JP2015091790A - Glycolipid metabolic abnormality treating agent - Google Patents

Glycolipid metabolic abnormality treating agent Download PDF

Info

Publication number
JP2015091790A
JP2015091790A JP2014203695A JP2014203695A JP2015091790A JP 2015091790 A JP2015091790 A JP 2015091790A JP 2014203695 A JP2014203695 A JP 2014203695A JP 2014203695 A JP2014203695 A JP 2014203695A JP 2015091790 A JP2015091790 A JP 2015091790A
Authority
JP
Japan
Prior art keywords
group
galactosidase
mutation
derivative
pharmaceutically acceptable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014203695A
Other languages
Japanese (ja)
Other versions
JP6422018B2 (en
Inventor
久野 信一
Shinichi Kuno
信一 久野
高橋 篤
Atsushi Takahashi
篤 高橋
栄二 難波
Eiji Nanba
栄二 難波
克美 檜垣
Katsumi Higaki
克美 檜垣
小川 誠一郎
Seiichiro Ogawa
誠一郎 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokko Chemical Industry Co Ltd
Tottori University NUC
Original Assignee
Hokko Chemical Industry Co Ltd
Tottori University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokko Chemical Industry Co Ltd, Tottori University NUC filed Critical Hokko Chemical Industry Co Ltd
Priority to JP2014203695A priority Critical patent/JP6422018B2/en
Publication of JP2015091790A publication Critical patent/JP2015091790A/en
Application granted granted Critical
Publication of JP6422018B2 publication Critical patent/JP6422018B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a glycolipid metabolic abnormality treating agent useful to glycolipid metabolic abnormality caused by human β-galactosidase gene mutations.SOLUTION: The invention provides a treating agent of glycolipid metabolic abnormality caused by β-galactosidase gene mutations which contains as an active ingredient a conduramine F-4 derivative represented by the formula (1) or a pharmaceutically acceptable salt thereof. (Rand Rare each independently H or an alkyl group, an alkenyl group, an alkynyl group, and an acyl group and the like; Rto Rare each independently a hydroxyl group having a substituent selected from a hydroxyl group or an alkyl group, an acyl group, a silyl group, an aralkyl group, an alkoxyalkyl group, and an aralkyloxy alkyl group.)

Description

本発明は、遺伝子変異によって低下したヒトβ−ガラクトシダーゼ酵素活性に対し、賦活化効果を有するコンデュラミンF−4誘導体又はその医薬的に許容される塩を有効成分とする糖脂質代謝異常症の処置剤に関する。   The present invention relates to a therapeutic agent for abnormal glycolipid metabolism comprising, as an active ingredient, a Conduramin F-4 derivative having a stimulating effect on human β-galactosidase enzyme activity reduced by gene mutation or a pharmaceutically acceptable salt thereof. About.

細胞内小器官の一つライソゾームに存在する分解酵素が遺伝的に欠損又は変異していると、細胞内外に異物が蓄積してしまう。このような現象によって引き起こされる疾病は糖脂質異常症の一種、ライソゾーム病として知られている。ライソゾーム病の中でも特に、ヒトβ-ガラクトシダーゼの変異が病因となるものに関してはGM1ガングリオシドーシ
ス、セラミドラクトリピドーシス、モルキオB病、クラッベ病があり、一般に認知されている。これらの疾病に対し、利用可能な医薬は未だに開発されていない。
If the degrading enzyme present in lysosome, one of the intracellular organelles, is genetically defective or mutated, foreign substances accumulate inside and outside the cell. A disease caused by such a phenomenon is known as lysosomal disease, a kind of glycolipid abnormality. Among the lysosomal storage disease, human β- galactosidase mutations G M1 gangliosidosis regarding what the etiology, ceramide lacto Ripido cis, Morquio B disease, there is Krabbe disease, are commonly recognized. No available medicine has been developed for these diseases.

ところで、糖加水分解酵素の変異によって生じるライソゾーム病に対する治療法として、その糖加水分解酵素阻害剤が有効な治療薬となる可能性があることが知られている(非特許文献1参照)。通常、細胞内で発現した変異酵素の多くは輸送の際に分解されてしまうが、阻害剤が変異酵素を安定化させることで分解を免れ、結果、細胞内で酵素活性が賦活化されるというメカニズムが提唱されている。
特許文献1、非特許文献2、非特許文献3には、以下の構造式(2)で表されるカルバ糖アミン誘導体[N-octyl-4-epi-b-valienamine (NOEV)] が変異型ヒトβ-ガラクトシダーゼに対して化学シャペロンとして働き、低下した酵素活性を回復させることが記載されている。また、その酸付加塩(特許文献2参照)が公知である。

この化合物はヒトβ−ガラクトシダーゼを強力に阻害する一方、低濃度の投与により、変異ヒトβ−ガラクトシダーゼを有する細胞に対し、低下したβ−ガラクトシダーゼ活性を賦活化する効果を示す。しかしながら、賦活化効果は充分でなく、更なる活性向上が望まれている。
By the way, it is known that a sugar hydrolase inhibitor may be an effective therapeutic drug as a treatment method for lysosomal disease caused by mutation of sugar hydrolase (see Non-Patent Document 1). Normally, many of the mutant enzymes expressed in cells are degraded during transportation, but the inhibitors stabilize the mutant enzymes to avoid degradation, and as a result, the enzyme activity is activated in the cells. A mechanism has been proposed.
In Patent Document 1, Non-Patent Document 2, and Non-Patent Document 3, a carbacylamine derivative [N-octyl-4-epi-b-valienamine (NOEV)] represented by the following structural formula (2) is mutated. It has been described to act as a chemical chaperone for human β-galactosidase and to restore reduced enzyme activity. Moreover, the acid addition salt (refer patent document 2) is well-known.

While this compound potently inhibits human β-galactosidase, it shows the effect of activating reduced β-galactosidase activity on cells with mutant human β-galactosidase by administration at low concentrations. However, the activation effect is not sufficient, and further activity improvement is desired.

国際公開第WO2003/022797号パンフレットInternational Publication No. WO2003 / 022797 Pamphlet 国際公開第WO2004/101493号パンフレットInternational Publication No. WO2004 / 101493 Pamphlet

Assay and Drug Development Technologies、2011年、9巻、p.213−235Assay and Drug Development Technologies, 2011, Vol. 9, p. 213-235 HUMAN MUTATION, Vol. 32, No. 7, 843-852, 2011HUMAN MUTATION, Vol. 32, No. 7, 843-852, 2011 Proceedings of the National Academy of Sciences of the United States of America、2003年、26巻、p.15912−15917Proceedings of the National Academy of Sciences of the United States of America, 2003, 26, p. 15912-15919

本発明は、ヒトβ-ガラクトシダーゼ遺伝子の変異に起因する糖脂質代謝異常症に対し
、有用な糖脂質代謝異常症処置剤を提供することを課題とするものである。
An object of the present invention is to provide a therapeutic agent for abnormal glycolipid metabolism against an abnormal glycolipid metabolism caused by a mutation in the human β-galactosidase gene.

発明者らは上記課題に鑑み、既存のヒトβ−ガラクトシダーゼ酵素阻害剤は酵素活性が低下している変異ヒトβ−ガラクトシダーゼに対しても酵素活性阻害を及ぼしているため、結果的に充分な賦活化効果を得られていないとの想定のもと、鋭意研究を重ねた。その結果、これまで酵素活性賦活化剤として使用されたことのない、本発明中に示される一般式(1)で表されるコンデュラミンF−4誘導体が、変異のためβ−ガラクトシダーゼ活性が低下した細胞のβ−ガラクトシダーゼ活性を賦活化する効果が非常に高いことを初めて見出し、本発明を完成させた。すなわち、本発明は下記のβ−ガラクトシダーゼ遺伝子の変異に起因する糖脂質代謝異常症処置剤を提供するものである。   In view of the above problems, the inventors have already inhibited activation of mutant human β-galactosidase, which has reduced enzyme activity, because the existing human β-galactosidase enzyme inhibitor exerts enzyme activity inhibition. Based on the assumption that it was not possible to obtain the effect of stratification, earnest research was repeated. As a result, the β-galactosidase activity was lowered due to the mutation of the Conduramine F-4 derivative represented by the general formula (1) shown in the present invention, which has never been used as an enzyme activity activator. The inventors found for the first time that the effect of activating the β-galactosidase activity of cells was very high, and completed the present invention. That is, the present invention provides a therapeutic agent for glycolipid metabolism disorder caused by the mutation of the following β-galactosidase gene.

[1]下記一般式(1)で表されるコンデュラミンF−4誘導体またはその医薬的に許容される塩を有効成分とするβ−ガラクトシダーゼ遺伝子の変異に起因する糖脂質代謝異常症の処置剤を提供する。

式中、R、Rはそれぞれ独立に水素原子又はアルキル基、アルケニル基、アルキニル基、アシル基、アリール基、又はアラルキル基を表す。また、R及びRはそれぞれが結合している窒素原子と一緒になって非芳香環あるいは芳香環を形成してもよい。ただし、R及びRは双方が同時に水素原子であることはない。R、R及びRはそれぞれ独立に、ヒドロキシル基又はアルキル基、アシル基、シリル基、アラルキル基、アルコキシアルキル基、アラルキルオキシアルキル基から選択される置換基を有するヒドロキシル基である。また、RとRは一緒になって、アセタール基を形成してもよい。
[2]下記一般式(1−a)で表されるコンデュラミンF−4誘導体またはその医薬的に許容される塩を有効成分とするβ−ガラクトシダーゼ遺伝子の変異に起因する糖脂質代謝異常症の処置剤。

式中、R及びRのどちらか一方は水素原子であり、他方が炭素数1〜23のアルキル基、アルケニル基、アルキニル基、アシル基、アリール基、又はアラルキル基を表す。
[3]下記一般式(1−b)で表されるコンデュラミンF−4誘導体またはその医薬的に許容される塩を有効成分とするβ−ガラクトシダーゼ遺伝子の変異に起因する糖脂質代謝
異常症の処置剤を提供する。

式中、Rは炭素数1〜22のアルキル基、アルケニル基、アルキニル基、アシル基、アリール基、又はアラルキル基を表す。
[4]β−ガラクトシダーゼ遺伝子の変異に起因する糖脂質代謝異常症がGM1ガングリオシドーシス、セラミドラクトリピドーシス、モルキオB病またはクラッベ病である、[1]〜[3]のいずれかに記載の処置剤を提供する。
[5]β−ガラクトシダーゼ遺伝子の変異が、ヒトβ−ガラクトシダーゼの201位のアルギニンをシステインに置換する変異および/または457位のアルギニンをグルタミンに置換する変異である、[1]〜[4]のいずれかに記載の処置剤を提供する。
[6]β−ガラクトシダーゼ遺伝子の変異に起因する糖脂質代謝異常症の処置剤を調製するための、上記一般式(1)、(1−a)および(1−b)の何れかの式で表されるコンデュラミンF−4誘導体またはその医薬的に許容される塩の使用を提供する。
[1] A therapeutic agent for a glycolipid metabolic disorder caused by mutation of a β-galactosidase gene, comprising as an active ingredient a chondramine F-4 derivative represented by the following general formula (1) or a pharmaceutically acceptable salt thereof: provide.

In the formula, R 1 and R 2 each independently represent a hydrogen atom or an alkyl group, an alkenyl group, an alkynyl group, an acyl group, an aryl group, or an aralkyl group. R 1 and R 2 may form a non-aromatic ring or an aromatic ring together with the nitrogen atom to which each is bonded. However, R 1 and R 2 are not both hydrogen atoms at the same time. R 3 , R 4 and R 5 are each independently a hydroxyl group or a hydroxyl group having a substituent selected from an alkyl group, an acyl group, a silyl group, an aralkyl group, an alkoxyalkyl group and an aralkyloxyalkyl group. R 4 and R 5 may be combined to form an acetal group.
[2] Treatment of abnormal glycolipid metabolism caused by mutation of β-galactosidase gene, comprising as an active ingredient a Conduramin F-4 derivative represented by the following general formula (1-a) or a pharmaceutically acceptable salt thereof Agent.

In the formula, one of R 6 and R 7 is a hydrogen atom, and the other represents an alkyl group, alkenyl group, alkynyl group, acyl group, aryl group, or aralkyl group having 1 to 23 carbon atoms.
[3] Treatment of abnormal glycolipid metabolism caused by mutation of β-galactosidase gene, comprising as an active ingredient a chondramine F-4 derivative represented by the following general formula (1-b) or a pharmaceutically acceptable salt thereof Provide the agent.

In the formula, R 8 represents an alkyl group having 1 to 22 carbon atoms, an alkenyl group, an alkynyl group, an acyl group, an aryl group, or an aralkyl group.
[4] beta-galactosidase gene glycolipid metabolism disorder caused by mutations of G M1 gangliosidosis, ceramide lacto Ripido cis a Morquio B disease or Krabbe disease, according to any one of [1] to [3] A treatment agent is provided.
[5] The mutation of β-galactosidase gene is a mutation that replaces arginine at position 201 of human β-galactosidase with cysteine and / or a mutation that replaces arginine at position 457 with glutamine. A treatment agent according to any one of the above is provided.
[6] Any one of the above general formulas (1), (1-a) and (1-b) for preparing a therapeutic agent for glycolipid metabolic disorders caused by mutations in the β-galactosidase gene There is provided the use of a represented Conduramin F-4 derivative or a pharmaceutically acceptable salt thereof.

