JP2012158524A - Novel carbasugar precursor and method for producing the same, and method for producing bioactive carbasugar amine derivative using them - Google Patents

Novel carbasugar precursor and method for producing the same, and method for producing bioactive carbasugar amine derivative using them Download PDF

Info

Publication number
JP2012158524A
JP2012158524A JP2011017243A JP2011017243A JP2012158524A JP 2012158524 A JP2012158524 A JP 2012158524A JP 2011017243 A JP2011017243 A JP 2011017243A JP 2011017243 A JP2011017243 A JP 2011017243A JP 2012158524 A JP2012158524 A JP 2012158524A
Authority
JP
Japan
Prior art keywords
group
carbon atoms
protecting group
general formula
carbasugar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011017243A
Other languages
Japanese (ja)
Inventor
Shinichi Kuno
信一 久野
Seiichiro Ogawa
誠一郎 小川
Masanori Yamaguchi
将憲 山口
Yuichi Kita
雄一 北
Akihiro Tomota
明宏 友田
Atsushi Takahashi
篤 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokko Chemical Industry Co Ltd
Original Assignee
Hokko Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokko Chemical Industry Co Ltd filed Critical Hokko Chemical Industry Co Ltd
Priority to JP2011017243A priority Critical patent/JP2012158524A/en
Publication of JP2012158524A publication Critical patent/JP2012158524A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel method for producing a bioactive carbasugar amine derivative useful as a therapeutic agent for lysosome disease, to provide a novel carbasugar precursor useful as an intermediate in production of the carbasugar amine derivative and to provide a method for producing the same.SOLUTION: The novel carbasugar precursor has absolute configuration represented by general formula (1) (in formula, a part or the whole Rto Rindependently denote a hydrogen atom or a protective group of a hydroxyl group, and Rand Rdenote a 2-15C acyl group). The precursor is subjected to Wittig reaction to generate diene, halogenation is added to the generated diene, an acyloxyl group is introduced by substitution reaction and then an alkyl amino group is introduced, thereby the bioactive carbasugar amine derivative can be obtained.

Description

本発明は、新規カルバ糖前駆体とそれらの製造方法、およびそれらを用いて医薬剤として有用なバリエナミン型カルバ糖アミン誘導体を製造する方法に関する。   The present invention relates to novel carbasugar precursors and methods for producing them, and a method for producing a valienamine-type carbasugar amine derivative useful as a pharmaceutical agent using them.

細胞内小器官の一つライソゾームに存在する分解酵素が遺伝的に欠損または変異していると、細胞内外に異物が蓄積してしまう。このような現象によって引き起こされる疾病はライソゾーム病として知られている。ライソゾーム病の中でも特に、糖加水分解酵素であるライソゾーマル−β−グルコシダーゼの変異が病因となるものがゴーシェ(Gaucher)病として知られ、同じくライソゾーマル−β−ガラクトシダーゼの変異が病因となるものが、GM1ガングリオシドーシスと名付けられ、一般に認知されている。   If the degrading enzyme present in lysosome, an intracellular organelle, is genetically deleted or mutated, foreign substances accumulate inside and outside the cell. The disease caused by such a phenomenon is known as lysosomal disease. Among lysosomal diseases, a disease caused by mutation of lysosomal-β-glucosidase, which is a sugar hydrolase, is known as Gaucher disease, and a disease caused by mutation of lysosomal-β-galactosidase is also GM1. It is named gangliosidosis and is generally recognized.

これらの疾病に対し、酵素補充療法が現在までの主な治療法となっているが、酵素製剤は中枢神経に到達しにくく脳を含む神経系に対する治療効果が見られないこと、また高価な酵素製剤の点滴治療を生涯にわたって続けなければならないことなどが問題点として挙げられる。   Enzyme replacement therapy has been the main treatment to date for these diseases, but enzyme preparations are difficult to reach the central nervous system and have no therapeutic effect on the nervous system including the brain. The problem is that the infusion treatment of the preparation must be continued for a lifetime.

このような状況下、糖加水分解酵素の変異によって生じるライソゾーム病の新しい治療法を担う低分子化合物として、下記の一般式(2)−A(特許文献1および非特許文献1参照)で表されるバリエナミン型のカルバ糖アミン誘導体、またその酸付加塩(特許文献2参照)が開発された。   Under such circumstances, a low molecular weight compound responsible for a new therapeutic method for lysosomal disease caused by mutation of sugar hydrolase is represented by the following general formula (2) -A (see Patent Document 1 and Non-Patent Document 1). Varienamine-type carbacylamine derivatives and acid addition salts thereof (see Patent Document 2) have been developed.

Figure 2012158524
Figure 2012158524

〔式中、R,Rはそれぞれ独立に水素原子または炭素数1〜15のアルキル基、炭素数2〜15のアルケニル基、炭素数2〜15のアルキニル基、炭素数2〜15のアシル基、炭素数2〜15のアリル基、または炭素数7〜15のアラルキル基を示す。ただし、RおよびRは双方が同時に水素原子であることはない。また、窒素原子上に酸付加した塩であってもよい。〕 [Wherein, R 1 and R 2 are each independently a hydrogen atom or an alkyl group having 1 to 15 carbon atoms, an alkenyl group having 2 to 15 carbon atoms, an alkynyl group having 2 to 15 carbon atoms, or an acyl having 2 to 15 carbon atoms. Group, an allyl group having 2 to 15 carbon atoms, or an aralkyl group having 7 to 15 carbon atoms. However, R 1 and R 2 are not both hydrogen atoms at the same time. Further, it may be a salt obtained by acid addition on a nitrogen atom. ]

これらバリエナミン型カルバ糖アミン誘導体には遺伝的な変異により低下した酵素活性を上昇させる効果があることが認められているが(特許文献1および非特許文献2参照)、化合物自体の製造に関し、非特許文献1および非特許文献3に記載の方法ではその過程においてラセミ体の光学分割を含み、一般式(2)−Aの製造に十数工程を要している。加えて特許文献2の製造方法では、市販のメチル−α−D−グルコピラノシドより出発し一般式(2)−Aの製造に二十数工程を必要としている。   Although these valienamine-type carbacylamine derivatives are recognized to have the effect of increasing the enzyme activity reduced by genetic mutation (see Patent Document 1 and Non-Patent Document 2), The methods described in Patent Document 1 and Non-Patent Document 3 include optical resolution of a racemate in the process, and dozens of steps are required for the production of the general formula (2) -A. In addition, in the production method of Patent Document 2, starting from commercially available methyl-α-D-glucopyranoside, the production of the general formula (2) -A requires 20 or more steps.

これら上記の製造法において、目的化合物を医薬品として供給することを考慮すると工程数が長く、手間も掛かるため十分であるとは言えなかった。   In the above production methods, considering the supply of the target compound as a pharmaceutical, the number of steps is long and time-consuming, so it cannot be said to be sufficient.

一方、クエルシトール類縁化合物のひとつである(+)−プロト−クエルシトール   On the other hand, (+)-proto-quercitol which is one of quercitol related compounds

Figure 2012158524
は、理論的には4種類のメソ体と6対の光学異性体からなる計16種類の異性体が存在しうるクエルシトールの異性体のうち、植物界より見出されている3種の化合物、(+)−プロト−クエルシトール、(−)−プロト−クエルシトール、(−)−ビボ−クエルシトール、の一つである。
Figure 2012158524
Theoretically, among the isomers of quercitol, there are a total of 16 isomers consisting of 4 kinds of meso forms and 6 pairs of optical isomers. (+)-Proto-quercitol, (−)-proto-quercitol, (−)-vivo-quercitol.

クエルシトールはグルコースなどのピラノース類と構造が類似し、ピラン環の酸素がメチレンに置換された構造であることから、ピラノース類よりも安定な擬似糖として、各種医農薬の構成成分、また光学活性な出発原料として利用法が考えられている物質である。   Quercitol is similar in structure to pyranoses such as glucose, and has a structure in which the oxygen in the pyran ring is substituted with methylene. Therefore, it is a more stable pseudo-sugar than pyranoses, and is a component of various medical and agricultural chemicals and optically active. It is a substance that can be used as a starting material.

国際公開第03/022797号パンフレットInternational Publication No. 03/022797 Pamphlet 国際公開第04/101493号パンフレットInternational Publication No. 04/101493 Pamphlet

Bioorganic and Medicinal Chemistry Letters、2002年、10巻、p.1967−1972Bioorganic and Medicinal Chemistry Letters, 2002, 10, p. 1967-1972 Proceedings of the National Academy of Sciences of the United States of America、2003年、26巻、p.15912−15917Proceedings of the National Academy of Sciences of the United States of America, 2003, 26, p. 15912-15919 Bioorganic and Medicinal Chemistry、2004年、12巻、p.995−1002Bioorganic and Medicinal Chemistry, 2004, 12, p. 995-1002

糖加水分解酵素の遺伝的な変異が病因となるライソゾーム病の治療薬候補化合物として、下記一般式(2)   As a candidate drug for the treatment of lysosomal disease caused by genetic variation of sugar hydrolase, the following general formula (2)

Figure 2012158524
Figure 2012158524

〔式中、R,Rはそれぞれ独立に水素原子または炭素数1〜15のアルキル基、炭素数2〜15のアルケニル基、炭素数2〜15のアルキニル基、炭素数2〜15のアシル基、炭素数2〜15のアリル基、または炭素数7〜15のアラルキル基を示す。ただし、RおよびRは双方が同時に水素原子であることはない。R〜Rはそれぞれ独立に水素原子またはヒドロキシル基の保護基を示す。保護基として、炭素数2〜15のアシル型保護基、炭素数1〜15のエーテル型保護基、炭素数3〜15のアセタール型保護基、炭素数3〜15のシリルエーテル型保護基、炭素数7〜15のアラルキル型保護基、または炭素数3〜15のアリル型保護基などを示す。また、窒素原子上に酸付加した塩であってもよい。〕
で表されるカルバ糖アミン誘導体およびその酸付加塩が開発されてきたが、従来の製造方法は光学分割や比較的長い工程を必要としており、医薬として供給するためにはより簡便かつ短い工程での製造方法が切望されていた。本発明はこのような課題を解決するべくなされたものである。
[Wherein, R 1 and R 2 are each independently a hydrogen atom or an alkyl group having 1 to 15 carbon atoms, an alkenyl group having 2 to 15 carbon atoms, an alkynyl group having 2 to 15 carbon atoms, or an acyl having 2 to 15 carbon atoms. Group, an allyl group having 2 to 15 carbon atoms, or an aralkyl group having 7 to 15 carbon atoms. However, R 1 and R 2 are not both hydrogen atoms at the same time. R 3 to R 6 each independently represent a hydrogen atom or a hydroxyl protecting group. As a protecting group, an acyl protecting group having 2 to 15 carbon atoms, an ether protecting group having 1 to 15 carbon atoms, an acetal protecting group having 3 to 15 carbon atoms, a silyl ether protecting group having 3 to 15 carbon atoms, carbon An aralkyl type protective group having 7 to 15 carbon atoms or an allyl type protective group having 3 to 15 carbon atoms is shown. Further, it may be a salt obtained by acid addition on a nitrogen atom. ]
Have been developed, but conventional production methods require optical resolution and a relatively long process, and are simpler and shorter in order to be supplied as a medicine. The manufacturing method of was eagerly desired. The present invention has been made to solve such problems.

本発明者らは上記課題を解決するために鋭意研究した。特に、上記一般式(2)で表されるライソゾーム病治療薬候補カルバ糖アミン誘導体に化学構造が類似しているクエルシトール類縁体化合物、具体的には(+)−プロト−クエルシトールに注目し、これを原料とすれば、上記の既知製造方法と比較して光学分割を含まず、かつより短い工程で有利に目的物を製造し得るのではないかと考え、検討した。   The present inventors have intensively studied to solve the above problems. In particular, attention is paid to quercitol analog compounds having a chemical structure similar to the carbasugar amine derivative candidate lysosomal disease drug represented by the above general formula (2), specifically (+)-proto-quercitol. As a raw material, it was considered and considered that the target product could be advantageously produced in a shorter process without optical resolution compared to the above known production method.

その結果、(+)−プロト−クエルシトールのヒドロキシル基を選択的に保護化し、遊離した1個のヒドロキシル基の酸化、および保護化されたヒドロキシル基のうちトランス配置ジオールの選択的な脱保護化を行い、続いてアシル化反応条件に付すことにより、一般式(1)   As a result, the hydroxyl group of (+)-proto-quercitol is selectively protected, oxidation of one released hydroxyl group, and selective deprotection of the trans-configured diol out of the protected hydroxyl groups. Followed by acylation reaction conditions to give a compound of general formula (1)

Figure 2012158524
Figure 2012158524

〔式中、R〜Rの一部または全部はそれぞれ独立に水素原子もしくはヒドロキシル基の保護基を示す。保護基としては、炭素数2〜15のアシル型保護基、炭素数1〜15のエーテル型保護基、炭素数3〜15のアセタール型保護基、炭素数3〜15のシリルエーテル型保護基、炭素数7〜15のアラルキル型保護基、または炭素数3〜15のアリル型保護基などを示す。RおよびRは炭素数2〜15のアシル基を示す。〕
で表される新規なカルバ糖化合物前駆体を得ることに成功した。
[Wherein, part or all of R 2 to R 4 each independently represent a hydrogen atom or a hydroxyl-protecting group. Examples of the protecting group include an acyl protecting group having 2 to 15 carbon atoms, an ether protecting group having 1 to 15 carbon atoms, an acetal protecting group having 3 to 15 carbon atoms, a silyl ether protecting group having 3 to 15 carbon atoms, An aralkyl-type protecting group having 7 to 15 carbon atoms or an allyl-type protecting group having 3 to 15 carbon atoms is shown. R 1 and R 5 represent an acyl group having 2 to 15 carbon atoms. ]
It succeeded in obtaining the novel carbasugar compound precursor represented by this.

