such as vacuum concentration, liquid separation operation, etc., and purified by a known method such as column chromatography and recrystallization method. Among compounds, a compound in which R 6 is a hydrogen atom (for example, compound 1 ′ in Scheme 1) can be obtained.

また、得られた一般式(1)で表される本発明化合物(R6が水素原子であるもの)に、上記で例示した酸性物質を作用させることにより、酸付加塩を容易に得ることが出来る。この場合、適当な酸性物質を選択することにより、該当化合物中にある3位と4位の脱保護およびアミノ基への酸付加を同時に行うことが可能であり、上記一般式(2)で表される本発明化合物のうち、R6が水素原子であるものが得られる。このような3位と4位の脱保護およびアミノ基への酸付加は当業者であれば容易に行うことが可能である。 Moreover, the acid addition salt can be easily obtained by allowing the acidic substance exemplified above to act on the compound of the present invention represented by the general formula (1) (where R 6 is a hydrogen atom). I can do it. In this case, by selecting an appropriate acidic substance, it is possible to simultaneously perform deprotection at the 3rd and 4th positions and acid addition to the amino group in the corresponding compound. Among the compounds of the present invention, those in which R 6 is a hydrogen atom are obtained. Such deprotection at the 3rd and 4th positions and acid addition to the amino group can be easily carried out by those skilled in the art.

ヒドロキシル基の保護基のうち、上記に記載の方法のように保護基として特にアセタール基を用いる場合は、適当な酸の存在下に置くことにより、脱保護およびアミノ基への酸付加を一工程で行うことが出来、大変便利である。酸としては、上記の項で述べたような酸を用いることが出来るが、適度な酸性度を持ち、また精製が容易であることから、特に好ましいものとして塩酸が例示される。また、用いる酸の容量として、例えば適当な濃度の塩酸水溶液、好ましくは1〜5規定の塩酸水溶液を30〜100重量部、さらに好ましくは50〜70重量部用いる条件が例示される。また、化合物の溶解度から共溶媒を用いることが好ましく、このような共溶媒としては例えばテトラヒドロフランが挙げられ、これを用いる酸性溶液とおよそ等量用いることが好ましい。反応温度としては、通常、常温(5〜35℃)で行われるがこれに限定はされない。反応終了後は、減圧濃縮、分液操作等、一般的な方法により処理し、必要であればカラムクロマトグラフィーおよび再結晶法等の公知の方法によって精製することにより、一般式(2)で表される本発明化合物のうち、R6が水素原子であるもの(スキーム1中、化合物2´)が得られる。 Among the protecting groups for hydroxyl groups, when an acetal group is used as a protecting group as in the method described above, deprotection and acid addition to an amino group are carried out in one step by placing it in the presence of an appropriate acid. This is very convenient. As the acid, an acid as described in the above section can be used, and hydrochloric acid is particularly preferable because it has an appropriate acidity and is easily purified. Moreover, as a capacity | capacitance of the acid to be used, the conditions which use 30-100 weight part of hydrochloric acid aqueous solution of a suitable density | concentration, Preferably 1-5 N hydrochloric acid aqueous solution, More preferably, 50-70 weight part are illustrated, for example. Moreover, it is preferable to use a cosolvent from the solubility of a compound, As such a cosolvent, tetrahydrofuran is mentioned, for example, It is preferable to use about an equivalent amount with the acidic solution using this. The reaction temperature is usually performed at room temperature (5-35 ° C.), but is not limited thereto. After completion of the reaction, it is treated by a general method such as vacuum concentration, liquid separation operation, etc., and if necessary, purified by a known method such as column chromatography or recrystallization method, thereby being represented by the general formula (2). Among the compounds of the present invention, R 6 is a hydrogen atom (in Scheme 1, compound 2 ′).

<本発明化合物の調製 R6がメチル基である場合>
上記一般式(1)で示される本発明化合物のうち、R6がメチル基であるものの調製は、(+)−プロト−クエルシトールを下記構造式(3)で表される物質に変換した後、1級ブロモ基の還元、二級ブロモ基のアキシアル体の分離、続いて該アキシアル体の2級ブロモ基にアミンを求核付加させることができる。上記一般式(2)で表される本発明化合物のうち、R6がメチル基であるものも同様の工程により得ることができる。
<Preparation of the compound of the present invention when R 6 is a methyl group>
Among the compounds of the present invention represented by the above general formula (1), the preparation of those in which R 6 is a methyl group is performed by converting (+)-proto-quercitol into a substance represented by the following structural formula (3). Reduction of the primary bromo group, separation of the axial form of the secondary bromo group, followed by nucleophilic addition of an amine to the secondary bromo group of the axial form. Among the compounds of the present invention represented by the general formula (2), those in which R 6 is a methyl group can also be obtained by the same process.

より具体的には、一般式(1)で表されるコンデュラミンF−4誘導体のうち、R6がメチル基であるものの調製は例えばスキーム2に示したように、天然物である(+)−プロト−クエルシトールから数工程を経て製造される既知物質である、上記構造式(3)で表される化合物(スキーム2中、化合物3。Bioorganic Medicinal
Chemistry Letters、2011年、21巻、p.7189−7192参照)を用いて行うことが出来る。(このように、光学活性な天然物を出発物質としているのであれば、合成工程中に光学分割などの操作を必要とせず、光学活性な本発明物質を容易に得ることが可能となる。)
More specifically, among the Conduramin F-4 derivatives represented by the general formula (1), the preparation of those in which R 6 is a methyl group is a natural product (+) − as shown in Scheme 2, for example. A compound represented by the above structural formula (3), which is a known substance produced from proto-quercitol through several steps (in Scheme 2, Compound 3. Bioorganic Medicinal
Chemistry Letters, 2011, 21, p. 7189-7192). (As described above, if an optically active natural product is used as a starting material, the optically active substance of the present invention can be easily obtained without requiring an operation such as optical resolution during the synthesis step.)

<スキーム2:A24およびB24の製造スキーム>

Figure 2013216598
スキーム2中、Bzはベンゾイル基を表す。 <Scheme 2: Production scheme of A24 and B24>
Figure 2013216598
In scheme 2, Bz represents a benzoyl group.

(+)−プロト−クエルシトールから上記構造式(3)で表される化合物(スキーム2中、化合物3)の製造は、例えば、文献(Bioorganic Medicinal Chemistry Letters、2011年、21巻、p.7189−7192)に記載の方法によることが出来る。   Production of a compound represented by the above structural formula (3) from (+)-proto-quercitol (compound 3 in scheme 2) is described in, for example, literature (Bioorganic Medicinal Chemistry Letters, 2011, Vol. 21, p. 7189- 7192).

スキーム2に示したように、化合物3中にある1級ブロモ基をヒドリド還元し、続いて2級ブロモ基にアミンを求核付加させることにより、本発明化合物である一般式(1)で
表されるコンデュラミンF−4誘導体のうち、R6がメチル基であるもの(例えばスキーム2中の化合物1´´)が製造出来る。また、得られた本発明化合物に上記の項で示したような適当な酸を作用させることで、酸付加塩を得ることも可能である。
As shown in Scheme 2, the primary bromo group in compound 3 is hydride-reduced, followed by nucleophilic addition of an amine to the secondary bromo group. Among the chondramine F-4 derivatives to be produced, those in which R 6 is a methyl group (for example, compound 1 ″ in Scheme 2) can be produced. In addition, an acid addition salt can be obtained by reacting the obtained compound of the present invention with an appropriate acid as shown in the above section.

上記した1級ブロモ基のヒドリド還元、2級ブロモ基へのアミンの求核付加およびアミノ基への酸付加は、当業者であれば容易に行うことが出来る。以下、より具体的に各工程の内容を示す。   The above-described hydride reduction of primary bromo group, nucleophilic addition of amine to secondary bromo group and acid addition to amino group can be easily carried out by those skilled in the art. Hereinafter, the contents of each step will be described more specifically.

上記構造式(3)で表される化合物(スキーム2にある化合物のうち、化合物3)中に存在する2つのブロモ基のうち、適当な還元剤を用いることにより、1級ブロモ基のみを選択的にヒドリド還元することが出来る。このような還元は、例えば水素化ホウ素ナトリウムを作用させることにより可能であるが、1級および2級ブロモ基が存在するなかで1級ブロモ基のみを選択的に還元するためには、還元剤の当量および反応時間を調製することが好ましい。   Of the two bromo groups present in the compound represented by the above structural formula (3) (compound 3 among the compounds in scheme 2), only a primary bromo group is selected by using an appropriate reducing agent. Hydride reduction can be achieved. Such reduction is possible by, for example, acting sodium borohydride, but in order to selectively reduce only the primary bromo group in the presence of the primary and secondary bromo groups, a reducing agent is used. It is preferable to prepare the equivalent amount and reaction time.

例えば化合物3中に存在する一級ブロモ基を還元するには、水素化ホウ素ナトリウムを1〜3当量、より好ましくは1.5〜2.5当量用いる。溶媒としては、試薬の溶解度および反応性を考慮すると非プロトン性極性溶媒が好ましく、ジメチルホルムアミド、ヘキサメチルリン酸トリアミド等が用いられる。さらに試薬の溶解度を考慮すると、これらに水を添加した混合溶媒が好ましい。例えばヘキサメチルリン酸トリアミドと水の混合溶媒を使用するのであれば、その割合はヘキサメチルリン酸トリアミド/水が2/1〜6/1、より好ましくは3/1〜5/1の割合に調節する。反応時間は特に限定されないが、過剰に還元された副生成物の混入を出来るだけ減少させるためには、一級ブロモ基のみが還元された目的物が主成分になった時点で反応を終了させたほうが良い。反応温度としては、通常、常温(5〜35℃)で行われるが、特に限定はされない。反応終了後は、減圧濃縮、分液操作等、一般的な方法により処理し、カラムクロマトグラフィーおよび再結晶法等の公知の方法によって精製することにより、化合物11を得ることが出来る。反応物である化合物3がジアステレオマーであるため、生成物もジアステレオマーの混合物(スキーム2中、化合物11(二級ブロモ基のアキシアル体)および化合物12(二級ブロモ基のエカトリアル体))となるが、カラムクロマトグラフィーおよび再結晶法等の方法により精製することで容易に化合物11を単離することが可能である。   For example, in order to reduce the primary bromo group present in the compound 3, 1 to 3 equivalents, more preferably 1.5 to 2.5 equivalents, of sodium borohydride are used. As the solvent, an aprotic polar solvent is preferable in consideration of the solubility and reactivity of the reagent, and dimethylformamide, hexamethylphosphoric triamide and the like are used. Further, considering the solubility of the reagent, a mixed solvent obtained by adding water to these is preferable. For example, if a mixed solvent of hexamethylphosphoric triamide and water is used, the ratio of hexamethylphosphoric triamide / water is 2/1 to 6/1, more preferably 3/1 to 5/1. Adjust. The reaction time is not particularly limited, but in order to reduce the contamination of excessively reduced by-products as much as possible, the reaction was terminated when the target product in which only the primary bromo group was reduced became the main component. Better. The reaction temperature is usually carried out at room temperature (5-35 ° C.), but is not particularly limited. After completion of the reaction, compound 11 can be obtained by treatment by a general method such as concentration under reduced pressure or liquid separation and purification by a known method such as column chromatography or recrystallization. Since the reactant compound 3 is a diastereomer, the product is also a mixture of diastereomers (in scheme 2, compound 11 (axial secondary bromo group) and compound 12 (secondary bromo group equatorial). However, it is possible to easily isolate the compound 11 by purification by a method such as column chromatography and recrystallization.

得られた化合物11の2位の保護基(ここではベンゾイル基)は、この段階でヒドロキシル基に変換してもよいし、さらに数工程の後、変換してもよい。しかし、化合物11のようにヒドロキシル基の保護基として特にアシル基が含まれる場合は、これより後のアミノ化反応の際にアミンと反応してアミドを生ずる副反応を起こすことがあるので、アミノ化反応の前にヒドロキシル基に変換しておく(すなわち脱保護する)ことが好ましい。アシル基で保護されたヒドロキシル基の脱保護化反応は一般に知られている公知の方法で行うことが出来、例えばメタノール等のアルコール性溶媒中で触媒量のアルコキシドを用いる反応が本発明中でも適応できる。例示される反応条件としては10〜50重量部、より好ましくは20〜30重量部のメタノール中、ナトリウムメトキシドを0.1〜0.3当量、好ましくは0.15〜0.25当量用いる。反応温度としては、低温下(−5℃〜5℃)または常温(5〜35℃)で反応が行われるが、これに限定はされない。反応終了後は、減圧濃縮、分液操作等、一般的な方法により処理し、カラムクロマトグラフィーおよび再結晶法等の公知の方法によって精製することにより、化合物13が得られる。   The protecting group at the 2-position (here, benzoyl group) of the obtained compound 11 may be converted to a hydroxyl group at this stage, or may be converted after several steps. However, when an acyl group is particularly included as a protecting group for a hydroxyl group as in Compound 11, a side reaction that reacts with an amine during the subsequent amination reaction to generate an amide may occur. It is preferable to convert it into a hydroxyl group (that is, deprotection) before the conversion reaction. The deprotection reaction of the hydroxyl group protected with an acyl group can be performed by a generally known method. For example, a reaction using a catalytic amount of an alkoxide in an alcoholic solvent such as methanol can be applied in the present invention. . As exemplified reaction conditions, sodium methoxide is used in an amount of 0.1 to 0.3 equivalent, preferably 0.15 to 0.25 equivalent, in 10 to 50 parts by weight, more preferably 20 to 30 parts by weight of methanol. As the reaction temperature, the reaction is performed at a low temperature (−5 ° C. to 5 ° C.) or normal temperature (5-35 ° C.), but is not limited thereto. After completion of the reaction, compound 13 is obtained by treatment by a general method such as concentration under reduced pressure or liquid separation operation and purification by a known method such as column chromatography or recrystallization method.

化合物13に対し、これまで本発明中に述べたアミノ化反応と同様の条件下でアミノ化を行うことが出来る。例えば溶媒はアセトニトリル、N,N−ジメチルホルムアミド等の非プロトン性極性溶媒、より好ましくはアセトニトリルを15〜50重量部、特に好ましくは35〜45重量部用い、化合物8に対してアミンを過剰にし、2〜8当量、もしくは
2.5〜5当量用いることが特に好ましい。反応温度としては、通常、常温(5〜35℃)または加温下(50℃〜85℃)で行われるが、適度に反応を加速させつつ、副反応を抑制するために50℃〜70℃の範囲で行うことが好ましい。反応終了後は、減圧濃縮、分液操作等、一般的な方法により処理し、カラムクロマトグラフィーおよび再結晶法等の公知の方法によって精製することにより、一般式(1)で表される本発明化合物のうち、R6がメチル基であるもの(例えばスキーム2中の化合物1´´)を得ることが出来る。
Compound 13 can be aminated under the same conditions as in the amination reaction described so far in the present invention. For example, the solvent is an aprotic polar solvent such as acetonitrile or N, N-dimethylformamide, more preferably 15 to 50 parts by weight, particularly preferably 35 to 45 parts by weight of acetonitrile, and an excess of amine with respect to compound 8, It is particularly preferable to use 2 to 8 equivalents or 2.5 to 5 equivalents. The reaction temperature is usually room temperature (5-35 ° C.) or under heating (50 ° C.-85 ° C.), but 50 ° C.-70 ° C. to suppress side reactions while appropriately accelerating the reaction. It is preferable to carry out in the range. After completion of the reaction, the present invention represented by the general formula (1) is processed by a general method such as vacuum concentration, liquid separation operation and the like, and purified by a known method such as column chromatography and recrystallization method. Among the compounds, those in which R 6 is a methyl group (for example, compound 1 ″ in Scheme 2) can be obtained.

また、得られた一般式(1)で表される本発明化合物(R6がメチル基であるもの)に、上記の項で例示した酸性物質を作用させることにより、対応する酸付加塩を得ることが出来る。この場合、適当な酸性物質を選択することにより、該化合物中にある保護されたヒドロキシル基の脱保護およびアミノ基への酸付加を同時に行うことが可能であり、上記一般式(2)で表される本発明化合物のうち、R6がメチル基であるものが得られる。このような保護されたヒドロキシル基の脱保護およびアミノ基への酸付加は当業者であれば容易に行うことが可能である。 Further, the acid compound exemplified in the above section is allowed to act on the compound of the present invention represented by the general formula (1) (R 6 is a methyl group) to obtain the corresponding acid addition salt. I can do it. In this case, by selecting an appropriate acidic substance, it is possible to simultaneously deprotect the protected hydroxyl group in the compound and add an acid to the amino group. Among the compounds of the present invention, R 6 is a methyl group. Such deprotection of a protected hydroxyl group and acid addition to an amino group can be easily carried out by those skilled in the art.

