JP2013202598A - Water treatment method - Google Patents

Water treatment method Download PDF

Info

Publication number
JP2013202598A
JP2013202598A JP2012077910A JP2012077910A JP2013202598A JP 2013202598 A JP2013202598 A JP 2013202598A JP 2012077910 A JP2012077910 A JP 2012077910A JP 2012077910 A JP2012077910 A JP 2012077910A JP 2013202598 A JP2013202598 A JP 2013202598A
Authority
JP
Japan
Prior art keywords
water
polymer
membrane
soluble polymer
activated sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012077910A
Other languages
Japanese (ja)
Other versions
JP6115017B2 (en
JP2013202598A5 (en
Inventor
Akihiro Shimamoto
章裕 島元
Yutaka Kurahashi
裕 倉橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2012077910A priority Critical patent/JP6115017B2/en
Publication of JP2013202598A publication Critical patent/JP2013202598A/en
Publication of JP2013202598A5 publication Critical patent/JP2013202598A5/ja
Application granted granted Critical
Publication of JP6115017B2 publication Critical patent/JP6115017B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Activated Sludge Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water treatment method capable of suppressing the rise of a transmembrane pressure difference without damaging activity of sludge even if a water soluble polymer is added to treated water processed by activated sludge treatment.SOLUTION: A water treatment method comprises separating treated water added with a water soluble polymer and processed by activated sludge treatment into solid and liquid by a separation membrane, wherein addition of the water soluble polymer is performed during stopping solid-liquid separation. It is preferable to use at least one polymer of a cationic polymer and an amphoteric polymer.

Description

本発明は、膜分離活性汚泥式水処理装置を用いた水処理方法に関する。   The present invention relates to a water treatment method using a membrane separation activated sludge type water treatment apparatus.

近年、水質向上、水の再利用のし易さ、余剰汚泥発生量の低減化、水リサイクルの必要性などの観点から、都市下水や食品、化学、電気電子などの工場で発生する廃水の処理法として膜分離活性汚泥法が普及しつつある。ここで、膜分離活性汚泥法とは、活性汚泥法において最終沈殿槽を設けず精密膜あるいは限外濾過膜等の分離膜により固液分離を行う方法である。
しかしながら、膜分離活性汚泥法においては、活性汚泥処理した処理水に膜閉塞を発生させる物質が含まれていると、分離膜の細孔を閉塞させ、分離膜を目詰まりさせて、膜間差圧を上昇させることがあった。分離膜が目詰まりすると、膜洗浄や交換等の維持管理作業が必要となり、また、水処理能力の低下が生じやすく、装置を大型化せざるを得ないため、膜分離活性汚泥法のより一層の普及を妨げていた。
また、世界的に水の需要が増しており、再生水の必要性が一層高まり、低コストで維持管理が容易な効率的な水処理方法の開発が求められている。
In recent years, from the viewpoint of water quality improvement, ease of water reuse, reduction of excess sludge generation, necessity of water recycling, etc., treatment of wastewater generated in factories such as municipal sewage, food, chemistry, electric and electronic As a method, the membrane separation activated sludge method is spreading. Here, the membrane separation activated sludge method is a method of performing solid-liquid separation using a separation membrane such as a precision membrane or an ultrafiltration membrane without providing a final sedimentation tank in the activated sludge method.
However, in the membrane separation activated sludge method, if the activated sludge treated water contains a substance that causes membrane clogging, the pores of the separation membrane are clogged and the separation membrane is clogged. The pressure was sometimes increased. When the separation membrane is clogged, maintenance work such as membrane cleaning and replacement is required, and water treatment capacity is likely to decrease, and the apparatus must be enlarged. Was preventing the spread of.
In addition, the demand for water is increasing globally, the need for reclaimed water is further increased, and the development of an efficient water treatment method that is easy to maintain at low cost is required.