さらに上記一般式(1)で表されるカルバ糖前駆体を用い、本発明者らはライソゾーム病治療薬候補化合物である一般式(2)で表されるカルバ糖アミン誘導体の製造に成功した。まず、一般式(1)の化合物をWittig反応条件に付したところ、エノールエステル部分がメチレン化されたのみならず、一般式(1)中ROで表したアシルオキシル基の脱離が生じ、一段階の反応で目的物であるシクロヘキサン環に一炭素増炭したジエン体を得た。これにハロゲンを1,4−付加させ、生じた第1級ハロゲン基をアシルオキシル基で置換、次いでアルキルアミノ基を導入して一般式(2)で表されるカルバ糖アミン誘導体を得た。加えて、適当な酸と処理することによって一般式(2)の酸付加塩も得られた。このように、(+)−プロト−クエルシトールから一般式(2)までは9工程、さらに一般式(2)の酸付加塩までは10工程にて製造することに成功し、本発明を完成した。 Furthermore, using the carbasugar precursor represented by the above general formula (1), the present inventors succeeded in producing the carbasaccharide amine derivative represented by the general formula (2), which is a candidate drug for lysosomal disease. First, when the compound of general formula (1) was subjected to Wittig reaction conditions, not only the enol ester moiety was methyleneated, but also the elimination of the acyloxyl group represented by R 1 O in general formula (1) occurred. Thus, a diene compound obtained by adding one carbon to the cyclohexane ring as the target product was obtained in a one-step reaction. 1,4-Halogen was added thereto, and the resulting primary halogen group was substituted with an acyloxyl group, and then an alkylamino group was introduced to obtain a carbsugar amine derivative represented by the general formula (2). In addition, acid addition salts of general formula (2) were also obtained by treatment with a suitable acid. As described above, the present invention was completed by successfully producing 9 steps from (+)-proto-quercitol to general formula (2) and further 10 steps from acid addition salt of general formula (2). .

すなわち、本特許の発明は以下の通りである。
[1]一般式(1)で表される絶対配置を有することを特徴とする新規カルバ糖前駆体が提供される。
[2](+)−プロト−クエルシトールを出発原料とし、ヒドロキシル基の保護化、次いでヒドロキシル基の酸化を行い、得られた前駆体に対し脱保護化、さらにアシル化反応条件に付すことによる[1]に記載の一般式(1)で表される新規カルバ糖前駆体の製造方法が提供される。
[3]一般式(1)で表されるカルバ糖前駆体をWittig反応条件に付し、生じたジエンに対しハロゲンによる付加を行った後に、置換反応によってアシルオキシル基を導入し、さらにアルキルアミノ基を導入することを特徴とする一般式(2)で表されるカルバ糖アミン誘導体の製造方法が提供される。
That is, the invention of this patent is as follows.
[1] A novel carbasugar precursor characterized by having an absolute configuration represented by the general formula (1) is provided.
[2] By using (+)-proto-quercitol as a starting material, protecting the hydroxyl group, then oxidizing the hydroxyl group, deprotecting the resulting precursor, and subjecting it to acylation reaction conditions [ A method for producing a novel carbasugar precursor represented by the general formula (1) according to 1) is provided.
[3] The carbasugar precursor represented by the general formula (1) is subjected to Wittig reaction conditions, the resulting diene is added with halogen, an acyloxyl group is introduced by a substitution reaction, and an alkylamino is further added. Provided is a method for producing a carbasugar amine derivative represented by the general formula (2), which is characterized by introducing a group.

本発明により提供される前記一般式(1)で表される新規カルバ糖前駆体は、医薬や農薬の光学活性中間体や出発原料等として有用である。
また、GM1ガングリオシドーシスなどのライソゾーム病に対する治療薬候補として有用である前記一般式(2)で表されるカルバ糖アミン誘導体は、本発明の一般式(1)で表される新規カルバ糖前駆体より5工程、一般式(1)で表される新規カルバ糖前駆体の原料となる(+)−プロト−クエルシトールから一般式(2)までは9工程にて製造することができる。すなわち、本発明により、一般式(2)で表されるカルバ糖アミン誘導体を簡便、安価に提供することができる。
The novel carbasugar precursor represented by the general formula (1) provided by the present invention is useful as an optically active intermediate or starting material for pharmaceuticals and agricultural chemicals.
Further, the carbasaccharide amine derivative represented by the general formula (2) that is useful as a therapeutic drug candidate for lysosomal diseases such as GM1 gangliosidosis is a novel carbasugar precursor represented by the general formula (1) of the present invention. 5 steps from the body, from (+)-proto-quercitol used as the raw material of the novel carbasugar precursor represented by the general formula (1) to the general formula (2) can be produced in 9 steps. That is, according to the present invention, the carbasugar amine derivative represented by the general formula (2) can be provided simply and inexpensively.

以下、本発明を詳細に説明する。
一般式(1)、(2)の化合物の式中のRで示されるヒドロキシル基の保護基としては、特に断りがない限り、糖の化学で一般に用いられる保護基、例えばアシル型保護基、エーテル型保護基、アセタール型保護基、ケタール型保護基、オルトエステル型保護基などが用いられる。より具体的には、炭素数2〜15のアシル型保護基、炭素数1〜15のエーテル型保護基、炭素数3〜15のアセタール型保護基、炭素数3〜15のシリルエーテル型保護基、炭素数7〜15のアラルキル型保護基、または炭素数3〜15のアリル型保護基などを示す。
Hereinafter, the present invention will be described in detail.
As the protecting group for the hydroxyl group represented by R in the formulas of the compounds of the general formulas (1) and (2), unless otherwise specified, protecting groups commonly used in sugar chemistry, such as acyl-type protecting groups, ethers A type protecting group, an acetal type protecting group, a ketal type protecting group, an ortho ester type protecting group and the like are used. More specifically, an acyl type protecting group having 2 to 15 carbon atoms, an ether type protecting group having 1 to 15 carbon atoms, an acetal type protecting group having 3 to 15 carbon atoms, and a silyl ether type protecting group having 3 to 15 carbon atoms. , An aralkyl-type protecting group having 7 to 15 carbon atoms, or an allyl-type protecting group having 3 to 15 carbon atoms.

一般式(1)、(2)の化合物の式中のRで示されるヒドロキシル基の保護基の種類は、すべて同じであってもよいし、2種以上の異なった保護基を含んでいてもよい。また、例えば環状アセタール型、環状ケタール型、環状オルトエステル型、環状カルボナート型、環状ボロナート型、あるいはスタンオキサン型保護基の場合のように複数の水酸基を1個の保護基で保護してもよい。   In the compounds of the general formulas (1) and (2), the types of protecting groups for the hydroxyl group represented by R may be the same or may contain two or more different protecting groups. Good. Further, for example, a plurality of hydroxyl groups may be protected with one protecting group as in the case of a cyclic acetal type, cyclic ketal type, cyclic orthoester type, cyclic carbonate type, cyclic boronate type, or stannoxane type protective group.

一般式(1)の化合物の式中、R〜Rの一部または全部はそれぞれ独立に水素原子もしくはヒドロキシル基の保護基を示す。RおよびRは炭素数2〜15のアシル基を示す。 In the formula of the compound of the general formula (1), part or all of R 2 to R 4 each independently represent a hydrogen atom or a hydroxyl protecting group. R 1 and R 5 represent an acyl group having 2 to 15 carbon atoms.

また、一般式(2)の化合物の式中、R,Rはそれぞれ独立に水素原子または炭素数1〜15のアルキル基、炭素数2〜15のアルケニル基、炭素数2〜15のアルキニル基、炭素数2〜15のアシル基、炭素数3〜15のアリル基、または炭素数7〜15のアラルキル基を示す。ただし、RおよびRは双方が同時に水素原子であることはない。R〜Rはそれぞれ独立に水素原子またはヒドロキシル基の保護基を示す。また、窒素原子上に酸付加した塩であってもよい。 In the formula of the compound of the general formula (2), R 1 and R 2 are each independently a hydrogen atom or an alkyl group having 1 to 15 carbon atoms, an alkenyl group having 2 to 15 carbon atoms, or an alkynyl group having 2 to 15 carbon atoms. Group, an acyl group having 2 to 15 carbon atoms, an allyl group having 3 to 15 carbon atoms, or an aralkyl group having 7 to 15 carbon atoms. However, R 1 and R 2 are not both hydrogen atoms at the same time. R 3 to R 6 each independently represent a hydrogen atom or a hydroxyl protecting group. Further, it may be a salt obtained by acid addition on a nitrogen atom.

なお、原料となる(+)−プロト−クエルシトールは、公知の方法により、例えば、ドングリやヤシの葉中などから抽出精製する方法(Annales de Chimie et de Physique、1849年、27巻、p.392−401参照)や、ハロベンゼンまたはシス(1s,2s)−1,2−ジヒドロ−3−ハロカテコールを出発原料として合成する方法(Synlett、1994年、p.899−901などを参照)により得ることができる。さらにはアグロバクテリウム属に属する微生物またはサルモネラ属に属する微生物を安価なミオ−イノシトールに作用させることによって、ミオ−イノシトールから光学純度の高い(+)−プロト−クエルシトールを容易に製造することが出来る(特開2000−004890号参照)。また、市販のものをそのまま原料として使用することができる。   In addition, (+)-proto-quercitol used as a raw material is extracted and purified from, for example, acorns and palm leaves by a known method (Annales de Chimie et de Physique, 1849, 27, p. 392). -401) or a method of synthesizing halobenzene or cis (1s, 2s) -1,2-dihydro-3-halocatechol as a starting material (see Synlett, 1994, p.899-901, etc.) Can do. Furthermore, (+)-proto-quercitol having high optical purity can be easily produced from myo-inositol by allowing microorganisms belonging to the genus Agrobacterium or microorganisms belonging to the genus Salmonella to act on inexpensive myo-inositol. (See JP 2000-004890). Moreover, a commercially available thing can be used as a raw material as it is.

以下に、(+)−プロト−クエルシトールから一般式(1)で表される新規カルバ糖前駆体を経て一般式(2)で表されるカルバ糖アミン誘導体を製造する方法を工程別に詳細に説明する。製造工程の概略は下記<製造工程式1>に示した。   Hereinafter, a method for producing a carbasugar amine derivative represented by the general formula (2) from (+)-proto-quercitol through a novel carbasugar precursor represented by the general formula (1) will be described in detail for each step. To do. The outline of the production process is shown in <Production process formula 1> below.

<製造工程式1> <Manufacturing process formula 1>

Figure 2012158524
Figure 2012158524

なお、一般式(3)〜(8)の化合物の式中のRで示されるヒドロキシル基の保護基としては、一般式(1)、(2)と同義である。加えて、一般式(7)、(8)化合物の式中のXで示される部分は任意のハロゲン原子を表す。具体的には、フッ素、塩素、臭素、ヨウ素の各原子である。   In addition, as a protective group of the hydroxyl group shown by R in the formula of the compound of General formula (3)-(8), it is synonymous with General formula (1), (2). In addition, the moiety represented by X in the formulas of the general formulas (7) and (8) represents an arbitrary halogen atom. Specifically, it is each atom of fluorine, chlorine, bromine and iodine.

<製造工程A−1>
本工程は、出発原料である(+)−プロト−クエルシトールのヒドロキシル基のうち、5位の部分を遊離させたまま、残りの1,2,3,4位のヒドロキシル基を選択的に保護する工程を含む。ヒドロキシル基の保護基としては、上記した糖化学において一般にヒドロキシル基の保護基として用いられる保護基が用いられ、また、保護基の種類はすべて同じであってもよいし、2種以上の異なった保護基を含んでいてもよい。さらに、環状アセタール型、環状ケタール型などのように複数の水酸基を1個の保護基で保護してもよい。好ましくは適当な酸を触媒として用い、環状アセタール型保護基によって、(+)−プロト−クエルシトールのトランス配置1,2−位のヒドロキシル基、およびシス配置3,4−位のヒドロキシル基をそれぞれ位置選択的に保護する方法が取られる。
<Manufacturing process A-1>
This step selectively protects the remaining hydroxyl groups at 1, 2, 3, and 4 positions while leaving the 5-position portion out of the starting hydroxyl group of (+)-proto-quercitol. Process. As the protecting group for the hydroxyl group, a protecting group generally used as a protecting group for the hydroxyl group in the sugar chemistry described above is used, and all kinds of protecting groups may be the same or two or more different kinds. It may contain a protecting group. Further, a plurality of hydroxyl groups may be protected with one protective group such as a cyclic acetal type and a cyclic ketal type. Preferably, a suitable acid is used as a catalyst, and the cyclic configuration of the (+)-proto-quercitol is positioned at the 1,2-position hydroxyl group and the cis-configuration 3,4-position hydroxyl group by the cyclic acetal type protecting group, respectively. A method of selective protection is taken.