上記一般式(1)で表されるコンデュラミンF−4誘導体又はその医薬的に許容される塩は、変異ヒトβ-ガラクトシダーゼを有する細胞に対し、高いβ-ガラクトシダーゼ活性賦活化効果を示す一方、β-ガラクトシダーゼ阻害効果は低く、比較的高濃度の状態にあ
っても、濃度に比例してβ-ガラクトシダーゼ活性を賦活化する効果を表す。加えて、本
発明中に示される一般式(1)で表されるコンデュラミンF−4誘導体又はその医薬的に許容される塩は、細胞毒性を示さず、ヒトβ-ガラクトシダーゼに特異的に作用し、その
他の糖加水分解酵素を強力に阻害することはない。したがって、本発明により提供される上記一般式(1)で表されるコンデュラミンF−4誘導体又はその医薬的に許容される塩を有効成分とする薬剤は、β−ガラクトシダーゼ遺伝子の変異に起因する糖脂質代謝異常症の処置剤として有用である。
The Conduramin F-4 derivative represented by the general formula (1) or a pharmaceutically acceptable salt thereof exhibits a high β-galactosidase activity activation effect on cells having mutant human β-galactosidase, -The effect of inhibiting galactosidase is low and represents the effect of activating β-galactosidase activity in proportion to the concentration even in a relatively high concentration state. In addition, the Conduramine F-4 derivative represented by the general formula (1) shown in the present invention or a pharmaceutically acceptable salt thereof does not exhibit cytotoxicity and specifically acts on human β-galactosidase. It does not strongly inhibit other sugar hydrolases. Therefore, a drug containing a Conduramin F-4 derivative represented by the above general formula (1) provided by the present invention or a pharmaceutically acceptable salt thereof as an active ingredient is a sugar caused by a mutation in the β-galactosidase gene. It is useful as a treatment for dyslipidemia.

一般式(1)で表されるコンデュラミンF−4誘導体の具体例。Specific examples of the chondramine F-4 derivative represented by the general formula (1). 一般式(1)で表されるコンデュラミンF−4誘導体の製造スキーム。A production scheme of a chondramine F-4 derivative represented by the general formula (1). 正常ヒトβ−ガラクトシダーゼに対するコンデュラミンF−4誘導体の阻害活性を示す図である。It is a figure which shows the inhibitory activity of the chonduramin F-4 derivative with respect to normal human beta-galactosidase. コンデュラミンF−4誘導体存在下での変異ヒトβ−ガラクトシダーゼ(R201C)導入線維芽細胞における、β−ガラクトシダーゼ活性の賦活化を表す図である。It is a figure showing activation of (beta) -galactosidase activity in the mutant human (beta) -galactosidase (R201C) introduction | transduction fibroblast in presence of a Conduramin F-4 derivative. 加温による正常ヒトβ−ガラクトシダーゼの活性低下を示す図である。It is a figure which shows the activity fall of normal human beta-galactosidase by heating. コンデュラミンF−4誘導体(被検物質A16)による正常ヒトβ−ガラクトシダーゼの熱安定化効果を表す図である。It is a figure showing the heat stabilization effect of normal human (beta) -galactosidase by a chonduramin F-4 derivative (test substance A16). コンデュラミンF−4誘導体(被検物質A1,A3,A5,A7,A8,A10,A16,A20)の細胞毒性を表す図である。It is a figure showing the cytotoxicity of a chonduramin F-4 derivative (test substance A1, A3, A5, A7, A8, A10, A16, A20). 正常ヒトα−ガラクトシダーゼ、正常ヒトβ−グルコシダーゼ、正常ヒトヘキソサミニダーゼに対するコンデュラミンF−4誘導体(被検物質A16)の阻害活性を示す図である。It is a figure which shows the inhibitory activity of the chonduramin F-4 derivative (test substance A16) with respect to normal human alpha-galactosidase, normal human beta-glucosidase, and normal human hexosaminidase.

以下、発明の実施の形態により、本発明をより詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to embodiments of the invention.

本発明は、上記一般式(1)で示されるコンデュラミンF−4誘導体又はその医薬的に許容される塩を有効成分として含有する、β−ガラクトシダーゼ遺伝子の変異に起因する糖脂質代謝異常の処置剤である。   The present invention relates to a therapeutic agent for abnormal glycolipid metabolism caused by mutation of β-galactosidase gene, containing as an active ingredient the Conduramine F-4 derivative represented by the above general formula (1) or a pharmaceutically acceptable salt thereof. It is.

ここで、「処置剤」とは、ヒトβ−ガラクトシダーゼの変異によって生じる糖脂質代謝異常症(例えばGM1ガングリオシドーシス、セラミドラクトリピドーシス、モルキオB病、クラッベ病等)が発症した後にその症状を治癒又は緩和するための「治療剤」及びその発症を予防するための「予防剤」を含む概念である。 Here, "treatment agent", caused by mutations in the human β- galactosidase glycolipid metabolism disorders (e.g., G M1 gangliosidosis, ceramide lacto Ripido cis, Morquio B disease, Krabbe disease, etc.) the symptoms after the developed It is a concept including a “therapeutic agent” for curing or alleviating and a “prophylactic agent” for preventing its onset.

ヒトβ−ガラクトシダーゼの変異としては、ヒトβ−ガラクトシダーゼのアミノ酸配列を構成するアミノ酸の欠損、置換、挿入などが挙げられ、ヒトβ−ガラクトシダーゼの活性を低下させる変異であれば特に制限はないが、好ましくは、アミノ酸置換であり、より具体的には、201位のアルギニンをシステインに置換する変異、もしくは457位のアルギニンをグルタミンに置換する変異、または非特許文献2のTable 1に記載の変異が例
示される。
Examples of the mutation of human β-galactosidase include deletion, substitution, insertion and the like of amino acids constituting the amino acid sequence of human β-galactosidase, and any mutation that reduces the activity of human β-galactosidase is not particularly limited. An amino acid substitution is preferable, and more specifically, a mutation that substitutes arginine at position 201 with cysteine, a mutation that substitutes arginine at position 457 with glutamine, or a mutation described in Table 1 of Non-Patent Document 2. Illustrated.

上記一般式(1)において、R、Rはそれぞれ独立に水素原子又はアルキル基、アルキルエーテル基、アルケニル基、アルキニル基、アシル基、アリール基、又はアラルキル基を表す。ただし、R及びRは特に双方が同時に水素原子であることはなく、どちらか一方が上記の官能基であり、他方が水素原子又は同様の官能基である。また、R及びRは、それぞれが結合している窒素原子と一緒になって非芳香環(好ましくは3〜8員環)あるいは芳香環を形成してもよい。 In the general formula (1), R 1 and R 2 each independently represent a hydrogen atom or an alkyl group, an alkyl ether group, an alkenyl group, an alkynyl group, an acyl group, an aryl group, or an aralkyl group. However, R 1 and R 2 are not particularly hydrogen atoms at the same time, one of them is the above functional group, and the other is a hydrogen atom or a similar functional group. R 1 and R 2 may form a non-aromatic ring (preferably a 3- to 8-membered ring) or an aromatic ring together with the nitrogen atom to which each is bonded.

上記一般式(1−a)において、R、Rはそれぞれ独立に水素原子又は炭素数1〜23のアルキル基、アルケニル基、アルキニル基、アシル基、アリール基、又はアラルキル基を表す。ただし、R及びRは特に双方が同時に水素原子であることはなく、どちらか一方が上記の官能基であり、他方が水素原子又は同様の官能基である。また、R及びRは、それぞれが結合している窒素原子と一緒になって非芳香環(好ましくは3〜8員環)あるいは芳香環を形成してもよい。
上記一般式(1−b)において、Rは炭素数1〜22のアルキル基、アルケニル基、アルキニル基、アシル基、アリール基、又はアラルキル基を表す。
In the general formula (1-a), R 6 and R 7 each independently represent a hydrogen atom or an alkyl group, alkenyl group, alkynyl group, acyl group, aryl group, or aralkyl group having 1 to 23 carbon atoms. However, R 6 and R 7 are not particularly hydrogen atoms at the same time, either one is the above functional group, and the other is a hydrogen atom or a similar functional group. R 6 and R 7 may form a non-aromatic ring (preferably a 3- to 8-membered ring) or an aromatic ring together with the nitrogen atom to which each is bonded.
In the general formula (1-b), R 8 represents an alkyl group having 1 to 22 carbon atoms, an alkenyl group, an alkynyl group, an acyl group, an aryl group, or an aralkyl group.

アルキル基としては炭素数1〜23の直鎖又は分岐したアルキル基、もしくはシクロアルカンを含むアルキル基が好ましく、特に炭素数1〜15のものが好ましい。なお、アルキル基においては、連続しない−CH−が−O−に置き換えられてもよい。すなわち、−R−(OR’)−OR’’のように表示されるものであってもよい。ここでのR、R’はいずれも直鎖又は分岐したアルキレン基を表し、R’’はアルキル基を表す。nは0〜10の整数を表すが、特に0〜6が好ましい。これらR、R’、R’’は、硫黄や窒素等のヘテロ原子を含んでいてもよい。また、アルキル基はヒドロキシル基を含むヒドロキシアルキル基であってもよい。 As the alkyl group, a linear or branched alkyl group having 1 to 23 carbon atoms or an alkyl group containing a cycloalkane is preferable, and an alkyl group having 1 to 15 carbon atoms is particularly preferable. In the alkyl group, non-continuous —CH 2 — may be replaced by —O—. That is, it may be displayed like -R- (OR ') n- OR ". Here, R and R ′ each represents a linear or branched alkylene group, and R ″ represents an alkyl group. n represents an integer of 0 to 10, but 0 to 6 is particularly preferable. These R, R ′, and R ″ may contain a hetero atom such as sulfur and nitrogen. The alkyl group may be a hydroxyalkyl group containing a hydroxyl group.

アルケニル基又はアルキニル基としては、炭素数2〜23、好ましくは炭素数2〜15のもので、炭素原子同士の二重結合、三重結合を複数有していてもよい。
アシル基としては、一般に−CO−Rで表される官能基を持つものであればいずれのものでもよい。上記に示したRの部分は前述のアルキル基、アルケニル基、アルキニル基、また後述のアリール基、アラルキル基のいずれかを表すものである。炭素数は2〜23、特に2〜15のものが好ましい。
The alkenyl group or alkynyl group has 2 to 23 carbon atoms, preferably 2 to 15 carbon atoms, and may have a plurality of double bonds or triple bonds between carbon atoms.
Any acyl group may be used as long as it generally has a functional group represented by —CO—R. The R portion shown above represents any one of the above-mentioned alkyl group, alkenyl group, alkynyl group, aryl group and aralkyl group described later. The number of carbon atoms is preferably 2 to 23, particularly preferably 2 to 15.

アリール基としては、炭素数6〜23のものであり、特に炭素数6〜15のものが好ましい。例えばフェニル基やナフチル基が例示され、これらアリール基にアルキル基、アシル基、アミノ基、スルホン基やハロゲン基などの置換基を有するものも含まれる。さらに環内に窒素、酸素、硫黄原子などヘテロ原子を含むヘテロアリール基も含まれる。
上記アラルキル基は、前述のアルキル基にアリール基が接続した官能基である。このアラルキル基に含まれるアルキル基の部分は、前述のように直鎖や分岐したものが例示される。また、このアラルキル基に含まれるアリール基についても、前述したような特徴を持つアルキル基、アルキルエーテル基又はアシル基などの置換基を有するものが含まれる。さらに環内に窒素、酸素、硫黄原子などヘテロ原子を含むヘテロアリール基も含まれる。炭素数は7〜23のものが好ましく、特には7〜18のものが好ましい。
As an aryl group, it is a C6-C23 thing, and a C6-C15 thing is especially preferable. For example, a phenyl group and a naphthyl group are exemplified, and those having a substituent such as an alkyl group, an acyl group, an amino group, a sulfone group, or a halogen group are also included in these aryl groups. Furthermore, heteroaryl groups containing heteroatoms such as nitrogen, oxygen, sulfur atoms in the ring are also included.
The aralkyl group is a functional group in which an aryl group is connected to the aforementioned alkyl group. As for the part of the alkyl group contained in this aralkyl group, those linear or branched as described above are exemplified. The aryl group contained in the aralkyl group also includes those having a substituent such as an alkyl group, an alkyl ether group, or an acyl group having the characteristics described above. Furthermore, heteroaryl groups containing heteroatoms such as nitrogen, oxygen, sulfur atoms in the ring are also included. The number of carbon atoms is preferably 7 to 23, and particularly preferably 7 to 18.