そこで、膜間差圧の上昇の抑制策として、処理水に水溶性重合体からなる高分子凝集剤を添加することで汚泥のフロックを形成させ、このフロックに、膜閉塞を発生させる物質を取り込ませることで、膜表面への付着を防ぐ方法が開示されている(特許文献1)。
また、水溶性重合体からなる高分子凝集剤と無機凝集剤を併用して添加する方法(特許文献2)、塩または無機酸化物を含む流入水の膜バイオリアクターにカチオン性重合体等を添加して流束を改善する方法(特許文献3)、アニオン性膜とカチオン性高分子凝集剤を組み合わせた方法(特許文献4)も開示されている。
Therefore, as a measure to suppress the increase in transmembrane pressure difference, sludge flocs are formed by adding a polymer flocculant made of a water-soluble polymer to the treated water, and a substance that causes membrane clogging is taken into these flocs. A method for preventing adhesion to the surface of the film is disclosed (Patent Document 1).
In addition, a method of adding a polymer flocculant composed of a water-soluble polymer and an inorganic flocculant in combination (Patent Document 2), adding a cationic polymer or the like to a membrane bioreactor containing inflow water containing salt or inorganic oxide Thus, a method of improving the flux (Patent Document 3) and a method of combining an anionic membrane and a cationic polymer flocculant (Patent Document 4) are also disclosed.

特開平8−332483号公報JP-A-8-332483 特開平9−38680号公報Japanese Patent Laid-Open No. 9-38680 特開2006−334587号公報JP 2006-334487 A 特開2008−229613号公報JP 2008-229613 A

しかしながら、特許文献1〜4に記載の方法でも、膜間差圧の上昇を抑制できず、かえって膜閉塞を引き起こすこともあった。また、水溶性重合体の添加量を増やすと、汚泥の活性を損なうこともあった。
本発明の目的は、活性汚泥処理がなされた処理水に水溶性重合体を添加しても汚泥の活性を損なうことなく、膜間差圧の上昇を抑制できる水処理方法を提供することにある。
However, even the methods described in Patent Documents 1 to 4 cannot suppress an increase in transmembrane pressure difference, which sometimes causes membrane occlusion. Further, when the amount of the water-soluble polymer added is increased, the activity of the sludge may be impaired.
An object of the present invention is to provide a water treatment method capable of suppressing an increase in transmembrane differential pressure without impairing sludge activity even when a water-soluble polymer is added to treated water that has been subjected to activated sludge treatment. .

本発明は、以下の態様を有する。
[1]水溶性重合体の添加及び活性汚泥処理がなされた処理水を分離膜により固液分離する水処理方法において、前記水溶性重合体の添加は分離膜での固液分離を停止している際に行うことを特徴とする水処理方法。
[2]前記水溶性重合体として、カチオン性重合体および両性重合体の少なくとも一方を用いることを特徴とする[1]に記載の水処理方法。
[3]前記カチオン性重合体が、下記一般式(1)で表されるアミジン構造単位及び下記一般式(2)で表されるアミジン構造単位の少なくとも一方を有するカチオン性重合体であることを特徴とする[2]に記載の水処理方法。
[一般式(1)、(2)中、R〜Rは各々独立して水素原子またはメチル基である。X、Yは各々陰イオンである。]
The present invention has the following aspects.
[1] In a water treatment method for solid-liquid separation of treated water that has been subjected to addition of water-soluble polymer and activated sludge treatment using a separation membrane, the addition of the water-soluble polymer stops solid-liquid separation in the separation membrane. A water treatment method characterized by being performed when
[2] The water treatment method according to [1], wherein at least one of a cationic polymer and an amphoteric polymer is used as the water-soluble polymer.
[3] The cationic polymer is a cationic polymer having at least one of an amidine structural unit represented by the following general formula (1) and an amidine structural unit represented by the following general formula (2). The water treatment method according to [2], which is characterized.
[In General Formulas (1) and (2), R 1 to R 4 each independently represents a hydrogen atom or a methyl group. X and Y are each an anion. ]

Figure 2013202598
Figure 2013202598

本発明の水処理方法によれば、活性汚泥処理がなされた処理水に水溶性重合体を添加しても汚泥の活性を損なうことなく、膜間差圧の上昇を抑制できる。   According to the water treatment method of the present invention, even if a water-soluble polymer is added to treated water that has been subjected to activated sludge treatment, the increase in the transmembrane pressure difference can be suppressed without impairing the sludge activity.