この場合、酸触媒としては例えば硫酸や塩酸などの鉱酸、パラ−トルエンスルホン酸やカンファースルホン酸などの有機酸、三フッ化ホウ素、トリメチルシリルトリフラート、イットリビウムトリフラート、スカンジウムトリフラート、塩化鉄、塩化ジルコニウムなどのルイス酸を、(+)−プロト−クエルシトールに対し0.1〜1モル当量用いることが出来るが、コスト面、収率等の点から塩酸、パラ−トルエンスルホン酸またはカンファースルホン酸を反応原料の0.05〜0.25当量用いることが好ましい。また、反応試剤としては、例えばベンズアルデヒド、α,α−ジメトキシトルエン、アセトン、2,2−ジメトキシプロパン、シクロヘキサノン、1,1−ジメトキシシクロヘキサンなどが挙げられ、特にα,α−ジメトキシトルエン、2,2−ジメトキシプロパン、1,1−ジメトキシシクロヘキサンなどの試剤を用いるならば、(+)−プロト−クエルシトールの5〜20当量加えることで反応を進行させることが出来る。さらにコスト面、収率等の点を考慮すると、2,2−ジメトキシプロパンを8〜12モル当量用いることが好ましい。反応溶媒としてはこの反応に悪影響を及ぼさない溶媒が使用できるが、例えばアセトンまたはN,N−ジメチルホルムアミドをそれぞれ独立に用いるか、混合して用いることが出来る。容量としては、アセトンを単独で用いる場合、原料である(+)−プロト−クエルシトールを1重量部としてアセトンを30〜120重量部、好ましくは50〜70重量部用い、N,N−ジメチルホルムアミドを単独またはアセトンと混合して用いる場合は5〜10重量部用いることが出来る。混合溶媒であれば、N,N−ジメチルホルムアミドとアセトンの容積比は、N,N−ジメチルホルムアミド:アセトン=1:1〜1.5:1の比率であることが好ましい。   In this case, examples of the acid catalyst include mineral acids such as sulfuric acid and hydrochloric acid, organic acids such as para-toluenesulfonic acid and camphorsulfonic acid, boron trifluoride, trimethylsilyl triflate, yttrium triflate, scandium triflate, iron chloride, and chloride. A Lewis acid such as zirconium can be used in an amount of 0.1 to 1 molar equivalent with respect to (+)-proto-quercitol, but hydrochloric acid, para-toluenesulfonic acid or camphorsulfonic acid is used in terms of cost, yield and the like. It is preferable to use 0.05 to 0.25 equivalent of the reaction raw material. Examples of the reaction reagent include benzaldehyde, α, α-dimethoxytoluene, acetone, 2,2-dimethoxypropane, cyclohexanone, 1,1-dimethoxycyclohexane and the like, and particularly α, α-dimethoxytoluene, 2,2 If a reagent such as -dimethoxypropane or 1,1-dimethoxycyclohexane is used, the reaction can be advanced by adding 5 to 20 equivalents of (+)-proto-quercitol. Further, in view of cost, yield and the like, it is preferable to use 8 to 12 molar equivalents of 2,2-dimethoxypropane. As the reaction solvent, a solvent that does not adversely affect the reaction can be used. For example, acetone or N, N-dimethylformamide can be used independently or in combination. When acetone is used alone, 30 to 120 parts by weight, preferably 50 to 70 parts by weight of acetone is used with 1 part by weight of (+)-proto-quercitol as the raw material, and N, N-dimethylformamide is used. When used alone or mixed with acetone, 5 to 10 parts by weight can be used. In the case of a mixed solvent, the volume ratio of N, N-dimethylformamide to acetone is preferably N, N-dimethylformamide: acetone = 1: 1 to 1.5: 1.

通常、反応温度は特に限定されず、常温(15〜25℃)、あるいは加熱(溶媒の種類等にもよるがN,N−ジメチルホルムアミドとアセトンの混合溶媒を上記の比の範囲内で用いた場合、70〜80℃が適当である)下に反応が行われる。反応終了後は、減圧濃縮、分液操作など一般的な方法により処理し、カラムクロマトグラフィー等慣用の方法を用いて精製し、一般式(3)で示される目的の化合物を得ることが出来る。または特に精製を行わずに次の製造工程へ進むことも出来る。   Usually, the reaction temperature is not particularly limited, and a mixed solvent of N, N-dimethylformamide and acetone is used within the above-mentioned ratio range depending on the normal temperature (15 to 25 ° C.) or heating (depending on the type of the solvent). In the case, 70-80 ° C is suitable). After completion of the reaction, the target compound represented by the general formula (3) can be obtained by treating by a general method such as concentration under reduced pressure or separation operation and purifying using a conventional method such as column chromatography. Alternatively, it is possible to proceed to the next manufacturing process without performing purification.

<製造工程A−2>
上記の製造工程で得られた一般式(3)の化合物は1,2,3,4位のヒドロキシル基が選択的に保護化されており、5位のヒドロキシル基が遊離状態で存在する。本工程ではこのヒドロキシル基を酸化し、カルボニル基へと変換する工程を含む。反応は公知の方法で行うことが出来るが、一例として挙げると、ジメチルスルホキシド中、三酸化硫黄−ピリジン錯体およびトリエチルアミンを用いて行うことが出来る。この場合、ジメチルスルホキシドは反応試剤と溶媒の役割を兼ね、製造工程A−3から未精製で反応を行う場合、出発原料である(+)−プロト−クエルシトールを1重量部として5〜15重量部、特には5〜7重量部用いることが好ましい。三酸化硫黄−ピリジン錯体は(+)−プロト−クエルシトールの1〜3当量、さらにコスト面、収率等の点から好ましくは2当量、またトリエチルアミンは三酸化硫黄−ピリジン錯体の1.5当量程度用いることが好ましい。その他、三酸化硫黄−ピリジン錯体およびトリエチルアミンの代わりに、活性化剤として無水酢酸などをジメチルホルムアミドと共に用いる方法も挙げられる。
<Manufacturing process A-2>
In the compound of the general formula (3) obtained in the above production process, the hydroxyl groups at the 1, 2, 3, and 4 positions are selectively protected, and the hydroxyl group at the 5 position exists in a free state. This step includes a step of oxidizing this hydroxyl group and converting it to a carbonyl group. Although the reaction can be carried out by a known method, for example, it can be carried out using sulfur trioxide-pyridine complex and triethylamine in dimethyl sulfoxide. In this case, dimethyl sulfoxide serves as a reaction reagent and a solvent. When the reaction is carried out unpurified from production step A-3, 5 to 15 parts by weight of (+)-proto-quercitol as a starting material is 1 part by weight. In particular, it is preferable to use 5 to 7 parts by weight. Sulfur trioxide-pyridine complex is 1 to 3 equivalents of (+)-proto-quercitol, more preferably 2 equivalents from the standpoint of cost and yield, and triethylamine is about 1.5 equivalents of sulfur trioxide-pyridine complex. It is preferable to use it. In addition, a method of using acetic anhydride or the like together with dimethylformamide as an activator in place of sulfur trioxide-pyridine complex and triethylamine is also included.

通常、反応温度は特に限定されないが、反応試剤を加える際に発熱することがあるので、試剤を加えるときは冷却下(−5〜5℃)で行うことが好ましい。反応は常温(15〜25℃)でも問題なく進行する。反応終了後は、分液操作など一般的な方法により処理し、さらに再結晶法、カラムクロマトグラフィー等慣用の方法を用いて精製し、一般式(4)で示される目的の化合物を得ることが出来る。   Usually, although reaction temperature is not specifically limited, Since it may generate | occur | produce when adding a reaction reagent, when adding a reagent, it is preferable to carry out under cooling (-5-5 degreeC). The reaction proceeds without problems even at room temperature (15-25 ° C.). After completion of the reaction, the product can be treated by a general method such as a liquid separation operation, and further purified by a conventional method such as a recrystallization method or column chromatography to obtain a target compound represented by the general formula (4). I can do it.

<製造工程A−3>
製造工程A−2によって得られたカルボニル化合物の構造中、トランス−ジオール部分に結合している保護基を選択的に除去することにより、本工程の一般式(5)で示される目的物が得られる。保護基がアセタールである場合、適当な酸を注意深く作用させることにより、比較的強固なシス−ジオール保護基を保ったまま、トランス−ジオール保護基のみを選択的に除去することが出来る。酸としては上記にあげたような鉱酸、有機酸、ルイス酸も適用されるが、なかでもピリジニウム−パラ−トルエンスルホナートなどの弱有機酸が好ましい。これを反応原料の0.05〜0.3当量、好ましくは0.1〜0.2当量用いる。
<Manufacturing process A-3>
By selectively removing the protecting group bonded to the trans-diol moiety in the structure of the carbonyl compound obtained in production step A-2, the desired product represented by the general formula (5) of this step is obtained. It is done. When the protecting group is an acetal, only the trans-diol protecting group can be selectively removed while maintaining the relatively strong cis-diol protecting group by the careful action of an appropriate acid. As the acid, the mineral acids, organic acids, and Lewis acids mentioned above can be used, and among them, weak organic acids such as pyridinium-para-toluenesulfonate are preferable. This is used in an amount of 0.05 to 0.3 equivalent, preferably 0.1 to 0.2 equivalent, of the reaction raw material.

通常反応温度は特に限定されず、冷却下(−5〜5℃)あるいは常温(15〜25℃)下に反応が行われるが、冷却下に行うほうがシス−ジオール保護基の脱保護反応を防ぎやすいので好ましい。反応溶媒としては、メタノール、エタノール、イソプロパノールなどのプロトン性有機溶媒が適しているが、反応終了後に減圧濃縮する際の除去の容易さを考慮すると、特にメタノールが好ましい。容量は反応原料を1重量部として15〜60重量部、好ましくは25〜35重量部用いる。反応を終了させる際、例えばトリエチルアミンなどの塩基を用いて反応溶液を中和することにより、任意の時点で反応を終了することが出来る。反応終了後は、分液操作など一般的な方法により処理し、さらに再結晶法、カラムクロマトグラフィー等慣用の方法を用いて精製し、一般式(5)で示される目的の化合物を得ることが出来る。特に精製を行わずに次の工程に進むことも可能である。   Usually, the reaction temperature is not particularly limited, and the reaction is performed under cooling (−5 to 5 ° C.) or normal temperature (15 to 25 ° C.). However, the reaction is performed under cooling to prevent the deprotection reaction of the cis-diol protecting group. It is preferable because it is easy. As the reaction solvent, a protic organic solvent such as methanol, ethanol or isopropanol is suitable, but methanol is particularly preferable in view of easiness of removal upon concentration under reduced pressure after completion of the reaction. The volume is 15 to 60 parts by weight, preferably 25 to 35 parts by weight, based on 1 part by weight of the reaction raw material. When terminating the reaction, the reaction can be terminated at any point by neutralizing the reaction solution with a base such as triethylamine. After completion of the reaction, the product can be treated by a general method such as a liquid separation operation, and further purified by a conventional method such as a recrystallization method or column chromatography to obtain a target compound represented by the general formula (5). I can do it. In particular, it is possible to proceed to the next step without purification.

<製造工程A−4>
本工程は、製造工程A−3によって得られた一般式(5)化合物の構造中、遊離状態になったジオールのアシル化、さらには同時にカルボニル基をエノールエステルに変換する工程を含む。原料である一般式(5)化合物は通常のアシル化条件に付すと、ヒドロキシル基のアシル化のみならず、カルボニル基部分をエノールエステルに一段階で変換することが出来る。生成させるアシル基およびエノールエステルとしてはアセチル、ピバロイル、ベンゾイルなど一般に知られたものが挙げられるが、反応性、生成物の固化の容易性、反応試剤のコストおよび入手しやすさ等を考慮すると、なかでもベンゾイル化反応条件に付すことが好ましい。
<Manufacturing process A-4>
This step includes the step of acylating the diol in a free state in the structure of the compound of the general formula (5) obtained by the production step A-3, and further simultaneously converting the carbonyl group into an enol ester. When the compound of the general formula (5) as a raw material is subjected to usual acylation conditions, not only acylation of a hydroxyl group but also a carbonyl group moiety can be converted into an enol ester in one step. Examples of the acyl group and enol ester to be generated include commonly known acetyl, pivaloyl, benzoyl and the like, but considering reactivity, ease of solidification of the product, cost of the reagent and availability, Of these, it is preferable to subject to benzoylation reaction conditions.

反応は、原料を適当なアシル化剤と共にピリジン中、またはトリエチルアミンなどの塩基を加えたN,N−ジメチルホルムアミド中で行うことが出来るが、反応終了後の除去の容易さ等を考慮するとピリジンが好ましい。溶媒の容量としては、製造工程A−3から未精製で反応を行う場合、製造工程A−3で原料として用いた一般式(4)化合物を1重量部として20〜80重量部、好ましくは35〜45重量部用いることが出来る。反応試剤としては塩化ベンゾイルや無水安息香酸が挙げられるが、反応性の高さから塩化ベンゾイルが好ましい。用いた原料に対して塩化ベンゾイルを6〜10当量、好ましくは7〜9当量作用させることで、遊離状態になったジオールのアシル化、さらには同時にカルボニル基をエノールエステルに変換し、本工程の目的物である一般式(1)で表される化合物を得ることが出来る。通常、反応温度は特に限定されないが、反応試剤を加える際に発熱することがあるので、試剤を加えるときは冷却下(−5〜5℃)で行うことが好ましい。反応は常温(15〜25℃)でも問題なく進行する。反応終了後は、分液操作など一般的な方法や、塩基性の水溶液を反応溶液に加え沈殿物を回収するなどの操作により処理し、さらに再結晶法、カラムクロマトグラフィー等慣用の方法を用いて精製し、一般式(1)で示される目的の化合物を得ることが出来る。   The reaction can be carried out in pyridine together with a suitable acylating agent or in N, N-dimethylformamide to which a base such as triethylamine is added, but considering the ease of removal after completion of the reaction, etc. preferable. As a capacity | capacitance of a solvent, when reacting unpurified from the manufacturing process A-3, 20-80 weight part with respect to 1 part weight of the compound of General formula (4) used as a raw material by the manufacturing process A-3, Preferably 35 Up to 45 parts by weight can be used. Examples of the reaction reagent include benzoyl chloride and benzoic anhydride, but benzoyl chloride is preferred because of its high reactivity. By allowing 6 to 10 equivalents, preferably 7 to 9 equivalents, of benzoyl chloride to act on the raw materials used, acylation of the free diol, and at the same time, converting the carbonyl group to an enol ester, The compound represented by the general formula (1), which is the target product, can be obtained. Usually, although reaction temperature is not specifically limited, Since it may generate | occur | produce when adding a reaction reagent, when adding a reagent, it is preferable to carry out under cooling (-5-5 degreeC). The reaction proceeds without problems even at room temperature (15-25 ° C.). After completion of the reaction, treatment is performed by a general method such as a liquid separation operation or an operation such as adding a basic aqueous solution to the reaction solution and collecting a precipitate, and further using a conventional method such as a recrystallization method or column chromatography. And the desired compound represented by the general formula (1) can be obtained.