、R、Rはそれぞれ独立にヒドロキシル基又は置換基を有するヒドロキシル基を示すが、安定性、取り扱い及び水への溶解度等を考慮すると、特にヒドロキシル基であることが好ましい。ヒドロキシル基の置換基としては、アルキル基(メチル基、エチル基等)、アシル基(アセチル基、ピバロイル基、ベンゾイル基、トルオイル基等)、シリル基(トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、tert−ブチルジメチルシリル基等)、アラルキル基(ベンジル基、フェネチル基等)、アルコキシアルキル基(メトキシメチル基、エトキシメチル基、ブトキシメチル基等)、アラルキルオキシアルキル基(ベンジルオキシメチル基等)等が例示される。
また、RとRは一緒になって、アセタール基(イソプロピリデン基、シクロヘキシリデン基、ベンジリデン基等)を形成してもよい。アセタール基のうち、特にはイソプロピリデン基が、安定性、取り扱い及び脱離の容易性の観点から好ましいが、これに限定はされない。
R 3 , R 4 , and R 5 each independently represent a hydroxyl group or a hydroxyl group having a substituent, but in view of stability, handling, solubility in water, and the like, a hydroxyl group is particularly preferable. The hydroxyl group substituents include alkyl groups (methyl group, ethyl group, etc.), acyl groups (acetyl group, pivaloyl group, benzoyl group, toluoyl group, etc.), silyl groups (trimethylsilyl group, triethylsilyl group, triisopropylsilyl group). , Tert-butyldimethylsilyl group, etc.), aralkyl groups (benzyl group, phenethyl group, etc.), alkoxyalkyl groups (methoxymethyl group, ethoxymethyl group, butoxymethyl group, etc.), aralkyloxyalkyl groups (benzyloxymethyl group, etc.) Etc. are exemplified.
R 4 and R 5 may be combined to form an acetal group (an isopropylidene group, a cyclohexylidene group, a benzylidene group, etc.). Of the acetal groups, an isopropylidene group is particularly preferable from the viewpoints of stability, handling, and ease of removal, but is not limited thereto.

ところで、上記一般式(1)で表される化合物はその窒素原子上に酸付加し、塩とすることが出来る。このような酸付加塩は、水溶性が増すと共に、塩となることで固体としてより取り扱いが容易になることが期待され、好ましい。本発明中において「医薬的に許容される塩」とは、患者に対して有害でない上記一般式(1)で表される化合物の酸付加塩を指すものであり、このような酸付加塩の作成に用いられる酸性物質の例としては、無機酸(硫酸、硝酸、燐酸、ハロゲン化水素酸(塩酸、臭化水素酸等))及び有機酸(酢酸、プロパン酸、メタンスルホン酸、ベンゼンスルホン酸、トルエンスルホン酸、シュウ酸、マレイン酸、マロン酸、コハク酸、フマル酸、マンデル酸、酒石酸、リンゴ酸、アスコルビン酸、クエン酸、乳酸、酪酸、サリチル酸、ニコチン酸等)が好ましい。   By the way, the compound represented by the general formula (1) can be acidified on the nitrogen atom to form a salt. Such an acid addition salt is preferable because it is expected to be easier to handle as a solid by becoming a salt while increasing water solubility. In the present invention, the “pharmaceutically acceptable salt” refers to an acid addition salt of the compound represented by the general formula (1) that is not harmful to a patient. Examples of acidic substances used for preparation include inorganic acids (sulfuric acid, nitric acid, phosphoric acid, hydrohalic acid (hydrochloric acid, hydrobromic acid, etc.)) and organic acids (acetic acid, propanoic acid, methanesulfonic acid, benzenesulfonic acid) , Toluenesulfonic acid, oxalic acid, maleic acid, malonic acid, succinic acid, fumaric acid, mandelic acid, tartaric acid, malic acid, ascorbic acid, citric acid, lactic acid, butyric acid, salicylic acid, nicotinic acid and the like.

本発明に係る一般式(1)で表される化合物の具体例を図1に記載する。ただし、本発明はこれらの具体例に限定されるものではない。なお、図1中の化合物番号は以下の実施例においても参照される。   Specific examples of the compound represented by the general formula (1) according to the present invention are shown in FIG. However, the present invention is not limited to these specific examples. The compound numbers in FIG. 1 are also referred to in the following examples.

本発明に係る一般式(1)で表されるコンデュラミンF−4誘導体及びその医薬的に許容される塩が、酵素安定化剤又は酵素活性賦活化剤として用いられた例はない。驚くべきことに、本発明中に示される上記一般式(1)で表されるコンデュラミンF−4誘導体及びその医薬的に許容される塩が、哺乳動物、特にヒト由来の変異β−ガラクトシダーゼを有する細胞に対し、高い酵素活性賦活化効果を示すことが本発明により初めて明らかとなった。加えて、本発明中に示される上記一般式(1)で表されるコンデュラミンF−4誘導体及びその医薬的に許容される塩は、野生型酵素に対して強力なβ−ガラクトシダーゼ阻害効果を示さず、濃度依存的に変異ヒトβ−ガラクトシダーゼ活性を上昇させた。従って、本発明に係る一般式(1)で表される化合物及びその医薬的に許容される塩は、このような酵素活性賦活化効果に基づく医薬、さらに、病態研究及び糖脂質代謝異常症の処置剤(治療又は予防)の有効成分として用いることが出来る。特に、処置剤として使用する
際には、変異ヒトβ−ガラクトシダーゼの安定化及びそれに伴う酵素活性賦活化効果とともに、高いβ−ガラクトシダーゼ阻害活性を有することが公知である上記構造式(2)で表されるカルバ糖アミン誘導体と比較し、酵素活性賦活化効果はより高く、一方、β−ガラクトシダーゼ阻害活性はより低い。したがって、本発明中に示されるコンデュラミンF−4誘導体を有効成分とする処置剤は、β−ガラクトシダーゼ遺伝子の変異に起因する糖脂質代謝異常症に対し、高い治療効果を有し、かつ阻害活性により惹起される副作用をなくす又は低減することが期待される。
There is no example in which the chonduramin F-4 derivative represented by the general formula (1) according to the present invention and a pharmaceutically acceptable salt thereof are used as an enzyme stabilizer or an enzyme activity activator. Surprisingly, the Conduramin F-4 derivative represented by the above general formula (1) shown in the present invention and a pharmaceutically acceptable salt thereof have a mutant β-galactosidase derived from a mammal, particularly a human. The present invention revealed for the first time that cells have a high enzyme activity activation effect. In addition, the Conduramin F-4 derivative represented by the above general formula (1) and a pharmaceutically acceptable salt thereof shown in the present invention have a strong β-galactosidase inhibitory effect on the wild-type enzyme. First, the mutant human β-galactosidase activity was increased in a concentration-dependent manner. Therefore, the compound represented by the general formula (1) and the pharmaceutically acceptable salt thereof according to the present invention are pharmaceuticals based on such an enzyme activity activation effect, further pathological studies and glycolipid metabolism disorders. It can be used as an active ingredient of a treatment agent (treatment or prevention). In particular, when used as a treatment agent, it is represented by the above structural formula (2), which is known to have high β-galactosidase inhibitory activity along with stabilization of mutant human β-galactosidase and the accompanying enzyme activity activation effect. Compared with the carbasugar amine derivative produced, the enzyme activity activation effect is higher, while the β-galactosidase inhibitory activity is lower. Therefore, the treatment agent comprising the Conduramin F-4 derivative shown in the present invention as an active ingredient has a high therapeutic effect on glycolipid metabolism abnormalities caused by mutations in the β-galactosidase gene and has an inhibitory activity. It is expected to eliminate or reduce the side effects caused.

上記一般式(1)で表されるコンデュラミンF−4誘導体及びその医薬的に許容される塩の製造は、天然物であり容易に入手可能な(+)−プロト−クエルシトールを出発原料として行うことができる。(+)−プロト−クエルシトールは以下の構造式(3)で表される構造を持ち、当該化合物の炭素番号は以下のように記述される。

(+)−プロト−クエルシトールにおける、1位、2位、3位、4位のヒドロキシル基の保護化、次いで5位のヒドロキシル基の脱離基への変換、5位のE2脱離反応を行い、得られたシクロヘキセン誘導体に対し1位及び2位の保護化ヒドロキシル基の脱保護、得られた1,2−ジオールのエポキシ化、続いてエポキシドに望みのアミンを開環付加させることにより、上記一般式(1)で表されるコンデュラミンF−4誘導体が得られ、さらに適当な酸で処理することにより、その酸付加塩の製造を行うことが可能である。
The production of the Conduramin F-4 derivative represented by the general formula (1) and a pharmaceutically acceptable salt thereof is carried out using (+)-proto-quercitol which is a natural product and can be easily obtained as a starting material. Can do. (+)-Proto-quercitol has a structure represented by the following structural formula (3), and the carbon number of the compound is described as follows.

In (+)-proto-quercitol, the hydroxyl groups at positions 1, 2, 3, and 4 are protected, and then the hydroxyl group at the 5 position is converted to a leaving group, and the E2 elimination reaction at the 5 position is performed. Deprotection of the protected hydroxyl groups at the 1-position and 2-position of the obtained cyclohexene derivative, epoxidation of the obtained 1,2-diol, followed by ring-opening addition of a desired amine to the epoxide A chonduramin F-4 derivative represented by the general formula (1) is obtained, and the acid addition salt can be produced by further treatment with an appropriate acid.

以下、図2にしたがって、上記一般式(1)で表されるコンデュラミンF−4誘導体及びその医薬的に許容される塩の製造の具体例について説明する。図2においてR、Rは上記の通りであり、Msはメシル(メタンスルホニル)基を表す。 Hereinafter, according to FIG. 2, the specific example of manufacture of the chonduramin F-4 derivative represented by the said General formula (1) and its pharmaceutically acceptable salt is demonstrated. In FIG. 2, R 1 and R 2 are as described above, and Ms represents a mesyl (methanesulfonyl) group.

まず、(+)−プロト−クエルシトールの1位、2位、3位、4位のヒドロキシル基の保護化であるが、例えば硫酸や塩酸等の鉱酸、パラ-トルエンスルホン酸やカンファース
ルホン酸などの有機酸等による酸触媒の存在下、反応試剤として、例えばベンズアルデヒド、アルファ,アルファ−ジメトキシトルエン、アセトン、2,2−ジメトキシプロパン
、シクロヘキサノン、1,1−ジメトキシシクロヘキサンなどを用いることが可能である
。好ましい反応試剤の例として2,2−ジメトキシプロパンを用いると、(+)−プロト
−クエルシトールから1,2:3,4−Di−O−イソプロピリデン−(+)−プロト−クエルシトール(図2中、化合物B1)を得ることが出来る。反応終了後は、減圧濃縮、分液操作など一般的な方法により処理し、カラムクロマトグラフィー又は再結晶法等の公知の方法によって精製出来る。
First, the hydroxyl groups at the 1-, 2-, 3-, and 4-positions of (+)-proto-quercitol are protected. For example, mineral acids such as sulfuric acid and hydrochloric acid, para-toluenesulfonic acid, camphorsulfonic acid, etc. For example, benzaldehyde, alpha, alpha-dimethoxytoluene, acetone, 2,2-dimethoxypropane, cyclohexanone, 1,1-dimethoxycyclohexane and the like can be used as a reaction reagent in the presence of an acid catalyst such as organic acid. . When 2,2-dimethoxypropane is used as an example of a preferred reaction reagent, (+)-proto-quercitol is converted to 1,2: 3,4-Di-O-isopropylidene-(+)-proto-quercitol (in FIG. 2). Compound B1) can be obtained. After completion of the reaction, the reaction can be performed by a general method such as concentration under reduced pressure or a liquid separation operation, and can be purified by a known method such as column chromatography or recrystallization.

続いて、化合物B1に対し、例えば、ピリジン、トリエチルアミン等の適当な塩基の存在下、塩化メシルを作用させることにより、5位が脱離基となった化合物B2を得ることが可能である。   Subsequently, for example, mesyl chloride is allowed to act on compound B1 in the presence of a suitable base such as pyridine or triethylamine, whereby compound B2 having a leaving group at the 5-position can be obtained.

得られた化合物B2は、適当な嵩高い塩基、例えばジアザビシクロウンデセン、ジアザビシクロノネン等を作用させることにより脱離基部分をE2脱離させ、シクロヘキセン誘導体である化合物B3が得られる。   The obtained compound B2 is subjected to elimination of E2 from the leaving group by the action of a suitable bulky base such as diazabicycloundecene, diazabicyclononene, etc., and thus compound B3 which is a cyclohexene derivative is obtained.

化合物B3において、適当な酸を用いることにより、トランス配置にある1,2−ジオールのみを選択的に脱保護化出来ることが知られている。例えばメタノール中においてピリジニウム−パラ−トルエンスルホナート等の弱酸を作用させ、化合物B4を得ることが出来る。   In Compound B3, it is known that by using an appropriate acid, only 1,2-diol in the trans configuration can be selectively deprotected. For example, compound B4 can be obtained by allowing a weak acid such as pyridinium-para-toluenesulfonate to act in methanol.