以下に、本発明を更に詳細に説明するが、本発明の範囲はそれらに限定されるものではない。
本発明の水処理方法は、水溶性重合体の添加及び活性汚泥処理がなされた処理水を分離膜により固液分離する水処理方法であり、前記水溶性重合体の添加は分離膜での固液分離を停止している際に行う方法である。
Hereinafter, the present invention will be described in more detail, but the scope of the present invention is not limited thereto.
The water treatment method of the present invention is a water treatment method in which treated water that has been subjected to addition of a water-soluble polymer and activated sludge treatment is subjected to solid-liquid separation using a separation membrane. This method is performed when liquid separation is stopped.

本発明の水処理は、通常、膜分離活性汚泥式水処理装置が使用される。膜分離活性汚泥式水処理装置とは、活性汚泥法において最終沈殿槽を設けず精密膜等の分離膜により固液分離を行う装置である。具体的には、活性汚泥を含む曝気槽に原水を供給し、曝気により原水を生物処理し、得られた処理水を、分離膜に通しながら引き抜いて固液分離する装置である。
曝気槽以外に、他の生物処理槽、例えば、別の曝気槽、嫌気槽、無酸素槽、好気処理槽などが独立に設けられても構わない。
In the water treatment of the present invention, a membrane separation activated sludge type water treatment device is usually used. The membrane-separated activated sludge water treatment device is a device that performs solid-liquid separation using a separation membrane such as a precision membrane without providing a final sedimentation tank in the activated sludge method. Specifically, it is an apparatus for supplying raw water to an aeration tank containing activated sludge, biologically treating the raw water by aeration, and drawing the treated water obtained through a separation membrane to perform solid-liquid separation.
In addition to the aeration tank, other biological treatment tanks such as another aeration tank, anaerobic tank, anoxic tank, and aerobic treatment tank may be provided independently.

膜分離活性汚泥式水処理装置において使用される分離膜は、精密ろ過膜、限外ろ過膜等で挙げられるが、高い透過流速が得られる点では、精密ろ過膜が好ましい。
分離膜の形状は、平膜、管状膜あるいは中空糸膜などいずれの形でも構わない。材質は、セルロース系、ポリオレフィン系、ポリビニルアルコール系、ポリメチルメタクリレート系、ポリスルフォン系、ポリフッ化ビニリデン系等の各種材料からなるものが使用できる。
処理水の引き抜きは、分離膜の二次側(下流側)をポンプで吸引することによって行われる。引き抜きの際、処理水は分離膜を通過するが、フロック等の粒状物は通過しにくくなっている。そのため、処理水の引き抜きによって固液分離できるようになっている。
Examples of the separation membrane used in the membrane separation activated sludge type water treatment apparatus include a microfiltration membrane and an ultrafiltration membrane, but a microfiltration membrane is preferable in that a high permeation flow rate can be obtained.
The shape of the separation membrane may be any shape such as a flat membrane, a tubular membrane or a hollow fiber membrane. Materials made of various materials such as cellulose, polyolefin, polyvinyl alcohol, polymethyl methacrylate, polysulfone, and polyvinylidene fluoride can be used.
Extraction of treated water is performed by sucking the secondary side (downstream side) of the separation membrane with a pump. At the time of drawing, the treated water passes through the separation membrane, but particulate matter such as floc is difficult to pass through. Therefore, solid-liquid separation can be performed by drawing the treated water.

活性汚泥処理での曝気量は特に制限されず、原水の流入量、原水中の有機物質含有量、活性汚泥の活性等に応じて適宜選択される。また、曝気量は、水溶性重合体を添加しているときと、添加していないときとで同じであってもよいし、異なってもよい。
膜分離活性汚泥法では、曝気槽にて原水を活性汚泥処理している最中に、処理水を分離膜に通して引き抜く。処理水の引き抜き速度は、処理水によっても異なるが、概ね0.1〜1.5m/日である。
The amount of aeration in the activated sludge treatment is not particularly limited, and is appropriately selected according to the inflow amount of raw water, the content of organic substances in the raw water, the activity of activated sludge, and the like. The aeration amount may be the same or different when the water-soluble polymer is added and when it is not added.
In the membrane separation activated sludge method, the treated water is drawn through the separation membrane while the raw water is being treated with activated sludge in an aeration tank. The withdrawal speed of the treated water varies depending on the treated water, but is generally 0.1 to 1.5 m / day.