<製造工程A−5>
本工程は、前製造工程によって得られた一般式(1)化合物中のエノールエステル基をメチレン化し、同時に図中ROで表したアシルオキシル基を脱離させる工程を含む。この反応は、一般に知られたWittig反応条件下で行うことが出来る。すなわち、原料である一般式(1)化合物をWittig反応条件に付すと、カルボニル基のメチレン化が起こるのみならず、一般式(1)中ROで表したアシルオキシル基が脱離し、結果として一般式(6)で表されるジエン化合物を得ることが出来る。
<Manufacturing process A-5>
This step includes a step of methyleneating the enol ester group in the compound of the general formula (1) obtained by the previous production step and simultaneously removing the acyloxyl group represented by R 1 O in the figure. This reaction can be performed under generally known Wittig reaction conditions. That is, when the compound of the general formula (1) as a raw material is subjected to Wittig reaction conditions, not only methyleneation of the carbonyl group occurs, but also the acyloxyl group represented by R 1 O in the general formula (1) is eliminated. A diene compound represented by the general formula (6) can be obtained.

このアシルオキシル基の脱離を伴うWittig反応に用いる試剤として、ホスホニウム塩としては例えばメチルトリフェニルホスホニウムブロミドが挙げられる。塩基としては、n−ブチルリチウム、リチウムジイソプロピルアミド、水素化ナトリウム、リチウムヘキサメチルジシラミド、カリウムヘキサメチルジシラミドなどの強塩基が挙げられるが、塩基の強さ、コスト等を考慮すると、なかでもn−ブチルリチウムが好ましい。上記のホスホニウム塩と塩基を反応原料に対し3〜8当量、収率および経済的な観点から、ホスホニウム塩は4〜6当量、塩基は3.5〜4.5当量の範囲で用い、特にホスホニウム塩が塩基よりも過剰となるように用いることが好ましい。反応溶媒としてはこの反応に悪影響を及ぼさない溶媒が単独または混合溶媒として使用されるが、例えばテトラヒドロフランが挙げられ、またよく乾燥しており出来るだけ水分を含まないものを用いることが好ましい。容量は反応原料を1重量部として10〜35重量部、好ましくは15〜20重量部用いる。   As a reagent used for the Wittig reaction accompanied by elimination of the acyloxyl group, examples of the phosphonium salt include methyltriphenylphosphonium bromide. Examples of the base include strong bases such as n-butyllithium, lithium diisopropylamide, sodium hydride, lithium hexamethyldisilamide, and potassium hexamethyldisilamide, but considering the strength of the base, cost, etc. Of these, n-butyllithium is preferable. From the above viewpoint, the phosphonium salt and the base are used in the range of 3 to 8 equivalents, the yield and the economical viewpoint. It is preferable to use the salt so that it is in excess of the base. As the reaction solvent, a solvent that does not adversely affect the reaction is used alone or as a mixed solvent. For example, tetrahydrofuran is used, and it is preferable to use a solvent that is well dried and contains as little water as possible. The capacity is 10 to 35 parts by weight, preferably 15 to 20 parts by weight, based on 1 part by weight of the reaction raw material.

通常、反応温度は冷却下(−78〜5℃)から常温(15〜25℃)までの範囲で反応が行われる。特に、反応溶液に塩基を加える際、また反応原料を加える際には冷却することが好ましい。反応終了後は、ろ過、分液操作など慣用の方法により処理し、再結晶法、カラムクロマトグラフィー等慣用の方法を用いて精製し、一般式(6)で示される目的の化合物を得ることが出来る。   Usually, the reaction is carried out at a reaction temperature ranging from -78 to 5 ° C to room temperature (15 to 25 ° C). In particular, when adding a base to the reaction solution, or when adding a reaction raw material, cooling is preferable. After completion of the reaction, the product can be treated by conventional methods such as filtration and liquid separation, and purified using conventional methods such as recrystallization and column chromatography to obtain the desired compound represented by the general formula (6). I can do it.

<製造工程A−6>
本工程は、製造工程A−5によって得られた化合物のジエン部分にハロゲン分子を1,4−付加させる工程を含む。ハロゲン分子としては、フッ素、塩素、臭素、ヨウ素が挙げられるが、実験操作としては塩素、臭素を用いることが好ましく、さらには取り扱いの容易さから、常温で液体である臭素を用いることが好ましい。ハロゲン分子は反応原料の1.0〜1.3当量、好ましくは1.0〜1.15当量用いる。反応溶媒としては、特に反応に悪影響を及ぼさないものとして四塩化炭素、クロロホルム、ジクロロメタン、ジエチルエーテルなどを用いることが出来、例えば四塩化炭素を用いる際の容量は反応原料を1重量部として30〜100重量部、好ましくは50〜60重量部用いる。ハロゲン付加の好ましい方法としては、ハロゲンを直接または用いる溶媒に希釈した状態で加える。さらに、反応原料が酸性に弱い保護基を持つ化合物である場合は、脱保護反応を防ぐために、例えば炭酸水素ナトリウムのような塩基を反応原料の1.0〜2.0当量、系中に添加することが好ましい。
<Manufacturing process A-6>
This step includes a step of 1,4-adding a halogen molecule to the diene moiety of the compound obtained by the production step A-5. Examples of the halogen molecule include fluorine, chlorine, bromine, and iodine, but it is preferable to use chlorine and bromine as an experimental operation, and it is preferable to use bromine that is liquid at room temperature for ease of handling. The halogen molecule is used in an amount of 1.0 to 1.3 equivalents, preferably 1.0 to 1.15 equivalents of the reaction raw material. As the reaction solvent, carbon tetrachloride, chloroform, dichloromethane, diethyl ether and the like can be used as those that do not adversely affect the reaction. For example, the capacity when using carbon tetrachloride is 30 to 30 parts by weight as the reaction raw material. 100 parts by weight, preferably 50-60 parts by weight are used. As a preferred method of halogen addition, halogen is added directly or diluted in a solvent to be used. Furthermore, when the reaction raw material is a compound having a weakly acidic protecting group, a base such as sodium hydrogen carbonate is added to the reaction material in an amount of 1.0 to 2.0 equivalents of the reaction raw material in order to prevent the deprotection reaction. It is preferable to do.

反応温度は特に限定されないが、通常、常温(15〜25℃)で行われる。反応終了後は、分液操作または窒素等の不活性ガスによるバブリングなど一般的に知られた方法により処理し、再結晶法、カラムクロマトグラフィー等慣用の方法を用いて精製し、一般式(7)で示される目的の化合物を得ることが出来る。通常、得られる化合物は第2級ハロゲン基の部分に、ハロゲンがそれぞれエカトリアルとアキシャルに導入された2種類の立体異性体の混合物となる。   Although reaction temperature is not specifically limited, Usually, it is normal temperature (15-25 degreeC). After completion of the reaction, it is treated by a generally known method such as a liquid separation operation or bubbling with an inert gas such as nitrogen, and purified by a conventional method such as a recrystallization method or column chromatography. ) Can be obtained. Usually, the resulting compound is a mixture of two stereoisomers in which halogen is introduced equatorially and axially into the secondary halogen group.

<製造工程A−7>
製造工程A−6によって得られたジハロゲン化物である一般式(7)化合物の構造中、第2級ハロゲン基はそのままに、第1級ハロゲン基のみを選択的にアシルオキシル基に置換することによって、本工程の目的物である一般式(8)で示される化合物が得られる。この置換反応については、酢酸リチウム、酢酸ナトリウム、酢酸カリウムなどの酢酸塩、以下同様に安息香酸塩、イソ酪酸塩、サリチル酸塩、乳酸塩、などのカルボン酸塩を用いる方法が挙げられる。上記のなかでも、コスト面、入手のしやすさ、また製造工程A−4で述べた理由から、化合物中のアシル基として特にベンゾイル基を用いる場合は、同様にベンゾイルオキシル基を導入したほうが、後の脱保護反応やその精製時の工程が単純化され容易になることから、安息香酸塩ナトリウムまたは安息香酸カリウムを用いる方法が好ましい。反応試剤は反応原料の1.0〜1.3当量、好ましくは1.1〜1.2当量用いる。反応溶媒としては、この反応に悪影響を及ぼさない溶媒が単独または混合溶媒として使用されるが、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、ジメチルスルホキシドなどの非プロトン性極性溶媒が用いられ、なかでも比較的除去の容易なN,N−ジメチルホルムアミドが好ましい。溶媒の容量としては、反応原料を1重量部として12〜45重量部、好ましくは20〜25重量部用いる。
<Manufacturing process A-7>
In the structure of the compound of the general formula (7), which is a dihalide obtained by the production step A-6, by selectively substituting only the primary halogen group with an acyloxyl group while leaving the secondary halogen group intact. Thus, a compound represented by the general formula (8), which is an object of this step, is obtained. Examples of this substitution reaction include methods using acetates such as lithium acetate, sodium acetate, and potassium acetate, and carboxylates such as benzoate, isobutyrate, salicylate, and lactate. Among the above, from the viewpoint of cost, availability, and the reason described in the production process A-4, when a benzoyl group is used as an acyl group in the compound, it is better to introduce a benzoyloxyl group in the same manner. A method using sodium benzoate or potassium benzoate is preferred because the subsequent deprotection reaction and purification steps are simplified and facilitated. The reaction reagent is used in an amount of 1.0 to 1.3 equivalents, preferably 1.1 to 1.2 equivalents of the reaction raw material. As the reaction solvent, a solvent that does not adversely affect this reaction is used alone or as a mixed solvent, but aprotic polar solvents such as N, N-dimethylacetamide, N, N-dimethylformamide, dimethylsulfoxide are used. Of these, N, N-dimethylformamide, which is relatively easy to remove, is preferred. The volume of the solvent is 12 to 45 parts by weight, preferably 20 to 25 parts by weight, based on 1 part by weight of the reaction raw material.

通常反応温度は特に限定されないが、反応は常温(15〜25℃)でも問題なく進行する。反応終了後に分液操作、カラムクロマトグラフィー等慣用の方法を用いて精製し、一般式(8)で示される目的の化合物を得ることが出来る。なお、カラムクロマトグラフィーによって精製することで、第2級ハロゲン基がエカトリアル位とアキシャル位に導入された異性体をそれぞれ単離することが出来る。   Usually, the reaction temperature is not particularly limited, but the reaction proceeds without problems even at ordinary temperature (15 to 25 ° C.). After completion of the reaction, the desired compound represented by the general formula (8) can be obtained by purification using a conventional method such as liquid separation operation or column chromatography. In addition, the isomers in which the secondary halogen group is introduced into the equatorial position and the axial position can be isolated by purification by column chromatography.