以下、具体的に各工程を示す。
上記に記載の方法によって得られた一般式(1)で表される本発明化合物(R6がメチル基であるもの)中に存在する3位および4位のヒドロキシル基の保護基は、上記の項で述べたように容易にヒドロキシル基に変換することが出来る。3位および4位のヒドロキシル基の保護基のうち、上記に記載の方法のように特にアセタール基を用いる場合は、適当な酸の存在下に置くことにより、脱保護およびアミノ基への酸付加を一工程で行うことが出来る。酸としては、上記の項で述べた酸を用いることが出来、特に好ましいものとして塩酸が例示される。また、用いる酸の容量として、例えば適当な濃度の塩酸水溶液、好ましくは1〜5規定の塩酸水溶液を30〜100重量部、さらに好ましくは50〜70重量部用いる条件が例示される。また、化合物の溶解度から共溶媒を用いることが好ましく、このような共溶媒としては例えばテトラヒドロフランが挙げられ、これを用いる酸性溶液とおよそ等量用いることが好ましい。反応温度としては、通常、常温(5〜35℃)で行われるがこれに限定はされない。反応終了後は、減圧濃縮、分液操作等、一般的な方法により処理し、必要であればカラムクロマトグラフィーおよび再結晶法等の公知の方法によって精製することにより、一般式(2)で表される本発明化合物のうち、R6がメチル基であるもの(例えばスキーム2中の化合物2´´)が得られる。
Hereafter, each process is shown concretely.
The protecting groups for the 3-position and 4-position hydroxyl groups present in the compound of the present invention represented by the general formula (1) obtained by the method described above (where R 6 is a methyl group) are as described above. As described in the section, it can be easily converted into a hydroxyl group. Among the protecting groups for the hydroxyl group at the 3-position and 4-position, particularly when an acetal group is used as in the above-described method, deprotection and acid addition to the amino group are carried out in the presence of an appropriate acid. Can be performed in one step. As the acid, the acid described in the above section can be used, and hydrochloric acid is particularly preferable. Moreover, as a capacity | capacitance of the acid to be used, the conditions which use 30-100 weight part of hydrochloric acid aqueous solution of a suitable density | concentration, Preferably 1-5 N hydrochloric acid aqueous solution, More preferably, 50-70 weight part are illustrated, for example. Moreover, it is preferable to use a cosolvent from the solubility of a compound, As such a cosolvent, tetrahydrofuran is mentioned, for example, It is preferable to use about an equivalent amount with the acidic solution using this. The reaction temperature is usually performed at room temperature (5-35 ° C.), but is not limited thereto. After completion of the reaction, it is treated by a general method such as vacuum concentration, liquid separation operation, etc., and if necessary, purified by a known method such as column chromatography or recrystallization method, thereby being represented by general formula (2). Among the compounds of the present invention to be obtained, those in which R 6 is a methyl group (for example, compound 2 ″ in Scheme 2) are obtained.

本発明に係る一般式(2)で表される化合物の具体例を表1に記載する。ただし、本発明はこれらの具体例に限定されるものではない。なお、表1中の化合物番号は、以下の表2および実施例でも参照される。

Figure 2013216598
Specific examples of the compound represented by the general formula (2) according to the present invention are shown in Table 1. However, the present invention is not limited to these specific examples. In addition, the compound numbers in Table 1 are also referred to in the following Table 2 and Examples.
Figure 2013216598

Figure 2013216598
Figure 2013216598

本発明化合物である上記一般式(1)で表されるコンデュラミンF−4誘導体およびその酸付加塩、また一般式(2)で表されるコンデュラミンF−4誘導体およびその酸付加塩の何れであっても、これを有効成分とするグリコシダーゼ阻害剤に用いることが出来る。有効成分としての本発明化合物は単体でもよいし、複数が含まれていてもよい。
本発明化合物が有するグリコシダーゼに対する阻害活性は、グリコシダーゼと基質が存在する溶液中に、披検物質である本発明化合物を添加し、酵素活性を本発明化合物無添加の場合と比較することで、その阻害活性を算出することが可能である。
It is any of the Conduramin F-4 derivative represented by the above general formula (1) and the acid addition salt thereof, and the Conduramin F-4 derivative represented by the general formula (2) and the acid addition salt thereof. However, it can be used for a glycosidase inhibitor containing this as an active ingredient. The compound of the present invention as an active ingredient may be a simple substance or a plurality thereof may be contained.
The inhibitory activity against glycosidase possessed by the compound of the present invention is determined by adding the compound of the present invention as a test substance to a solution containing glycosidase and a substrate, and comparing the enzyme activity with the case of no addition of the compound of the present invention. Inhibitory activity can be calculated.

以下に実施例を挙げて本発明をさらに具体的に説明するが、本発明の範囲はこれに限定されるものではない。   The present invention will be described more specifically with reference to the following examples, but the scope of the present invention is not limited thereto.

下記実施例における1H−NMR構造解析には日本電子社製、JNM−ECS400装置を使用した。化学シフト値は用いた重溶媒の残存シグナル(CDCl3:7.24ppm,CD3OD;3.30ppm)を内部標準として記録した。また、反応生成物の精製に用いるシリカゲルカラムクロマトグラフィーには、和光純薬社製Wako−gelC−300を使用した。 A JNM-ECS400 apparatus manufactured by JEOL Ltd. was used for 1 H-NMR structural analysis in the following examples. The chemical shift value was recorded using the residual signal of the heavy solvent used (CDCl 3 : 7.24 ppm, CD 3 OD; 3.30 ppm) as an internal standard. Further, Wako-gel C-300 manufactured by Wako Pure Chemical Industries, Ltd. was used for silica gel column chromatography used for purification of the reaction product.

<実施例1>
化合物(1)(R6=H)の合成
<実施例1−1> (3aS,4R,5aR,8aS,8bS)-2,2,7,7-tetramethylhexahydro[1,3]dioxolo[4,5-e][1,3]benzodioxol-4-ol(化合物6)の合成

Figure 2013216598
10.0g(60.9mmol)の(+)−プロト−クエルシトールをN、N−ジメチルホルムアミド(30mL)およびアセトン(40mL)の混合溶媒に溶解させ、これに2、2−ジメトキシプロパン(60mL、488mmol)と濃塩酸(508μL、6.10mmol)を加えた。80℃で2時間攪拌した後、室温まで冷却し、トリエチルアミンを用いて中和した。溶液を減圧濃縮し、残渣に50mLの水を加え、150mLのジエチルエーテルで3回抽出した。有機相を濃縮し、これをシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=4/1→3/1)によって精製し、9.70gの化合物6を得た(65%)。
12205 MW:244.3(計算値)、1H−NMR(400MHz/CD3OD)δ(ppm):1.34(s,3H),1.38(s,2×3H),1.46(s,3H),1.86(ddd,J=4.9,12.2,12.2Hz,1H),2.07(ddd,J=4.1,4.1,12.9Hz,1H),3.50(dd,J=8.2,10.2Hz,1H),3.74(ddd,J=4.7,9.9,11.5Hz,1H),4.19−4.27(3H) <Example 1>
Synthesis of Compound (1) (R 6 = H) <Example 1-1> (3aS, 4R, 5aR, 8aS, 8bS) -2,2,7,7-tetramethylhexahydro [1,3] dioxolo [4,5 -e] [1,3] benzodioxol-4-ol (Compound 6) synthesis
Figure 2013216598
10.0 g (60.9 mmol) of (+)-proto-quercitol was dissolved in a mixed solvent of N, N-dimethylformamide (30 mL) and acetone (40 mL), to which 2,2-dimethoxypropane (60 mL, 488 mmol) was dissolved. ) And concentrated hydrochloric acid (508 μL, 6.10 mmol) were added. After stirring at 80 ° C. for 2 hours, the mixture was cooled to room temperature and neutralized with triethylamine. The solution was concentrated under reduced pressure, 50 mL of water was added to the residue, and the mixture was extracted 3 times with 150 mL of diethyl ether. The organic phase was concentrated and purified by silica gel column chromatography (hexane / ethyl acetate = 4/1 → 3/1) to give 9.70 g of compound 6 (65%).
C 12 H 20 O 5 MW: 244.3 (calculated value), 1 H-NMR (400 MHz / CD 3 OD) δ (ppm): 1.34 (s, 3H), 1.38 (s, 2 × 3H) ), 1.46 (s, 3H), 1.86 (ddd, J = 4.9, 12.2, 12.2 Hz, 1H), 2.07 (ddd, J = 4.1, 4.1) 12.9 Hz, 1H), 3.50 (dd, J = 8.2, 10.2 Hz, 1H), 3.74 (ddd, J = 4.7, 9.9, 11.5 Hz, 1H), 4 19-4.27 (3H)

<実施例1−2>
(3aR,4R,5aR,8aS,8bR)-2,2,7,7-tetramethylhexahydro[1,3]dioxolo[4,5-e][1,3]benzodioxol-4-yl methanesulfonate(化合物7)の合成

Figure 2013216598
(+)−プロト−クエルシトールから調製した化合物6を4.10g(16.8mmol
)取り、これを80mLのピリジンに溶解し、氷浴中で冷却しながら塩化メシル(3.90mL,50.3mmol)を加えた。室温に戻しながら15時間攪拌した後、メタノール20mLを加えて反応を停止させた。トルエンで共沸させながら溶媒を減圧留去し、残渣に25mLの水を加えた。75mLの酢酸エチルで3回抽出した後、有機相を無水硫酸ナトリウムで乾燥、減圧濃縮した。エタノールから結晶化させ、4.58gの化合物7を得た(85%)。
13227S MW:322.3(計算値)、1H−NMR(400MHz/CDCl3)δ(ppm):1.35(s,3H),1.41(s,2×3H),1.51(s,3H),2.20−2.24(ddd,J=7.0,10.8,13.8Hz,1H),2.32(ddd,J=5.3,6.2,13.7Hz,1H),3.07(s,3H),3.59−3.62(m,1H),3.70(ddd,J=6.3,10.3,10.3Hz,1H),4.33−4.37(2H),5.03−5.05(m,1H) <Example 1-2>
(3aR, 4R, 5aR, 8aS, 8bR) -2,2,7,7-tetramethylhexahydro [1,3] dioxolo [4,5-e] [1,3] benzodioxol-4-yl methanesulfonate (compound 7) Composition
Figure 2013216598
4.10 g (16.8 mmol) of compound 6 prepared from (+)-proto-quercitol
This was dissolved in 80 mL of pyridine and mesyl chloride (3.90 mL, 50.3 mmol) was added while cooling in an ice bath. After stirring for 15 hours while returning to room temperature, 20 mL of methanol was added to stop the reaction. The solvent was distilled off under reduced pressure while azeotroping with toluene, and 25 mL of water was added to the residue. After extraction with 75 mL of ethyl acetate three times, the organic phase was dried over anhydrous sodium sulfate and concentrated under reduced pressure. Crystallization from ethanol gave 4.58 g of compound 7 (85%).
C 13 H 22 O 7 S MW: 322.3 (calculated value), 1 H-NMR (400 MHz / CDCl 3 ) δ (ppm): 1.35 (s, 3H), 1.41 (s, 2 × 3H) ), 1.51 (s, 3H), 2.20-2.24 (ddd, J = 7.0, 10.8, 13.8 Hz, 1H), 2.32 (ddd, J = 5.3). 6.2, 13.7 Hz, 1H), 3.07 (s, 3H), 3.59-3.62 (m, 1H), 3.70 (ddd, J = 6.3, 10.3, 10 .3 Hz, 1H), 4.33-4.37 (2H), 5.03-5.05 (m, 1H)

<実施例1−3>(3aR,5aS,8aS,8bS)-2,2,7,7-tetramethyl-3a,5a,8a,8b-tetrahydro[1,3]dioxolo[4,5-e][1,3]benzodioxole(化合物8)の合成

Figure 2013216598
化合物7を2.55g(7.91mmol)取り、70mLのトルエンおよび7.08mLのジアザビシクロウンデセン(47.3mmol)を加えた。7時間加熱還流した後、16時間室温で攪拌した。ジアザビシクロウンデセンをさらに3.50mL(23.5mmol)加え、5時間加熱還流した。室温まで冷却した後、水および飽和食塩水で洗浄した。さらに水相をトルエンで抽出し、前述の有機相に合わせ、無水硫酸ナトリウムによって乾燥後、減圧濃縮した。シリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=95/5)によって精製し、975mgの化合物8を得た(55%)。
12184 MW:226.2(計算値)、1H−NMR(400MHz/CDCl3)δ(ppm):1.35(s,3H),1.42(s,3H),1.44(s,3H),1.49(s,3H),3.52(dd,J=9.2,9.2Hz),4.03(dd,J=1.4,8.7Hz,1H),4.36(dd,J=8.0,8.9Hz,1H),4.79(dd,J=1.8,7.8Hz,1H),5.79(ddd,J=2.6,2.6,9.8Hz,1H),6.16(d,J=10.1,1H) <Example 1-3> (3aR, 5aS, 8aS, 8bS) -2,2,7,7-tetramethyl-3a, 5a, 8a, 8b-tetrahydro [1,3] dioxolo [4,5-e] [ Synthesis of 1,3] benzodioxole (compound 8)
Figure 2013216598
2.55 g (7.91 mmol) of Compound 7 was taken, and 70 mL of toluene and 7.08 mL of diazabicycloundecene (47.3 mmol) were added. The mixture was refluxed for 7 hours and then stirred at room temperature for 16 hours. An additional 3.50 mL (23.5 mmol) of diazabicycloundecene was added and heated to reflux for 5 hours. After cooling to room temperature, it was washed with water and saturated brine. The aqueous phase was further extracted with toluene, combined with the organic phase described above, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. Purification by silica gel chromatography (hexane / ethyl acetate = 95/5) gave 975 mg of compound 8 (55%).
C 12 H 18 O 4 MW: 226.2 (calculated value), 1 H-NMR (400 MHz / CDCl 3 ) δ (ppm): 1.35 (s, 3H), 1.42 (s, 3H), 1 .44 (s, 3H), 1.49 (s, 3H), 3.52 (dd, J = 9.2, 9.2 Hz), 4.03 (dd, J = 1.4, 8.7 Hz, 1H), 4.36 (dd, J = 8.0, 8.9 Hz, 1H), 4.79 (dd, J = 1.8, 7.8 Hz, 1H), 5.79 (ddd, J = 2) .6, 2.6, 9.8 Hz, 1H), 6.16 (d, J = 10.1, 1H)

<実施例1−4>(3aR,4S,5R,7aS)-2,2-dimethyl-3a,4,5,7a-tetrahydro-1,3-benzodioxole-4,5-diol(化合物9)の合成

Figure 2013216598
化合物8を1.32g(5.82mmol)取り50mLのメタノールに溶解し、氷浴中で冷却しながらピリジニウム−パラ−トルエンスルホナート(146mg,0.581mmol)を加えた。4度で22時間放置した後、トリエチルアミンで中和し、溶液を減圧濃縮した。シリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=1/2)によって精
製し、895mgの化合物9を得た(83%)。
9144 MW:186.1(計算値)、1H−NMR(400MHz/CD3OD)δ(ppm):1.35(s,3H),1.46(s,3H),3.39(dd,J=8.9,8.9Hz,1H),3.92−3.95(m,1H),4.02(dd,J=6.4,9.2Hz,1H),4.63−4.66(m,1H),5.79−5.80(2H,H−5,H−5a) Example 1-4 Synthesis of (3aR, 4S, 5R, 7aS) -2,2-dimethyl-3a, 4,5,7a-tetrahydro-1,3-benzodioxole-4,5-diol (Compound 9)
Figure 2013216598
1.32 g (5.82 mmol) of Compound 8 was taken and dissolved in 50 mL of methanol, and pyridinium-para-toluenesulfonate (146 mg, 0.581 mmol) was added while cooling in an ice bath. The mixture was allowed to stand at 4 degrees for 22 hours, neutralized with triethylamine, and the solution was concentrated under reduced pressure. Purification by silica gel chromatography (hexane / ethyl acetate = 1/2) gave 895 mg of compound 9 (83%).
C 9 H 14 O 4 MW: 186.1 (calculated value), 1 H-NMR (400 MHz / CD 3 OD) δ (ppm): 1.35 (s, 3H), 1.46 (s, 3H), 3.39 (dd, J = 8.9, 8.9 Hz, 1H), 3.92-3.95 (m, 1H), 4.02 (dd, J = 6.4, 9.2 Hz, 1H) 4.63-4.66 (m, 1H), 5.79-5.80 (2H, H-5, H-5a)

<実施例1−5>(3aS,5aS,6aS,6bS)-2,2-dimethyl-3a,5a,6a,6b-tetrahydrooxireno[e][1,3]benzodioxole(化合物10)の合成