原水または活性汚泥には、膜閉塞を発生させる物質(以下、「膜閉塞原因物質」という。)が含まれる。膜閉塞原因物質の具体例としては、炭酸カルシウム、硫酸カルシウム等の無機塩類、シリカ、水酸化鉄等の無機性コロイドのほか、糖、蛋白質等の有機性コロイド、溶解性有機物質、付着性微生物、懸濁物質等が挙げられる。
膜閉塞原因物質による膜閉塞によって引き抜き速度を高められず、0.1〜1.0m/日となる場合には、本発明による膜閉塞の抑制効果は顕著となる。
The raw water or activated sludge contains substances that cause membrane clogging (hereinafter referred to as “membrane clogging substances”). Specific examples of membrane clogging substances include inorganic salts such as calcium carbonate and calcium sulfate, inorganic colloids such as silica and iron hydroxide, organic colloids such as sugars and proteins, soluble organic substances, and adherent microorganisms. And suspended substances.
In the case where the drawing speed cannot be increased due to the membrane occlusion due to the membrane occlusion cause substance and becomes 0.1 to 1.0 m / day, the effect of suppressing the membrane occlusion according to the present invention becomes remarkable.

曝気槽に添加する「水溶性重合体」としては、カチオン性重合体、両性重合体、ノニオン性重合体、アニオン性重合体よりなる群から選ばれる1種が挙げられる。
「カチオン性重合体」とは、カチオン性単量体単位を有する重合体のことであり、カチオン性単量体単位のみであってもよいし、ノニオン性単量体を有してもよい。また、「カチオン性重合体」は、上記一般式(1)で表されるアミジン構造単位及び上記一般式(2)で表されるアミジン構造単位を有するカチオン性重合体であってもよい。
「両性重合体」とは、カチオン性単量体単位およびアニオン性単量体単位を有する重合体のことであり、カチオン性単量体単位およびアニオン性単量体単位のみであってもよいし、ノニオン性単量体を有してもよい。
「ノニオン性重合体」とは、ノニオン性単量体単位を有し、カチオン性単量体単位およびアニオン性単量体単位を有さない重合体のことである。
「アニオン性重合体」とは、アニオン性単量体単位を有する重合体のことであり、アニオン性単量体のみであってもよいし、ノニオン性単量体単位を有してもよい。
Examples of the “water-soluble polymer” added to the aeration tank include one selected from the group consisting of a cationic polymer, an amphoteric polymer, a nonionic polymer, and an anionic polymer.
The “cationic polymer” is a polymer having a cationic monomer unit, and may be only a cationic monomer unit or a nonionic monomer. The “cationic polymer” may be a cationic polymer having an amidine structural unit represented by the general formula (1) and an amidine structural unit represented by the general formula (2).
The “amphoteric polymer” is a polymer having a cationic monomer unit and an anionic monomer unit, and may be only a cationic monomer unit and an anionic monomer unit. And may have a nonionic monomer.
The “nonionic polymer” is a polymer having a nonionic monomer unit and not having a cationic monomer unit and an anionic monomer unit.
The “anionic polymer” is a polymer having an anionic monomer unit, and may be an anionic monomer alone or a nonionic monomer unit.

カチオン性単量体単位は、カチオン性単量体に由来する。カチオン性単量体としては、第4級または第3級アンモニウム含有カチオン性メタクリレート単量体、第4級アンモニウム基含有カチオン性アクリレート単量体、ジアリル第4級アンモニウム単量体などが挙げられる。具体的には、ジメチルアミノエチルアクリレート、ジメチルアミノエチルメタクリレートなどのメチルクロライド4級塩やベンジルクロライド4級塩、ジアリルジメチルアンモニウムのクロライド塩、ジメチルアミノエチルメタクリレートなどの硫酸あるいは塩酸塩などが挙げられる。これらは単独で用いても、2種類以上を併用してもよい。   The cationic monomer unit is derived from a cationic monomer. Examples of the cationic monomer include quaternary or tertiary ammonium-containing cationic methacrylate monomers, quaternary ammonium group-containing cationic acrylate monomers, diallyl quaternary ammonium monomers, and the like. Specific examples include methyl chloride quaternary salts such as dimethylaminoethyl acrylate and dimethylaminoethyl methacrylate, benzyl chloride quaternary salts, chloride salts of diallyldimethylammonium, and sulfuric acid or hydrochloride such as dimethylaminoethyl methacrylate. These may be used alone or in combination of two or more.