<製造工程A−8>
続いて有機アミンを一般式(8)中の第2級ハロゲン基と立体選択的に置換させ、一般式(2)で表されるカルバ糖アミン誘導体を得ることが出来る。このようなアミノ化の方法については、例えばN,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリルなどの反応に悪影響を及ぼさない適当な非プロトン性極性溶媒に当該化合物を溶解し、これに導入したい有機アミンを加えればよい。種々の有機アミンを導入することが出来るが、特にn−ブチルアミン、n−ヘキシルアミン、n−オクチルアミンなどのアルキルアミン、なかでもn−オクチルアミンを用いれば、前述の特許文献1または非特許文献2に記載されている医薬剤として有用な化合物を得ることが出来る。このような有機アミンは反応原料の1.5〜5当量、好ましくは2〜4当量を用いる。また、溶媒としては、比較的除去が容易であるアセトニトリルが好ましく、反応原料1重量部に対して10〜50重量部を用いる。反応温度は特に限定されないが、加熱(50〜80℃、好ましくは60〜70℃)下に反応が行われる。得られた一般式(2)化合物はシリカゲルカラムやイオン交換樹脂カラムなどを用いて精製することにより、より純度の高いものを得ることが出来る。加えて、一般式(2)化合物を適当な酸で処理することにより、その酸付加塩を製造できる。本発明で製造される一般式(2)化合物の塩としては、薬学的に許容できる酸との塩が用いられる。このような塩としては、例えば塩酸、臭化水素酸、硫酸、リン酸、硝酸などの無機塩、酢酸、リンゴ酸、クエン酸、アスコルビン酸、マンデル酸、メタンスルホン酸などの有機塩が用いられる。
<Manufacturing process A-8>
Subsequently, the organic amine is stereoselectively substituted with the secondary halogen group in the general formula (8) to obtain a carbacylamine derivative represented by the general formula (2). With respect to such amination method, for example, the compound is dissolved in a suitable aprotic polar solvent that does not adversely affect the reaction, such as N, N-dimethylacetamide, N, N-dimethylformamide, dimethylsulfoxide, and acetonitrile. What is necessary is just to add the organic amine to introduce into this. Various organic amines can be introduced. Particularly, alkylamines such as n-butylamine, n-hexylamine, and n-octylamine, and particularly n-octylamine are used. The compound useful as a pharmaceutical agent described in 2 can be obtained. Such an organic amine is used in an amount of 1.5 to 5 equivalents, preferably 2 to 4 equivalents, of the reaction raw material. The solvent is preferably acetonitrile, which is relatively easy to remove, and is used in an amount of 10 to 50 parts by weight with respect to 1 part by weight of the reaction raw material. Although reaction temperature is not specifically limited, Reaction is performed under a heating (50-80 degreeC, Preferably 60-70 degreeC). The obtained compound of the general formula (2) can be purified with a silica gel column or an ion exchange resin column to obtain a compound with higher purity. In addition, the acid addition salt can be produced by treating the compound of general formula (2) with an appropriate acid. As a salt of the compound of the general formula (2) produced in the present invention, a salt with a pharmaceutically acceptable acid is used. Examples of such salts include inorganic salts such as hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, and nitric acid, and organic salts such as acetic acid, malic acid, citric acid, ascorbic acid, mandelic acid, and methanesulfonic acid. .

なお、所望により、一般式(2)で表されるカルバ糖アミン誘導体に対し脱保護化反応を行うことで、特に一般式(2)−Aで表されるカルバ糖アミン誘導体が得られる。脱保護化反応は慣用の方法で行うことが出来るが、一般式(2)および一般式(8)化合物中に含まれるアシル型保護基を脱保護する場合、求核性を持つ塩基を用いてもよい。好ましくはメタノール中、反応原料と0.2〜1.0当量のナトリウムメトキシドとを反応させることによって当該保護基の脱保護反応が可能である。また保護基としてアセタール型保護基を用いている場合は、適当な酸性条件下に置くことにより脱保護化反応を行うことが出来、例えば70〜90%の濃度の酢酸水溶液中で加熱下(好ましくは75〜85℃)反応させることによって当該保護基の脱保護反応が可能である。   If desired, a carbasugar amine derivative represented by the general formula (2) -A can be obtained by carrying out a deprotection reaction on the carbasugar amine derivative represented by the general formula (2). Although the deprotection reaction can be carried out by a conventional method, a nucleophilic base is used when deprotecting the acyl-type protecting group contained in the compounds of the general formulas (2) and (8). Also good. Preferably, the protective group can be deprotected by reacting the reaction raw material with 0.2 to 1.0 equivalent of sodium methoxide in methanol. Further, when an acetal type protecting group is used as the protecting group, the deprotection reaction can be carried out by placing it under an appropriate acidic condition. For example, heating in an acetic acid aqueous solution having a concentration of 70 to 90% (preferably Can be deprotected by the reaction.

さらに本発明において、特にアシル型保護基の脱保護反応は前述のアミノ化反応の前後どちらでも行うことが可能であり、特に、一般式(8)化合物中のアシル型保護基を脱保護し、その後アミノ化反応を行うことによって一般式(2)−Aで表される化合物を製造することが出来る。このとき、反応原料である一般式(8)化合物には2種類の立体異性体が含まれるが、異性体をそれぞれ単離した後に、または混合物のままでも、アシル型保護基の脱保護反応に続いてアミノ化反応に付すと、いずれも等しく同一の化合物、すなわち目的物である一般式(2)−A化合物を与える。加えて、一般式(2)−Aで表されるカルバ糖アミン誘導体は、一般式(2)の化合物と同様の方法で精製することが出来、またその酸付加塩を製造できる。   Furthermore, in the present invention, the deprotection reaction of the acyl-type protecting group can be performed either before or after the above-mentioned amination reaction. In particular, the acyl-type protective group in the compound of the general formula (8) is deprotected, Thereafter, the compound represented by the general formula (2) -A can be produced by performing an amination reaction. At this time, the compound of the general formula (8), which is a reaction raw material, contains two types of stereoisomers. However, after isolating the isomers or in a mixture, they can be used for the deprotection reaction of the acyl-type protecting group. Subsequent amination reaction gives the same compound, that is, the compound of the general formula (2) -A that is the target product. In addition, the carbasugar amine derivative represented by the general formula (2) -A can be purified by the same method as the compound of the general formula (2), and an acid addition salt thereof can be produced.

以下に実施例を挙げて本発明をさらに具体的に説明するが、本発明の範囲はこれに限定されるものではない。実施例1〜11までの製造工程を下記<製造工程式2>に示した。   The present invention will be described more specifically with reference to the following examples, but the scope of the present invention is not limited thereto. The production steps from Examples 1 to 11 are shown in <Production step formula 2> below.

<製造工程式2> <Manufacturing process formula 2>

Figure 2012158524
Figure 2012158524

上記において、Acはアセチル基、Bzはベンゾイル基、Meはメチル基、Etはエチル基、Buはブチル基、Octylはオクチル基、THFはテトラヒドロフラン、DMFはN,N−ジメチルホルムアミド、pyはピリジン、CSAは(±)−10−カンファースルホン酸、DMSOはジメチルスルホキシド、PPTSはピリジニウム−パラ−トルエンスルホナートを表す。 In the above, Ac is an acetyl group, Bz is a benzoyl group, Me is a methyl group, Et is an ethyl group, Bu is a butyl group, Octyl is an octyl group, THF is tetrahydrofuran, DMF is N, N-dimethylformamide, py is pyridine, CSA represents (±) -10-camphorsulfonic acid, DMSO represents dimethyl sulfoxide, and PPTS represents pyridinium-para-toluenesulfonate.

下記実施例における反応生成物の解析における薄層クロマトグラフィーには、メルク社製シリカゲルTLC、60F254を用い、NMR構造解析には、日本電子社製JNM−ECS400装置または、日本電子社製Lambda300装置を用いた。旋光度の測定には、HORIBA社製SEPA−200装置を使用し、解析した。また、反応生成物の精製に使用したシリカゲルカラムクロマトグラフィーには、和光純薬社製Wako−gelC−300を用いた。   For thin layer chromatography in analysis of reaction products in the following examples, silica gel TLC, 60F254 manufactured by Merck & Co., Ltd. was used, and for NMR structural analysis, JNM-ECS400 apparatus manufactured by JEOL Ltd. or Lambda300 apparatus manufactured by JEOL Ltd. was used. Using. The optical rotation was measured using a SEPA-200 apparatus manufactured by HORIBA. Further, Wako-gel C-300 manufactured by Wako Pure Chemical Industries, Ltd. was used for silica gel column chromatography used for purification of the reaction product.

<実施例1>(1R,4R,8S,9R)-6,6,11,11-Tetramethyl-5,7,10,12-tetraoxatricyclo[7,3,04,8,0]dodecan-2-one,化合物4’の合成(化合物の番号は、一般式の番号と同じ、以下同様。)
出発原料である(+)−プロト−クエルシトールを5.00g(30.5mmol)取りアセトン350mLに溶解させ、36.8mL(301mmol)の2,2−ジメトキシプロパンおよび、1.42g(6.09mmol)の(±)−10−カンファースルホン酸を加えた。室温で19時間攪拌し、30mLの飽和炭酸水素ナトリウム水溶液を加え10分間攪拌した。溶液をろ過して不溶物をろ別し、ろ液を減圧濃縮した。濃縮液を酢酸エチルで2回抽出した後、有機相を再び減圧濃縮した。得られた残渣を30mLのジメチルスルホキシドに加え、さらに氷浴中で冷却しながらトリエチルアミン12.7mL(91.5mmol)、続いて三酸化硫黄−ピリジン錯体を9.71g(61.0mmol)加えた。室温で4.5時間攪拌した後、30mLの飽和炭酸水素ナトリウム水溶液を加えて反応を停止し、150mLのジエチルエーテルで2回抽出した。有機相を水、飽和食塩水それぞれ100mLで洗浄した後、硫酸ナトリウムで乾燥させ、減圧濃縮した。得られた残渣を熱エタノールから再結晶し、3.94gの化合物4’を得た(2工程収率53%)。
RF = 0.47 (ヘキサン/酢酸エチル=1/1), C12H18O5 MW: 242.27(計算値), 1H-NMR (300MHz/CDCl3) δ (ppm): 1.37, 1.45, 1.47, 1.49 (s, each 3H), 2.48 (dd, 1H, J = 10.8, 18.0 Hz), 2.98 (dd, 1H, J = 7.0, 18.0 Hz ), 3.55 (dd, 1H, J = 7.5, 10.3 Hz), 4.10 (ddd, 1H, J = 7.1, 10.8, 10.6 Hz), 4.47 (d, 1H, J = 8.4 Hz). 4.63 (dd, 1H, J = 7.5, 8.4 Hz)
<Example 1> (1R, 4R, 8S , 9R) -6,6,11,11-Tetramethyl-5,7,10,12-tetraoxatricyclo [7,3,0 4,8, 0] dodecan-2- one, Synthesis of Compound 4 ′ (The compound number is the same as the general formula number, the same shall apply hereinafter.)
5.00 g (30.5 mmol) of the starting material (+)-proto-quercitol was taken and dissolved in 350 mL of acetone, and 36.8 mL (301 mmol) of 2,2-dimethoxypropane and 1.42 g (6.09 mmol). Of (±) -10-camphorsulfonic acid was added. The mixture was stirred at room temperature for 19 hours, 30 mL of saturated aqueous sodium hydrogen carbonate solution was added, and the mixture was stirred for 10 minutes. The solution was filtered to remove insolubles, and the filtrate was concentrated under reduced pressure. The concentrate was extracted twice with ethyl acetate, and the organic phase was again concentrated under reduced pressure. The obtained residue was added to 30 mL of dimethyl sulfoxide, and further 12.7 mL (91.5 mmol) of triethylamine was added while cooling in an ice bath, followed by 9.71 g (61.0 mmol) of sulfur trioxide-pyridine complex. After stirring at room temperature for 4.5 hours, the reaction was stopped by adding 30 mL of saturated aqueous sodium hydrogen carbonate solution, and the mixture was extracted twice with 150 mL of diethyl ether. The organic phase was washed with 100 mL each of water and saturated brine, dried over sodium sulfate, and concentrated under reduced pressure. The obtained residue was recrystallized from hot ethanol to obtain 3.94 g of compound 4 ′ (2 step yield: 53%).
R F = 0.47 (hexane / ethyl acetate = 1/1), C 12 H 18 O 5 MW: 242.27 (calculated), 1 H-NMR (300MHz / CDCl 3 ) δ (ppm): 1.37, 1.45, 1.47, 1.49 (s, each 3H), 2.48 (dd, 1H, J = 10.8, 18.0 Hz), 2.98 (dd, 1H, J = 7.0, 18.0 Hz), 3.55 (dd, 1H, J = 7.5, 10.3 Hz), 4.10 (ddd, 1H, J = 7.1, 10.8, 10.6 Hz), 4.47 (d, 1H, J = 8.4 Hz) .4.63 (dd, 1H, J = 7.5, 8.4 Hz)