Figure 2013216598
マーティンスルフランを用いる方法:化合物9を669mg(3.59mmol)取り、これを36mLのジクロロメタンに溶解させた。この溶液を攪拌しながら、2.90gのマーティンスルフラン(4.31mmol)を18mLのジクロロメタンに溶解させた溶液を加えた。室温で30分間攪拌した後、反応溶液を20%水酸化カリウム水溶液で洗浄した。有機相を取り、洗浄後の水酸化カリウム水溶液をさらに50mLのクロロホルムで抽出した有機相と合わせた。無水硫酸ナトリウムで乾燥させ、減圧濃縮後、シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=9/1)によって精製し、418mgの化合物10を得た(69%)。
9123 MW:168.1(計算値)、1H−NMR(400MHz/CDCl3)δ(ppm):1.38(each s,2×3H),3.32(dd,J=3.7,3.7Hz,1H),3.52(dd,J=1.8,3.7Hz,1H),4.43(ddd,J=2.0,2.0,7.0Hz,1H),4.75(dd,J=1.3,10.2Hz,1H),5.77−5.79(m,1H)6.03(ddd,J=1.5,4.1,10.3Hz,1H) Example 1-5 Synthesis of (3aS, 5aS, 6aS, 6bS) -2,2-dimethyl-3a, 5a, 6a, 6b-tetrahydrooxireno [e] [1,3] benzodioxole (Compound 10)
Figure 2013216598
Method using Martin Sulfuran: 669 mg (3.59 mmol) of Compound 9 was taken and dissolved in 36 mL of dichloromethane. While stirring this solution, a solution of 2.90 g of Martin Sulfuran (4.31 mmol) in 18 mL of dichloromethane was added. After stirring at room temperature for 30 minutes, the reaction solution was washed with 20% aqueous potassium hydroxide solution. The organic phase was taken, and the washed potassium hydroxide aqueous solution was combined with the organic phase extracted with 50 mL of chloroform. The extract was dried over anhydrous sodium sulfate, concentrated under reduced pressure, and purified by silica gel column chromatography (hexane / ethyl acetate = 9/1) to obtain 418 mg of compound 10 (69%).
C 9 H 12 O 3 MW: 168.1 (calculated value), 1 H-NMR (400 MHz / CDCl 3 ) δ (ppm): 1.38 (each s, 2 × 3H), 3.32 (dd, J = 3.7, 3.7 Hz, 1 H), 3.52 (dd, J = 1.8, 3.7 Hz, 1 H), 4.43 (ddd, J = 2.0, 2.0, 7.0 Hz) , 1H), 4.75 (dd, J = 1.3, 10.2 Hz, 1H), 5.77-5.79 (m, 1H) 6.03 (ddd, J = 1.5, 4.1). , 10.3Hz, 1H)

光延試薬を用いる方法:化合物9を895mg(4.81mmol)取り、これを24mLのTHFに溶解し、氷浴中で冷却しながら光延反応試薬アゾジカルボン酸ジイソプロピル(1.89mL,9.62mmol)およびトリフェニルホスフィン(2.52g,9.62mmol)を加えた。室温に戻しながら24時間攪拌した後、再び氷浴中で冷却しながらアゾジカルボン酸ジイソプロピル(0.95mL,4.81mmol)を加えた。溶液を100mLの酢酸エチルで希釈し、水、飽和食塩水で洗浄した。有機相を減圧濃縮した後、シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=9/1)によって精製し、477mgの化合物10を得た(59%)。 Method using Mitsunobu reagent: 895 mg (4.81 mmol) of compound 9 was taken, dissolved in 24 mL of THF, and while cooling in an ice bath, Mitsunobu reaction reagent diisopropyl azodicarboxylate (1.89 mL, 9.62 mmol) and Triphenylphosphine (2.52 g, 9.62 mmol) was added. After stirring for 24 hours while returning to room temperature, diisopropyl azodicarboxylate (0.95 mL, 4.81 mmol) was added while cooling in an ice bath again. The solution was diluted with 100 mL of ethyl acetate and washed with water and saturated brine. The organic phase was concentrated under reduced pressure and then purified by silica gel column chromatography (hexane / ethyl acetate = 9/1) to obtain 477 mg of compound 10 (59%).

<実施例1−6>
化合物1´(A1〜A23)の合成

Figure 2013216598
化合物10に所望のアミンを求核付加させると、化合物1´(A1〜A23)が製造できる。以下に具体例を示す。 <Example 1-6>
Synthesis of Compound 1 ′ (A1 to A23)
Figure 2013216598
When a desired amine is nucleophilically added to Compound 10, Compound 1 ′ (A1 to A23) can be produced. Specific examples are shown below.

・化合物A1の合成

Figure 2013216598
化合物10(211mg,1.26mmol)、n−オクチルアミン(624μL,3.77mmol)、アセトニトリル12mLをガラス製のアンプルに入れ、封管した。60℃に加温しながら2日間静置した後、溶媒を減圧留去した。残渣をシリカゲルクロマトグラフィー(クロロホルム/メタノール=99/1→98/2)によって精製し、目的物が含まれる画分を減圧濃縮した。得られた化合物A1はそのまま化合物B1の合成に用い、その後生成物の構造を確認した。 Synthesis of compound A1
Figure 2013216598
Compound 10 (211 mg, 1.26 mmol), n-octylamine (624 μL, 3.77 mmol), and acetonitrile 12 mL were placed in a glass ampoule and sealed. The mixture was allowed to stand for 2 days while being heated to 60 ° C., and then the solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography (chloroform / methanol = 99/1 → 98/2), and the fraction containing the desired product was concentrated under reduced pressure. The obtained compound A1 was directly used for the synthesis of compound B1, and then the structure of the product was confirmed.

・化合物A2の合成

Figure 2013216598
化合物10(30mg,0.18mmol)、n−デシルアミン(107μL,0.54mmol)、アセトニトリル1.8mLをガラス製のアンプルに入れ、封管した。60℃に加温しながら2日間静置した後、溶媒を減圧留去した。残渣をシリカゲルクロマトグラフィー(クロロホルム/メタノール=99/1→96/4)によって精製し、目的物が含まれる画分を減圧濃縮した。得られた化合物A2はそのまま化合物B2の合成に用い、その後生成物の構造を確認した。 Synthesis of compound A2
Figure 2013216598
Compound 10 (30 mg, 0.18 mmol), n-decylamine (107 μL, 0.54 mmol), and 1.8 mL of acetonitrile were placed in a glass ampule and sealed. The mixture was allowed to stand for 2 days while being heated to 60 ° C., and then the solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography (chloroform / methanol = 99/1 → 96/4), and the fraction containing the desired product was concentrated under reduced pressure. The obtained compound A2 was directly used for the synthesis of compound B2, and then the structure of the product was confirmed.

・化合物A3の合成

Figure 2013216598
化合物10(30mg,0.18mmol)、n−ヘキシルアミン(71μL,0.54mmol)、アセトニトリル1.8mLをガラス製のアンプルに入れ、封管した。60℃に加温しながら2日間静置した後、溶媒を減圧留去した。残渣をシリカゲルクロマトグラフィー(クロロホルム/メタノール=99/1→96/4)によって精製し、目的物が含まれる画分を減圧濃縮した。得られた化合物A3はそのまま化合物B3の合成に用い、その後生成物の構造を確認した。 Synthesis of compound A3
Figure 2013216598
Compound 10 (30 mg, 0.18 mmol), n-hexylamine (71 μL, 0.54 mmol), and 1.8 mL of acetonitrile were placed in a glass ampule and sealed. The mixture was allowed to stand for 2 days while being heated to 60 ° C., and then the solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography (chloroform / methanol = 99/1 → 96/4), and the fraction containing the desired product was concentrated under reduced pressure. The obtained compound A3 was directly used for the synthesis of compound B3, and then the structure of the product was confirmed.

・化合物A4の合成

Figure 2013216598
化合物10(30mg,0.18mmol)、n−ブチルアミン(53μL,0.54mmol)、アセトニトリル1.8mLをガラス製のアンプルに入れ、封管した。60℃に加温しながら2日間静置した後、溶媒を減圧留去した。残渣をシリカゲルクロマトグラフィー(クロロホルム/メタノール=97/3)によって精製し、目的物が含まれる画分を減圧濃縮した。得られた化合物A4はそのまま化合物B4の合成に用い、その後生成物の構造を確認した。 Synthesis of compound A4
Figure 2013216598
Compound 10 (30 mg, 0.18 mmol), n-butylamine (53 μL, 0.54 mmol) and 1.8 mL of acetonitrile were placed in a glass ampule and sealed. The mixture was allowed to stand for 2 days while being heated to 60 ° C., and then the solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography (chloroform / methanol = 97/3), and the fraction containing the desired product was concentrated under reduced pressure. The obtained compound A4 was directly used for the synthesis of compound B4, and then the structure of the product was confirmed.

・化合物A5の合成

Figure 2013216598
化合物10(30mg,0.18mmol)、n−ペンチルアミン(62μL,0.54mmol)、アセトニトリル1.8mLをガラス製のアンプルに入れ、封管した。60℃に加温しながら3日間静置した後、溶媒を減圧留去した。残渣をシリカゲルクロマトグラフィー(クロロホルム/メタノール=99/1→97/3)によって精製し、目的物が含まれる画分を減圧濃縮した。得られた化合物A5はそのまま化合物B5の合成に用い、その後生成物の構造を確認した。 Synthesis of compound A5
Figure 2013216598
Compound 10 (30 mg, 0.18 mmol), n-pentylamine (62 μL, 0.54 mmol), and 1.8 mL of acetonitrile were placed in a glass ampoule and sealed. The mixture was allowed to stand for 3 days while being heated to 60 ° C., and then the solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography (chloroform / methanol = 99/1 → 97/3), and the fraction containing the desired product was concentrated under reduced pressure. The obtained compound A5 was directly used for the synthesis of compound B5, and then the structure of the product was confirmed.

・化合物A6の合成

Figure 2013216598
化合物10(30mg,0.18mmol)、3−アミノ−1−プロパノール(41μL,0.54mmol)、アセトニトリル1.8mLをガラス製のアンプルに入れ、封管した。60℃に加温しながら2日間静置した後、溶媒を減圧留去した。残渣をシリカゲルクロマトグラフィー(クロロホルム/メタノール=95/5→98/2)によって精製し、
目的物が含まれる画分を減圧濃縮した。得られた化合物A6はそのまま化合物B6の合成に用い、その後生成物の構造を確認した。 Synthesis of compound A6
Figure 2013216598
Compound 10 (30 mg, 0.18 mmol), 3-amino-1-propanol (41 μL, 0.54 mmol), and 1.8 mL of acetonitrile were placed in a glass ampoule and sealed. The mixture was allowed to stand for 2 days while being heated to 60 ° C., and then the solvent was distilled off under reduced pressure. The residue is purified by silica gel chromatography (chloroform / methanol = 95/5 → 98/2)
Fractions containing the desired product were concentrated under reduced pressure. The obtained compound A6 was directly used for the synthesis of compound B6, and then the structure of the product was confirmed.

・化合物A7の合成

Figure 2013216598
化合物10(30mg,0.18mmol)を1.8mLのアセトニトリルに溶解させ、これにイソブチルアミン(53μL,0.54mmol)を加えた。65℃に加温しながら2日間攪拌した後、溶媒を減圧留去した。残渣をシリカゲルクロマトグラフィー(クロロホルム/メタノール=99/1→95/5)によって精製し、目的物が含まれる画分を減圧濃縮した。得られた化合物A7はそのまま化合物B7の合成に用い、その後生成物の構造を確認した。 Synthesis of compound A7
Figure 2013216598
Compound 10 (30 mg, 0.18 mmol) was dissolved in 1.8 mL of acetonitrile, and isobutylamine (53 μL, 0.54 mmol) was added thereto. After stirring for 2 days while heating to 65 ° C., the solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography (chloroform / methanol = 99/1 → 95/5), and the fraction containing the desired product was concentrated under reduced pressure. The obtained compound A7 was directly used for the synthesis of compound B7, and then the structure of the product was confirmed.

・化合物A8の合成

Figure 2013216598
化合物10(30mg,0.18mmol)、イソアミルアミン(62μL,0.54mmol)、アセトニトリル1.8mLをガラス製のアンプルに入れ、封管した。60℃に加温しながら3日間静置した後、溶媒を減圧留去した。残渣をシリカゲルクロマトグラフィー(クロロホルム/メタノール=97/3)によって精製し、目的物が含まれる画分を減圧濃縮した。得られた化合物A3はそのまま化合物B3の合成に用い、その後生成物の構造を確認した。 Synthesis of compound A8
Figure 2013216598
Compound 10 (30 mg, 0.18 mmol), isoamylamine (62 μL, 0.54 mmol), and 1.8 mL of acetonitrile were placed in a glass ampoule and sealed. The mixture was allowed to stand for 3 days while being heated to 60 ° C., and then the solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography (chloroform / methanol = 97/3), and the fraction containing the desired product was concentrated under reduced pressure. The obtained compound A3 was directly used for the synthesis of compound B3, and then the structure of the product was confirmed.

・化合物A9の合成

Figure 2013216598
化合物10(40mg,0.24mmol)、3−アミノペンタン(84μL,0.72mmol)、アセトニトリル2.4mLをガラス製のアンプルに入れ、封管した。60℃に加温しながら3日間静置した後、溶媒を減圧留去した。残渣をシリカゲルクロマトグラフィー(クロロホルム/メタノール=99/1→97/3)によって精製し、目的物が含まれる画分を減圧濃縮した。得られた化合物A9はそのまま化合物B9の合成に用い、その後生成物の構造を確認した。 Synthesis of compound A9
Figure 2013216598
Compound 10 (40 mg, 0.24 mmol), 3-aminopentane (84 μL, 0.72 mmol), and 2.4 mL of acetonitrile were placed in a glass ampoule and sealed. The mixture was allowed to stand for 3 days while being heated to 60 ° C., and then the solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography (chloroform / methanol = 99/1 → 97/3), and the fraction containing the desired product was concentrated under reduced pressure. The obtained compound A9 was directly used for the synthesis of compound B9, and then the structure of the product was confirmed.

・化合物A10の合成

Figure 2013216598
化合物10(30mg,0.18mmol)、2−エチルブチルアミン(70μL,0.54mmol)、アセトニトリル1.8mLをガラス製のアンプルに入れ、封管した。60℃に加温しながら3日間静置した後、溶媒を減圧留去した。残渣をシリカゲルクロマトグラフィー(クロロホルム/メタノール=99/1→97/3)によって精製し、目的物が含まれる画分を減圧濃縮した。得られた化合物A10はそのまま化合物B10の合成に用い、その後生成物の構造を確認した。 Synthesis of compound A10
Figure 2013216598
Compound 10 (30 mg, 0.18 mmol), 2-ethylbutylamine (70 μL, 0.54 mmol), and 1.8 mL of acetonitrile were placed in a glass ampule and sealed. The mixture was allowed to stand for 3 days while being heated to 60 ° C., and then the solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography (chloroform / methanol = 99/1 → 97/3), and the fraction containing the desired product was concentrated under reduced pressure. The obtained compound A10 was directly used for the synthesis of compound B10, and then the structure of the product was confirmed.

・化合物A11の合成

Figure 2013216598
化合物10(30mg,0.18mmol)、シクロプロピルアミン(37μL,0.54mmol)、アセトニトリル1.8mLをガラス製のアンプルに入れ、封管した。60℃に加温しながら2日間静置したところで管を開け、シクロプロピルアミン(100μL,1.44mmol)を追加し、封管、60℃に加温しながらさらに2日間静置した後、溶媒を減圧留去した。残渣をシリカゲルクロマトグラフィー(クロロホルム/メタノール=99/1→97/3)によって精製し、目的物が含まれる画分を減圧濃縮した。得られた化合物A11はそのまま化合物B11の合成に用い、その後生成物の構造を確認した。 Synthesis of compound A11
Figure 2013216598
Compound 10 (30 mg, 0.18 mmol), cyclopropylamine (37 μL, 0.54 mmol), and 1.8 mL of acetonitrile were placed in a glass ampule and sealed. The tube was opened when allowed to stand for 2 days while warming to 60 ° C., cyclopropylamine (100 μL, 1.44 mmol) was added, and the tube was allowed to stand for another 2 days while warming to 60 ° C. Was distilled off under reduced pressure. The residue was purified by silica gel chromatography (chloroform / methanol = 99/1 → 97/3), and the fraction containing the desired product was concentrated under reduced pressure. The obtained compound A11 was directly used for the synthesis of compound B11, and then the structure of the product was confirmed.

・化合物A12の合成

Figure 2013216598
化合物10(30mg,0.18mmol)、シクロプロピルメチルアミン(46μL,0.54mmol)、アセトニトリル1.8mLをガラス製のアンプルに入れ、封管した。60℃に加温しながら2日間静置した後、溶媒を減圧留去した。残渣をシリカゲルクロマトグラフィー(クロロホルム/メタノール=97/3)によって精製し、目的物が含まれる画分を減圧濃縮した。得られた化合物A12はそのまま化合物B12の合成に用い、その後生成物の構造を確認した。 Synthesis of compound A12
Figure 2013216598
Compound 10 (30 mg, 0.18 mmol), cyclopropylmethylamine (46 μL, 0.54 mmol), and 1.8 mL of acetonitrile were placed in a glass ampule and sealed. The mixture was allowed to stand for 2 days while being heated to 60 ° C., and then the solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography (chloroform / methanol = 97/3), and the fraction containing the desired product was concentrated under reduced pressure. The obtained compound A12 was directly used for the synthesis of compound B12, and then the structure of the product was confirmed.

・化合物A13の合成

Figure 2013216598

化合物10(30mg,0.18mmol)、シクロペンチルアミン(53μL,0.54mmol)、アセトニトリル1.8mLをガラス製のアンプルに入れ、封管した。60℃に加温しながら2日間静置した後、溶媒を減圧留去した。残渣をシリカゲルクロマトグラフィー(クロロホルム/メタノール=97/3)によって精製し、目的物が含まれる画分を減圧濃縮した。得られた化合物A13はそのまま化合物B13の合成に用い、その後生成物の構造を確認した。 Synthesis of compound A13
Figure 2013216598

Compound 10 (30 mg, 0.18 mmol), cyclopentylamine (53 μL, 0.54 mmol), and 1.8 mL of acetonitrile were placed in a glass ampule and sealed. The mixture was allowed to stand for 2 days while being heated to 60 ° C., and then the solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography (chloroform / methanol = 97/3), and the fraction containing the desired product was concentrated under reduced pressure. The obtained compound A13 was directly used for the synthesis of compound B13, and then the structure of the product was confirmed.