アミジン構造単位を有するカチオン性重合体において、一般式(1)および一般式(2)中、R〜Rは各々独立して水素原子またはメチル基であるが、全てが同一であってもよいし、異なっていてもよい。
また、X、Yは各々独立して陰イオンであるが、全てが同一であってもよいし、異なっていてもよい。一般式(1)及び(2)において、X,Yで表される陰イオンとしては、具体的には、Cl、Br、1/2SO 2−、CH(CO)O、H(CO)Oなどが挙げられ、中でもClが好ましい。
In the cationic polymer having an amidine structural unit, in the general formula (1) and the general formula (2), R 1 to R 4 are each independently a hydrogen atom or a methyl group, It may be good or different.
X and Y are each independently an anion, but all may be the same or different. In the general formulas (1) and (2), the anions represented by X and Y are specifically Cl , Br , 1 / 2SO 4 2− , CH 3 (CO) O −. , H (CO) O - is like, among which Cl - is preferred.

ノニオン性単量体単位は、ノニオン性単量体に由来する。ノニオン性単量体としては、アクリルアミド、メタクリルアミドなどが挙げられる。これらは単独で用いても、2種類以上を併用してもよい。   The nonionic monomer unit is derived from a nonionic monomer. Examples of nonionic monomers include acrylamide and methacrylamide. These may be used alone or in combination of two or more.

アニオン性単量体単位は、アニオン性単量体に由来する。アニオン性単量体としては、アクリル酸、メタクリル酸、2−アクリルアミド−2メチルプロパンスルホン酸、及びそのナトリウム塩、カリウム塩などが挙げられる。これらは単独で用いても、2種類以上を併用してもよい。   The anionic monomer unit is derived from an anionic monomer. Examples of the anionic monomer include acrylic acid, methacrylic acid, 2-acrylamido-2methylpropanesulfonic acid, and sodium salts and potassium salts thereof. These may be used alone or in combination of two or more.

カチオン性重合体、両性重合体、ノニオン性重合体およびアニオン性重合体のいずれにおいても、カチオン性単量体単位、ノニオン性単量体単位、アニオン性単量体単位以外のビニル系単量体単位を有してもよい。   Vinyl monomers other than cationic monomer units, nonionic monomer units, and anionic monomer units in any of cationic polymers, amphoteric polymers, nonionic polymers, and anionic polymers You may have a unit.

カチオン性重合体、両性重合体、ノニオン性重合体およびアニオン性重合体の製造方法としては、公知の一般的な重合方法により製造することができる。
具体的には、各単量体単位を、重合開始剤の存在下で公知の方法で重合することにより製造することができる。重合開始剤としては、例えば、過硫酸カリウム、過硫酸2,2’−アゾビズ−2−アミジノプロパン塩酸塩等のラジカル開始剤が挙げられる。重合方法としては、特に制限されず、水溶液重合、光重合、懸濁重合、エマルション重合等の方法を適用することができる。
カチオン性重合体が、アミジン構造単位を有するカチオン性重合体である場合には、一級アミノ基または変換反応により一級アミノ基が生成し得る置換アミノ基を有するエチレン性不飽和モノマーと、アクリロニトリルまたはメタアクリロニトリルのニトリル類とを、塊状重合、水溶液沈殿重合、懸濁重合、乳化重合等の公知の方法で共重合した後、酸加水分解し、共重合により得られた共重合体中のシアノ基と一級アミノ基とを反応させてアミジン化する方法により製造できる。
The cationic polymer, amphoteric polymer, nonionic polymer and anionic polymer can be produced by a known general polymerization method.
Specifically, each monomer unit can be produced by polymerizing by a known method in the presence of a polymerization initiator. Examples of the polymerization initiator include radical initiators such as potassium persulfate and persulfate 2,2′-azobiz-2-amidinopropane hydrochloride. The polymerization method is not particularly limited, and methods such as aqueous solution polymerization, photopolymerization, suspension polymerization, and emulsion polymerization can be applied.
When the cationic polymer is a cationic polymer having an amidine structural unit, an ethylenically unsaturated monomer having a primary amino group or a substituted amino group capable of forming a primary amino group by a conversion reaction, acrylonitrile or Acrylonitrile nitriles are copolymerized by a known method such as bulk polymerization, aqueous solution precipitation polymerization, suspension polymerization, emulsion polymerization, etc., then acid hydrolyzed, and cyano groups in the copolymer obtained by copolymerization It can be produced by a method of reacting with a primary amino group to amidinate.