化合物B4中の無保護の1,2−ジオールは、マーティン−スルフランと呼称される有機合成試薬を作用させることにより、エポキシドに変換出来ることが公知である(Journal of the American Chemical Society、1974年、96巻、p.4604−4611)。又は、一般に光延反応として知られる有機合成反応条件下に置くことによっても、1,2−ジオールからエポキシドが得られる(Journal of Organic Chemistry、1981年、46巻、p.2381−2383)ので、これらのいずれかを利用して化合物B4を化合物B5に変換することが可能である。   It is known that the unprotected 1,2-diol in Compound B4 can be converted to an epoxide by the action of an organic synthetic reagent called Martin-sulfuran (Journal of the American Chemical Society, 1974, 96, p. 4604-4611). Alternatively, epoxides can also be obtained from 1,2-diols by placing them under organic synthesis reaction conditions generally known as Mitsunobu reaction (Journal of Organic Chemistry, 1981, Vol. 46, pp. 2381-2383). It is possible to convert compound B4 to compound B5 using any of the above.

得られた化合物B5を、例えばアセトニトリル等の非プロトン性極性溶媒中において望みのアミンと作用させると、化合物B5中のエポキシドの開環が起こりアミノ付加体である化合物B6を得ることが出来る。   When the obtained compound B5 is allowed to react with a desired amine in an aprotic polar solvent such as acetonitrile, for example, ring opening of the epoxide in compound B5 occurs and compound B6 which is an amino adduct can be obtained.

また、化合物B6に、上記で例示した適当な無機酸又は有機酸等の酸性物質、例えば塩酸を作用させることにより、化合物B6中、3位と4位の保護化ヒドロキシル基の脱保護及びアミノ基への酸付加を同時に行うことが可能である。反応終了後は、必要であればカラムクロマトグラフィー又は再結晶法等の公知の方法によって精製することにより、上記一般式(1)で表されるコンデュラミンF−4誘導体の酸付加塩、具体例として化合物A1−A23で表される化合物が得られる。   In addition, by reacting compound B6 with an acidic substance such as an appropriate inorganic acid or organic acid exemplified above, for example, hydrochloric acid, deprotection of protected hydroxyl groups at the 3-position and 4-position and amino group in compound B6 It is possible to carry out acid addition to the same. After completion of the reaction, the acid addition salt of the chonduramin F-4 derivative represented by the general formula (1) can be purified by a known method such as column chromatography or recrystallization if necessary. A compound represented by compound A1-A23 is obtained.

上記一般式(1)で表されるコンデュラミンF−4誘導体及びその医薬的に許容される塩は、これを有効成分とするβ−ガラクトシダーゼ遺伝子の変異に起因する糖脂質代謝異常症処置剤に用いることが出来る。このような処置剤の有効成分として用いられる上記一般式(1)で表されるコンデュラミンF−4誘導体のうち、特にR及びRのどちらか一方が水素原子で他方が炭素数1〜23のアルキル基、アルケニル基、アルキニル基、アシル基、アリール基、又はアラルキル基であり、R、R及びRはそれぞれヒドロキシル基であり、かつ酸付加塩であるものが好ましい。有効成分となる最も好ましい物質の具体例としては、本明細書中の化合物A16が例示される。これらの好ましいコンデュラミンF−4誘導体及びその医薬的に許容される塩は、変異によって低減したβ−ガラクトシダーゼ活性を賦活化する効果が特に顕著である。加えて、β−ガラクトシダーゼ阻害活性は低く、細胞毒性を示さず、また、その他の糖加水分解酵素に対する阻害活性もほとんど示さない。 The Conduramin F-4 derivative represented by the above general formula (1) and a pharmaceutically acceptable salt thereof are used as a therapeutic agent for glycolipid metabolism disorders caused by mutations in the β-galactosidase gene containing the derivative as an active ingredient. I can do it. Among the corduramine F-4 derivatives represented by the above general formula (1) used as an active ingredient of such a treatment agent, in particular, one of R 1 and R 2 is a hydrogen atom and the other has 1 to 23 carbon atoms. Are preferably an alkyl group, an alkenyl group, an alkynyl group, an acyl group, an aryl group or an aralkyl group, wherein R 3 , R 4 and R 5 are each a hydroxyl group and an acid addition salt. As a specific example of the most preferable substance as an active ingredient, compound A16 in the present specification is exemplified. These preferred chondramine F-4 derivatives and pharmaceutically acceptable salts thereof have a particularly remarkable effect of activating β-galactosidase activity reduced by mutation. In addition, β-galactosidase inhibitory activity is low, does not show cytotoxicity, and shows little inhibitory activity against other sugar hydrolases.

本発明による処置剤は、上記一般式(1)で表されるコンデュラミンF−4誘導体及びその医薬的に許容される塩を有効量含むものであれば、他の成分を含んでいてもよい。例えば、製剤学的に許容される担体と組み合わせて製造することができる。担体としては特に制限されないが、例えば、医薬に通常用いられる賦形剤、結合剤、崩壊剤、潤沢剤、安定剤、矯味矯臭剤、希釈剤、界面活性剤、注射用溶剤等の担体が挙げられる。
剤形は特に限定されず、治療目的に応じて適宜選択でき、具体的には、錠剤、丸剤、懸濁剤、乳剤、カプセル剤、液剤、シロップ剤、坐剤、注射剤、顆粒剤、散剤、吸入散剤、リポ化剤等を例示できる。
The treatment agent according to the present invention may contain other components as long as it contains an effective amount of the chondramine F-4 derivative represented by the general formula (1) and a pharmaceutically acceptable salt thereof. For example, it can be produced in combination with a pharmaceutically acceptable carrier. Although it does not restrict | limit especially as a carrier, For example, carriers, such as an excipient | filler, a binder, a disintegrating agent, a lubricant, a stabilizer, a corrigent, a surfactant, an injection solvent, etc. which are normally used for a medicine are mentioned. It is done.
The dosage form is not particularly limited and can be appropriately selected depending on the purpose of treatment. Specifically, tablets, pills, suspensions, emulsions, capsules, solutions, syrups, suppositories, injections, granules, Examples thereof include powders, inhaled powders, lipolytic agents and the like.

投与経路は特に制限されず、経口投与、経鼻投与、皮下投与などが挙げられる。
本発明による処置剤の投与量は、対象患者の年齢、性別、体重、疾患の程度などによって適宜定められるが、好ましくは、5〜20/体重(kg)/日である。
The administration route is not particularly limited, and includes oral administration, nasal administration, subcutaneous administration and the like.
The dose of the treatment agent according to the present invention is appropriately determined according to the age, sex, body weight, degree of disease, etc. of the subject patient, and preferably 5 to 20 / body weight (kg) / day.

上記一般式(1)で表されるコンデュラミンF−4誘導体又はその医薬的に許容される塩による正常ヒトβ−ガラクトシダーゼ及びその他の糖加水分解酵素に対する阻害活性は、酵素と基質が存在する溶液中に被検物質を添加し、酵素活性を被検物質無添加の場合と比較することで、その阻害活性を算出することが可能である。   The inhibitory activity against normal human β-galactosidase and other sugar hydrolases by the Conduramin F-4 derivative represented by the above general formula (1) or a pharmaceutically acceptable salt thereof is in a solution containing the enzyme and the substrate. The inhibitory activity can be calculated by adding a test substance to the sample and comparing the enzyme activity with that of the test substance not added.

また、上記一般式(1)で表されるコンデュラミンF−4誘導体及びその医薬的に許容される塩による、変異ヒトβ−ガラクトシダーゼを有する細胞の酵素活性賦活化効果は、変異ヒトβ−ガラクトシダーゼを有する細胞に被検物質を添加、その後、細胞を破砕し、酵素活性を被検物質無添加の場合と比較することで算出することが可能である。   In addition, the effect of activation of cells having mutant human β-galactosidase by the Conduramin F-4 derivative represented by the above general formula (1) and a pharmaceutically acceptable salt thereof is the same as that of mutant human β-galactosidase. It is possible to calculate by adding the test substance to the cells having the cells, then crushing the cells, and comparing the enzyme activity with that without the test substance.

以下に実施例を挙げて本発明をさらに具体的に説明する。本発明の範囲はこれに限定されるものではない。   The present invention will be described more specifically with reference to the following examples. The scope of the present invention is not limited to this.

<実施例1>
化合物A1−A26の製造
<実施例1−1>(3aS,4R,5aR,8aS,8bS)-2,2,7,7-tetramethylhexahydro[1,3]dioxolo[4,5-e][1,3]benzodioxol-4-ol(化合物B1)の合成

1.50g(9.15mmol)の(+)−プロト−クエルシトールをN、N−ジメチルホルムアミド(45mL)に溶解させ、これに2、2−ジメトキシプロパン(11mL、91mmol)とp−トルエンスルホン酸一水和物(435mg、2.29mmol)を加えた。室温で20時間攪拌した後、炭酸水素ナトリウムを用いて中和した。不溶物をろ過後、ろ液を減圧濃縮し、残渣に水を加え、酢酸エチルで3回抽出した。有機相を濃縮し、これをシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=3/1)によって精製し、2.00gの化合物B1を得た(90%)。
H−NMR(400MHz/CDOD)δ(ppm):1.34(s,3H),1.38(s,2×3H),1.46(s,3H),1.86(ddd,J=4.8,11.7,12.8Hz,1H),2.07(dddd,J=1.0,3.6,4.8,12.8Hz,1H),3.50(dd,J=8.4,10.0Hz,1H),3.74(ddd,J=4.8,10.0,11.7Hz,1H),4.19−4.27(m,3H)、HR−ESI−MS:267.1202(C1220Na,[M+Na],計算値:267.1203)
<Example 1>
Production of Compound A1-A26 <Example 1-1> (3aS, 4R, 5aR, 8aS, 8bS) -2,2,7,7-tetramethylhexahydro [1,3] dioxolo [4,5-e] [1, 3] Synthesis of benzodioxol-4-ol (Compound B1)

1.50 g (9.15 mmol) of (+)-proto-quercitol was dissolved in N, N-dimethylformamide (45 mL), and 2,2-dimethoxypropane (11 mL, 91 mmol) and p-toluenesulfonic acid Hydrate (435 mg, 2.29 mmol) was added. After stirring at room temperature for 20 hours, the mixture was neutralized with sodium hydrogen carbonate. The insoluble material was filtered off, the filtrate was concentrated under reduced pressure, water was added to the residue, and the mixture was extracted 3 times with ethyl acetate. The organic phase was concentrated and purified by silica gel column chromatography (hexane / ethyl acetate = 3/1) to obtain 2.00 g of compound B1 (90%).
1 H-NMR (400 MHz / CD 3 OD) δ (ppm): 1.34 (s, 3H), 1.38 (s, 2 × 3H), 1.46 (s, 3H), 1.86 (ddd , J = 4.8, 11.7, 12.8 Hz, 1H), 2.07 (dddd, J = 1.0, 3.6, 4.8, 12.8 Hz, 1H), 3.50 (dd , J = 8.4, 10.0 Hz, 1H), 3.74 (ddd, J = 4.8, 10.0, 11.7 Hz, 1H), 4.19-4.27 (m, 3H), HR-ESI-MS: 267.1202 ( C 12 H 20 O 5 Na +, [M + Na] +, calc: 267.1203)

<実施例1−2>
(3aR,4R,5aR,8aS,8bR)-2,2,7,7-tetramethylhexahydro[1,3]dioxolo[4,5-e][1,3]benzodioxol-4-yl methanesulfonate(化合物B2)の合成

(+)−プロト−クエルシトールから調製した化合物B1(597mg,2.44mmol)とトリエチルアミン(1.35mL,9.76mmol)を6mLのジクロロメタンに溶解させ、氷浴中で冷却しながら塩化メシル(0.233mL,3.06mmol)/6mLジクロロメタン溶液を加えた。室温に戻しながら2時間攪拌した後、メタノール20mLを加えて反応を停止させた。溶媒を減圧留去し、残渣に水を加え、酢酸エチルで3回抽出した後、有機相を無水硫酸ナトリウムで乾燥、減圧濃縮した。残渣をシリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=9/1→4/1)で精製し、762mgの化合物B2を得た(97%)。
H−NMR(400MHz/CDOD)δ(ppm):1.36(s,3H),1.40(s,2×3H),1.50(s,3H),2.13−2.22(m,1H),2.25−2.32(m,1H),3.14(s,3H),3.65(ddd,J=2.4,8.0,10.1Hz,1H),3.77(dddd,J=2.4,6.2,10.4,10.4Hz,1H),4.34−4.38(m,1H),4.43(ddd,J=2.4,6.2,6.2,1H)5.04−5.09(m,1H)、HR−ESI−MS:345.0971(C1322NaS,[M+Na],計算値:345.0978)
<Example 1-2>
(3aR, 4R, 5aR, 8aS, 8bR) -2,2,7,7-tetramethylhexahydro [1,3] dioxolo [4,5-e] [1,3] benzodioxol-4-yl methanesulfonate (compound B2) Composition