・化合物A14の合成

Figure 2013216598

化合物10(30mg,0.18mmol)、ピペリジン(53μL,0.54mmol)、アセトニトリル1.8mLをガラス製のアンプルに入れ、封管した。60℃に加温しながら1日間静置した後、溶媒を減圧留去した。残渣をシリカゲルクロマトグラフィー(クロロホルム/メタノール=99/1→96/4)によって精製し、目的物が含まれる画分を減圧濃縮した。得られた化合物A14はそのまま化合物B14の合成に用い、その後生成物の構造を確認した。 Synthesis of compound A14
Figure 2013216598

Compound 10 (30 mg, 0.18 mmol), piperidine (53 μL, 0.54 mmol), and 1.8 mL of acetonitrile were placed in a glass ampule and sealed. After allowing to stand at 60 ° C. for 1 day, the solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography (chloroform / methanol = 99/1 → 96/4), and the fraction containing the desired product was concentrated under reduced pressure. The obtained compound A14 was directly used for the synthesis of compound B14, and then the structure of the product was confirmed.

・化合物A15の合成

Figure 2013216598

化合物10(27mg,0.16mmol)、シクロヘキシルアミン(65μL,0.54mmol)、アセトニトリル1.8mLをガラス製のアンプルに入れ、封管した。60℃に加温しながら2日間静置した後、溶媒を減圧留去した。残渣をシリカゲルクロマトグラフィー(クロロホルム/メタノール=97/3)によって精製し、目的物が含まれる画分を減圧濃縮した。得られた化合物A15はそのまま化合物B15の合成に用い、その後生成物の構造を確認した。 Synthesis of compound A15
Figure 2013216598

Compound 10 (27 mg, 0.16 mmol), cyclohexylamine (65 μL, 0.54 mmol), and 1.8 mL of acetonitrile were placed in a glass ampule and sealed. The mixture was allowed to stand for 2 days while being heated to 60 ° C., and then the solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography (chloroform / methanol = 97/3), and the fraction containing the desired product was concentrated under reduced pressure. The obtained compound A15 was directly used for the synthesis of compound B15, and then the structure of the product was confirmed.

・化合物A16の合成

Figure 2013216598

化合物10(30mg,0.18mmol)、アミノメチルシクロヘキサン(70μL,0.54mmol)、アセトニトリル1.8mLをガラス製のアンプルに入れ、封管した。60℃に加温しながら2日間静置した後、溶媒を減圧留去した。残渣をシリカゲルクロマトグラフィー(クロロホルム/メタノール=99/1→96/4)によって精製し、目的物が含まれる画分を減圧濃縮した。得られた化合物A22はそのまま化合物B22の合成に用い、その後生成物の構造を確認した。 Synthesis of compound A16
Figure 2013216598

Compound 10 (30 mg, 0.18 mmol), aminomethylcyclohexane (70 μL, 0.54 mmol), and 1.8 mL of acetonitrile were placed in a glass ampule and sealed. The mixture was allowed to stand for 2 days while being heated to 60 ° C., and then the solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography (chloroform / methanol = 99/1 → 96/4), and the fraction containing the desired product was concentrated under reduced pressure. The obtained compound A22 was directly used for the synthesis of compound B22, and then the structure of the product was confirmed.

・化合物A17の合成

Figure 2013216598

化合物10(30mg,0.18mmol)、cis or trans−4−メチルシクロヘキシルアミン(71μL,0.54mmol)、アセトニトリル1.8mLをガラス製のアンプルに入れ、封管した。60℃に加温しながら3日間静置した後、溶媒を減圧留去した。残渣をシリカゲルクロマトグラフィー(クロロホルム/メタノール=99/1→97/3)によって精製し、目的物が含まれる画分を減圧濃縮した。得られた化合物A3はそのまま化合物B3の合成に用い、その後生成物の構造を確認した。 Synthesis of compound A17
Figure 2013216598

Compound 10 (30 mg, 0.18 mmol), cis or trans-4-methylcyclohexylamine (71 μL, 0.54 mmol), and 1.8 mL of acetonitrile were placed in a glass ampule and sealed. The mixture was allowed to stand for 3 days while being heated to 60 ° C., and then the solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography (chloroform / methanol = 99/1 → 97/3), and the fraction containing the desired product was concentrated under reduced pressure. The obtained compound A3 was directly used for the synthesis of compound B3, and then the structure of the product was confirmed.

・化合物A18の合成

Figure 2013216598

化合物10(30mg,0.18mmol)、シクロオクチルアミン(75μL,0.54mmol)、アセトニトリル1.8mLをガラス製のアンプルに入れ、封管した。60℃に加温しながら3日間静置した後、溶媒を減圧留去した。残渣をシリカゲルクロマトグラフィー(クロロホルム/メタノール=99/1→97/3)によって精製し、目的物が含まれる画分を減圧濃縮した。得られた化合物A18はそのまま化合物B18の合成に用い、その後生成物の構造を確認した。 Synthesis of compound A18
Figure 2013216598

Compound 10 (30 mg, 0.18 mmol), cyclooctylamine (75 μL, 0.54 mmol), and 1.8 mL of acetonitrile were placed in a glass ampoule and sealed. The mixture was allowed to stand for 3 days while being heated to 60 ° C., and then the solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography (chloroform / methanol = 99/1 → 97/3), and the fraction containing the desired product was concentrated under reduced pressure. The obtained compound A18 was directly used for the synthesis of compound B18, and then the structure of the product was confirmed.

・化合物A19の合成

Figure 2013216598

化合物10(30mg,0.18mmol)を1.8mLのアセトニトリルに溶解させ、これにベンジルアミン(59μL,0.54mmol)を加えた。65℃に加温しながら2日間攪拌した後、溶媒を減圧留去した。残渣をシリカゲルクロマトグラフィー(クロロホルム/メタノール=99/1→9/1)によって精製し、目的物が含まれる画分を減圧濃縮した。得られた化合物A19はそのまま化合物B19の合成に用い、その後生成物の構造を確認した。 Synthesis of compound A19
Figure 2013216598

Compound 10 (30 mg, 0.18 mmol) was dissolved in 1.8 mL of acetonitrile, and benzylamine (59 μL, 0.54 mmol) was added thereto. After stirring for 2 days while heating to 65 ° C., the solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography (chloroform / methanol = 99/1 → 9/1), and the fraction containing the desired product was concentrated under reduced pressure. The obtained compound A19 was directly used for the synthesis of compound B19, and then the structure of the product was confirmed.

・化合物A20の合成

Figure 2013216598

化合物10(30mg,0.18mmol)を1.8mLのアセトニトリルに溶解させ、これにフェネチルアミン(68μL,0.54mmol)を加えた。65℃に加温しながら2日間攪拌した後、溶媒を減圧留去した。残渣をシリカゲルクロマトグラフィー(クロロホルム/メタノール=99/1→9/1)によって精製し、目的物が含まれる画分を減圧濃縮した。得られた化合物A20はそのまま化合物B20の合成に用い、その後生成物の構造を確認した。 Synthesis of compound A20
Figure 2013216598

Compound 10 (30 mg, 0.18 mmol) was dissolved in 1.8 mL of acetonitrile, and phenethylamine (68 μL, 0.54 mmol) was added thereto. After stirring for 2 days while heating to 65 ° C., the solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography (chloroform / methanol = 99/1 → 9/1), and the fraction containing the desired product was concentrated under reduced pressure. The obtained compound A20 was directly used for the synthesis of compound B20, and then the structure of the product was confirmed.

・化合物A21の合成

Figure 2013216598

化合物10(37mg,0.22mmol)、4−ピコリルアミン(64μL,0.66mmol)、アセトニトリル2.2mLをガラス製のアンプルに入れ、封管した。60℃に加温しながら2日間静置した後、溶媒を減圧留去した。残渣をシリカゲルクロマトグラフィー(クロロホルム/メタノール=99/1→96/4)によって精製し、目的物が含まれる画分を減圧濃縮した。得られた化合物A21はそのまま化合物B21の合成に用い、その後生成物の構造を確認した。 Synthesis of compound A21
Figure 2013216598

Compound 10 (37 mg, 0.22 mmol), 4-picolylamine (64 μL, 0.66 mmol), and 2.2 mL of acetonitrile were placed in a glass ampule and sealed. The mixture was allowed to stand for 2 days while being heated to 60 ° C., and then the solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography (chloroform / methanol = 99/1 → 96/4), and the fraction containing the desired product was concentrated under reduced pressure. The obtained compound A21 was directly used for the synthesis of compound B21, and then the structure of the product was confirmed.

・化合物A22の合成

Figure 2013216598

化合物10(30mg,0.18mmol)、2−(2−アミノエチル)ピリジン(64μL,0.54mmol)、アセトニトリル1.8mLをガラス製のアンプルに入れ、封管した。60℃に加温しながら2日間静置した後、溶媒を減圧留去した。残渣をシリカゲルクロマトグラフィー(クロロホルム/メタノール=99/1→96/4)によって精製し、目的物が含まれる画分を減圧濃縮した。得られた化合物A22はそのまま化合物B22の合成に用い、その後生成物の構造を確認した。 Synthesis of compound A22
Figure 2013216598

Compound 10 (30 mg, 0.18 mmol), 2- (2-aminoethyl) pyridine (64 μL, 0.54 mmol), and 1.8 mL of acetonitrile were placed in a glass ampule and sealed. The mixture was allowed to stand for 2 days while being heated to 60 ° C., and then the solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography (chloroform / methanol = 99/1 → 96/4), and the fraction containing the desired product was concentrated under reduced pressure. The obtained compound A22 was directly used for the synthesis of compound B22, and then the structure of the product was confirmed.

・化合物A23の合成

Figure 2013216598

化合物10(30mg,0.18mmol)、5−メチルフルフリルアミン(58μL,0.54mmol)、アセトニトリル1.8mLをガラス製のアンプルに入れ、封管した。60℃に加温しながら3日間静置した後、溶媒を減圧留去した。残渣をシリカゲルクロマトグラフィー(クロロホルム/メタノール=99/1)によって精製し、目的物が含まれる画分を減圧濃縮した。得られた化合物A23はそのまま化合物B23の合成に用い、その後生成物の構造を確認した。 Synthesis of compound A23
Figure 2013216598

Compound 10 (30 mg, 0.18 mmol), 5-methylfurfurylamine (58 μL, 0.54 mmol), and 1.8 mL of acetonitrile were placed in a glass ampule and sealed. The mixture was allowed to stand for 3 days while being heated to 60 ° C., and then the solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography (chloroform / methanol = 99/1), and the fraction containing the desired product was concentrated under reduced pressure. The obtained compound A23 was directly used for the synthesis of compound B23, and then the structure of the product was confirmed.

<実施例2>
化合物(1)(R6=メチル)の合成
<実施例2−1>(3aS,4R,5S,7aS)-5-bromo-2,2,7-trimethyl-3a,4,5,7a-tetrahydro-1,3-benzodioxol-4-yl benzoate(化合物11)の合成

Figure 2013216598

Bioorganic Medicinal Chemistry Letters、2011年、21巻、p.7189−7192に記載の方法によって製造した化合物3(375mg,0.841mg)をヘキサメチルリン酸トリアミド(4mL)/水(1mL)混合溶媒に溶解した。この溶液に水素化ホウ素ナトリウム(70mg,1.85mmol)を室温で加え、さらにヘキサメチルリン酸トリアミド(2.4mL)/水(0.6mL)混合溶媒を加えた。そのまま室温で3時間攪拌した後、20 mLの水を加え、60mLのジエチルエーテルで3回抽出した。合わせた有機相を無水硫酸ナトリウムで乾燥後、減圧濃縮した。残渣をシリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=97/3→95/5)によって精製し、目的物である化合物11を211mg(68%)、また目的物のジアステレオマーである化合物12を71mg(23%)得た。 <Example 2>
Synthesis of Compound (1) (R 6 = Methyl) <Example 2-1> (3aS, 4R, 5S, 7aS) -5-bromo-2,2,7-trimethyl-3a, 4,5,7a-tetrahydro Synthesis of 1,3-benzodioxol-4-yl benzoate (compound 11)
Figure 2013216598

Bioorganic Medicinal Chemistry Letters, 2011, 21, p. Compound 3 (375 mg, 0.841 mg) produced by the method described in 7189-7192 was dissolved in a mixed solvent of hexamethylphosphoric triamide (4 mL) / water (1 mL). To this solution, sodium borohydride (70 mg, 1.85 mmol) was added at room temperature, and a mixed solvent of hexamethylphosphoric triamide (2.4 mL) / water (0.6 mL) was further added. After stirring for 3 hours at room temperature, 20 mL of water was added, and the mixture was extracted 3 times with 60 mL of diethyl ether. The combined organic phases were dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel chromatography (hexane / ethyl acetate = 97/3 → 95/5), 211 mg (68%) of the target compound 11 and 71 mg (68%) of the target diastereomer 12 23%).

化合物11:C1719BrO4 MW:367.1(計算値)、1H−NMR(400MHz/CDCl3)δ(ppm):1.37(s,3H),1.55(s,3H),1.93(s,3H),4.27(dd,J=6.0,8.2Hz,1H),4.46(d,J=5.5Hz,1H),4.62−4.63(m,1H),5.61(dd,J=8.0,8.0Hz),5.79(br s,1H),7.40−7.46(m,2H),7.54−7.56(m,1H),8.04−8.05(m,2H) Compound 11: C 17 H 19 BrO 4 MW: 367.1 (calculated value), 1 H-NMR (400 MHz / CDCl 3 ) δ (ppm): 1.37 (s, 3H), 1.55 (s, 3H ), 1.93 (s, 3H), 4.27 (dd, J = 6.0, 8.2 Hz, 1H), 4.46 (d, J = 5.5 Hz, 1H), 4.62-4 .63 (m, 1H), 5.61 (dd, J = 8.0, 8.0 Hz), 5.79 (brs, 1H), 7.40-7.46 (m, 2H), 7. 54-7.56 (m, 1H), 8.04-8.05 (m, 2H)

化合物12:C1719BrO4 MW:367.1(計算値)、1H−NMR(400MHz/CDCl3)δ(ppm): 1.39(s,3H),1.47(s,3H),1.94(s,3H),4.62(d,J=6.9,1H),4.69(dd,J=6.6,8.9,1H),4.86(dd,J=4.4,5.7Hz,1H),5.03(dd,J=4.1,8.7Hz,1H),5.85(dd,J=1.1,6.2Hz,1H),7.43−7.45(m,2H),7.54−7.56(m,1H),8.11−8.12(m,2H) Compound 12: C 17 H 19 BrO 4 MW: 367.1 (calculated value), 1 H-NMR (400 MHz / CDCl 3 ) δ (ppm): 1.39 (s, 3H), 1.47 (s, 3H ), 1.94 (s, 3H), 4.62 (d, J = 6.9, 1H), 4.69 (dd, J = 6.6, 8.9, 1H), 4.86 (dd , J = 4.4, 5.7 Hz, 1H), 5.03 (dd, J = 4.1, 8.7 Hz, 1H), 5.85 (dd, J = 1.1, 6.2 Hz, 1H) ), 7.43-7.45 (m, 2H), 7.54-7.56 (m, 1H), 8.11-8.12 (m, 2H)

<実施例2−2>(3aR,4R,5S,7aS)-5-bromo-2,2,7-trimethyl-3a,4,5,7a-tetrahydro-1,3-benzodioxol-4-ol(化合物13)の合成

Figure 2013216598

化合物11(55mg,0.15mmol)を1.4mLのメタノールに溶解し、氷浴中で冷却した。この溶液に0.5モルナトリウムメトキシド/メタノール溶液を68μL加え、4度で19時間静置した。その後、室温でさらに2時間攪拌した後、0.1モル塩酸/メタノール溶液で注意深く中和した。溶液を減圧濃縮し、残渣をシリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=9/1→4/1)によって精製し、目的物である化合物13を24mg(61%)、また原料を6mg(10%)回収した。
1015BrO3 MW:263.1(計算値)、1H−NMR(400MHz/CDCl3)δ(ppm):1.38(s,3H),1.46(s,3H),1.89(s,3H),2.31(br s,1H),3.60(dd,J=3.7,8.2Hz,1H),4.28(dd,J=6.6,8.0Hz,1H),4.52(d,J=6.4Hz,1H),4.68(dd,J=4.8,4.8Hz,1H),5.79(d,J=5.0Hz,1H) <Example 2-2> (3aR, 4R, 5S, 7aS) -5-bromo-2,2,7-trimethyl-3a, 4,5,7a-tetrahydro-1,3-benzodioxol-4-ol (compound 13) Synthesis
Figure 2013216598

Compound 11 (55 mg, 0.15 mmol) was dissolved in 1.4 mL of methanol and cooled in an ice bath. To this solution, 68 μL of a 0.5 molar sodium methoxide / methanol solution was added and left at 4 degrees for 19 hours. Thereafter, the mixture was further stirred at room temperature for 2 hours, and then carefully neutralized with a 0.1 molar hydrochloric acid / methanol solution. The solution was concentrated under reduced pressure, and the residue was purified by silica gel chromatography (hexane / ethyl acetate = 9/1 → 4/1). The target compound 13 was 24 mg (61%), and the starting material was 6 mg (10%). It was collected.
C 10 H 15 BrO 3 MW: 263.1 (calculated value), 1 H-NMR (400 MHz / CDCl 3 ) δ (ppm): 1.38 (s, 3H), 1.46 (s, 3H), 1 .89 (s, 3H), 2.31 (br s, 1H), 3.60 (dd, J = 3.7, 8.2 Hz, 1H), 4.28 (dd, J = 6.6, 8 .0 Hz, 1H), 4.52 (d, J = 6.4 Hz, 1H), 4.68 (dd, J = 4.8, 4.8 Hz, 1H), 5.79 (d, J = 5. 0Hz, 1H)

<実施例2−3>化合物1´´(A24)の合成

Figure 2013216598

ガラスアンプル中で化合物13(62mg,0.24mmol)を2.3mLのアセトニトリルに溶解し、これにn−オクチルアミン(137μL,0.826mmol)を加えた。60度に加熱しながら22時間精置した後、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=99/1→97/3)によって精製し、目的物が含まれる画分を減圧濃縮した。得られた化合物A24はそのまま化合物B24の合成に用い、その後生成物の構造を確認した。 Example 2-3 Synthesis of Compound 1 ″ (A24)
Figure 2013216598

Compound 13 (62 mg, 0.24 mmol) was dissolved in 2.3 mL of acetonitrile in a glass ampoule, and n-octylamine (137 μL, 0.826 mmol) was added thereto. After rectifying for 22 hours while heating at 60 degrees, the solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography (chloroform / methanol = 99/1 → 97/3), and the fraction containing the desired product was concentrated under reduced pressure. The obtained compound A24 was directly used for the synthesis of compound B24, and then the structure of the product was confirmed.