曝気槽に添加する水溶性重合体としては、膜間差圧の上昇をより抑制できる点から、カチオン性重合体および両性重合体の少なくとも一方が好ましい。カチオン性重合体および両性重合体の少なくとも一方が膜間差圧の上昇をより抑制できるのは、膜閉塞原因物質は概ねアニオン性を示すことが多く、カチオン性重合体および両性重合体は膜閉塞原因物質との相互作用が強いためと考えられる。
さらに、カチオン性重合体の中でも、膜閉塞原因物質との相互作用がより強いことから、アミジン構造単位を主成分とするカチオン性重合体が好ましい。アミジン構造は荷電密度が高く疎水的であるため、膜閉塞原因物質と強固なフロックを形成し、膜の目詰まりをより防止でき、膜間差圧上昇をより抑制できる。また、分離膜との相互作用も高くなるため、膜間差圧上昇抑制効果をより発揮できる。
As the water-soluble polymer added to the aeration tank, at least one of a cationic polymer and an amphoteric polymer is preferable from the viewpoint that the increase in transmembrane pressure difference can be further suppressed. The reason why at least one of the cationic polymer and the amphoteric polymer can suppress the increase in the transmembrane pressure difference is that the substance causing the membrane occlusion is generally anionic, and the cationic polymer and the amphoteric polymer are occluded. This is probably due to the strong interaction with the causative substance.
Furthermore, among the cationic polymers, a cationic polymer having an amidine structural unit as a main component is preferable because of its stronger interaction with a substance that causes membrane blockage. Since the amidine structure has a high charge density and is hydrophobic, it forms a strong flock with the substance causing the membrane blockage, can further prevent clogging of the membrane, and can further suppress an increase in transmembrane pressure difference. Further, since the interaction with the separation membrane is also increased, the effect of suppressing the increase in transmembrane pressure difference can be exhibited more.

水溶性重合体として、カチオン性重合体、ノニオン性重合体、アニオン性重合体および両性重合体の少なくとも一つを膜分離活性汚泥に添加する場合には、水溶性重合体の添加量は膜分離活性汚泥に対して0.1〜100mg/Lであることが好ましく、1〜50mmg/Lであることがより好ましい。
水溶性重合体の添加量が前記下限値以上であれば、膜間差圧上昇をより抑制でき、前記上限値以下であれば、膜分離活性汚泥中の微生物活性に影響をより与えにくくなり、膜への付着もより防止できる。
When at least one of a cationic polymer, a nonionic polymer, an anionic polymer and an amphoteric polymer is added to the membrane separation activated sludge as the water soluble polymer, the amount of the water soluble polymer added is the membrane separation. It is preferable that it is 0.1-100 mg / L with respect to activated sludge, and it is more preferable that it is 1-50 mmg / L.
If the amount of water-soluble polymer added is equal to or higher than the lower limit, the increase in transmembrane pressure difference can be further suppressed, and if it is equal to or lower than the upper limit, it becomes more difficult to affect the microbial activity in the membrane separation activated sludge, Adhesion to the film can be further prevented.