Compound B1 (597 mg, 2.44 mmol) and triethylamine (1.35 mL, 9.76 mmol) prepared from (+)-proto-quercitol was dissolved in 6 mL of dichloromethane and cooled in an ice bath with mesyl chloride (0. 233 mL, 3.06 mmol) / 6 mL dichloromethane solution was added. After stirring for 2 hours while returning to room temperature, 20 mL of methanol was added to stop the reaction. The solvent was evaporated under reduced pressure, water was added to the residue, and the mixture was extracted 3 times with ethyl acetate. The organic phase was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel chromatography (hexane / ethyl acetate = 9/1 → 4/1) to obtain 762 mg of compound B2 (97%).
1 H-NMR (400 MHz / CD 3 OD) δ (ppm): 1.36 (s, 3H), 1.40 (s, 2 × 3H), 1.50 (s, 3H), 2.13-2 .22 (m, 1H), 2.25-2.32 (m, 1H), 3.14 (s, 3H), 3.65 (ddd, J = 2.4, 8.0, 10.1 Hz, 1H), 3.77 (dddd, J = 2.4, 6.2, 10.4, 10.4 Hz, 1H), 4.34-4.38 (m, 1H), 4.43 (ddd, J = 2.4,6.2,6.2,1H) 5.04-5.09 (m, 1H ), HR-ESI-MS: 345.0971 (C 13 H 22 O 7 NaS +, [M + Na] + , Calculated value: 345.0978)

<実施例1−3>(3aR,5aS,8aS,8bS)-2,2,7,7-tetramethyl-3a,5a,8a,8b-tetrahydro[1,3]dioxolo[4,5-e][1,3]benzodioxole(化合物B3)の合成

化合物B2を500mg(1.55mmol)取り、7mLのトルエン及び1.18mLのジアザビシクロウンデセン(7.75mmol)を加えた。8時間加熱還流し、室温まで冷却した後、溶媒を減圧濃縮した。シリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=95/5)によって精製し、267mgの化合物B3を得た(76%)。
H−NMR(400MHz/CDCl)δ(ppm):1.35(s,3H),1.42(s,3H),1.43(s,3H),1.49(s,3H),3.51(dd,J=9.0,9.0Hz),4.03(br d,J=8.9Hz,1H),4.36(dd,J=7.7,9.2Hz,1H),4.79(br d,J=7.6Hz,1H),5.78(ddd,J=2.6,2.6,9.9Hz,1H),6.16(ddd,J=1.5,1.5,9.9,1H)、HR−ESI−MS:249.1095(C1218Na,[M+Na],計算値:249.1097)
<Example 1-3> (3aR, 5aS, 8aS, 8bS) -2,2,7,7-tetramethyl-3a, 5a, 8a, 8b-tetrahydro [1,3] dioxolo [4,5-e] [ 1,3] Synthesis of benzodioxole (compound B3)

500 mg (1.55 mmol) of Compound B2 was taken, and 7 mL of toluene and 1.18 mL of diazabicycloundecene (7.75 mmol) were added. After heating to reflux for 8 hours and cooling to room temperature, the solvent was concentrated under reduced pressure. Purification by silica gel chromatography (hexane / ethyl acetate = 95/5) gave 267 mg of compound B3 (76%).
1 H-NMR (400 MHz / CDCl 3 ) δ (ppm): 1.35 (s, 3H), 1.42 (s, 3H), 1.43 (s, 3H), 1.49 (s, 3H) 3.51 (dd, J = 9.0, 9.0 Hz), 4.03 (br d, J = 8.9 Hz, 1H), 4.36 (dd, J = 7.7, 9.2 Hz, 1H), 4.79 (brd, J = 7.6 Hz, 1H), 5.78 (ddd, J = 2.6, 2.6, 9.9 Hz, 1H), 6.16 (ddd, J = 1.5,1.5,9.9,1H), HR-ESI-MS : 249.1095 (C 12 H 18 O 4 Na +, [M + Na] +, calc: 249.1097)

<実施例1−4>(3aR,4S,5R,7aS)-2,2-dimethyl-3a,4,5,7a-tetrahydro-1,3-benzodioxole-4,5-diol(化合物B4)の合成

化合物B3を561mg(2.48mmol)取り、25mLのメタノールに溶解し、氷浴中で冷却しながらピリジニウム−パラ−トルエンスルホナート(62mg,0.25mmol)を加えた。4℃で15時間放置した後、トリエチルアミンで中和し、溶液を減圧濃縮した。シリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=1/2)によって精製し、421mgの化合物B4を得た(91%)。
14 MW:186.1(計算値)、H−NMR(400MHz/CDOD)δ(ppm):1.36(s,3H),1.46(s,3H),3.39(dd,J=9.2,9.2Hz,1H),3.92−3.95(m,1H),4.02(dd,J=6.4,9.2Hz,1H),4.63−4.66(m,1H),5.79−5.80(m,2H)、HR−ESI−MS:209.0786(C14Na,[M+Na],計算値:209.0784)
Example 1-4 Synthesis of (3aR, 4S, 5R, 7aS) -2,2-dimethyl-3a, 4,5,7a-tetrahydro-1,3-benzodioxole-4,5-diol (Compound B4)

561 mg (2.48 mmol) of Compound B3 was taken, dissolved in 25 mL of methanol, and pyridinium-para-toluenesulfonate (62 mg, 0.25 mmol) was added while cooling in an ice bath. The mixture was allowed to stand at 4 ° C. for 15 hours, neutralized with triethylamine, and the solution was concentrated under reduced pressure. Purification by silica gel chromatography (hexane / ethyl acetate = 1/2) gave 421 mg of compound B4 (91%).
C 9 H 14 O 4 MW: 186.1 (calculated value), 1 H-NMR (400 MHz / CD 3 OD) δ (ppm): 1.36 (s, 3H), 1.46 (s, 3H), 3.39 (dd, J = 9.2, 9.2 Hz, 1H), 3.92-3.95 (m, 1H), 4.02 (dd, J = 6.4, 9.2 Hz, 1H) , 4.63-4.66 (m, 1H), 5.79-5.80 (m, 2H), HR-ESI-MS: 209.0786 (C 9 H 14 O 4 Na +, [M + Na] + , Calculated value: 209.0784)

<実施例1−5>(3aS,5aS,6aS,6bS)-2,2-dimethyl-3a,5a,6a,6b-tetrahydrooxireno[e][1,3]benzodioxole(化合物B5)の合成

マーティン−スルフランを用いる方法:化合物B4を669mg(3.59mmol)取り、これを36mLのジクロロメタンに溶解させた。この溶液を攪拌しながら、2.90gのマーティン−スルフラン(4.31mmol)を18mLのジクロロメタンに溶解させた溶液を加えた。室温で30分間攪拌した後、反応溶液を20%水酸化カリウム水溶液で洗浄した。有機相を取り、洗浄後の水酸化カリウム水溶液をさらに50mLのクロロホルムで抽出した有機相と合わせた。無水硫酸ナトリウムで乾燥させ、減圧濃縮後、シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=9/1)によって精製し、418mgの化合物B5を得た(69%)。
H−NMR(400MHz/CDOD)δ(ppm):1.34(s,3H),1.36(s,3H),3.31−3.33(1H),3.49(dd,J=1.8,3.8Hz,1H),4.39(ddd,J=2.0,2.0,6.8Hz,1H),4.76(ddd,J=1.6,1.6,6.8Hz,1H),5.74(br d,J=10.4,1H)6.05(ddd,J=1.6,4.0,10.4Hz,1H)、HR−ESI−MS:191.0676(C12Na,[M+Na],計算値:191.0679)
Example 1-5 Synthesis of (3aS, 5aS, 6aS, 6bS) -2,2-dimethyl-3a, 5a, 6a, 6b-tetrahydrooxireno [e] [1,3] benzodioxole (Compound B5)

Method using Martin-sulfuran: 669 mg (3.59 mmol) of compound B4 was taken and dissolved in 36 mL of dichloromethane. While stirring this solution, a solution of 2.90 g Martin-sulfuran (4.31 mmol) in 18 mL dichloromethane was added. After stirring at room temperature for 30 minutes, the reaction solution was washed with 20% aqueous potassium hydroxide solution. The organic phase was taken, and the washed potassium hydroxide aqueous solution was combined with the organic phase extracted with 50 mL of chloroform. The extract was dried over anhydrous sodium sulfate, concentrated under reduced pressure, and purified by silica gel column chromatography (hexane / ethyl acetate = 9/1) to obtain 418 mg of compound B5 (69%).
1 H-NMR (400 MHz / CD 3 OD) δ (ppm): 1.34 (s, 3H), 1.36 (s, 3H), 3.31-3.33 (1H), 3.49 (dd , J = 1.8, 3.8 Hz, 1H), 4.39 (ddd, J = 2.0, 2.0, 6.8 Hz, 1H), 4.76 (ddd, J = 1.6, 1 .6, 6.8 Hz, 1H), 5.74 (br d, J = 10.4, 1H) 6.05 (ddd, J = 1.6, 4.0, 10.4 Hz, 1H), HR− ESI-MS: 191.0676 (C 9 H 12 O 3 Na +, [M + Na] +, calc: 191.0679)

光延試薬を用いる方法:化合物B4を895mg(4.81mmol)取り、これを24mLのTHFに溶解し、氷浴中で冷却しながら光延反応試薬アゾジカルボン酸ジイソプロピル(1.89mL,9.62mmol)及びトリフェニルホスフィン(2.52g,9.62mmol)を加えた。室温に戻しながら24時間攪拌した後、再び氷浴中で冷却しながらアゾジカルボン酸ジイソプロピル(0.95mL,4.81mmol)を加えた。溶液を100mLの酢酸エチルで希釈し、水、飽和食塩水で洗浄した。有機相を減圧濃縮した後、シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=9/1)によって精製し、477mgの化合物B5を得た(59%)。   Method using Mitsunobu reagent: Take 895 mg (4.81 mmol) of compound B4, dissolve it in 24 mL of THF, and cool it in an ice bath while Mitsunobu reaction reagent diisopropyl azodicarboxylate (1.89 mL, 9.62 mmol) and Triphenylphosphine (2.52 g, 9.62 mmol) was added. After stirring for 24 hours while returning to room temperature, diisopropyl azodicarboxylate (0.95 mL, 4.81 mmol) was added while cooling in an ice bath again. The solution was diluted with 100 mL of ethyl acetate and washed with water and saturated brine. The organic phase was concentrated under reduced pressure and then purified by silica gel column chromatography (hexane / ethyl acetate = 9/1) to obtain 477 mg of compound B5 (59%).

<実施例1−6>
化合物A1−A23の合成

化合物B5に所望のアミンを求核付加させB6を製造し、その後塩酸によって処理すると、化合物A1−A23が製造できる。以下に具体例として、化合物A1,A10,A16の製造を例示する。
<Example 1-6>
Synthesis of compounds A1-A23

The compound A1-A23 can be produced by nucleophilic addition of a desired amine to the compound B5 to produce B6 and then treating with hydrochloric acid. As specific examples, production of compounds A1, A10, and A16 is illustrated below.

・化合物A1の合成


化合物B5(211mg,1.26mmol)、n−オクチルアミン(624μL,3.77mmol)、アセトニトリル12mLをガラス製のアンプルに入れ、封管した。60℃に加温しながら2日間静置した後、溶媒を減圧留去した。残渣をシリカゲルクロマトグラフィー(クロロホルム/メタノール=99/1→98/2)によって精製し、目的物が含まれる画分を減圧濃縮した。得られた残渣に1モル塩酸水溶液(10mL)/テトラヒドロフラン(10mL)の混合溶媒を加え、室温で2時間攪拌した。エタノールで共沸させながら溶媒を減圧留去し、374mgの化合物A1を得た(2工程、〜100%)。H−NMR(400MHz/CDOD)δ(ppm):0.89(t,J=7.0Hz,3H),1.29−1.41(m,10H),1.68−1.76(m,2H),3.06−3.14(m,2H),3.60(dd,J=4.0,9.2Hz,1H),3.69(d,J=7.6Hz,1H),3.96(dd,J=7.6,9.4Hz,1H),4.25(dd,J=4.4,4.4Hz,1H),5.83(dd,J=2.2,10.2Hz,1H),6.11(ddd,J=2.2,4.8,10.2Hz,1H)、HR−ESI−MS:258.2060(C1428,[M−Cl],計
算値:258.2064)
Synthesis of compound A1


Compound B5 (211 mg, 1.26 mmol), n-octylamine (624 μL, 3.77 mmol) and 12 mL of acetonitrile were placed in a glass ampule and sealed. The mixture was allowed to stand for 2 days while being heated to 60 ° C., and then the solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography (chloroform / methanol = 99/1 → 98/2), and the fraction containing the desired product was concentrated under reduced pressure. A mixed solvent of 1 molar hydrochloric acid aqueous solution (10 mL) / tetrahydrofuran (10 mL) was added to the obtained residue, and the mixture was stirred at room temperature for 2 hours. The solvent was distilled off under reduced pressure while azeotroping with ethanol to obtain 374 mg of Compound A1 (2 steps, ˜100%). 1 H-NMR (400 MHz / CD 3 OD) δ (ppm): 0.89 (t, J = 7.0 Hz, 3H), 1.29-1.41 (m, 10H), 1.68-1. 76 (m, 2H), 3.06 to 3.14 (m, 2H), 3.60 (dd, J = 4.0, 9.2 Hz, 1H), 3.69 (d, J = 7.6 Hz) , 1H), 3.96 (dd, J = 7.6, 9.4 Hz, 1H), 4.25 (dd, J = 4.4, 4.4 Hz, 1H), 5.83 (dd, J = 2.2, 10.2 Hz, 1 H), 6.11 (ddd, J = 2.2, 4.8, 10.2 Hz, 1 H), HR-ESI-MS: 258.2060 (C 14 H 28 O 3 N <+> , [M-Cl] <+> , calculated value: 258.2064)