<実施例3>
化合物2´(B1〜B23)の合成

Figure 2013216598
<Example 3>
Synthesis of compound 2 ′ (B1 to B23)
Figure 2013216598

・化合物B1の合成

Figure 2013216598

上記の工程によって得られた化合物A1に、1モル塩酸水溶液(10mL)/テトラヒドロフラン(10mL)の混合溶媒を加え、室温で2時間攪拌した。エタノールで共沸させながら溶媒を減圧留去し、374mgの化合物2を得た(2工程、〜100%)。
1428ClNO3 MW:293.8(計算値)、1H−NMR(400MHz/D2O)δ(ppm):0.89(t,J=6.9Hz,3H),1.29−1.42(m,10H),1.68−1.76(m,2H),3.06−3.14(m,2H),3.60(dd,J=4.1,9.2Hz,1H),3.69(d,J=7.8Hz,1H),3.96(dd,J=7.6,9.4Hz,1H),4.25(dd,J=4.4,4.4Hz,1H),5.83(dd,J=2.3,10.1Hz,1H),6.11(ddd,J=2.2,4.8,10.2Hz,1H) Synthesis of compound B1
Figure 2013216598

A mixed solvent of 1 molar hydrochloric acid aqueous solution (10 mL) / tetrahydrofuran (10 mL) was added to compound A1 obtained by the above step, and the mixture was stirred at room temperature for 2 hours. The solvent was distilled off under reduced pressure while azeotroping with ethanol to obtain 374 mg of Compound 2 (2 steps, ˜100%).
C 14 H 28 ClNO 3 MW: 293.8 (calculated value), 1 H-NMR (400 MHz / D 2 O) δ (ppm): 0.89 (t, J = 6.9 Hz, 3H), 1.29 -1.42 (m, 10H), 1.68-1.76 (m, 2H), 3.06-3.14 (m, 2H), 3.60 (dd, J = 4.1, 9. 2 Hz, 1H), 3.69 (d, J = 7.8 Hz, 1H), 3.96 (dd, J = 7.6, 9.4 Hz, 1H), 4.25 (dd, J = 4.4 , 4.4 Hz, 1H), 5.83 (dd, J = 2.3, 10.1 Hz, 1H), 6.11 (ddd, J = 2.2, 4.8, 10.2 Hz, 1H)

・化合物B2の合成

Figure 2013216598

上記の工程によって得られた化合物A2に、1モル塩酸水溶液(1.5mL)/テトラヒドロフラン(1.5mL)の混合溶媒を加え、室温で1時間攪拌した。エタノールで共沸させながら溶媒を減圧留去し、59mgの化合物B2を得た(2工程、〜100%)。
MW:321.8(計算値)、1H−NMR(400MHz/CD3OD)δ(ppm):0.89(t,J=6.9Hz,3H),1.29−1.42(m,14H),1.69−1.77(m,2H),3.08−3.12(m,2H),3.60(dd,J=4.1,9.2Hz,1H),3.69(d,J=7.8Hz,1H),3.96(dd,J=7.8,9.2Hz,1H),4.25(dd,J=4.4,4.4Hz,1H),5.83(dd,J=2.3,10.1Hz,1H),6.11(ddd,J=2.3,4.7,10.1Hz,1H) -Synthesis of compound B2
Figure 2013216598

A mixed solvent of 1 molar hydrochloric acid aqueous solution (1.5 mL) / tetrahydrofuran (1.5 mL) was added to compound A2 obtained by the above step, and the mixture was stirred at room temperature for 1 hour. The solvent was distilled off under reduced pressure while azeotroping with ethanol to obtain 59 mg of compound B2 (2 steps, ˜100%).
MW: 321.8 (calculated value), 1H-NMR (400 MHz / CD3OD) δ (ppm): 0.89 (t, J = 6.9 Hz, 3H), 1.29-1.42 (m, 14H) 1.69-1.77 (m, 2H), 3.08-3.12 (m, 2H), 3.60 (dd, J = 4.1, 9.2 Hz, 1H), 3.69 ( d, J = 7.8 Hz, 1H), 3.96 (dd, J = 7.8, 9.2 Hz, 1H), 4.25 (dd, J = 4.4, 4.4 Hz, 1H), 5 .83 (dd, J = 2.3, 10.1 Hz, 1H), 6.11 (ddd, J = 2.3, 4.7, 10.1 Hz, 1H)

・化合物B3の合成

Figure 2013216598

上記の工程によって得られた化合物A3に、1モル塩酸水溶液(1.5mL)/テトラヒドロフラン(1.5mL)の混合溶媒を加え、室温で1時間攪拌した。エタノールで共沸させながら溶媒を減圧留去し、27mgの化合物B3を得た(2工程、57%)。
MW:265.7(計算値)、1H−NMR(400MHz/CD3OD)δ(ppm):0.93(t,J=7.1Hz,3H),1.34−1.43(m,6H),1.68−1.72(m,2H),3.04−3.15(m,2H),3.58(dd,J=4.1,9.6Hz,1H),3.66−3.67(m,1H),3.93(dd,J=7.8,9.2Hz,1H),4.25(dd,J=4.4,4.4Hz,1H),5.79(dd,J=2.3,10.1Hz,1H),6.12(ddd,J=2.3,4.7,10.1Hz,1H) Synthesis of compound B3
Figure 2013216598

A mixed solvent of 1 molar hydrochloric acid aqueous solution (1.5 mL) / tetrahydrofuran (1.5 mL) was added to compound A3 obtained by the above step, and the mixture was stirred at room temperature for 1 hour. The solvent was distilled off under reduced pressure while azeotroping with ethanol to obtain 27 mg of compound B3 (2 steps, 57%).
MW: 265.7 (calculated value), 1 H-NMR (400 MHz / CD 3 OD) δ (ppm): 0.93 (t, J = 7.1 Hz, 3H), 1.34-1.43 (m 6H), 1.68-1.72 (m, 2H), 3.04-3.15 (m, 2H), 3.58 (dd, J = 4.1, 9.6 Hz, 1H), 3 .66-3.67 (m, 1H), 3.93 (dd, J = 7.8, 9.2 Hz, 1H), 4.25 (dd, J = 4.4, 4.4 Hz, 1H), 5.79 (dd, J = 2.3, 10.1 Hz, 1H), 6.12 (ddd, J = 2.3, 4.7, 10.1 Hz, 1H)

・化合物B4の合成

Figure 2013216598

上記の工程によって得られた化合物A4に、1モル塩酸水溶液(1.5mL)/テトラヒドロフラン(1.5mL)の混合溶媒を加え、室温で2時間攪拌した。エタノールで共沸
させながら溶媒を減圧留去し、44mgの化合物B4を得た(2工程、〜100%)。
1020ClNO3 MW:237.7(計算値)、1H−NMR(400MHz/CD3OD)δ(ppm):0.99(t,J=7.3Hz,3H),1.44(td,J=7.5,14.9Hz,2H),1.65−1.77(m,2H),3.06−3.17(m,2H),3.60(dd,J=4.1,9.2Hz,1H),3.69(d,J=7.8Hz,1H),3.97(dd,J=7.8,9.2Hz,1H),4.25(dd,J=4.6,4.6Hz,1H),5.84(dd,J=2.3,10.1Hz,1H),6.12(ddd,J=2.5,5.1,10.3Hz,1H) Synthesis of compound B4
Figure 2013216598

A mixed solvent of 1 molar hydrochloric acid aqueous solution (1.5 mL) / tetrahydrofuran (1.5 mL) was added to compound A4 obtained by the above step, and the mixture was stirred at room temperature for 2 hours. The solvent was distilled off under reduced pressure while azeotroping with ethanol to obtain 44 mg of Compound B4 (2 steps, ˜100%).
C 10 H 20 ClNO 3 MW: 237.7 (calculated value), 1 H-NMR (400 MHz / CD 3 OD) δ (ppm): 0.99 (t, J = 7.3 Hz, 3H), 1.44 (Td, J = 7.5, 14.9 Hz, 2H), 1.65-1.77 (m, 2H), 3.06-3.17 (m, 2H), 3.60 (dd, J = 4.1, 9.2 Hz, 1H), 3.69 (d, J = 7.8 Hz, 1H), 3.97 (dd, J = 7.8, 9.2 Hz, 1H), 4.25 (dd , J = 4.6, 4.6 Hz, 1H), 5.84 (dd, J = 2.3, 10.1 Hz, 1H), 6.12 (ddd, J = 2.5, 5.1, 10) .3Hz, 1H)

・化合物B5の合成

Figure 2013216598

上記の工程によって得られた化合物A5に、1モル塩酸水溶液(1.5mL)/テトラヒドロフラン(1.5mL)の混合溶媒を加え、室温で2時間静置した。エタノールで共沸させながら溶媒を減圧留去し、46mgの化合物B5を得た(2工程、〜100%)。
1122ClNO3 MW:251.7(計算値)、1H−NMR(400MHz/CD3OD)δ(ppm):0.94(t,3H),1.37−1.41(m,4H),1.71−1.78(m,2H),3.05−3.17(m,2H),3.61(dd,J=4.1,9.2Hz,1H),3.71(d,J=7.8Hz,1H),3.98(dd,J=7.8,9.2Hz,1H),4.26(dd,J=4.4,4.4Hz,1H),5.85(dd,J=2.3,10.1Hz,1H),6.12(ddd,J=2.1,4.9,10.1Hz,1H) Synthesis of compound B5
Figure 2013216598

A 1M aqueous hydrochloric acid solution (1.5 mL) / tetrahydrofuran (1.5 mL) was added to compound A5 obtained by the above step, and the mixture was allowed to stand at room temperature for 2 hours. The solvent was distilled off under reduced pressure while azeotroping with ethanol to obtain 46 mg of compound B5 (2 steps, ˜100%).
C 11 H 22 ClNO 3 MW: 251.7 (calculated value), 1 H-NMR (400 MHz / CD 3 OD) δ (ppm): 0.94 (t, 3H), 1.37-1.41 (m , 4H), 1.71-1.78 (m, 2H), 3.05-3.17 (m, 2H), 3.61 (dd, J = 4.1, 9.2 Hz, 1H), 3 .71 (d, J = 7.8 Hz, 1H), 3.98 (dd, J = 7.8, 9.2 Hz, 1H), 4.26 (dd, J = 4.4, 4.4 Hz, 1H) ), 5.85 (dd, J = 2.3, 10.1 Hz, 1H), 6.12 (ddd, J = 2.1, 4.9, 10.1 Hz, 1H)

・化合物B6の合成

Figure 2013216598

上記の工程によって得られた化合物A6に、1モル塩酸水溶液(1.5mL)/テトラヒドロフラン(1.5mL)の混合溶媒を加え、室温で2時間静置した。エタノールで共沸させながら溶媒を減圧留去し、42mgの化合物B6を得た(2工程、98%)。
918ClNO4 MW:239.6(計算値)、1H−NMR(400MHz/CD3OD)δ(ppm):1.94(dt,J=6.2,13.3Hz,2H),3.20−3.33(m,2H),3.63(dd,J=4.1,9.2Hz,1H),3.68−3.74(3H),3.98(dd,J=7.6,8.9Hz,1H),4.27(dd,J=4.4,4.4Hz,1H),5.86(dd,J=2.7,10.1Hz,1H),6.11(ddd,J=2.3,4.5,10.1Hz,1H) Synthesis of compound B6
Figure 2013216598

To the compound A6 obtained by the above step, a mixed solvent of 1 molar aqueous hydrochloric acid (1.5 mL) / tetrahydrofuran (1.5 mL) was added, and the mixture was allowed to stand at room temperature for 2 hours. The solvent was distilled off under reduced pressure while azeotroping with ethanol to obtain 42 mg of Compound B6 (2 steps, 98%).
C 9 H 18 ClNO 4 MW: 239.6 (calculated value), 1 H-NMR (400 MHz / CD 3 OD) δ (ppm): 1.94 (dt, J = 6.2, 13.3 Hz, 2H) , 3.20-3.33 (m, 2H), 3.63 (dd, J = 4.1, 9.2 Hz, 1H), 3.68-3.74 (3H), 3.98 (dd, J = 7.6, 8.9 Hz, 1H), 4.27 (dd, J = 4.4, 4.4 Hz, 1H), 5.86 (dd, J = 2.7, 10.1 Hz, 1H) , 6.11 (ddd, J = 2.3, 4.5, 10.1 Hz, 1H)

・化合物B7の合成

Figure 2013216598

上記の工程によって得られた化合物A7に、1モル塩酸水溶液(1.5mL)/テトラヒドロフラン(1.5mL)の混合溶媒を加え、室温で1時間攪拌した。エタノールで共沸させながら溶媒を減圧留去し、27mgの化合物B7を得た(2工程、64%)。
1020ClNO3 MW:237.7(計算値)、1H−NMR(400MHz/CD3OD)δ(ppm):1.04(s,3H),1.06(s,3H),1.99−2.09(m,1H),2.95(d,J=6.9Hz,2H),3.61(dd,J=4.1,9.2Hz,1H),3.72(d,J=7.3Hz,1H),3.98(dd,J=7.8,9.2Hz,1H),4.26(dd,J=4.4,4.4Hz,1H),5.82(dd,J=2.3,10.1Hz,1H),6.13(ddd,J=2.2,5.0,10.2Hz,1H) Synthesis of compound B7
Figure 2013216598

A mixed solvent of 1 molar hydrochloric acid aqueous solution (1.5 mL) / tetrahydrofuran (1.5 mL) was added to compound A7 obtained by the above step, and the mixture was stirred at room temperature for 1 hour. The solvent was distilled off under reduced pressure while azeotroping with ethanol to obtain 27 mg of Compound B7 (2 steps, 64%).
C 10 H 20 ClNO 3 MW: 237.7 (calculated value), 1 H-NMR (400 MHz / CD 3 OD) δ (ppm): 1.04 (s, 3H), 1.06 (s, 3H), 1.99-2.09 (m, 1H), 2.95 (d, J = 6.9 Hz, 2H), 3.61 (dd, J = 4.1, 9.2 Hz, 1H), 3.72 (D, J = 7.3 Hz, 1H), 3.98 (dd, J = 7.8, 9.2 Hz, 1H), 4.26 (dd, J = 4.4, 4.4 Hz, 1H), 5.82 (dd, J = 2.3, 10.1 Hz, 1H), 6.13 (ddd, J = 2.2, 5.0, 10.2 Hz, 1H)

・化合物B8の合成

Figure 2013216598

上記の工程によって得られた化合物A8に、1モル塩酸水溶液(1.5mL)/テトラヒドロフラン(1.5mL)の混合溶媒を加え、室温で2時間静置した。エタノールで共沸させながら溶媒を減圧留去し、45mgの化合物B8を得た(2工程、〜100%)。
1122ClNO3 MW:251.7(計算値)、1H−NMR(400MHz/CD3OD)δ(ppm):0.96(s,3H),0.98(s,3H),1.59−1.74(m,3H),3.11−3.16(m,2H),3.61(dd,J=4.1,9.2Hz,1H),3.71(d,J=7.8Hz,1H),3.98(dd,J=7.8,9.2Hz,1H),4.25(dd,J=4.4,4.4Hz,1H),5.85(dd,J=2.3,10.1Hz,1H),6.12(ddd,J=2.2,5.0,10.2Hz,1H) Synthesis of compound B8
Figure 2013216598