水溶性重合体を添加する際の形態は、粉末でもよいし水溶液でもよいが、短時間で混合できる点では水溶液が好ましい。その水溶液における水溶性重合体濃度は0.01〜1質量%が好ましい。水溶性重合体濃度が前記下限値以上であれば、供給時間をより短時間にでき、前記上限値以下であれば、均一に混合させることができ、膜への付着をより防止できる。
また、水溶液の形態では、水溶性重合体の溶解性を向上させ、また、水溶液の保存安定性を向上させるために、固体酸を添加しても構わない。固体酸としては、スルファミン酸、酸性亜硫酸ナトリウム等が挙げられる。
The form at the time of adding the water-soluble polymer may be a powder or an aqueous solution, but an aqueous solution is preferable in that it can be mixed in a short time. The water-soluble polymer concentration in the aqueous solution is preferably 0.01 to 1% by mass. When the water-soluble polymer concentration is at least the lower limit value, the supply time can be shortened, and when the water-soluble polymer concentration is at most the upper limit value, it can be mixed uniformly and the adhesion to the film can be further prevented.
In the form of an aqueous solution, a solid acid may be added in order to improve the solubility of the water-soluble polymer and to improve the storage stability of the aqueous solution. Examples of the solid acid include sulfamic acid and acidic sodium sulfite.

処理水への水溶性重合体の添加方法は特に制限されず、曝気槽に水溶性重合体を添加してもよいし、原水に水溶性重合体をあらかじめ添加してもよい。ただし、水溶性重合体を短時間で供給して効果を発現でき、さらには効果を持続しやすい点では、曝気槽に水溶性重合体を直接添加することが好ましい。   The method for adding the water-soluble polymer to the treated water is not particularly limited, and the water-soluble polymer may be added to the aeration tank, or the water-soluble polymer may be added to the raw water in advance. However, it is preferable to add the water-soluble polymer directly to the aeration tank in that the effect can be exhibited by supplying the water-soluble polymer in a short time and the effect can be easily maintained.

処理水の引き抜き再開は、水溶性重合体の供給が終了した時点でもよいし、引き抜きの停止をしばらく継続した後でもよい。ただし、停止時間が長くなるほど、膜分離活性汚泥処理の効率が低下し、運転コストが高まることから、停止時間は短いことが好ましい。
また、水溶性重合体を添加している間、活性汚泥により処理する原水の供給は停止してもよいし、停止しなくてもよい。
The restart of withdrawal of the treated water may be performed at the time when the supply of the water-soluble polymer is completed, or may be after the withdrawal is continued for a while. However, the longer the stop time, the lower the efficiency of the membrane separation activated sludge treatment and the higher the operating cost. Therefore, the stop time is preferably short.
Further, while the water-soluble polymer is added, the supply of raw water to be treated with activated sludge may be stopped or may not be stopped.

上記水処理方法では、水溶性重合体の添加は分離膜での固液分離を停止している際に行うため、水溶性重合体を膜閉塞原因物質または活性汚泥に均一に混合させることができる。これにより、膜閉塞原因物質や汚泥を凝集させてフロックを形成することで、膜の目詰まりによる膜間差圧上昇を抑制できる。また、未反応の水溶性重合体が分離膜および膜ケーキ層に付着することを抑制できる。
なお、分離膜槽への水溶性重合体の添加と同時に固液分離する場合には、膜間差圧の上昇を抑制できず、あるいは、膜閉塞を起こしやすくなる。このようになるのは、処理水の分離膜への流れに乗って水溶性重合体が膜表面あるいは細孔内部に付着するため、と推測される。
In the above water treatment method, the addition of the water-soluble polymer is performed when the solid-liquid separation in the separation membrane is stopped, so that the water-soluble polymer can be uniformly mixed with the membrane clogging substance or activated sludge. . Thereby, the increase in transmembrane pressure difference due to clogging of the membrane can be suppressed by agglomerating the membrane clogging substance and sludge to form a floc. Moreover, it can suppress that an unreacted water-soluble polymer adheres to a separation membrane and a membrane cake layer.
When solid-liquid separation is performed simultaneously with the addition of the water-soluble polymer to the separation membrane tank, an increase in the transmembrane pressure difference cannot be suppressed or membrane clogging is likely to occur. This is presumably because the water-soluble polymer adheres to the membrane surface or inside the pores along the flow of the treated water to the separation membrane.