・化合物A10の合成

化合物B5(30mg,0.18mmol)、2−エチルブチルアミン(70μL,0.54mmol)、アセトニトリル1.8mLをガラス製のアンプルに入れ、封管した。60℃に加温しながら3日間静置した後、溶媒を減圧留去した。残渣をシリカゲルクロマトグラフィー(クロロホルム/メタノール=99/1→97/3)によって精製し、目的物が含まれる画分を減圧濃縮した。得られた残渣に1モル塩酸水溶液(1.5mL)/テトラヒドロフラン(1.5mL)の混合溶媒を加え、室温で2時間静置した。エタノールで共沸させながら溶媒を減圧留去し、55mgの化合物A10を得た(2工程、〜100%)。
H−NMR(400MHz/CDOD)δ(ppm):0.94(t,J=7.2Hz,6H),1.40−1.50(m,4H),1.67(tt,J=6.4,6.4,1H),3.02(d,J=7.2Hz,2H),3.62(dd,J=4.0,9.2Hz,1H),3.74(d,J=7.6Hz,1H),4.00(dd,J=7.6,9.2Hz,1H),4.26(dd,J=4.4,4.4Hz,1H),5.82(dd,J=2.4,10.0Hz,1H),6.13(ddd,J=2.4,4.4,10.1Hz,1H)、HR−ESI−MS:230.1747(C1224,[M−Cl],計算値:230.1751)
Synthesis of compound A10

Compound B5 (30 mg, 0.18 mmol), 2-ethylbutylamine (70 μL, 0.54 mmol) and 1.8 mL of acetonitrile were placed in a glass ampule and sealed. The mixture was allowed to stand for 3 days while being heated to 60 ° C., and then the solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography (chloroform / methanol = 99/1 → 97/3), and the fraction containing the desired product was concentrated under reduced pressure. A mixed solvent of 1 molar hydrochloric acid aqueous solution (1.5 mL) / tetrahydrofuran (1.5 mL) was added to the resulting residue, and the mixture was allowed to stand at room temperature for 2 hours. The solvent was distilled off under reduced pressure while azeotroping with ethanol to obtain 55 mg of compound A10 (2 steps, ˜100%).
1 H-NMR (400 MHz / CD 3 OD) δ (ppm): 0.94 (t, J = 7.2 Hz, 6H), 1.40-1.50 (m, 4H), 1.67 (tt, J = 6.4, 6.4, 1H), 3.02 (d, J = 7.2 Hz, 2H), 3.62 (dd, J = 4.0, 9.2 Hz, 1H), 3.74. (D, J = 7.6 Hz, 1H), 4.00 (dd, J = 7.6, 9.2 Hz, 1H), 4.26 (dd, J = 4.4, 4.4 Hz, 1H), 5.82 (dd, J = 2.4, 10.0 Hz, 1H), 6.13 (ddd, J = 2.4, 4.4, 10.1 Hz, 1H), HR-ESI-MS: 230. 1747 (C 12 H 24 O 3 N +, [M-Cl] +, calcd: 230.1751)

・化合物A16の合成

化合物B5(30mg,0.18mmol)、アミノメチルシクロヘキサン(70μL,0.54mmol)、アセトニトリル1.8mLをガラス製のアンプルに入れ、封管した。60℃に加温しながら2日間静置した後、溶媒を減圧留去した。残渣をシリカゲルクロマトグラフィー(クロロホルム/メタノール=99/1→96/4)によって精製し、目的物が含まれる画分を減圧濃縮した。得られた残渣に1モル塩酸水溶液(1.5mL)/テトラヒドロフラン(1.5mL)の混合溶媒を加え、室温で1時間攪拌した。エタノールで共沸させながら溶媒を減圧留去し、44mgの化合物A16を得た(2工程、88%)。
H−NMR(400MHz/CDOD)δ(ppm):1.00−1.09(m,2H),1.18−1.38(m,3H),1.69−1.86(m,6H),2.95(d,J=7.2Hz,1H),3.61(dd,J=4.0,9.2Hz,1H),3.
71(brd,J=7.6Hz,1H),3.97(dd,J=7.6,9.2Hz,1H),4.26(dd,J=4.4,4.4Hz,1H),5.81(dd,J=2.4,10.0z,1H),6.12(ddd,J=2.0,4.8,10.3Hz,1H)、HR−ESI−MS:242.1748(C1324,[M−Cl],計算値:242.1751)
Synthesis of compound A16

Compound B5 (30 mg, 0.18 mmol), aminomethylcyclohexane (70 μL, 0.54 mmol), and 1.8 mL of acetonitrile were placed in a glass ampule and sealed. The mixture was allowed to stand for 2 days while being heated to 60 ° C., and then the solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography (chloroform / methanol = 99/1 → 96/4), and the fraction containing the desired product was concentrated under reduced pressure. A mixed solvent of 1 molar hydrochloric acid aqueous solution (1.5 mL) / tetrahydrofuran (1.5 mL) was added to the obtained residue, and the mixture was stirred at room temperature for 1 hour. The solvent was distilled off under reduced pressure while azeotroping with ethanol to obtain 44 mg of Compound A16 (2 steps, 88%).
1 H-NMR (400 MHz / CD 3 OD) δ (ppm): 1.00-1.09 (m, 2H), 1.18-1.38 (m, 3H), 1.69-1.86 ( m, 6H), 2.95 (d, J = 7.2 Hz, 1H), 3.61 (dd, J = 4.0, 9.2 Hz, 1H), 3.
71 (brd, J = 7.6 Hz, 1H), 3.97 (dd, J = 7.6, 9.2 Hz, 1H), 4.26 (dd, J = 4.4, 4.4 Hz, 1H) , 5.81 (dd, J = 2.4, 10.0z, 1H), 6.12 (ddd, J = 2.0, 4.8, 10.3 Hz, 1H), HR-ESI-MS: 242 1748 (C 13 H 24 O 3 N + , [M-Cl] + , calculated value: 242.11751)

<実施例2>
正常ヒトβ−ガラクトシダーゼに対するコンデュラミンF−4誘導体A1−A23の阻害活性
試験管内において、正常ヒトβ−ガラクトシダーゼに対する被検物質の阻害活性を測定した。具体的には、10%牛胎児血清(FBS)を含むダルベッコの改変イーグル培地(DMEM、和光純薬製)で培養した正常ヒト線維芽細胞を、リン酸緩衝生理食塩水で洗浄し、0.1%Triton X−100を含む滅菌水0.1mL中に掻き取った。この溶液を遠心分離(6,000rpm、15分、4度)した後、不溶性画分を除いた上清を酵素源として使用した。緩衝液として0.1Mクエン酸緩衝液(pH4.5)を用い、蛍光基質(4−メチルウンベリフェリル−β−D−ガラクトピラノシド、シグマ社製)及び上記の酵素源を混和した溶液を被検物質(コンデュラミンF−4誘導体A1−A23及び対照物質として構造式(2)で表されるカルバ糖アミン誘導体塩酸塩)の存在下又は非存在下で37℃、30分間反応させ、その酵素活性を測定した。阻害活性の評価は、被検物質無添加時の酵素活性を100%とし、被検物質添加によって生じる変化を相対的に算出した。
本発明中に示されるコンデュラミンF−4誘導体A1−A23及び上記構造式(2)で表されるカルバ糖アミン誘導体塩酸塩の正常ヒトβ−ガラクトシダーゼに対する酵素阻害活性測定結果を図3に示す。
図3の阻害曲線より、本発明中に示されるコンデュラミンF−4誘導体A1−A23及び構造式(2)で表されるカルバ糖アミン誘導体塩酸塩の50%阻害濃度(IC50値)を算出した(表1)。
表1より、本発明中に示されるコンデュラミンF−4誘導体の50%阻害濃度は、構造式(2)で表されるカルバ糖アミン誘導体塩酸塩の50%阻害濃度よりも高く、すなわち阻害活性が低減していることが示されている。従って、正常ヒトβ−ガラクトシダーゼに対する本発明中に示されるコンデュラミンF−4誘導体A1−A23の阻害活性は、構造式(2)で表される化合物よりも低減されていることが判明した。また、特に好ましい構造である化合物A16の50%阻害濃度から、構造式(2)で表されるカルバ糖アミン誘導体塩酸塩に対しA16の阻害活性は35倍低減していることが読み取れる。
<Example 2>
Inhibitory activity of chondramine F-4 derivative A1-A23 against normal human β-galactosidase In vitro, the inhibitory activity of the test substance against normal human β-galactosidase was measured. Specifically, normal human fibroblasts cultured in Dulbecco's modified Eagle medium (DMEM, manufactured by Wako Pure Chemical Industries, Ltd.) containing 10% fetal bovine serum (FBS) were washed with phosphate buffered saline. It was scraped into 0.1 mL of sterilized water containing 1% Triton X-100. After centrifuging this solution (6,000 rpm, 15 minutes, 4 degrees), the supernatant from which the insoluble fraction was removed was used as an enzyme source. 0.1 M citrate buffer (pH 4.5) as a buffer solution, a solution in which a fluorescent substrate (4-methylumbelliferyl-β-D-galactopyranoside, manufactured by Sigma) and the above enzyme source are mixed In the presence or absence of a test substance (conduramin F-4 derivative A1-A23 and a carbasugar amine derivative hydrochloride represented by structural formula (2) as a control substance) at 37 ° C. for 30 minutes, Enzyme activity was measured. For the evaluation of the inhibitory activity, the enzyme activity when no test substance was added was taken as 100%, and the change caused by the addition of the test substance was calculated relatively.
FIG. 3 shows the enzyme inhibitory activity measurement results for normal human β-galactosidase of the chondramine F-4 derivative A1-A23 shown in the present invention and the carbasugar amine derivative hydrochloride represented by the above structural formula (2).
From the inhibition curve of FIG. 3, the 50% inhibitory concentration (IC 50 value) of the Conduramin F-4 derivative A1-A23 shown in the present invention and the carbasugar amine derivative hydrochloride represented by the structural formula (2) was calculated. (Table 1).
From Table 1, the 50% inhibitory concentration of the Conduramin F-4 derivative shown in the present invention is higher than the 50% inhibitory concentration of the carbasugar amine derivative hydrochloride represented by the structural formula (2), that is, the inhibitory activity is higher. It is shown that it is decreasing. Therefore, it was found that the inhibitory activity of the chondramine F-4 derivative A1-A23 shown in the present invention against normal human β-galactosidase is reduced as compared with the compound represented by the structural formula (2). Further, from the 50% inhibitory concentration of compound A16, which is a particularly preferred structure, it can be seen that the inhibitory activity of A16 is reduced by 35-fold with respect to the carbasugar amine derivative hydrochloride represented by the structural formula (2).