To Compound A8 obtained by the above step, a mixed solvent of 1 molar hydrochloric acid aqueous solution (1.5 mL) / tetrahydrofuran (1.5 mL) was added, and the mixture was allowed to stand at room temperature for 2 hours. The solvent was distilled off under reduced pressure while azeotroping with ethanol to obtain 45 mg of compound B8 (2 steps, ˜100%).
C 11 H 22 ClNO 3 MW: 251.7 (calculated value), 1 H-NMR (400 MHz / CD 3 OD) δ (ppm): 0.96 (s, 3H), 0.98 (s, 3H), 1.59-1.74 (m, 3H), 3.11-3.16 (m, 2H), 3.61 (dd, J = 4.1, 9.2 Hz, 1H), 3.71 (d , J = 7.8 Hz, 1H), 3.98 (dd, J = 7.8, 9.2 Hz, 1H), 4.25 (dd, J = 4.4, 4.4 Hz, 1H), 5. 85 (dd, J = 2.3, 10.1 Hz, 1H), 6.12 (ddd, J = 2.2, 5.0, 10.2 Hz, 1H)

・化合物B9の合成

Figure 2013216598

上記の工程によって得られた化合物A9に、1モル塩酸水溶液(1.5mL)/テトラヒドロフラン(1.5mL)の混合溶媒を加え、室温で2時間静置した。エタノールで共沸
させながら溶媒を減圧留去し、64mgの化合物B9を得た(2工程、〜100%)。
1122ClNO3 MW:251.7(計算値)、1H−NMR(400MHz/CD3OD)δ(ppm):1.02(t,J=7.3Hz,6H),1.77−1.81(m,4H),3.68(dd,J=4.1,8.7Hz,1H),3.77(d,J=6.9Hz,1H),4.02(dd,J=7.1,8.9Hz,1H),4.27(dd,J=4.4,4.4Hz,1H),5.86(dd,J=2.3,10.1Hz,1H),6.11(ddd,J=1.8,4.6,10.0Hz,1H) Synthesis of compound B9
Figure 2013216598

To Compound A9 obtained by the above step, a mixed solvent of 1 molar hydrochloric acid aqueous solution (1.5 mL) / tetrahydrofuran (1.5 mL) was added, and the mixture was allowed to stand at room temperature for 2 hours. The solvent was distilled off under reduced pressure while azeotroping with ethanol to obtain 64 mg of Compound B9 (2 steps, ˜100%).
C 11 H 22 ClNO 3 MW: 251.7 (calculated value), 1 H-NMR (400 MHz / CD 3 OD) δ (ppm): 1.02 (t, J = 7.3 Hz, 6H), 1.77 -1.81 (m, 4H), 3.68 (dd, J = 4.1, 8.7 Hz, 1H), 3.77 (d, J = 6.9 Hz, 1H), 4.02 (dd, J = 7.1, 8.9 Hz, 1H), 4.27 (dd, J = 4.4, 4.4 Hz, 1H), 5.86 (dd, J = 2.3, 10.1 Hz, 1H) , 6.11 (ddd, J = 1.8, 4.6, 10.0 Hz, 1H)

・化合物B10の合成

Figure 2013216598

上記の工程によって得られた化合物A1に、1モル塩酸水溶液(1.5mL)/テトラヒドロフラン(1.5mL)の混合溶媒を加え、室温で2時間静置した。エタノールで共沸させながら溶媒を減圧留去し、55mgの化合物B10を得た(2工程、〜100%)。C1224ClNO3 MW:265.7(計算値)、1H−NMR(400MHz/CD3OD)δ(ppm):0.94(t,J=7.3Hz,6H),1.40−1.52(m,4H),1.66−1.72(m,1H),3.03(d,J=6.4Hz,2H),3.63(dd,J=4.1,9.2Hz,1H),3.76(d,J=7.3Hz,1H),4.02(dd,J=7.6,8.9Hz,1H),4.26(dd,J=4.4,4.4Hz,1H),5.84(dd,J=2.7,10.1Hz,1H),6.13(ddd,J=2.3,4.5,10.1Hz,1H) Synthesis of compound B10
Figure 2013216598

A mixed solvent of 1 molar hydrochloric acid aqueous solution (1.5 mL) / tetrahydrofuran (1.5 mL) was added to compound A1 obtained by the above step, and the mixture was allowed to stand at room temperature for 2 hours. The solvent was distilled off under reduced pressure while azeotroping with ethanol to obtain 55 mg of compound B10 (2 steps, ˜100%). C 12 H 24 ClNO 3 MW: 265.7 (calculated value), 1 H-NMR (400 MHz / CD 3 OD) δ (ppm): 0.94 (t, J = 7.3 Hz, 6H), 1.40 -1.52 (m, 4H), 1.66-1.72 (m, 1H), 3.03 (d, J = 6.4 Hz, 2H), 3.63 (dd, J = 4.1) 9.2 Hz, 1H), 3.76 (d, J = 7.3 Hz, 1H), 4.02 (dd, J = 7.6, 8.9 Hz, 1H), 4.26 (dd, J = 4 .4, 4.4 Hz, 1H), 5.84 (dd, J = 2.7, 10.1 Hz, 1H), 6.13 (ddd, J = 2.3, 4.5, 10.1 Hz, 1H) )

・化合物B11の合成

Figure 2013216598

上記の工程によって得られた化合物A11に、1モル塩酸水溶液(1.5mL)/テトラヒドロフラン(1.5mL)の混合溶媒を加え、室温で2時間静置した。エタノールで共沸させながら溶媒を減圧留去し、37mgの化合物B11を得た(2工程、93%)。
916ClNO3 MW:221.6(計算値)、1H−NMR(400MHz/CD3OD)δ(ppm):0.89−1.06(m,4H),2.80−2.83(m,1H),3.63(dd,J=4.1,9.2Hz,1H),3.79(d,J=7.3Hz,1H),4.09(dd,J=7.6,8.9Hz,1H),4.27(dd,J=4.4,4.4Hz,1H),5.95(dd,J=2.3,10.1Hz,1H),6.13(ddd,J=2.3,4.7,10.1Hz,1H) Synthesis of compound B11
Figure 2013216598

A mixed solvent of 1 molar hydrochloric acid aqueous solution (1.5 mL) / tetrahydrofuran (1.5 mL) was added to compound A11 obtained by the above step, and the mixture was allowed to stand at room temperature for 2 hours. The solvent was distilled off under reduced pressure while azeotroping with ethanol to obtain 37 mg of Compound B11 (2 steps, 93%).
C 9 H 16 ClNO 3 MW: 221.6 (calculated value), 1 H-NMR (400 MHz / CD 3 OD) δ (ppm): 0.89-1.06 (m, 4H), 2.80-2 .83 (m, 1H), 3.63 (dd, J = 4.1, 9.2 Hz, 1H), 3.79 (d, J = 7.3 Hz, 1H), 4.09 (dd, J = 7.6, 8.9 Hz, 1 H), 4.27 (dd, J = 4.4, 4.4 Hz, 1 H), 5.95 (dd, J = 2.3, 10.1 Hz, 1 H), 6 .13 (ddd, J = 2.3, 4.7, 10.1 Hz, 1H)

・化合物B12の合成

Figure 2013216598

上記の工程によって得られた化合物A12に、1モル塩酸水溶液(1.5mL)/テトラヒドロフラン(1.5mL)の混合溶媒を加え、室温で2時間静置した。エタノールで共沸させながら溶媒を減圧留去し、44mgの化合物B12を得た(2工程、〜100%)。
1018ClNO3 MW:235.6(計算値)、1H−NMR(400MHz/CD3OD)δ(ppm):0.41−0.43(m,2H),0.70−0.73(m,2H),1.13−1.17(m,1H),3.03(d,J=7.3Hz,2H),3.60(dd,J=3.9,9.4Hz,1H),3.73(d,J=7.8Hz,1H),3.95(dd,J=8.5,8.5Hz,1H),4.25(dd,J=4.4,4.4Hz,1H),5.83(dd,J=2.3,10.1Hz,1H),6.11(ddd,J=2.2,4.4,10.2Hz) Synthesis of compound B12
Figure 2013216598

A mixed solvent of 1 molar hydrochloric acid aqueous solution (1.5 mL) / tetrahydrofuran (1.5 mL) was added to compound A12 obtained by the above step, and the mixture was allowed to stand at room temperature for 2 hours. The solvent was distilled off under reduced pressure while azeotroping with ethanol to obtain 44 mg of Compound B12 (2 steps, ˜100%).
C 10 H 18 ClNO 3 MW: 235.6 (calculated value), 1 H-NMR (400 MHz / CD 3 OD) δ (ppm): 0.41-0.43 (m, 2H), 0.70-0 .73 (m, 2H), 1.13 to 1.17 (m, 1H), 3.03 (d, J = 7.3 Hz, 2H), 3.60 (dd, J = 3.9, 9. 4 Hz, 1 H), 3.73 (d, J = 7.8 Hz, 1 H), 3.95 (dd, J = 8.5, 8.5 Hz, 1 H), 4.25 (dd, J = 4.4 , 4.4 Hz, 1H), 5.83 (dd, J = 2.3, 10.1 Hz, 1H), 6.11 (ddd, J = 2.2, 4.4, 10.2 Hz)

・化合物B13の合成

Figure 2013216598

上記の工程によって得られた化合物A13に、1モル塩酸水溶液(1.5mL)/テトラヒドロフラン(1.5mL)の混合溶媒を加え、室温で2時間静置した。エタノールで共沸させながら溶媒を減圧留去し、48mgの化合物B13を得た(2工程、quantitative)。
1120ClNO3 MW:249.6(計算値)、1H−NMR(400MHz/CD3OD)δ(ppm):1.64−1.87(m,6H),2.14−2.18(m,2H),3.60(dd,J=4.1,9.2Hz,1H),3.67(d,J=7.8,1H),3.82−3.90(m,1H),3.96(dd,J=7.3,9.2Hz,1H),4.25(dd,J=4.4,4.4Hz,1H),5.87(dd,J=2.3,10.1Hz,1H),6.11(ddd,J=2.3,4.5,10.1Hz,1H) Synthesis of compound B13
Figure 2013216598

A mixed solvent of 1 molar hydrochloric acid aqueous solution (1.5 mL) / tetrahydrofuran (1.5 mL) was added to compound A13 obtained by the above step, and the mixture was allowed to stand at room temperature for 2 hours. The solvent was distilled off under reduced pressure while azeotroping with ethanol to obtain 48 mg of compound B13 (2 steps, quantitative).
C 11 H 20 ClNO 3 MW: 249.6 (calculated value), 1 H-NMR (400 MHz / CD 3 OD) δ (ppm): 1.64-1.87 (m, 6H), 2.14-2 .18 (m, 2H), 3.60 (dd, J = 4.1, 9.2 Hz, 1H), 3.67 (d, J = 7.8, 1H), 3.82-3.90 ( m, 1H), 3.96 (dd, J = 7.3, 9.2 Hz, 1H), 4.25 (dd, J = 4.4, 4.4 Hz, 1H), 5.87 (dd, J = 2.3, 10.1 Hz, 1H), 6.11 (ddd, J = 2.3, 4.5, 10.1 Hz, 1H)

・化合物B14の合成

Figure 2013216598

上記の工程によって得られた化合物A14に、1モル塩酸水溶液(1.5mL)/テトラヒドロフラン(1.5mL)の混合溶媒を加え、室温で1時間攪拌した。エタノールで共沸させながら溶媒を減圧留去し、41mgの化合物B14を得た(2工程、92%)。
1120ClNO3 MW:249.6(計算値)、1H−NMR(400MHz/CD3OD)δ(ppm):1.47−1.59(m,1H),1.82−1.98(m,5H),3.25−3.40(m,3H),3.52(dd,J=3.9,9.8Hz,1H),3.86(d,J=8.7Hz,1H),4.09(dd,J=8.7,9.6Hz,1H),4.21(dd,J=4.8,4.8Hz,1H),5.94(dd,J=2.3,10.1Hz,1H),6.21(ddd,J=2.5,5.5,10.1Hz,1H) Synthesis of compound B14
Figure 2013216598

A mixed solvent of 1 molar hydrochloric acid aqueous solution (1.5 mL) / tetrahydrofuran (1.5 mL) was added to compound A14 obtained by the above step, and the mixture was stirred at room temperature for 1 hour. The solvent was distilled off under reduced pressure while azeotroping with ethanol to obtain 41 mg of compound B14 (2 steps, 92%).
C 11 H 20 ClNO 3 MW: 249.6 (calculated value), 1 H-NMR (400 MHz / CD 3 OD) δ (ppm): 1.47-1.59 (m, 1H), 1.82-1 .98 (m, 5H), 3.25-3.40 (m, 3H), 3.52 (dd, J = 3.9, 9.8 Hz, 1H), 3.86 (d, J = 8. 7Hz, 1H), 4.09 (dd, J = 8.7, 9.6Hz, 1H), 4.21 (dd, J = 4.8, 4.8Hz, 1H), 5.94 (dd, J = 2.3, 10.1 Hz, 1 H), 6.21 (ddd, J = 2.5, 5.5, 10.1 Hz, 1 H)

・化合物B15の合成

Figure 2013216598

上記の工程によって得られた化合物A15に、1モル塩酸水溶液(1.5mL)/テトラヒドロフラン(1.5mL)の混合溶媒を加え、室温で2時間静置した。エタノールで共沸させながら溶媒を減圧留去し、39mgの化合物B15を得た(2工程、92%)。
1222ClNO3 MW:263.6(計算値)、1H−NMR(400MHz/CD3OD)δ(ppm):1.18−1.27(m,1H),1.33−1.52(m,4H),1.71(br d,J=12.8Hz,1H),1.87(br d,J=11.4Hz,1H),2.14−2.17(m,2H),3.36−3.43(m,1H),3.79(dd,J=7.3Hz,1H),3.96(dd,J=7.8,9.2Hz,1H),4.25(dd,J=4.6,4.6Hz,1H),5.85(dd,J=2.3,10.1Hz,1H),6.10(ddd,J=2.2,4.6,10.0Hz,1H) Synthesis of compound B15
Figure 2013216598

A mixed solvent of 1 molar hydrochloric acid aqueous solution (1.5 mL) / tetrahydrofuran (1.5 mL) was added to compound A15 obtained by the above step, and the mixture was allowed to stand at room temperature for 2 hours. The solvent was distilled off under reduced pressure while azeotroping with ethanol to obtain 39 mg of Compound B15 (2 steps, 92%).
C 12 H 22 ClNO 3 MW: 263.6 (calculated value), 1 H-NMR (400 MHz / CD 3 OD) δ (ppm): 1.18-1.27 (m, 1H), 1.33-1 .52 (m, 4H), 1.71 (br d, J = 12.8 Hz, 1 H), 1.87 (br d, J = 11.4 Hz, 1 H), 2.14-2.17 (m, 2H), 3.36-3.43 (m, 1H), 3.79 (dd, J = 7.3 Hz, 1H), 3.96 (dd, J = 7.8, 9.2 Hz, 1H), 4.25 (dd, J = 4.6, 4.6 Hz, 1H), 5.85 (dd, J = 2.3, 10.1 Hz, 1H), 6.10 (ddd, J = 2.2, (4.6, 10.0Hz, 1H)

・化合物B16の合成

Figure 2013216598

上記の工程によって得られた化合物A16に、1モル塩酸水溶液(1.5mL)/テトラヒドロフラン(1.5mL)の混合溶媒を加え、室温で1時間攪拌した。エタノールで共沸させながら溶媒を減圧留去し、44mgの化合物16を得た(2工程、88%)。
1324ClNO3 MW:277.7(計算値)、1H−NMR(400MHz/CD3OD)δ(ppm):0.99−1.09(m,2H),1.22−1.34(m,3H),1.67−1.85(m,6H),2.94(d,J=6.9Hz,1H),3.59(dd,J=4.1,9.6Hz,1H),3.69(d,J=7.8Hz,1H),3.95(dd,J=7.8,9.2Hz,1H),4.25(dd,J=4.4,4.4Hz,1H),5.77(dd,J=2.5,10.3Hz,1H),6.13(ddd,J=2.2,4.8,10.4Hz,1H) Synthesis of compound B16
Figure 2013216598

A mixed solvent of 1 molar hydrochloric acid aqueous solution (1.5 mL) / tetrahydrofuran (1.5 mL) was added to compound A16 obtained by the above step, and the mixture was stirred at room temperature for 1 hour. The solvent was distilled off under reduced pressure while azeotroping with ethanol to obtain 44 mg of Compound 16 (2 steps, 88%).
C 13 H 24 ClNO 3 MW: 277.7 (calculated value), 1 H-NMR (400 MHz / CD 3 OD) δ (ppm): 0.99-1.09 (m, 2H), 1.22-1 .34 (m, 3H), 1.67-1.85 (m, 6H), 2.94 (d, J = 6.9 Hz, 1H), 3.59 (dd, J = 4.1, 9.. 6 Hz, 1H), 3.69 (d, J = 7.8 Hz, 1H), 3.95 (dd, J = 7.8, 9.2 Hz, 1H), 4.25 (dd, J = 4.4 , 4.4 Hz, 1H), 5.77 (dd, J = 2.5, 10.3 Hz, 1H), 6.13 (ddd, J = 2.2, 4.8, 10.4 Hz, 1H)