<実施例2>(1S,4R,5R,6S)-4,5-Dibenzoyloxy-2-(benzoyloxymethyl)-8,8-dimethyl-7,9-dioxabicyclo[4.3.0]non-8-ene,化合物1’の合成
10.0g(41.3mmol)の化合物4’を400 mLのメタノールに溶解し、氷浴中で冷却しながら2.07g(8.25mmol)のピリジニウム−パラ−トルエンスルホナートを加えた。4℃に冷却しながら23時間静置した後、トリエチルアミンで中和した。反応溶液を減圧濃縮した後、アセトンで2回共沸させて溶媒を除いた。
得られた残渣を400mLのピリジンに溶解させ、氷浴中で冷却しながら塩化ベンゾイル38.4mL(330mmol)を加えた。室温で21時間攪拌した後、氷を加えた飽和炭酸水素ナトリウム水溶液約500mLを注ぎ入れ、そのまま30分間攪拌した。生じた沈殿物をよく水洗した後にろ別し、エタノール/水から再結晶した。得られた結晶をトルエンおよびエタノールによって共沸させ混入した水を除き、減圧乾燥させて12.8gの化合物1’を得た(2工程収率60%)
RF = 0.35 (ヘキサン/酢酸エチル=4/1), [α]D 25=-43.0o (c 1.0, CHCl3), C30H26O8 MW: 514.52(計算値), 1H-NMR (300MHz/CDCl3) δ (ppm): 1.39, 1.63 (s, each 3H), 4.64 (dd, 1H, J = 6.0, 7.4 Hz), 5.01 (d, 1H, J = 6.0 Hz ), 5.81-5.91 (m, 2H, J = 7.5, 10.3 Hz), 5.95 (d, 1H, J = 2.6 Hz), 7.35-7.63 (m, 9H), 7.97-8.13 (m, 6H), 13C-NMR (75MHz / CDCl3) δ(ppm):26.42, 27.83, 69.44, 71.33, 72.25, 75.05, 112.23, 116.96, 128.38, 128.40, 128.60, 129.34, 129.52, 129.89, 130.27, 133.23, 133.30, 133.85, 146.34
Example 2 (1S, 4R, 5R, 6S) -4,5-Dibenzoyloxy-2- (benzoyloxymethyl) -8,8-dimethyl-7,9-dioxabicyclo [4.3.0] non-8-ene, Compound Synthesis of 1 ′ 10.0 g (41.3 mmol) of compound 4 ′ was dissolved in 400 mL of methanol, and 2.07 g (8.25 mmol) of pyridinium-para-toluenesulfonate was added while cooling in an ice bath. It was. The mixture was allowed to stand for 23 hours while being cooled to 4 ° C., and then neutralized with triethylamine. The reaction solution was concentrated under reduced pressure and then azeotroped twice with acetone to remove the solvent.
The obtained residue was dissolved in 400 mL of pyridine, and 38.4 mL (330 mmol) of benzoyl chloride was added while cooling in an ice bath. After stirring for 21 hours at room temperature, about 500 mL of a saturated aqueous sodium hydrogen carbonate solution with ice added thereto was poured and stirred for 30 minutes. The resulting precipitate was washed well with water, filtered, and recrystallized from ethanol / water. The obtained crystals were azeotroped with toluene and ethanol to remove mixed water and dried under reduced pressure to obtain 12.8 g of compound 1 ′ (2 step yield: 60%).
R F = 0.35 (hexane / ethyl acetate = 4/1), [α] D 25 = -43.0 o (c 1.0, CHCl 3 ), C 30 H 26 O 8 MW: 514.52 (calculated value), 1 H-NMR (300MHz / CDCl 3 ) δ (ppm): 1.39, 1.63 (s, each 3H), 4.64 (dd, 1H, J = 6.0, 7.4 Hz), 5.01 (d, 1H, J = 6.0 Hz), 5.81-5.91 (m, 2H, J = 7.5, 10.3 Hz), 5.95 (d, 1H, J = 2.6 Hz), 7.35-7.63 (m, 9H), 7.97-8.13 (m, 6H), 13 C-NMR (75 MHz / CDCl 3 ) δ (ppm): 26.42, 27.83, 69.44, 71.33, 72.25, 75.05, 112.23, 116.96, 128.38, 128.40, 128.60, 129.34, 129.52, 129.89, 130.27, 133.23, 133.30, 133.85, 146.34

<実施例3>(1S,2S,6S)-2-(Benzoyloxy)-8,8-dimethyl-5-methylene-7,9-dioxabicyclo[4.3.0]non-3-ene,化合物6’の合成
メチルホスホニウムブロミド12.5g(35.0mmol)をナスフラスコに加え窒素置換した後、12mLの無水THFに懸濁し、ドライアイス−アセトン浴中で冷却した。これに14.2mL(23.4mmol)のn−BuLi(1.65Mヘキサン溶液)をシリンジでゆっくり加え、氷浴中に移して1時間攪拌した。再びドライアイス−アセトン浴中で冷却しながら、30mLの無水THFに溶解した3.00g(5.83mmol)の化合物1’をゆっくり加えた。容器を8mLの無水THFで2回リンスし、これらも加えた。4度に冷却しながら21時間攪拌した後、反応溶液をショートシリカゲルカラムに通し、ヘキサン/酢酸エチル=4/1の混合液60mL×3で溶出させた。続いて溶液を、セライト粉末を通じてろ過し、セライトを少量の酢酸エチルで洗浄した後、合わせた溶液を減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=95/5)によって精製し、1.105gの化合物6’を得た(収率66%)。
RF = 0.45 (ヘキサン/酢酸エチル=4/1)、C17H18O4 MW: 286.32(計算値)、1H-NMR (300MHz/CDCl3) δ (ppm): 1.43, 1.50 (s, each 3H), 4.37 (dd, 1H, J = 5.1, 5.5 Hz), 4.76 (d, 1H, J = 5.5 Hz), 5.43, 5.46 (each s, 2H), 5.67 (broad s, 1H), 5.78 (d, 1H, J = 9.9 Hz), 6.33 (d, 1H, J = 9.9 Hz), 7.39-7.44 ( m, 2H), 7.52-7.57 (m, 1H), 8.02-8.06 (m, 2H)
Example 3 Synthesis of (1S, 2S, 6S) -2- (Benzoyloxy) -8,8-dimethyl-5-methylene-7,9-dioxabicyclo [4.3.0] non-3-ene, Compound 6 ′ After adding 12.5 g (35.0 mmol) of methylphosphonium bromide to the eggplant flask and replacing with nitrogen, the suspension was suspended in 12 mL of anhydrous THF and cooled in a dry ice-acetone bath. To this, 14.2 mL (23.4 mmol) of n-BuLi (1.65 M hexane solution) was slowly added with a syringe, transferred to an ice bath, and stirred for 1 hour. While cooling again in a dry ice-acetone bath, 3.00 g (5.83 mmol) of Compound 1 ′ dissolved in 30 mL of anhydrous THF was slowly added. The vessel was rinsed twice with 8 mL anhydrous THF and these were also added. After stirring for 21 hours while cooling to 4 degrees, the reaction solution was passed through a short silica gel column and eluted with 60 mL × 3 of a mixed solution of hexane / ethyl acetate = 4/1. Subsequently, the solution was filtered through celite powder, and the celite was washed with a small amount of ethyl acetate, and then the combined solution was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane / ethyl acetate = 95/5) to obtain 1.105 g of compound 6 ′ (yield 66%).
R F = 0.45 (hexane / ethyl acetate = 4/1), C 17 H 18 O 4 MW: 286.32 (calculated value), 1 H-NMR (300MHz / CDCl 3 ) δ (ppm): 1.43, 1.50 (s, each 3H), 4.37 (dd, 1H, J = 5.1, 5.5 Hz), 4.76 (d, 1H, J = 5.5 Hz), 5.43, 5.46 (each s, 2H), 5.67 (broad s, 1H), 5.78 ( d, 1H, J = 9.9 Hz), 6.33 (d, 1H, J = 9.9 Hz), 7.39-7.44 (m, 2H), 7.52-7.57 (m, 1H), 8.02-8.06 (m, 2H)

<実施例4>(1S,4S,5R,6S)- and (1S,4R,5R,6S)-5-Benzoyloxy-4-bromo-2-(bromomethyl)-8,8-dimethyl-7,9-dioxabicyclo[4.3.0]non-2-ene,化合物7’の合成
1.36g(4.75mmol)の化合物6’を48mLの四塩化炭素に溶解させ、これに炭酸水素ナトリウム748mg(5.23mmol)を加え懸濁させた。続いて臭素280μL(5.46mmol)をゆっくり滴下して加えた。そのまま室温で30分間攪拌した後、100mLのクロロホルムで希釈し、飽和炭酸水素ナトリウム水溶液、水それぞれ50mLで洗浄した。有機相を硫酸ナトリウムで乾燥させた後、減圧濃縮した。得られた残渣をシリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=95/5→9/1)によって精製し、1.45gの化合物7’を得た(異性体混合物で収率68%、異性体比α/β=1.7/1)。
RF = 0.63 (トルエン/酢酸エチル=95/5), C17H18Br2O4 MW: 446.13(計算値), 1H-NMRより異性体混合比はα/β=1.7/1
<Example 4> (1S, 4S, 5R, 6S)-and (1S, 4R, 5R, 6S) -5-Benzoyloxy-4-bromo-2- (bromomethyl) -8,8-dimethyl-7,9- Synthesis of dioxabicyclo [4.3.0] non-2-ene, Compound 7 ′ 1.36 g (4.75 mmol) of Compound 6 ′ was dissolved in 48 mL of carbon tetrachloride, and 748 mg (5.23 mmol) of sodium bicarbonate was added thereto. And suspended. Subsequently, 280 μL (5.46 mmol) of bromine was slowly added dropwise. The mixture was stirred at room temperature for 30 minutes as it was, diluted with 100 mL of chloroform, and washed with 50 mL each of a saturated aqueous sodium bicarbonate solution and water. The organic phase was dried over sodium sulfate and then concentrated under reduced pressure. The obtained residue was purified by silica gel chromatography (hexane / ethyl acetate = 95/5 → 9/1) to obtain 1.45 g of compound 7 ′ (yield of isomer mixture 68%, isomer ratio α). /Β=1.7/1).
R F = 0.63 (Toluene / ethyl acetate = 95/5), C 17 H 18 Br 2 O 4 MW: 446.13 (calculated value), 1 H-NMR shows that the isomer mixture ratio is α / β = 1.7 / 1

<実施例5>(1S,4R,5R,6S)- and (1S,4S,5R,6S)-5-Benzoyloxy-2-(benzoyloxymethyl)-4-bromo-8,8-dimethyl-7,9-dioxabicyclo[4.3.0]non-2-ene,化合物8’−α、8’−βの合成
1.41g(3.15mmol)の化合物8’を32mLのN,N−ジメチルホルムアミドに溶解させ、522mg(3.62mmol)の安息香酸ナトリウムを加え懸濁させた。室温で22時間攪拌した後、300mLの酢酸エチルで希釈し、100mLの水で2回、100mLの飽和食塩水で1回洗浄し、有機相を硫酸ナトリウムで乾燥させた。得られた残渣をシリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=95/5)によって精製し、732mgの化合物8’−α(収率48%)、419mgの化合物8’−β(27%)を得た。
化合物8’-α: RF = 0.36 (ヘキサン/酢酸エチル=4/1), C24H23BrO6 MW: 487.34(計算値), 1H-NMR (300MHz/CDCl3) δ (ppm): 1.39, 1.47 (s, each 3H), 4.73 (dd, 1H, J = 7.0, 7.0 Hz), 4.83 (d, 1H, J = 6.6 Hz), 4.91-4.94 (m, 1H), 5.03 (d, 2H, J = 24.2 Hz), 5.15 (dd, 1H, J = 3.8, 8.4 Hz), 6.22 (d, 1H, J = 5.9 Hz), 7.41-7.58 (m, 6H), 8.07-8.14 (m, 4H)
化合物8’−β:RF = 0.24 (ヘキサン/酢酸エチル=4/1), C24H23BrO6 MW: 487.34(計算値), 1H-NMR (300MHz/CDCl3) δ (ppm): 1.41, 1.56 (s, each 3H), 4.36 (dd, 1H, J = 5.9, 7.9 Hz), 4.67 (br d, 1H, J = 7.5 Hz), 4.73 (d, 1H, J = 5.5 Hz), 4.99 (br s, 1H), 5.68 (dd, 1H, J = 7.7, 7.7 Hz), 6.17 (br d, 1H), 7.30-7.61 (m, 5H), 7.91-8.08 (m, 5H)
<Example 5> (1S, 4R, 5R, 6S)-and (1S, 4S, 5R, 6S) -5-Benzoyloxy-2- (benzoyloxymethyl) -4-bromo-8,8-dimethyl-7,9- Synthesis of dioxabicyclo [4.3.0] non-2-ene, compounds 8′-α and 8′-β 1.41 g (3.15 mmol) of compound 8 ′ was dissolved in 32 mL of N, N-dimethylformamide, and 522 mg. (3.62 mmol) sodium benzoate was added and suspended. After stirring at room temperature for 22 hours, the mixture was diluted with 300 mL of ethyl acetate, washed twice with 100 mL of water and once with 100 mL of saturated brine, and the organic phase was dried over sodium sulfate. The obtained residue was purified by silica gel chromatography (hexane / ethyl acetate = 95/5) to obtain 732 mg of compound 8′-α (yield 48%) and 419 mg of compound 8′-β (27%). .
Compound 8'-α: R F = 0.36 (hexane / ethyl acetate = 4/1), C 24 H 23 BrO 6 MW: 487.34 (calculated value), 1 H-NMR (300MHz / CDCl 3 ) δ (ppm): 1.39, 1.47 (s, each 3H), 4.73 (dd, 1H, J = 7.0, 7.0 Hz), 4.83 (d, 1H, J = 6.6 Hz), 4.91-4.94 (m, 1H), 5.03 (d, 2H , J = 24.2 Hz), 5.15 (dd, 1H, J = 3.8, 8.4 Hz), 6.22 (d, 1H, J = 5.9 Hz), 7.41-7.58 (m, 6H), 8.07-8.14 (m, 4H)
Compound 8′-β: R F = 0.24 (hexane / ethyl acetate = 4/1), C 24 H 23 BrO 6 MW: 487.34 (calculated value), 1 H-NMR (300 MHz / CDCl 3 ) δ (ppm): 1.41, 1.56 (s, each 3H), 4.36 (dd, 1H, J = 5.9, 7.9 Hz), 4.67 (br d, 1H, J = 7.5 Hz), 4.73 (d, 1H, J = 5.5 Hz), 4.99 (br s, 1H), 5.68 (dd, 1H, J = 7.7, 7.7 Hz), 6.17 (br d, 1H), 7.30-7.61 (m, 5H), 7.91-8.08 (m, 5H)