<実施例3>
変異ヒトβ−ガラクトシダーゼを有する細胞に対するコンデュラミンF−4誘導体A1−A23のβ−ガラクトシダーゼ活性賦活化効果
<実施例3−1>
コンデュラミンF−4誘導体A1−A23存在下での変異ヒトβ−ガラクトシダーゼ(R201C)導入線維芽細胞における、β−ガラクトシダーゼ活性の賦活化
変異ヒトβ−ガラクトシダーゼ(R201C)酵素活性の測定は、β−ガラクトシダーゼ欠損マウス由来不死化線維芽細胞株(Glycoconj J 14(6):729-736.) に、それぞれヒ
ト正常β−ガラクトシダーゼ(GP8)遺伝子及びヒト変異(R201C)β−ガラクトシダーゼ遺伝子を導入したモデル細胞株を用い行った。被検物質(コンデュラミンF−4誘導体A1−A23及び対照物質として構造式(2)で表されるカルバ糖アミン誘導体塩酸塩)を含有又は含有しない培養液(10%FBS DMEM)中でモデル細胞株を4日間培養後、細胞を回収し、細胞抽出液中のβ−ガラクトシダーゼ活性を実施例2記載の方法と同様に測定した。
結果を図4に示す。図4より、被検物質無添加の場合の変異ヒトβ−ガラクトシダーゼ(R201C)導入細胞のβ−ガラクトシダーゼ活性と、被検物質添加時の酵素活性を比較し、被検物質の添加による酵素活性の増強度を算出した(表2)。表2より、多くのコンデュラミンF−4誘導体(被検物質A1,A3,A5,A7,A8,A10,A16,
A17,A20,A23)が変異ヒトβ−ガラクトシダーゼ(R201C)導入細胞のβ
−ガラクトシダーゼ活性を賦活化することが明らかである。
また、図4より構造式(2)で表されるカルバ糖アミン誘導体塩酸塩の変異酵素活性賦活化効果は、2μM添加時に極大となり、より高濃度の20μM添加時には賦活化効果が低下していることが読み取れる。これは濃度が高くなると賦活化効果と共に酵素活性の阻
害効果が大きくなり、見かけ上の賦活化効果が低下してしまうことによると考えられる。
一方、本発明中に示されるコンデュラミンF−4誘導体ではこのような現象は観察されず、濃度依存的に変異酵素活性の賦活化効果は増大した。中でも、コンデュラミンF−4誘導体A1、A3、A7、A8の賦活化効果の極大(20μM添加時)は、構造式(2)で表されるカルバ糖アミン誘導体塩酸塩の賦活化効果の極大(2μM添加時)と同等程度、また、A10、A16の賦活化効果の極大(20μM添加時)は、構造式(2)で表されるカルバ糖アミン誘導体の賦活化効果の極大(2μM添加時)を上回ることが示されている。特に、コンデュラミンF−4誘導体A16は0.2μM添加時、2μM添加時において、構造式(2)で表されるカルバ糖アミン誘導体塩酸と同等程度の賦活化効果を示し、20μM添加時の賦活化効果は、構造式(2)で表されるカルバ糖アミン誘導体塩酸塩(20μM添加時)よりも3.8倍上昇している。
<Example 3>
Effect of activation of β-galactosidase activity of Conduramin F-4 derivative A1-A23 on cells having mutant human β-galactosidase <Example 3-1>
Activation of β-galactosidase activity in mutated human β-galactosidase (R201C) -introduced fibroblasts in the presence of Conduramin F-4 derivative A1-A23 The measurement of mutant human β-galactosidase (R201C) enzyme activity A model cell line in which a human normal β-galactosidase (GP8) gene and a human mutant (R201C) β-galactosidase gene are introduced into a deficient mouse-derived immortalized fibroblast cell line (Glycoconj J 14 (6): 729-736.) Was performed. A model cell line in a culture solution (10% FBS DMEM) containing or not containing a test substance (conduramin F-4 derivative A1-A23 and a carbasugar amine derivative hydrochloride represented by structural formula (2) as a control substance) After culturing for 4 days, the cells were collected, and β-galactosidase activity in the cell extract was measured in the same manner as described in Example 2.
The results are shown in FIG. From FIG. 4, the β-galactosidase activity of the mutant human β-galactosidase (R201C) -introduced cell when no test substance is added is compared with the enzyme activity when the test substance is added. The enhancement was calculated (Table 2). From Table 2, a number of Conduramin F-4 derivatives (test substances A1, A3, A5, A7, A8, A10, A16,
A17, A20, A23) is β of mutant human β-galactosidase (R201C) -introduced cell
-Clearly activates galactosidase activity.
In addition, from FIG. 4, the effect of activating the mutant enzyme activity of the carbasugar amine derivative hydrochloride represented by the structural formula (2) is maximized when 2 μM is added, and the effect of activation is decreased when 20 μM is added at a higher concentration. I can read. This is considered to be due to the fact that when the concentration is high, the activation effect is increased together with the activation effect, and the apparent activation effect is reduced.
On the other hand, such a phenomenon was not observed in the Conduramin F-4 derivative shown in the present invention, and the activation effect of the mutant enzyme activity increased in a concentration-dependent manner. Especially, the maximum of the activation effect of Conduramin F-4 derivatives A1, A3, A7, and A8 (when 20 μM is added) is the maximum of the activation effect of the carbasugar amine derivative hydrochloride represented by the structural formula (2) (2 μM). The maximum activation effect of A10 and A16 (at the time of addition of 20 μM) is the maximum of the activation effect of the carbasugar amine derivative represented by the structural formula (2) (at the time of addition of 2 μM). It has been shown to exceed. In particular, Conduramin F-4 derivative A16 exhibits an activation effect comparable to that of the carbasugar amine derivative hydrochloric acid represented by the structural formula (2) when 0.2 μM is added and when 2 μM is added, and activation when 20 μM is added. The effect is 3.8 times higher than the carbasugar amine derivative hydrochloride represented by the structural formula (2) (when 20 μM is added).

以上より、本発明中に示されるコンデュラミンF−4誘導体は、変異ヒトβ−ガラクトシダーゼを有する細胞のβ−ガラクトシダーゼ活性を賦活化する効果を示すことから、β−ガラクトシダーゼ遺伝子の変異に起因する糖脂質代謝異常症の処置剤として有用であることが示されている。また、コンデュラミンF−4誘導体A16は、構造式(2)で表されるカルバ糖アミン誘導体塩酸塩と比較して酵素阻害活性が低減され、かつ、より高い変異酵素活性賦活化効果を示したことから、β−ガラクトシダーゼ遺伝子の変異に起因する糖脂質代謝異常症処置剤の有効成分として特に好ましい。   From the above, the Conduramin F-4 derivative shown in the present invention has the effect of activating the β-galactosidase activity of cells having mutant human β-galactosidase, so that the glycolipid resulting from the mutation of the β-galactosidase gene It has been shown to be useful as a treatment for metabolic disorders. In addition, the Conduramin F-4 derivative A16 has a reduced enzyme inhibitory activity as compared with the carbasugar amine derivative hydrochloride represented by the structural formula (2), and showed a higher activation activity of the mutant enzyme. From the above, it is particularly preferable as an active ingredient of a therapeutic agent for glycolipid metabolism disorder caused by mutation of β-galactosidase gene.

<実施例3−2>
コンデュラミンF−4誘導体(被検物質A16)存在下での、変異ヒトβ−ガラクトシダーゼ(R457Q)導入線維芽細胞における、変異ヒトβ−ガラクトシダーゼ活性の賦活

上記の実施例で用いた変異ヒトβ−ガラクトシダーゼ(R201C)は、201番目のアミノ酸が正常型のアルギニンからシステインに変異したものであり、若年型GM1ガングリオシドーシスを引き起こすことが知られている(特許文献1参照)。この他のアミノ酸が変異した変異ヒトβ−ガラクトシダーゼ(R457Q)に対する、コンデュラミンF−4誘導体(被検物質としてA16)の賦活化効果を測定した。なお、R457Qの変異は成人型GM1ガングリオシドーシスの病因となる(特許文献1参照)。
本実施例に係る変異ヒトβ−ガラクトシダーゼ賦活化効果の測定は、β−ガラクトシダーゼ欠損マウス由来不死化線維芽細胞株に、それぞれヒト正常β−ガラクトシダーゼ(GP8)遺伝子及び変異(R457Q)β−ガラクトシダーゼ遺伝子を導入したモデル細胞株を用い行った。実施例3−1と同様、モデル細胞株をそれぞれ被検物質であるコンデュラミンF−4誘導体A16の存在下又は非存在下で4日間培養後、細胞を回収し、細胞抽出液中の酵素活性を測定した。結果を表3に示す。
<Example 3-2>
Activation of mutant human β-galactosidase activity in mutant human β-galactosidase (R457Q) -introduced fibroblasts in the presence of Conduramin F-4 derivative (test substance A16) Mutant human β- used in the above examples galactosidase (R201C) is the 201st amino acid is obtained by mutation to cysteine from normal type arginine, is known to cause juvenile G M1 gangliosidosis (see Patent Document 1). The activation effect of Conduramin F-4 derivative (A16 as a test substance) on mutant human β-galactosidase (R457Q) in which other amino acids were mutated was measured. It notes that mutations R457Q becomes pathogenesis of adult G M1 gangliosidosis (see Patent Document 1).
Measurement of the activation effect of mutant human β-galactosidase according to the present example was carried out by using human normal β-galactosidase (GP8) gene and mutant (R457Q) β-galactosidase gene in β-galactosidase-deficient mouse-derived immortal fibroblast cell lines, respectively. This was performed using a model cell line into which was introduced. As in Example 3-1, the model cell line was cultured for 4 days in the presence or absence of the test substance, Conduramin F-4 derivative A16, and the cells were collected, and the enzyme activity in the cell extract was measured. It was measured. The results are shown in Table 3.

表3より、コンデュラミンF−4誘導体(被検物質A16)の添加によって変異ヒトβ−ガラクトシダーゼ(R457Q)の酵素活性は4.9倍上昇され、有意な賦活化効果を示した。このように、本発明中に示されるコンデュラミンF−4誘導体は、前述のR201C以外の変異ヒトβ−ガラクトシダーゼを有する細胞のβ−ガラクトシダーゼ活性も賦活化する効果を有する。   From Table 3, the enzyme activity of mutant human β-galactosidase (R457Q) was increased 4.9 times by the addition of Conduramin F-4 derivative (test substance A16), indicating a significant activation effect. Thus, the Conduramin F-4 derivative shown in the present invention has an effect of activating β-galactosidase activity of cells having mutant human β-galactosidase other than the aforementioned R201C.

<実施例4>
コンデュラミンF−4誘導体による正常ヒトβ−ガラクトシダーゼの熱安定化効果
試験管内において、コンデュラミンF−4誘導体(被検物質A16)による正常ヒトβ−ガラクトシダーゼの熱安定化の評価を行った。具体的には、実施例2記載の方法と同様に、正常ヒト線維芽細胞由来細胞抽出液を酵素源とし、0.1Mクエン酸緩衝液(pH7)中、被検物質の存在下又は非存在下で48℃に加温し、その後、蛍光基質を加え37℃、30分間の酵素活性を測定した。酵素活性の評価は非加温時の酵素活性を100%として算出した。結果を図5−1、図5−2に示す。まず、図5−1に示したように、試験管内で48℃加温すると、正常ヒトβ−ガラクトシダーゼ活性は、20分間の加温で非加温時の約20%まで低下した。一方、0.2又は2μMのコンデュラミンF−4誘導体(被検物質A16)の存在下、無添加時と同様の条件で20分間加温した後、酵素活性を測定した結果、0.2μM添加時では、無添加時の1.5倍に酵素活性が上昇し、2μM添加時では、無添加時の2.6倍に酵素活性が上昇しており、有意な熱安定化作用を認めた。したがって、本発明中に示されるコンデュラミンF−4誘導体は、ヒトβ−ガラクトシダーゼを安定化させる効果を有することが明らかとなった。
<Example 4>
Thermal Stabilization Effect of Normal Human β-Galactosidase by Conduramin F-4 Derivative In a test tube, the thermal stabilization of normal human β-galactosidase by Conduramin F-4 derivative (test substance A16) was evaluated. Specifically, in the same manner as in Example 2, a normal human fibroblast-derived cell extract is used as an enzyme source in 0.1 M citrate buffer (pH 7) in the presence or absence of the test substance. Then, the mixture was heated to 48 ° C., after which a fluorescent substrate was added and the enzyme activity was measured at 37 ° C. for 30 minutes. The evaluation of enzyme activity was calculated with the enzyme activity at non-warming as 100%. The results are shown in FIGS. 5-1 and 5-2. First, as shown in FIG. 5-1, when heated at 48 ° C. in a test tube, the normal human β-galactosidase activity was reduced to about 20% when heated for 20 minutes and not heated. On the other hand, the enzyme activity was measured after heating for 20 minutes in the presence of 0.2 or 2 μM of Conduramin F-4 derivative (test substance A16) under the same conditions as when no addition was made. Then, the enzyme activity increased 1.5 times when no addition was made, and when 2 μM was added, the enzyme activity rose 2.6 times when no addition was made, and a significant heat stabilizing action was observed. Therefore, it was revealed that the chonduramin F-4 derivative shown in the present invention has an effect of stabilizing human β-galactosidase.

<実施例5>
コンデュラミンF−4誘導体の細胞毒性
高い酵素活性増強効果を示したコンデュラミンF−4誘導体のうち、例として被検物質A1,A3,A5,A7,A8,A10,A16,A20の細胞毒性を評価した。具体的には、実施例3−1に示した、β−ガラクトシダーゼ欠損マウス由来不死化線維芽細胞株
にヒト正常(GP8)β−ガラクトシダーゼを導入したモデル細胞を被検物質の存在下又は非存在下で1日間培養後、細胞毒性測定キット(LDH−細胞毒性テストワコー、和光純薬製)を用い、培養上清中の乳酸脱水素酵素の活性を測定した。細胞死の割合は、0.1% Triton X−100で処理した細胞の乳酸脱水素酵素活性を死細胞100%とし、割合を算出した。結果を図6に示す。酵素活性増強効果試験で用いた投与量(20μM)において、被検物質に顕著な細胞毒性は認められなかった。また、その10培量(200μM)投与時においても、被検物質A1が若干の毒性を示した以外、その他の被検物質については顕著な毒性は見られなかった。
<Example 5>
Cytotoxicity of Conduramin F-4 Derivative Among the Conduramin F-4 derivatives that showed a high enzyme activity enhancing effect, the cytotoxicity of the test substances A1, A3, A5, A7, A8, A10, A16, A20 was evaluated as an example. . Specifically, the model cells obtained by introducing human normal (GP8) β-galactosidase into an immortalized fibroblast cell line derived from β-galactosidase-deficient mice shown in Example 3-1 are used in the presence or absence of the test substance. After culturing for 1 day, the activity of lactate dehydrogenase in the culture supernatant was measured using a cytotoxicity measurement kit (LDH-cytotoxicity test Wako, manufactured by Wako Pure Chemical Industries, Ltd.). The rate of cell death was calculated by setting the lactate dehydrogenase activity of cells treated with 0.1% Triton X-100 as 100% dead cells. The results are shown in FIG. At the dose (20 μM) used in the enzyme activity enhancing effect test, no significant cytotoxicity was observed in the test substance. In addition, even when the 10 culture medium (200 μM) was administered, no significant toxicity was observed for the other test substances except that the test substance A1 showed some toxicity.