・化合物B17の合成

Figure 2013216598

上記の工程によって得られた化合物A17に、1モル塩酸水溶液(1.5mL)/テトラヒドロフラン(1.5mL)の混合溶媒を加え、室温で2時間静置した。エタノールで共沸させながら溶媒を減圧留去し、54mgの化合物B17を得た(2工程、〜100%)。
化合物17(異性体混合物):C1324ClNO3 MW:277.7(計算値)、1H−NMR(400MHz/CD3OD)δ(ppm):0.92(d,J=6.4Hz,2H),1.02(d,J=6.9Hz,3H),1.05−1.12(1.3H),1.40−1.92(12H),2.13−2.18(1.4H),3.36−3.40(0.6H),3.43−3.50(1H),3.59−3.64(1.8H),3.80(br d,J=7.8Hz,1.6H),3.94−4.00(1.6H),4.25(dd,J=4.4,4.4Hz,1.6H),5.83−5.88(1.6H),6.08−6.12(1.6H) Synthesis of compound B17
Figure 2013216598

A mixed solvent of 1 molar hydrochloric acid aqueous solution (1.5 mL) / tetrahydrofuran (1.5 mL) was added to compound A17 obtained by the above step, and the mixture was allowed to stand at room temperature for 2 hours. The solvent was distilled off under reduced pressure while azeotroping with ethanol to obtain 54 mg of Compound B17 (2 steps, ˜100%).
Compound 17 (isomer mixture): C 13 H 24 ClNO 3 MW: 277.7 (calculated value), 1 H-NMR (400 MHz / CD 3 OD) δ (ppm): 0.92 (d, J = 6. 4 Hz, 2H), 1.02 (d, J = 6.9 Hz, 3H), 1.05-1.12 (1.3H), 1.40-1.92 (12H), 2.13-2. 18 (1.4H), 3.36-3.40 (0.6H), 3.43-3.50 (1H), 3.59-3.64 (1.8H), 3.80 (br d , J = 7.8 Hz, 1.6H), 3.94-4.00 (1.6H), 4.25 (dd, J = 4.4, 4.4 Hz, 1.6H), 5.83- 5.88 (1.6H), 6.08-6.12 (1.6H)

・化合物B18の合成

Figure 2013216598

上記の工程によって得られた化合物A18に、1モル塩酸水溶液(1.5mL)/テトラヒドロフラン(1.5mL)の混合溶媒を加え、室温で2時間静置した。エタノールで共沸させながら溶媒を減圧留去し、61mgの化合物B18を得た(2工程、〜100%)。
1426ClNO3 MW:291.7(計算値)、1H−NMR(400MHz/CD3OD)δ(ppm):1.46−1.84(m,12H),1.98−2.08(m,2H),3.60−3.69(m,2H),3.77(d,J=7.3Hz,1H),3.96(dd,J=7.8,9.2Hz,1H),4.25(dd,J=4.4,4.4Hz,1H),5.84(dd,J=2.5,10.3Hz),6.11(dq,J=2.0,4.8,10.0Hz,1H) Synthesis of compound B18
Figure 2013216598

A mixed solvent of 1 molar hydrochloric acid aqueous solution (1.5 mL) / tetrahydrofuran (1.5 mL) was added to compound A18 obtained by the above step, and the mixture was allowed to stand at room temperature for 2 hours. The solvent was distilled off under reduced pressure while azeotroping with ethanol to obtain 61 mg of compound B18 (2 steps, ˜100%).
C 14 H 26 ClNO 3 MW: 291.7 (calculated value), 1 H-NMR (400 MHz / CD 3 OD) δ (ppm): 1.46 to 1.84 (m, 12H), 1.98-2 .08 (m, 2H), 3.60-3.69 (m, 2H), 3.77 (d, J = 7.3 Hz, 1H), 3.96 (dd, J = 7.8, 9. 2 Hz, 1H), 4.25 (dd, J = 4.4, 4.4 Hz, 1H), 5.84 (dd, J = 2.5, 10.3 Hz), 6.11 (dq, J = 2) 0.0, 4.8, 10.0 Hz, 1 H)

・化合物B19の合成

Figure 2013216598
上記の工程によって得られた化合物A19に、1モル塩酸水溶液(1.5mL)/テトラヒドロフラン(1.5mL)の混合溶媒を加え、室温で1時間攪拌した。エタノールで共沸させながら溶媒を減圧留去し、51mgの化合物A19を得た(2工程、〜100%)。
1318ClNO3 MW:271.7(計算値)、1H−NMR(400MHz/CD3OD)δ(ppm):3.61(dd,J=4.1,9.2Hz,1H),3.71(d,J=7.3Hz,1H),4.08(dd,J=7.8,9.2Hz,1H),4.27(dd,J=4.4,4.4Hz,1H),4.35(s,2H),5.90(dd,J=2.3,10.1Hz,1H),6.14(ddd,J=2.2,4.8,10.2Hz,1H),7.42−7.49(m,3H),7.53−7.55(m,2H) Synthesis of compound B19
Figure 2013216598
A mixed solvent of 1 molar hydrochloric acid aqueous solution (1.5 mL) / tetrahydrofuran (1.5 mL) was added to compound A19 obtained by the above step, and the mixture was stirred at room temperature for 1 hour. The solvent was distilled off under reduced pressure while azeotroping with ethanol to obtain 51 mg of Compound A19 (2 steps, ˜100%).
C 13 H 18 ClNO 3 MW: 271.7 (calculated value), 1 H-NMR (400 MHz / CD 3 OD) δ (ppm): 3.61 (dd, J = 4.1, 9.2 Hz, 1H) 3.71 (d, J = 7.3 Hz, 1H), 4.08 (dd, J = 7.8, 9.2 Hz, 1H), 4.27 (dd, J = 4.4, 4.4 Hz) , 1H), 4.35 (s, 2H), 5.90 (dd, J = 2.3, 10.1 Hz, 1H), 6.14 (ddd, J = 2.2, 4.8, 10. 2Hz, 1H), 7.42-7.49 (m, 3H), 7.53-7.55 (m, 2H)

・化合物B20の合成

Figure 2013216598

上記の工程によって得られた化合物A20に、1モル塩酸水溶液(1.5mL)/テトラヒドロフラン(1.5mL)の混合溶媒を加え、室温で1時間攪拌した。エタノールで共沸させながら溶媒を減圧留去し、43mgの化合物B20を得た(2工程、84%)。
1420ClNO3 MW:285.7(計算値)、1H−NMR(400MHz/CD3OD)δ(ppm):3.04(t,J=7.6Hz,2H),3.34−3.39(m,2H),3.60(dd,J=4.1,9.2Hz,1H),3.74(d,J=7.8Hz,1H),3.97(dd,J=7.6,8.9Hz,1H),4.25(dd,J=4.4,4.4Hz,1H),5.83(dd,J=2.3,10.1Hz,1H),6.12(ddd,J=2.3,4.5,10.1,1H),7.24−7.36(m,5H) Synthesis of compound B20
Figure 2013216598

A mixed solvent of 1 molar hydrochloric acid aqueous solution (1.5 mL) / tetrahydrofuran (1.5 mL) was added to compound A20 obtained by the above step, and the mixture was stirred at room temperature for 1 hour. The solvent was distilled off under reduced pressure while azeotroping with ethanol to obtain 43 mg of Compound B20 (2 steps, 84%).
C 14 H 20 ClNO 3 MW: 285.7 (calculated value), 1 H-NMR (400 MHz / CD 3 OD) δ (ppm): 3.04 (t, J = 7.6 Hz, 2H), 3.34 −3.39 (m, 2H), 3.60 (dd, J = 4.1, 9.2 Hz, 1H), 3.74 (d, J = 7.8 Hz, 1H), 3.97 (dd, J = 7.6, 8.9 Hz, 1H), 4.25 (dd, J = 4.4, 4.4 Hz, 1H), 5.83 (dd, J = 2.3, 10.1 Hz, 1H) 6.12 (ddd, J = 2.3, 4.5, 10.1, 1H), 7.24-7.36 (m, 5H)

・化合物B21の合成

Figure 2013216598

上記の工程によって得られた化合物A21に、1モル塩酸水溶液(1.5mL)/テトラヒドロフラン(1.5mL)の混合溶媒を加え、室温で1時間攪拌した。エタノールで共沸させながら溶媒を減圧留去し、36mgの化合物B21を得た(2工程、52%)。
1218Cl223 MW:309.1(計算値)、1H−NMR(400MHz/CD3OD)δ(ppm):3.62(dd,J=4.1,9.2Hz,1H),3.87(br d,J=7.8Hz,1H),4.09(dd,J=7.8,9.2Hz,1H),4.28(dd,J=4.4,4.4Hz,1H),4.74(s,2H),5.94(dd,J=2.5,10.3Hz,1H),6.20(ddd,J=2.3,4.9,10.1Hz,1H),8.21−8.22(m,2H),8.95−8.97(m,2H) Synthesis of compound B21
Figure 2013216598

A mixed solvent of 1 molar hydrochloric acid aqueous solution (1.5 mL) / tetrahydrofuran (1.5 mL) was added to compound A21 obtained by the above step, and the mixture was stirred at room temperature for 1 hour. The solvent was distilled off under reduced pressure while azeotroping with ethanol to obtain 36 mg of Compound B21 (2 steps, 52%).
C 12 H 18 Cl 2 N 2 O 3 MW: 309.1 (calculated value), 1 H-NMR (400 MHz / CD 3 OD) δ (ppm): 3.62 (dd, J = 4.1, 9. 2 Hz, 1H), 3.87 (brd, J = 7.8 Hz, 1H), 4.09 (dd, J = 7.8, 9.2 Hz, 1H), 4.28 (dd, J = 4. 4, 4.4 Hz, 1 H), 4.74 (s, 2 H), 5.94 (dd, J = 2.5, 10.3 Hz, 1 H), 6.20 (ddd, J = 2.3, 4 .9, 10.1 Hz, 1H), 8.21-8.22 (m, 2H), 8.95-8.97 (m, 2H)

・化合物B22の合成

Figure 2013216598

上記の工程によって得られた化合物A22に、1モル塩酸水溶液(1.5mL)/テトラヒドロフラン(1.5mL)の混合溶媒を加え、室温で1時間攪拌した。エタノールで共沸させながら溶媒を減圧留去し、38mgの化合物B22を得た(2工程、66%)。
1320Cl223 MW:323.2(計算値)、1H−NMR(400MHz/CD3OD)δ(ppm):3.38−3.42(m,2H),3.55−3.63(3H),3.81(d,J=7.8Hz,1H),4.00(dd,J=7.8,9.2Hz,1H),4.27(dd,J=4.4,4.4Hz,1H),5.88(dd,J=2.5,10.3Hz,1H),6.12(ddd,J=2.3,4.5,10.1Hz,1H),8.06−8.07(m,2H),8.82−8.84(m,2H) Synthesis of compound B22
Figure 2013216598

A mixed solvent of 1 molar hydrochloric acid aqueous solution (1.5 mL) / tetrahydrofuran (1.5 mL) was added to compound A22 obtained by the above step, and the mixture was stirred at room temperature for 1 hour. The solvent was distilled off under reduced pressure while azeotroping with ethanol to obtain 38 mg of Compound B22 (2 steps, 66%).
C 13 H 20 Cl 2 N 2 O 3 MW: 323.2 (calculated value), 1 H-NMR (400 MHz / CD 3 OD) δ (ppm): 3.38-3.42 (m, 2H), 3 .55-3.63 (3H), 3.81 (d, J = 7.8 Hz, 1H), 4.00 (dd, J = 7.8, 9.2 Hz, 1H), 4.27 (dd, J = 4.4, 4.4 Hz, 1H), 5.88 (dd, J = 2.5, 10.3 Hz, 1H), 6.12 (ddd, J = 2.3, 4.5, 10). 1 Hz, 1H), 8.06-8.07 (m, 2H), 8.82-8.84 (m, 2H)

・化合物B23の合成

Figure 2013216598
上記の工程によって得られた化合物A23に、1モル塩酸水溶液(1.5mL)/テトラヒドロフラン(1.5mL)の混合溶媒を加え、室温で2時間攪拌した。エタノールで共沸させながら溶媒を減圧留去し、47mgの化合物B23を得た(2工程、95%)。
1218ClNO4 MW:275.7(計算値)、1H−NMR(400MHz/CD3OD)δ(ppm):3.62(dd,J=4.1,9.2Hz,2H),3.66(br d,J=7.8Hz,2H),4.02(dd,J=7.3,9.2Hz,1H),4.26(dd,J=4.1,4.1Hz,1H),4.36(s,2H),5.83(dd,J=2.7,10.1Hz,1H),6.07(dd,J=0.9,3.2Hz,1H),6.11(ddd,J=2.3,4.5,10.1Hz,1H),6.54(d,J=3.2Hz,1H) Synthesis of compound B23
Figure 2013216598
A mixed solvent of 1 molar hydrochloric acid aqueous solution (1.5 mL) / tetrahydrofuran (1.5 mL) was added to compound A23 obtained by the above step, and the mixture was stirred at room temperature for 2 hours. The solvent was distilled off under reduced pressure while azeotroping with ethanol to obtain 47 mg of Compound B23 (2 steps, 95%).
C 12 H 18 ClNO 4 MW: 275.7 (calculated value), 1 H-NMR (400 MHz / CD 3 OD) δ (ppm): 3.62 (dd, J = 4.1, 9.2 Hz, 2H) 3.66 (brd, J = 7.8 Hz, 2H), 4.02 (dd, J = 7.3, 9.2 Hz, 1H), 4.26 (dd, J = 4.1, 4.. 1 Hz, 1H), 4.36 (s, 2H), 5.83 (dd, J = 2.7, 10.1 Hz, 1H), 6.07 (dd, J = 0.9, 3.2 Hz, 1H) ), 6.11 (ddd, J = 2.3, 4.5, 10.1 Hz, 1H), 6.54 (d, J = 3.2 Hz, 1H)

<実施例4>
化合物2´´(B24)の合成

Figure 2013216598

上記の工程によって得られた化合物A24に、2モル塩酸水溶液(2mL)/テトラヒドロフラン(2mL)の混合溶媒を加え、室温で3時間攪拌した。エタノールで共沸させながら溶媒を減圧濃縮した後、活性炭カラムにチャージし、40mLのメタノールで溶出した。溶媒を減圧留去し、65mgの化合物B24を得た(2工程90%)。
1632ClNO3 MW:286.4(計算値)、1H−NMR(400MHz/CD3OD)δ(ppm):0.90(t,J=6.9Hz,3H),1.31−1.42(m,10H),1.67−1.75(m,2H),1.89(s,3H),3.06−3.10(m,2H),3.54(dd,J=4.1,9.6Hz,1H),3.63(br d,J=7.8Hz,1H),3.89(dd,J=8.2,9.6Hz,1H),4.04(d,J=4.1Hz),5.49(dd,J=1.4,2.3Hz,1H) <Example 4>
Synthesis of Compound 2 ″ (B24)
Figure 2013216598

To the compound A24 obtained by the above step, a mixed solvent of 2 molar hydrochloric acid aqueous solution (2 mL) / tetrahydrofuran (2 mL) was added, and the mixture was stirred at room temperature for 3 hours. The solvent was concentrated under reduced pressure while azeotroping with ethanol, then charged to an activated carbon column, and eluted with 40 mL of methanol. The solvent was distilled off under reduced pressure to obtain 65 mg of compound B24 (2 steps 90%).
C 16 H 32 ClNO 3 MW: 286.4 (calculated value), 1 H-NMR (400 MHz / CD 3 OD) δ (ppm): 0.90 (t, J = 6.9 Hz, 3H), 1.31 -1.42 (m, 10H), 1.67-1.75 (m, 2H), 1.89 (s, 3H), 3.06-3.10 (m, 2H), 3.54 (dd , J = 4.1, 9.6 Hz, 1H), 3.63 (brd, J = 7.8 Hz, 1H), 3.89 (dd, J = 8.2, 9.6 Hz, 1H), 4 .04 (d, J = 4.1 Hz), 5.49 (dd, J = 1.4, 2.3 Hz, 1H)

(3)本発明化合物のグリコシダーゼ阻害活性の測定
グリコシダーゼとして、ウシ肝臓由来ベータ−ガラクトシダーゼおよびアーモンド由来ベータ−グルコシダーゼを用いた。緩衝液は、ウシ肝臓由来ベータ−ガラクトシダーゼに対しては終濃度20mMのリン酸緩衝液(pH=7.0)、アーモンド由来ベータ−グルコシダーゼに対しては終濃度30mMの酢酸緩衝液(pH=5.0)をそれぞれ用いた。基質としては、ベータ−ガラクトシダーゼに対しては4−ニトロフェニルβ−D−ガラクトピラノシド、ベータ−グルコシダーゼに対しては4−ニトロフェニルβ−D−グルコピラノシドをそれぞれ用い、被検物質の存在下および非存在下で、30分間の酵素活性を測定した。なお、温度はともに37℃とし、化合物B1〜B24の最終濃度は1mM、100μM、10μM、1μM、100nM、10nMとした。その結果を図1、図2および表2に示した。いずれのグリコシダーゼに対しても、化合物B1〜B24は顕著な阻害効果を示すことが明らかとなった。
(3) Measurement of glycosidase inhibitory activity of compounds of the present invention As glycosidases, bovine liver-derived beta-galactosidase and almond-derived beta-glucosidase were used. The buffer solution is a phosphate buffer solution (pH = 7.0) with a final concentration of 20 mM for bovine liver-derived beta-galactosidase, and an acetate buffer solution (pH = 5) with a final concentration of 30 mM for almond-derived beta-glucosidase. .0) were used respectively. As a substrate, 4-nitrophenyl β-D-galactopyranoside was used for beta-galactosidase and 4-nitrophenyl β-D-glucopyranoside was used for beta-glucosidase, respectively, in the presence of a test substance. And in the absence, enzyme activity was measured for 30 minutes. Both temperatures were 37 ° C., and final concentrations of compounds B1 to B24 were 1 mM, 100 μM, 10 μM, 1 μM, 100 nM, and 10 nM. The results are shown in FIGS. 1 and 2 and Table 2. It became clear that compound B1-B24 showed a remarkable inhibitory effect with respect to any glycosidase.