<実施例6> (1S,5R,6R,7R)-9-(Hydroxymethyl)-7-bromo-2,4-dioxabicyclo[4.3.0]non-8-ene-6-ol,化合物 8’’−αの合成
実施例5で得られた二つの異性体のうち、化合物8’−αを692mg(1.40mmol)取り、14mLの無水メタノールに溶解させた。これに、1Mのナトリウムメトキシド/メタノール溶液498μL(0.49mmol)を加え、200μLのメタノールで容器をリンスしてこれも加えた。室温で2時間攪拌した後、さらに1Mナトリウムメトキシド/メタノール溶液を280μL(0.28mmol)加え、室温で30分間攪拌した。強酸性イオン交換樹脂(デュオライトC20[H]、住友ケムテックス社製)を反応溶液が中性になるまで加え、樹脂を除いた溶液を減圧濃縮した。シリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=4/1→2/1)によって精製し、254mgの化合物8’’−α(収率65%)を得た。
RF = 0.20 (ヘキサン/酢酸エチル=1/1), C10H15BrO4 MW: 279.13(計算値), 1H-NMR (300MHz/CDCl3) δ (ppm): 1.34, 1.41 (s, each 3H), 3.65 (dd, 1H, J = 3.7, 7.9 Hz), 4.14-4.66 (m, 3H), 4.66-4.71 (m, 2H), 6.04 (d, 1H, J = 5.5 Hz)
<Example 6> (1S, 5R, 6R, 7R) -9- (Hydroxymethyl) -7-bromo-2,4-dioxabicyclo [4.3.0] non-8-ene-6-ol, compound 8 ''- Synthesis of α Of the two isomers obtained in Example 5, 692 mg (1.40 mmol) of compound 8′-α was taken and dissolved in 14 mL of anhydrous methanol. To this, 498 μL (0.49 mmol) of 1M sodium methoxide / methanol solution was added, and the container was rinsed with 200 μL of methanol, and this was also added. After stirring at room temperature for 2 hours, 280 μL (0.28 mmol) of 1M sodium methoxide / methanol solution was further added and stirred at room temperature for 30 minutes. A strongly acidic ion exchange resin (Duolite C20 [H + ], manufactured by Sumitomo Chemtex Co., Ltd.) was added until the reaction solution became neutral, and the solution excluding the resin was concentrated under reduced pressure. Purification by silica gel chromatography (hexane / ethyl acetate = 4/1 → 2/1) gave 254 mg of compound 8 ″ -α (65% yield).
R F = 0.20 (hexane / ethyl acetate = 1/1), C 10 H 15 BrO 4 MW: 279.13 (calculated value), 1 H-NMR (300MHz / CDCl 3 ) δ (ppm): 1.34, 1.41 (s, each 3H), 3.65 (dd, 1H, J = 3.7, 7.9 Hz), 4.14-4.66 (m, 3H), 4.66-4.71 (m, 2H), 6.04 (d, 1H, J = 5.5 Hz)

<実施例7> (1R,2S,4S,7S)-6-(Hydroxymethyl)-3,8,10-trioxatricyclo[5.3.02,4.0]decan-5-ene,化合物 8’’−βの合成
実施例5で得られた二つの異性体のうち、270mg(0.554mmol)の化合物8’−βを4.4mLの無水メタノールに溶解した。これに、1Mのナトリウムメトキシド/メタノール溶液580μL(0.58mmol)を加え、200μLのメタノールで容器をリンスしてこれも加えた。室温で1時間攪拌した後、0.1M塩酸/メタノール溶液を反応溶液のpHが中性付近になるまで加えた。溶液を減圧濃縮し、得られた残渣をシリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=4/1→2/1)によって精製し、48mgの化合物8’’−β(収率44%)を得た。
RF = 0.41 (ヘキサン/酢酸エチル=1/1), C10H14O4 MW: 198.22(計算値), 1H-NMR (300MHz/CDCl3) δ (ppm): 1.39 (s, 6H), 3.35 (dd, 1H, J = 3.9, 4.0 Hz), 3.54 (dd, 1H, J = 1.7, 3.7 Hz), 4.22 (br d, 2H, J = 4.8 Hz), 4.45 (d, 1H, J = 7.1 Hz), 4.79 (d, 1H, J = 6.2 Hz), 6.05 (br d, 1H, J = 2.9 Hz)
<Example 7> (1R, 2S, 4S , 7S) -6- (Hydroxymethyl) -3,8,10-trioxatricyclo [5.3.0 2,4 .0] decan-5-ene, compound 8 '' - β Of the two isomers obtained in Example 5, 270 mg (0.554 mmol) of compound 8′-β was dissolved in 4.4 mL of anhydrous methanol. To this, 580 μL (0.58 mmol) of 1M sodium methoxide / methanol solution was added, and the container was rinsed with 200 μL of methanol, and this was also added. After stirring at room temperature for 1 hour, 0.1 M hydrochloric acid / methanol solution was added until the pH of the reaction solution became near neutral. The solution was concentrated under reduced pressure, and the resulting residue was purified by silica gel chromatography (hexane / ethyl acetate = 4/1 → 2/1) to obtain 48 mg of compound 8 ″ -β (yield 44%).
R F = 0.41 (hexane / ethyl acetate = 1/1), C 10 H 14 O 4 MW: 198.22 (calculated value), 1 H-NMR (300MHz / CDCl 3 ) δ (ppm): 1.39 (s, 6H) , 3.35 (dd, 1H, J = 3.9, 4.0 Hz), 3.54 (dd, 1H, J = 1.7, 3.7 Hz), 4.22 (br d, 2H, J = 4.8 Hz), 4.45 (d, 1H, J = 7.1 Hz), 4.79 (d, 1H, J = 6.2 Hz), 6.05 (br d, 1H, J = 2.9 Hz)

<実施例8>(1S,2R,3S,6R)-4-(Hydroxymethyl)-6-octylaminocyclohex-4-ene-1,2,3-triol,化合物2’の合成(化合物8’’−αより)
187mg(0.670mmol)の化合物8’’−αを3.4mLのアセトニトリルに溶解させ、炭酸カリウム140mg(1.01mmol)およびn−オクチルアミン279μL(1.68mmol)を加えた。60−65℃に加温しながら22時間攪拌し、室温まで放冷した。溶液をろ過し、ろ液を減圧濃縮した後、シリカゲルクロマトグラフィー(クロロホルム/メタノール=97/3)によって精製し、目的物が含まれる画分を濃縮した。
得られた残渣を80%酢酸水溶液6.5mLに溶解し、80℃に加温しながら4時間攪拌した。反応溶液をトルエンと共沸させて減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸/クロロホルム/メタノール=10/86/4→10/60/30)によって精製し、目的物が含まれる画分を濃縮した。残渣を強酸性イオン交換樹脂(デュオライトC20[H])カラム(80%メタノール水溶液→メタノール/25%アンモニア水=8/2)によって遊離塩基とし、化合物2’を100mg(2工程収率52%)得た。
RF = 0.41 (酢酸/クロロホルム/メタノール=1/6/3), C15H29NO4 MW: 287.40(計算値), [α]D 25=+1.8o (c 1.0, MeOH), 1H-NMR (300MHz/CD3OD) δ(ppm): 0.800 (t, 3H, J = 7.0 Hz), 1.21 (br, 10H), 1.43 (br, 2H), 2.42-2.48 (m, 1H), 2.60-2.69 (m, 1H), 3.00 (br d, 1H, J = 6.4 Hz), 3.24 (d, 1H, J = 8.4 Hz ), 3.34 (dd, 1H, J = 4.2, 10.2 Hz), 3.60 (dd, 1H, J = 8.2, 10.1 Hz), 4.03 (br s, 2H), 4.06 (d, 1H, J = 4.2 Hz), 5.62 (br s, 1H), 13C-NMR (75MHz/CDCl3) δ(ppm):14.40, 23.70, 28.42, 30.38, 30.60, 30.94, 32.99, 46.91, 61.80, 63.94, 68.16, 70.86, 73.89, 125.34, 140.65
Example 8 Synthesis of (1S, 2R, 3S, 6R) -4- (Hydroxymethyl) -6-octylaminocyclohex-4-ene-1,2,3-triol, Compound 2 ′ (From Compound 8 ″ -α) )
187 mg (0.670 mmol) of compound 8 ″ -α was dissolved in 3.4 mL of acetonitrile, and 140 mg (1.01 mmol) of potassium carbonate and 279 μL (1.68 mmol) of n-octylamine were added. The mixture was stirred for 22 hours while warming to 60-65 ° C. and allowed to cool to room temperature. The solution was filtered, and the filtrate was concentrated under reduced pressure, and then purified by silica gel chromatography (chloroform / methanol = 97/3), and the fraction containing the desired product was concentrated.
The obtained residue was dissolved in 6.5 mL of 80% aqueous acetic acid and stirred for 4 hours while warming to 80 ° C. The reaction solution is azeotroped with toluene and concentrated under reduced pressure, and the resulting residue is purified by silica gel column chromatography (acetic acid / chloroform / methanol = 10/86/4 → 10/60/30) to contain the desired product. The fraction was concentrated. The residue was converted to a free base by a strongly acidic ion exchange resin (Duolite C20 [H + ]) column (80% aqueous methanol solution → methanol / 25% aqueous ammonia = 8/2), and 100 mg of compound 2 ′ (2 step yield: 52) %)Obtained.
R F = 0.41 (acetic acid / chloroform / methanol = 1/6/3), C 15 H 29 NO 4 MW: 287.40 (calculated), [α] D 25 = + 1.8 o (c 1.0, MeOH), 1 H -NMR (300MHz / CD 3 OD) δ (ppm): 0.800 (t, 3H, J = 7.0 Hz), 1.21 (br, 10H), 1.43 (br, 2H), 2.42-2.48 (m, 1H), 2.60 -2.69 (m, 1H), 3.00 (br d, 1H, J = 6.4 Hz), 3.24 (d, 1H, J = 8.4 Hz), 3.34 (dd, 1H, J = 4.2, 10.2 Hz), 3.60 (dd , 1H, J = 8.2, 10.1 Hz), 4.03 (br s, 2H), 4.06 (d, 1H, J = 4.2 Hz), 5.62 (br s, 1H), 13 C-NMR (75 MHz / CDCl 3 ) δ (ppm): 14.40, 23.70, 28.42, 30.38, 30.60, 30.94, 32.99, 46.91, 61.80, 63.94, 68.16, 70.86, 73.89, 125.34, 140.65

<実施例9>化合物2’の合成(化合物 8’’−βより)
化合物8’’−βを48mg(0.24mmol)取り、2.4mLのアセトニトリルに溶解させ、n−オクチルアミン100μL(0.606mmol)を加えた。60−70℃に加温しながら22時間攪拌、室温まで放冷した後、減圧濃縮した。シリカゲルクロマトグラフィー(クロロホルム/メタノール=97/3)によって精製し、目的物が含まれる画分を濃縮した。
得られた残渣を80%酢酸水溶液2.5mLに溶解し、80℃に加温しながら4時間攪拌した。反応溶液をトルエンと共沸させて減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸/クロロホルム/メタノール=10/86/4→10/60/30)によって精製し、目的物が含まれる画分を濃縮した。残渣を強酸性イオン交換樹脂(デュオライトC20[H])カラム(80%メタノール水溶液→メタノール/25%アンモニア水=8/2)によって遊離塩基とし、化合物2’を33mg(2工程収率48%)得た。
Example 9 Synthesis of Compound 2 ′ (From Compound 8 ″ -β)
48 mg (0.24 mmol) of compound 8 ″ -β was taken and dissolved in 2.4 mL of acetonitrile, and 100 μL (0.606 mmol) of n-octylamine was added. The mixture was stirred for 22 hours while heating to 60-70 ° C., allowed to cool to room temperature, and concentrated under reduced pressure. The product was purified by silica gel chromatography (chloroform / methanol = 97/3), and the fraction containing the desired product was concentrated.
The obtained residue was dissolved in 2.5 mL of 80% aqueous acetic acid and stirred for 4 hours while warming to 80 ° C. The reaction solution is azeotroped with toluene and concentrated under reduced pressure, and the resulting residue is purified by silica gel column chromatography (acetic acid / chloroform / methanol = 10/86/4 → 10/60/30) to contain the desired product. The fraction was concentrated. The residue was converted to the free base by a strongly acidic ion exchange resin (Duolite C20 [H + ]) column (80% aqueous methanol solution → methanol / 25% aqueous ammonia = 8/2), and 33 mg (2 step yield 48) of compound 2 ′ was obtained. %)Obtained.