<実施例6>
正常ヒトα−ガラクトシダーゼ、正常ヒトβ−グルコシダーゼ、正常ヒトヘキソサミニダーゼに対するコンデュラミンF−4誘導体(被検物質A16)の阻害活性
試験管内において、ヒトβ−ガラクトシダーゼ以外のヒト糖加水分解酵素、すなわち正常ヒトα−ガラクトシダーゼ、正常ヒトβ−グルコシダーゼ、正常ヒトヘキソサミニダーゼに対するコンデュラミンF−4誘導体(被検物質A16)の阻害活性を測定した。具体的には、実施例2記載の方法と同様に調製した培養正常ヒト線維芽細胞由来細胞抽出液を酵素源に用い、蛍光基質として、α-ガラクトシダーゼ測定に対しては4−メチルウンベ
リフェリル−α−D−ガラクトピラノシド(シグマ社製)、β−グルコシダーゼ測定に対しては4−メチルウンベリフェリル−β−D−グルコピラノシド(シグマ社製)、ヘキソサミニダーゼ測定に対しては4−メチルウンベリフェリル−N−アセチル−β−D−グルコサミニド(シグマ社製)を使用し、被検物質A16の存在下又は非存在下、37℃、30分間の酵素活性を測定した。阻害活性の評価は、被検物質無添加時の酵素活性を100%とし、被検物質添加によって生じる変化を相対的に評価した。
結果を図7に示す。コンデュラミンF−4誘導体(被検物質A16)は、正常ヒトα−ガラクトシダーゼ、正常ヒトβ−グルコシダーゼ、正常ヒトヘキソサミニダーゼのいずれにも顕著な阻害活性を示さなかった。したがって、本発明中に示されるコンデュラミンF−4誘導体はヒトβ−ガラクトシダーゼに選択的に作用し、その他のヒト糖加水分解酵素には作用しないことが示された。
<Example 6>
Inhibitory activity of chondramine F-4 derivative (test substance A16) against normal human α-galactosidase, normal human β-glucosidase, normal human hexosaminidase In vitro, human sugar hydrolase other than human β-galactosidase, The inhibitory activity of chondramine F-4 derivative (test substance A16) against normal human α-galactosidase, normal human β-glucosidase, and normal human hexosaminidase was measured. Specifically, a cultured normal human fibroblast-derived cell extract prepared in the same manner as described in Example 2 was used as an enzyme source, and as a fluorescent substrate, 4-methylumbelliferyl was used for α-galactosidase measurement. -Α-D-galactopyranoside (manufactured by Sigma), for β-glucosidase measurement, 4-methylumbelliferyl-β-D-glucopyranoside (manufactured by Sigma), for hexosaminidase measurement Using 4-methylumbelliferyl-N-acetyl-β-D-glucosaminide (manufactured by Sigma), the enzyme activity was measured at 37 ° C. for 30 minutes in the presence or absence of the test substance A16. For the evaluation of the inhibitory activity, the enzyme activity when no test substance was added was taken as 100%, and the change caused by the addition of the test substance was relatively evaluated.
The results are shown in FIG. Conduramin F-4 derivative (test substance A16) did not show significant inhibitory activity against any of normal human α-galactosidase, normal human β-glucosidase, and normal human hexosaminidase. Therefore, it was shown that the chondramine F-4 derivative shown in the present invention selectively acts on human β-galactosidase and does not act on other human sugar hydrolase.

Claims (6)

下記一般式(1)で表されるコンデュラミンF−4誘導体またはその医薬的に許容される塩を有効成分とするβ−ガラクトシダーゼ遺伝子の変異に起因する糖脂質代謝異常症の処置剤。

式中、R、Rはそれぞれ独立に水素原子又はアルキル基、アルケニル基、アルキニル基、アシル基、アリール基、又はアラルキル基を表す。また、R及びRはそれぞれが結合している窒素原子と一緒になって非芳香環あるいは芳香環を形成してもよい。ただし、R及びRは双方が同時に水素原子であることはない。R、R及びRはそれぞれ独立にヒドロキシル基又はアルキル基、アシル基、シリル基、アラルキル基、アルコキシアルキル基、アラルキルオキシアルキル基から選択される置換基を有するヒドロキシル基である。また、RとRは一緒になって、アセタール基を形成してもよい。
A therapeutic agent for abnormal glycolipid metabolism caused by mutation of β-galactosidase gene, comprising as an active ingredient a chondramine F-4 derivative represented by the following general formula (1) or a pharmaceutically acceptable salt thereof.

In the formula, R 1 and R 2 each independently represent a hydrogen atom or an alkyl group, an alkenyl group, an alkynyl group, an acyl group, an aryl group, or an aralkyl group. R 1 and R 2 may form a non-aromatic ring or an aromatic ring together with the nitrogen atom to which each is bonded. However, R 1 and R 2 are not both hydrogen atoms at the same time. R 3 , R 4 and R 5 are each independently a hydroxyl group or a hydroxyl group having a substituent selected from an alkyl group, an acyl group, a silyl group, an aralkyl group, an alkoxyalkyl group and an aralkyloxyalkyl group. R 4 and R 5 may be combined to form an acetal group.
下記一般式(1−a)で表されるコンデュラミンF−4誘導体またはその医薬的に許容される塩を有効成分とするβ−ガラクトシダーゼ遺伝子の変異に起因する糖脂質代謝異常症の処置剤。

式中、R及びRのどちらか一方は水素原子であり、他方が炭素数1〜23のアルキル基、アルケニル基、アルキニル基、アシル基、アリール基、又はアラルキル基を表す。
A therapeutic agent for a glycolipid metabolic disorder caused by mutation of a β-galactosidase gene, comprising as an active ingredient a chondramine F-4 derivative represented by the following general formula (1-a) or a pharmaceutically acceptable salt thereof.

In the formula, one of R 6 and R 7 is a hydrogen atom, and the other represents an alkyl group, alkenyl group, alkynyl group, acyl group, aryl group, or aralkyl group having 1 to 23 carbon atoms.
下記一般式(1−b)で表されるコンデュラミンF−4誘導体またはその医薬的に許容される塩を有効成分とするβ−ガラクトシダーゼ遺伝子の変異に起因する糖脂質代謝異常症の処置剤。

式中、Rは炭素数1〜22のアルキル基、アルケニル基、アルキニル基、アシル基、アリール基、又はアラルキル基を表す。
A therapeutic agent for a glycolipid metabolic disorder caused by a mutation in a β-galactosidase gene, comprising as an active ingredient a chondramine F-4 derivative represented by the following general formula (1-b) or a pharmaceutically acceptable salt thereof.

In the formula, R 8 represents an alkyl group having 1 to 22 carbon atoms, an alkenyl group, an alkynyl group, an acyl group, an aryl group, or an aralkyl group.
β−ガラクトシダーゼ遺伝子の変異に起因する糖脂質代謝異常症がGM1ガングリオシド
ーシス、セラミドラクトリピドーシス、モルキオB病またはクラッベ病である、請求項1〜3のいずれか一項に記載の処置剤。
glycolipid metabolism disorder is G M1 gangliosidosis due to mutations in the β- galactosidase gene, ceramide lacto Ripido cis a Morquio B disease or Krabbe disease, treatment agent according to any one of claims 1 to 3.
β−ガラクトシダーゼ遺伝子の変異が、ヒトβ−ガラクトシダーゼの201位のアルギニンをシステインに置換する変異および/または457位のアルギニンをグルタミンに置換する変異である、請求項1〜4のいずれか一項に記載の処置剤。 The mutation of the β-galactosidase gene is a mutation that replaces arginine at position 201 of human β-galactosidase with cysteine and / or a mutation that replaces arginine at position 457 with glutamine. The treatment agent as described. β−ガラクトシダーゼ遺伝子の変異に起因する糖脂質代謝異常症の処置剤を調製するための、上記一般式(1)、(1−a)および(1−b)の何れかの式で表されるコンデュラミンF−4誘導体またはその医薬的に許容される塩の使用。 It is represented by any one of the above general formulas (1), (1-a) and (1-b) for preparing a therapeutic agent for glycolipid metabolic disorders caused by mutations in the β-galactosidase gene. Use of chondramine F-4 derivative or a pharmaceutically acceptable salt thereof.
JP2014203695A 2013-10-04 2014-10-02 Glycolipid metabolic disorder treatment Active JP6422018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014203695A JP6422018B2 (en) 2013-10-04 2014-10-02 Glycolipid metabolic disorder treatment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013209091 2013-10-04
JP2013209091 2013-10-04
JP2014203695A JP6422018B2 (en) 2013-10-04 2014-10-02 Glycolipid metabolic disorder treatment

Publications (2)

Publication Number Publication Date
JP2015091790A true JP2015091790A (en) 2015-05-14
JP6422018B2 JP6422018B2 (en) 2018-11-14

Family

ID=53195236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014203695A Active JP6422018B2 (en) 2013-10-04 2014-10-02 Glycolipid metabolic disorder treatment

Country Status (1)

Country Link
JP (1) JP6422018B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003022797A1 (en) * 2001-09-07 2003-03-20 Seikagaku Corporation Carba-sugar amine derivatives and treatments for disorder of glycolipid metabolism containing the same as the active ingredient
JP2013216598A (en) * 2012-04-06 2013-10-24 Hokko Chem Ind Co Ltd Conduramine f-4 derivative or acid-added salt thereof inhibiting glycosidase, and method for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003022797A1 (en) * 2001-09-07 2003-03-20 Seikagaku Corporation Carba-sugar amine derivatives and treatments for disorder of glycolipid metabolism containing the same as the active ingredient
JP2013216598A (en) * 2012-04-06 2013-10-24 Hokko Chem Ind Co Ltd Conduramine f-4 derivative or acid-added salt thereof inhibiting glycosidase, and method for producing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
脳と発達, vol. Vol.42, JPN7018001716, 2010, pages 134 - 137 *

Also Published As

Publication number Publication date
JP6422018B2 (en) 2018-11-14

Similar Documents

Publication Publication Date Title
US11155561B2 (en) Substituted glutarimides as Btk inhibitors
US11440893B2 (en) Prodrugs of riluzole and their method of use
EP3057962B1 (en) Hydrochloride salt form for ezh2 inhibition
US11236090B2 (en) Substituted glutarimides as CDK inhibitors
US20140051679A1 (en) Kinase inhibitors and method of treating cancer with same
EP4389744A1 (en) Derivatives having 2,3-dihydro-1h-indene or 2,3-dihydrobenzofuran moiety or pharmaceutically acceptable salt thereof and pharmaceutical compositions comprising the same
JP2024050645A (en) Heteroaryl-substituted pyrazole compounds and their medical uses
EA038328B1 (en) Imidazolyl tricyclic enones as antioxidant iflammation modulators
WO2018031707A1 (en) Acyl benzo[d]thiazol-2-amine and their methods of use
EA004304B1 (en) Novel ribose-substituted aromatic amides, method for the production and use thereof as medicaments
WO2013192610A2 (en) Pro-drugs of riluzole and their method of use for the treatment of amyotrophic lateral sclerosis
US11884627B2 (en) Compounds and compositions for treating conditions associated with LPA receptor activity
CZ159893A3 (en) Derivatives of 1,4-benzodioxan, process of their preparation and pharmaceutical preparations in which they are comprised
JP6422018B2 (en) Glycolipid metabolic disorder treatment
WO2017204319A1 (en) Glucosylceramide synthase inhibitor
US20140206645A1 (en) Dual action inhibitors against histone deacetylases and 3-hydroxy-3-methylglutaryl coenzyme a reductase
ES2965041T3 (en) Compositions for the treatment of pulmonary fibrosis
WO2018223122A1 (en) Hdac3-selective inhibitors
WO2001096309A1 (en) Hydroxyformamidine derivatives and medicines containing the same
JP2018027897A (en) 2-oxo-2h-chromene-3-carboxylic acid amid derivative
RU2780118C2 (en) Iminourea derivatives
US20230293539A1 (en) Mll1-wdr5 protein-protein interaction inhibitor compounds and uses thereof
KR101881115B1 (en) Novel 2-substituted tetrahydropyran or 2-substituted tetrahydrofuran derivatives, method for preparing the same, and use thereof
KR20220153511A (en) Novel compounds having inhibitory activity against glucosylceramide synthase or pharmaceutically acceptable salt thereof, processes for preparing the same, and pharmaceutical compositions comprising the same
EP3751002A1 (en) Novel compound for preventing or treating neurodegenerative disease and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181004

R150 Certificate of patent or registration of utility model

Ref document number: 6422018

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150