Figure 2013216598
Figure 2013216598

Claims (11)

下記一般式(1)で表されるコンデュラミンF−4誘導体またはその酸付加塩。
Figure 2013216598
式中、R1、R2はそれぞれ独立に水素原子またはアルキル基(連続しない-CH2−が-O-に置き換えられてもよい)、ヒドロキシアルキル基、アルケニル基、アルキニル基、アシル基、アリール基、ヘテロアリール基またはアラルキル基を表し、アラルキル基に含まれるアリール基はヘテロアリール基であってもよい。R1及びR2は、それぞれが結合している窒素原子と一緒になって非芳香環を形成してもよい。ただし、R1及びR2は双方が同時に水素原子であることはない。
3〜R5はそれぞれ独立にヒドロキシル基または保護されたヒドロキシル基を示す。また、R4とR5は一緒になって、アセタール基を形成してもよい。
6は水素原子またはメチル基を表す。
A chonduramin F-4 derivative represented by the following general formula (1) or an acid addition salt thereof.
Figure 2013216598
In the formula, R 1 and R 2 are each independently a hydrogen atom or an alkyl group (discontinuous —CH 2 — may be replaced by —O—), a hydroxyalkyl group, an alkenyl group, an alkynyl group, an acyl group, an aryl group Represents an aryl group, a heteroaryl group or an aralkyl group, and the aryl group contained in the aralkyl group may be a heteroaryl group. R 1 and R 2 may form a non-aromatic ring together with the nitrogen atom to which each is bonded. However, R 1 and R 2 are not both hydrogen atoms at the same time.
R 3 to R 5 each independently represent a hydroxyl group or a protected hydroxyl group. R 4 and R 5 may be combined to form an acetal group.
R 6 represents a hydrogen atom or a methyl group.
下記一般式(2)で表されるコンデュラミンF−4誘導体またはその酸付加塩。
Figure 2013216598
式中、R1、R2はそれぞれ独立に水素原子またはアルキル基(連続しない-CH2−が-O-に置き換えられてもよい)、ヒドロキシアルキル基、アルケニル基、アルキニル基、アシル基、アリール基、ヘテロアリール基またはアラルキル基を表し、アラルキル基に含まれるアリール基はヘテロアリール基であってもよい。R1及びR2は、それぞれが結合している窒素原子と一緒になって非芳香環を形成してもよい。ただし、R1及びR2は双方が同時に水素原子であることはない。
6は水素原子またはメチル基を表す。
A chonduramin F-4 derivative represented by the following general formula (2) or an acid addition salt thereof.
Figure 2013216598
In the formula, R 1 and R 2 are each independently a hydrogen atom or an alkyl group (discontinuous —CH 2 — may be replaced by —O—), a hydroxyalkyl group, an alkenyl group, an alkynyl group, an acyl group, an aryl group Represents an aryl group, a heteroaryl group or an aralkyl group, and the aryl group contained in the aralkyl group may be a heteroaryl group. R 1 and R 2 may form a non-aromatic ring together with the nitrogen atom to which each is bonded. However, R 1 and R 2 are not both hydrogen atoms at the same time.
R 6 represents a hydrogen atom or a methyl group.
(+)−プロト−クエルシトールを出発原料とし、1位、2位、3位および4位のヒドロキシル基の保護化、5位のヒドロキシル基の脱離基への変換、次いで5位のヒドロキシル基の脱離を行い、得られたシクロヘキセン誘導体に対し1位および2位の脱保護、1,2−ジオールのエポキシ化、続いて得られたエポキシドにアミンを開環付加させる工程を含むことを特徴とする、請求項1に記載の一般式(1)で表されるコンデュラミンF−4誘導体のうち、R6が水素原子であるものの製造方法。 Starting from (+)-proto-quercitol, protecting the hydroxyl groups at positions 1, 2, 3, and 4; converting the hydroxyl group at the 5 position to a leaving group; And deprotection of the 1- and 2-positions of the obtained cyclohexene derivative, epoxidation of 1,2-diol, and subsequent ring-opening addition of an amine to the obtained epoxide. to, among Kondeyuramin F-4 derivative represented by the general formula (1) according to claim 1, method for producing and R 6 is a hydrogen atom. 請求項3に記載の方法によりコンデュラミンF−4誘導体を製造し、得られたコンデュラミンF−4誘導体に酸性物質を作用させる、請求項1に記載の一般式(1)で表されるコンデュラミンF−4誘導体のうち、R6が水素原子であるものの酸付加塩の製造方法。 The chonduramin F-4 derivative represented by the general formula (1) according to claim 1, wherein a chonduramin F-4 derivative is produced by the method according to claim 3, and an acidic substance is allowed to act on the obtained chonduramin F-4 derivative. A method for producing an acid addition salt of four derivatives, wherein R 6 is a hydrogen atom. (+)−プロト−クエルシトールを出発原料とし、1位、2位、3位および4位のヒドロキシル基の保護化、5位のヒドロキシル基の脱離基への変換、次いで5位のヒドロキシル基の脱離を行い、得られたシクロヘキセン誘導体に対し1位および2位の脱保護、1,2−ジオールのエポキシ化、続いて得られたエポキシドにアミンを開環付加させ、さらに3
,4位の脱保護を行う工程を含むことを特徴とする、請求項2に記載の一般式(2)で表されるコンデュラミンF−4誘導体のうち、R6が水素原子であるものの製造方法。
Starting from (+)-proto-quercitol, protecting the hydroxyl groups at positions 1, 2, 3, and 4; converting the hydroxyl group at the 5 position to a leaving group; Desorption, 1- and 2-position deprotection of the resulting cyclohexene derivative, epoxidation of 1,2-diol, followed by ring-opening addition of an amine to the resulting epoxide,
A process for producing one in which R 6 is a hydrogen atom among the Conduramin F-4 derivatives represented by the general formula (2) according to claim 2, comprising a step of deprotecting the 4-position .
請求項5に記載の方法によりコンデュラミンF−4誘導体を製造し、得られたコンデュラミンF−4誘導体に酸性物質を作用させる、請求項2に記載の一般式(2)で表されるコンデュラミンF−4誘導体のうち、R6が水素原子であるものの酸付加塩の製造方法。 Conduramine F-4 derivative represented by the general formula (2) according to claim 2, wherein a Conduramine F-4 derivative is produced by the method according to claim 5, and an acidic substance is allowed to act on the obtained Conduramine F-4 derivative. A method for producing an acid addition salt of four derivatives, wherein R 6 is a hydrogen atom. (+)−プロト−クエルシトールを出発原料とし、下記構造式(3)で表される物質に変換した後、1級ブロモ基の還元、二級ブロモ基のアキシアル体の分離、続いて該アキシアル体の2級ブロモ基にアミンを求核付加させる工程を含むことを特徴とする、請求項1に記載の一般式(1)で表されるコンデュラミンF−4誘導体のうち、R6がメチル基であるものの製造方法。
Figure 2013216598
式中、Bzはベンゾイル基を表す。
Using (+)-proto-quercitol as a starting material and converting it to a substance represented by the following structural formula (3), reduction of a primary bromo group, separation of an axial form of a secondary bromo group, followed by the axial form A nucleophilic addition of an amine to the secondary bromo group of the above-mentioned Conduramin F-4 derivative represented by the general formula (1) according to claim 1, wherein R 6 is a methyl group The manufacturing method of something.
Figure 2013216598
In the formula, Bz represents a benzoyl group.
請求項7に記載の方法によりコンデュラミンF−4誘導体を製造し、得られたコンデュラミンF−4誘導体に酸性物質を作用させる、請求項1に記載の一般式(1)で表されるコンデュラミンF−4誘導体のうち、R6がメチル基であるものの酸付加塩の製造方法。 Conduramine F-4 derivative represented by the general formula (1) according to claim 1, wherein a Conduramine F-4 derivative is produced by the method according to claim 7, and an acidic substance is allowed to act on the obtained Conduramine F-4 derivative. A method for producing an acid addition salt of four derivatives, wherein R 6 is a methyl group. (+)−プロト−クエルシトールを出発原料とし、下記構造式(3)で表される物質に変換した後、1級ブロモ基の還元、二級ブロモ基のアキシアル体の分離、続いて該アキシアル体の2級ブロモ基にアミンを求核付加させ、さらに保護されたヒドロキシル基の脱保護を行う工程を含むことを特徴とする、請求項2に記載の一般式(2)で表されるコンデュラミンF−4誘導体のうち、R6がメチル基であるものの製造方法。
Figure 2013216598
式中、Bzはベンゾイル基を表す。
Using (+)-proto-quercitol as a starting material and converting it to a substance represented by the following structural formula (3), reduction of a primary bromo group, separation of an axial form of a secondary bromo group, followed by the axial form The process according to claim 2, further comprising the step of nucleophilic addition of an amine to the secondary bromo group of the above, and further deprotection of the protected hydroxyl group. -4 of the derivatives, wherein R 6 is a methyl group.
Figure 2013216598
In the formula, Bz represents a benzoyl group.
請求項9に記載の方法によりコンデュラミンF−4誘導体を製造し、得られたコンデュラミンF−4誘導体に酸性物質を作用させる、請求項2に記載の一般式(2)で表されるコンデュラミンF−4誘導体のうち、R6がメチル基であるものの酸付加塩の製造方法。 Conduramine F-4 derivative represented by the general formula (2) according to claim 2, wherein a chondramine F-4 derivative is produced by the method according to claim 9, and an acidic substance is allowed to act on the obtained conduramine F-4 derivative. A method for producing an acid addition salt of four derivatives, wherein R 6 is a methyl group. 請求項1または2に記載のコンデュラミンF−4誘導体、またはその酸付加塩を有効成分とするグリコシダーゼ阻害剤。 The glycosidase inhibitor which uses the Conduramin F-4 derivative of Claim 1 or 2 or its acid addition salt as an active ingredient.
JP2012087037A 2012-04-06 2012-04-06 CONDULAMINE F-4 DERIVATIVE INHIBITING GLYCOSIDASE, ACID ADDITION SALT AND METHOD FOR PRODUCING THEM Active JP5848183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012087037A JP5848183B2 (en) 2012-04-06 2012-04-06 CONDULAMINE F-4 DERIVATIVE INHIBITING GLYCOSIDASE, ACID ADDITION SALT AND METHOD FOR PRODUCING THEM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012087037A JP5848183B2 (en) 2012-04-06 2012-04-06 CONDULAMINE F-4 DERIVATIVE INHIBITING GLYCOSIDASE, ACID ADDITION SALT AND METHOD FOR PRODUCING THEM

Publications (2)

Publication Number Publication Date
JP2013216598A true JP2013216598A (en) 2013-10-24
JP5848183B2 JP5848183B2 (en) 2016-01-27

Family

ID=49589172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012087037A Active JP5848183B2 (en) 2012-04-06 2012-04-06 CONDULAMINE F-4 DERIVATIVE INHIBITING GLYCOSIDASE, ACID ADDITION SALT AND METHOD FOR PRODUCING THEM

Country Status (1)

Country Link
JP (1) JP5848183B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015091790A (en) * 2013-10-04 2015-05-14 北興化学工業株式会社 Glycolipid metabolic abnormality treating agent

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002275136A (en) * 2001-03-14 2002-09-25 Seikagaku Kogyo Co Ltd Unsaturated carbasugar amine derivative and glicosidase inhibitor by using the same
WO2003022797A1 (en) * 2001-09-07 2003-03-20 Seikagaku Corporation Carba-sugar amine derivatives and treatments for disorder of glycolipid metabolism containing the same as the active ingredient

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002275136A (en) * 2001-03-14 2002-09-25 Seikagaku Kogyo Co Ltd Unsaturated carbasugar amine derivative and glicosidase inhibitor by using the same
WO2003022797A1 (en) * 2001-09-07 2003-03-20 Seikagaku Corporation Carba-sugar amine derivatives and treatments for disorder of glycolipid metabolism containing the same as the active ingredient

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
JPN6015032024; Chemische Berichte 95, 1962, pp.2708-2713 *
JPN6015032026; Bull. Chem. Soc. Jpn. 71(1), 1998, pp.259-272 *
JPN6015032027; Synlett (5), 1992, pp.388-390 *
JPN6015032029; Bioorganic & Medicinal Chemistry Letters 15, 2005, pp.3071-3075 *
JPN6015032030; Chemistry OPEN 1(1), 2012, pp.13-16 *
JPN6015032033; Bioorganic & Medicinal Chemistry 14, 2006, pp.6255-6282 *
JPN6015032035; Carbohydrate Chemistry 11(2), 1992, pp.137-148 *
JPN6015032037; Bioorganic & Medicinal Chemistry Letters 21, 2011, pp.7189-7192 *
JPN6015032039; Journal of American Chemical Society 96(14), 1974, pp.4604-4611 *
JPN6015032042; J. Org. Chem. 46(11), 1981, pp.2381-2383 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015091790A (en) * 2013-10-04 2015-05-14 北興化学工業株式会社 Glycolipid metabolic abnormality treating agent

Also Published As

Publication number Publication date
JP5848183B2 (en) 2016-01-27

Similar Documents

Publication Publication Date Title
EP3686196B1 (en) Polycyclic compound acting as ido inhibitor and/or ido-hdac dual inhibitor
JP6511613B2 (en) Synthetic methods for the preparation of macrocyclic C1-keto analogues of halichondrin B and intermediates useful in said methods, such as intermediates containing -SO2- (p-tolyl) group
JP7489966B2 (en) Illudin analogues, their uses, and methods for synthesizing them
US10793570B2 (en) Methods and reagents for radiolabeling
NZ747061A (en) Prodrug of amino acid derivative
JP2022540434A (en) cannabinoid derivatives
JPH04506669A (en) Antimalarial homologs of artemisinin
JP5848183B2 (en) CONDULAMINE F-4 DERIVATIVE INHIBITING GLYCOSIDASE, ACID ADDITION SALT AND METHOD FOR PRODUCING THEM
Maag et al. An allylic azide route to 4'-azido carbocyclic nucleosides. Synthesis of (.+-.)-(1'. alpha., 2'. alpha., 3'. beta.)-and (.+-.)-(1'. alpha., 2'. beta., 3'. beta.)-1-[1-azido-2-hydroxy-1-(hydroxymethyl)-3-cyclopentyl] thymine
US9434740B2 (en) Taxane compounds, compositions and methods
DK169517B1 (en) [Aryl] (3-pyridinyl) methanone, oxime derivatives and process for their preparation
RU2478630C2 (en) Intermediate compounds and methods for preparing zearalene macrolide analogues
WO2020129901A1 (en) Method for preparing ketone compound
JP6528251B2 (en) Crystalline derivatives of (S) -1-((2R, 3R, 4S, 5S) -5-allyl-3-methoxy-4- (tosylmethyl) tetrahydrofuran-2-yl) -3-aminopropan-2-ol
ES2607279T3 (en) Procedure for the preparation of (3R, 3aS, 6aR) -hexahydrofuro [2,3-b] furan-3-ol
US8697892B2 (en) Taxane compounds, compositions and methods
JP2012158523A (en) Novel carbasugar precursor and method for producing the same, and method for producing bioactive carbasugar amine derivative using them
WO2013162922A1 (en) Taxane compounds, compositions and methods
Yamauchi et al. Use of the Benzyl Mesylate for the Synthesis of Tetrahydrofuran Lignan: Syntheses of 7, 8-trans, 7′, 8′-trans, 7, 7′-cis, and 8, 8′-cis-Virgatusin Stereoisomers
JP2012158524A (en) Novel carbasugar precursor and method for producing the same, and method for producing bioactive carbasugar amine derivative using them
TW202311260A (en) Sulfoximine-containing ATR inhibitor compound
CN114031623A (en) C14Amino-substituted tetrandrine derivative and preparation and application thereof
CN115322106A (en) Synthesis method of trans-3-azido-1-methylcyclobutanol and trans-3-amino-1-methylcyclobutanol
EA020758B1 (en) 5-amino-4-hydroxypentoyl amides
JPH01157976A (en) (4s, 5s)-4,5-cyclohexylidenedioxy-2-cyclopenten-1-one, enantiomer and synthetic intermediate thereof and production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151126

R150 Certificate of patent or registration of utility model

Ref document number: 5848183

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150