<実施例10>化合物2’の合成(化合物7’より)
1.07g(2.39mmol)の化合物7’を24mLのN,N−ジメチルホルムアミドに溶解し、安息香酸ナトリウム396mg(2.75mmol)を加えた。室温で22時間攪拌した後、反応溶液を240mLの酢酸エチルで希釈し、これを80mLの水で2回、80mLの飽和食塩水で1回洗浄した。有機相を硫酸ナトリウムで乾燥させた後、減圧濃縮した。
得られた残渣を無水メタノール20mLに溶解させ、これに1.2mLの1Mナトリウムメトキシド/メタノール溶液を加えた。室温で2時間攪拌し、強酸性イオン交換樹脂(デュオライトC20[H])を加え反応溶液を中和し、樹脂を除いた後に減圧濃縮した。シリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=4/1→2/1)によって精製し、化合物8’’−αを237mg、化合物8’’−βを91mg、さらに化合物8’−βのエステル基がすべて脱保護された化合物を86mg得た。この化合物をメタノールに溶解し、強塩基性イオン交換樹脂(デュオライトA116[OH−]、住友ケムテックス社製)カラムを数回通過させた後、溶液を減圧濃縮すると58mgの化合物8’’−βが得られた。
得られた化合物8’’−αおよび化合物8’’−βを合わせ、16mLのアセトニトリルに溶解し、炭酸カリウム176mg(1.27mmol)、続いてn−オクチルアミン663μL(4.00mmol)を加えた。60−70℃に加温しながら20時間攪拌した後、室温まで放冷した。溶液をろ過し、ろ液を減圧濃縮した後、得られた残渣を80%酢酸水溶液16mLに溶解し、80℃に加温しながら4時間攪拌した。反応溶液をトルエンと共沸させて減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸/クロロホルム/メタノール=10/86/4→10/60/30)によって精製し、目的物が含まれる画分を濃縮した。残渣を強酸性イオン交換樹脂(デュオライトC20[H])カラム(80%メタノール水溶液→メタノール/25%アンモニア水=8/2)によって遊離塩基とし、化合物2’を155mg(7’より4工程収率23%)得た。
<Example 10> Synthesis of compound 2 '(from compound 7')
1.07 g (2.39 mmol) of compound 7 ′ was dissolved in 24 mL of N, N-dimethylformamide, and 396 mg (2.75 mmol) of sodium benzoate was added. After stirring at room temperature for 22 hours, the reaction solution was diluted with 240 mL of ethyl acetate, and this was washed twice with 80 mL of water and once with 80 mL of saturated brine. The organic phase was dried over sodium sulfate and then concentrated under reduced pressure.
The obtained residue was dissolved in 20 mL of anhydrous methanol, and 1.2 mL of 1 M sodium methoxide / methanol solution was added thereto. The mixture was stirred at room temperature for 2 hours, a strongly acidic ion exchange resin (Duolite C20 [H + ]) was added to neutralize the reaction solution, the resin was removed, and the mixture was concentrated under reduced pressure. Purified by silica gel chromatography (hexane / ethyl acetate = 4/1 → 2/1), 237 mg of compound 8 ″ -α, 91 mg of compound 8 ″ -β, and all ester groups of compound 8′-β 86 mg of deprotected compound was obtained. This compound was dissolved in methanol, passed through a strongly basic ion exchange resin (Duolite A116 [OH-], manufactured by Sumitomo Chemtex) column several times, and then the solution was concentrated under reduced pressure to give 58 mg of compound 8 ″ -β. was gotten.
The obtained compound 8 ″ -α and compound 8 ″ -β were combined, dissolved in 16 mL of acetonitrile, and 176 mg (1.27 mmol) of potassium carbonate was added, followed by 663 μL (4.00 mmol) of n-octylamine. . The mixture was stirred for 20 hours while heating to 60-70 ° C, and then allowed to cool to room temperature. The solution was filtered, and the filtrate was concentrated under reduced pressure. The obtained residue was dissolved in 16 mL of 80% aqueous acetic acid and stirred for 4 hours while warming to 80 ° C. The reaction solution is azeotroped with toluene and concentrated under reduced pressure, and the resulting residue is purified by silica gel column chromatography (acetic acid / chloroform / methanol = 10/86/4 → 10/60/30) to contain the desired product. The fraction was concentrated. The residue was converted to the free base by a strongly acidic ion exchange resin (Duolite C20 [H + ]) column (80% aqueous methanol solution → methanol / 25% aqueous ammonia = 8/2), and 155 mg of compound 2 ′ (4 steps from 7 ′) Yield 23%).

<実施例11>(1S,2R,3S,6R)-4-(Hydroxymethyl)-6-octylaminocyclohex-4-ene-1,2,3-triol hydrochloride,化合物2’’の合成
化合物2’を78mg(0.27mmol)取り、1Nの塩酸水溶液6mLに溶解させた。エタノールで数回共沸し、減圧濃縮した。減圧乾燥後、86mgの化合物2’’が得られた(収率98%)。
RF = 0.41 (酢酸/クロロホルム/メタノール=1/6/3), C15H30ClNO4 MW: 323.86(計算値), [α]D 25=+9.8o (c 1.0, MeOH), 1H-NMR (300MHz/D2O) δ(ppm): 0.894 (t, 3H, J = 6.4 Hz), 1.31 (br, 10H), 1.72-2.78 (br, 2H), 3.09-3.28 (m, 2H), 3.72 (ddd, 1H, J = 1.5, 3.7, 10.0 Hz), 3.90 (br d, 1H, J = 8.6 Hz), 4.00 (dd, 1H, J = 8.9. 10.1 Hz ), 4.24 (br s, 2H), 4.31 (d, 1H, J = 4.0 Hz), 5.82 (d, 1H, J = 1.3 Hz), 13C-NMR (75MHz/D2O, dioxane as internal reference) δ(ppm):13.82, 22.38, 26.07, 26.12, 28.50, 28.57, 31.40, 44.98, 60.17, 62.18, 66.38, 67.23, 71.47, 117.09, 144.22
Example 11 Synthesis of (1S, 2R, 3S, 6R) -4- (Hydroxymethyl) -6-octylaminocyclohex-4-ene-1,2,3-triol hydrochloride, Compound 2 ″ Compound 2 ′ was dissolved in 78 mg ( 0.27 mmol) and dissolved in 6 mL of 1N aqueous hydrochloric acid. Azeotroped several times with ethanol and concentrated under reduced pressure. After drying under reduced pressure, 86 mg of compound 2 ″ was obtained (yield 98%).
R F = 0.41 (acetic acid / chloroform / methanol = 1/6/3), C 15 H 30 ClNO 4 MW: 323.86 (calculated), [α] D 25 = + 9.8 o (c 1.0, MeOH), 1 H -NMR (300MHz / D 2 O) δ (ppm): 0.894 (t, 3H, J = 6.4 Hz), 1.31 (br, 10H), 1.72-2.78 (br, 2H), 3.09-3.28 (m, 2H) , 3.72 (ddd, 1H, J = 1.5, 3.7, 10.0 Hz), 3.90 (br d, 1H, J = 8.6 Hz), 4.00 (dd, 1H, J = 8.9. 10.1 Hz), 4.24 (br s, 2H ), 4.31 (d, 1H, J = 4.0 Hz), 5.82 (d, 1H, J = 1.3 Hz), 13 C-NMR (75 MHz / D 2 O, dioxane as internal reference) δ (ppm): 13.82, 22.38 , 26.07, 26.12, 28.50, 28.57, 31.40, 44.98, 60.17, 62.18, 66.38, 67.23, 71.47, 117.09, 144.22

Claims (3)

一般式(1)で表される絶対配置を有することを特徴とする新規カルバ糖前駆体。
Figure 2012158524
[式中、R〜Rの一部または全部はそれぞれ独立に水素原子もしくはヒドロキシル基の保護基を示す。保護基としては、炭素数2〜15のアシル型保護基、炭素数1〜15のエーテル型保護基、炭素数3〜15のアセタール型保護基、炭素数3〜15のシリルエーテル型保護基、炭素数7〜15のアラルキル型保護基、または炭素数3〜15のアリル型保護基などを示す。RおよびRは炭素数2〜15のアシル基を示す。
A novel carbaccharose precursor having an absolute configuration represented by the general formula (1).
Figure 2012158524
[Wherein, part or all of R 2 to R 4 each independently represent a hydrogen atom or a hydroxyl-protecting group. Examples of the protecting group include an acyl protecting group having 2 to 15 carbon atoms, an ether protecting group having 1 to 15 carbon atoms, an acetal protecting group having 3 to 15 carbon atoms, a silyl ether protecting group having 3 to 15 carbon atoms, An aralkyl-type protecting group having 7 to 15 carbon atoms or an allyl-type protecting group having 3 to 15 carbon atoms is shown. R 1 and R 5 represent an acyl group having 2 to 15 carbon atoms.
(+)−プロト−クエルシトールを出発原料とし、ヒドロキシル基の保護化、次いでヒドロキシル基の酸化を行い、得られた誘導体に対し脱保護化、さらにアシル化することによって得られる請求項1に記載の一般式(1)で表される新規カルバ糖前駆体の製造方法。 The method according to claim 1, which is obtained by using (+)-proto-quercitol as a starting material, protecting the hydroxyl group, then oxidizing the hydroxyl group, deprotecting the resulting derivative, and further acylating the derivative. A method for producing a novel carbasugar precursor represented by the general formula (1). 一般式(1)で表されるカルバ糖前駆体をWittig反応条件に付し、生じたジエンに対しハロゲン付加を行い、続いて置換反応によってアシルオキシル基を導入し、その後アルキルアミノ基を導入することを特徴とする一般式(2)
Figure 2012158524
[式中、R,Rはそれぞれ独立に水素原子または炭素数1〜15のアルキル基、炭素数2〜15のアルケニル基、炭素数2〜15のアルキニル基、炭素数2〜15のアシル基、炭素数2〜15のアリル基、または炭素数7〜15のアラルキル基を表す。ただし、RおよびRは双方が同時に水素原子であることはない。R〜Rはそれぞれ独立に水素原子またはヒドロキシル基の保護基を示す。保護基として、炭素数2〜15のアシル型保護基、炭素数1〜15のエーテル型保護基、炭素数3〜15のアセタール型保護基、炭素数3〜15のシリルエーテル型保護基、炭素数7〜15のアラルキル型保護基、または炭素数3〜15のアリル型保護基などを表す。また、窒素原子上に酸付加した塩であってもよい。]
で表されるカルバ糖アミン誘導体の製造方法。
The carbasugar precursor represented by the general formula (1) is subjected to Wittig reaction conditions, halogenation is performed on the resulting diene, an acyloxyl group is subsequently introduced by a substitution reaction, and then an alkylamino group is introduced. General formula (2) characterized by
Figure 2012158524
[Wherein R 1 and R 2 are each independently a hydrogen atom or an alkyl group having 1 to 15 carbon atoms, an alkenyl group having 2 to 15 carbon atoms, an alkynyl group having 2 to 15 carbon atoms, or an acyl having 2 to 15 carbon atoms. Group, an allyl group having 2 to 15 carbon atoms, or an aralkyl group having 7 to 15 carbon atoms. However, R 1 and R 2 are not both hydrogen atoms at the same time. R 3 to R 6 each independently represent a hydrogen atom or a hydroxyl protecting group. As a protecting group, an acyl protecting group having 2 to 15 carbon atoms, an ether protecting group having 1 to 15 carbon atoms, an acetal protecting group having 3 to 15 carbon atoms, a silyl ether protecting group having 3 to 15 carbon atoms, carbon Represents an aralkyl-type protecting group having 7 to 15 carbon atoms or an allyl-type protecting group having 3 to 15 carbon atoms. Further, it may be a salt obtained by acid addition on a nitrogen atom. ]
The manufacturing method of the carbsugar amine derivative represented by these.
JP2011017243A 2011-01-28 2011-01-28 Novel carbasugar precursor and method for producing the same, and method for producing bioactive carbasugar amine derivative using them Pending JP2012158524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011017243A JP2012158524A (en) 2011-01-28 2011-01-28 Novel carbasugar precursor and method for producing the same, and method for producing bioactive carbasugar amine derivative using them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011017243A JP2012158524A (en) 2011-01-28 2011-01-28 Novel carbasugar precursor and method for producing the same, and method for producing bioactive carbasugar amine derivative using them

Publications (1)

Publication Number Publication Date
JP2012158524A true JP2012158524A (en) 2012-08-23

Family

ID=46839367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011017243A Pending JP2012158524A (en) 2011-01-28 2011-01-28 Novel carbasugar precursor and method for producing the same, and method for producing bioactive carbasugar amine derivative using them

Country Status (1)

Country Link
JP (1) JP2012158524A (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014037133; Ogawa S. et al: Bio. Med. Chem. vol.12, 2004, pp.995-1002 *

Similar Documents

Publication Publication Date Title
WO2009120774A2 (en) Method of preparing huperzine a and derivatives thereof
NZ747061A (en) Prodrug of amino acid derivative
EP3424899A1 (en) Sacubitril intermediate and preparation method thereof
CA2934850A1 (en) Methods and reagents for radiolabeling
KR20160075816A (en) Processes for the preparation of pyrimidinylcyclopentane compounds
JP5960130B2 (en) Preparation of tesetaxel and related compounds and corresponding synthetic intermediates
JP2012158524A (en) Novel carbasugar precursor and method for producing the same, and method for producing bioactive carbasugar amine derivative using them
JP2012158523A (en) Novel carbasugar precursor and method for producing the same, and method for producing bioactive carbasugar amine derivative using them
JP5848183B2 (en) CONDULAMINE F-4 DERIVATIVE INHIBITING GLYCOSIDASE, ACID ADDITION SALT AND METHOD FOR PRODUCING THEM
Zheng et al. Concise synthesis of two advanced intermediates for the asymmetric synthesis of polyhydroxylated indolizidine alkaloids
EP2049558B1 (en) Naphthalene 2-carboxylate derivative useful for synthesizing gemcitabine and a method for preparing the same
CN104592253B (en) Novel synthesis method of temsirolimus
KR101628946B1 (en) Improved Process of Silodosin
KR20110093130A (en) Preparation method of 4-[(4-chlorophenyl)(2-pyridyl)methoxy]piperidine
WO2013162922A1 (en) Taxane compounds, compositions and methods
WO2022215754A1 (en) Bicyclic pyridine derivative
KR101032761B1 (en) A method for preparing docetaxel and new intermediates for preparing the same
US9284327B2 (en) Taxane compounds, compositions and methods
JP2024055860A (en) Medicines containing bicyclic pyridine derivatives
CN102643276B (en) Immunosuppressive agent FR901483 intermediate and synthetic method thereof
JP2023032757A (en) Method for producing epoxy amine compound
CN117362257A (en) Intermediate for preparing SGLT inhibitor, and preparation method and application thereof
Rathi Studies towards the synthesis of complex amino acids derived from microsclerodermins
JPS6193137A (en) Production of optically active compound through asymmetric induction
JP2011020944A (en) Method for producing positron-releasing source compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150202