また、本発明では、膜間差圧上昇の継続的な抑制効果も発揮される。そのメカニズムは不明であるが、水溶性重合体が汚泥と相互作用をすることで汚泥からの膜閉塞を発生させる物質の生成抑制等が関係していると思われる。
また、分離膜槽への水溶性重合体の添加と同時に固液分離する従来の方法では、膜間差圧上昇抑制効果を高めるために水溶性重合体の添加量を増やすと、汚泥が強固なフロックとなり、曝気によってもフロックが破壊されなくなり汚泥の活性を損なうことがあった。しかし、本発明の水処理方法では、水溶性重合体の過剰な添加が不要となり、曝気等によりフロックを容易に破壊でき、汚泥の活性低下を防止できる。
また、従来、膜分離活性汚泥装置における曝気量は、膜ケーキ層形成や膜閉塞抑制のために標準活性汚泥法よりも多くしていたが、本発明の水処理方法を適用し、膜洗浄頻度を標準活性汚泥法と同等とするのであれば、曝気量を少なくすることもできる。
Moreover, in this invention, the continuous suppression effect of a transmembrane differential pressure rise is also exhibited. The mechanism is unknown, but it seems to be related to the suppression of the production of substances that cause membrane clogging from the sludge by the interaction of the water-soluble polymer with the sludge.
Moreover, in the conventional method of solid-liquid separation simultaneously with the addition of the water-soluble polymer to the separation membrane tank, the sludge becomes stronger when the amount of the water-soluble polymer added is increased in order to increase the effect of suppressing the increase in transmembrane pressure difference. In some cases, flocs were lost and the flocs were not destroyed by aeration, and the sludge activity was impaired. However, in the water treatment method of the present invention, excessive addition of the water-soluble polymer is unnecessary, the floc can be easily broken by aeration, etc., and the sludge activity can be prevented from being lowered.
Conventionally, the amount of aeration in the membrane separation activated sludge apparatus was larger than that in the standard activated sludge method for membrane cake layer formation and membrane clogging suppression. If it is made equivalent to the standard activated sludge method, the amount of aeration can be reduced.

以下、本発明を実施例により具体的に説明するが、本発明はその要旨を越えない限り、下記実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist.

<水溶性重合体の添加による膜間差圧上昇抑制効果の評価>
以下の試験例(実施例及び比較例)において、水溶性重合体の添加による膜間差圧上昇抑制効果の評価は、膜分離活性汚泥式水処理装置において一定の通水量で膜濾過した際の膜間差圧上昇速度を計測することにより行った。その結果を表1に示す。
<Evaluation of increase effect of transmembrane pressure difference by addition of water-soluble polymer>
In the following test examples (Examples and Comparative Examples), the effect of suppressing the increase in transmembrane pressure difference due to the addition of a water-soluble polymer was evaluated when membrane filtration was performed at a constant water flow rate in a membrane separation activated sludge type water treatment device. This was done by measuring the rate of increase in transmembrane pressure difference. The results are shown in Table 1.

<カチオン性重合体および両性重合体>
実施例および比較例では、膜分離活性汚泥に添加する水溶性重合体として、カチオン性重合体または両性重合体を用いた。
また、カチオン性重合体としては、ジメチルアミノエチルメタクリレートのメチルクロライド4級塩の単独重合体であるKP201G(ダイヤニトリックス(株))、または、アミジン重合体を主成分とするKP7000(ダイヤニトリックス(株))を用いた。
また、両性重合体としては、ジメチルアミノエチルメタクリレートのメチルクロライド4級塩とジメチルアミノエチルアクリレートのメチルクロライド4級塩とアクリルアミドとアクリル酸の共重合体であるKA305BH(ダイヤニトリックス(株))を用いた。
<Cationic polymer and amphoteric polymer>
In Examples and Comparative Examples, a cationic polymer or an amphoteric polymer was used as the water-soluble polymer added to the membrane separation activated sludge.
In addition, as the cationic polymer, KP201G which is a homopolymer of methyl chloride quaternary salt of dimethylaminoethyl methacrylate (Daianitrix Co., Ltd.), or KP7000 (Danitrix Co., Ltd.) whose main component is an amidine polymer. Was used.
Further, as the amphoteric polymer, KA305BH (Daanitrix Co., Ltd.), which is a copolymer of methyl chloride quaternary salt of dimethylaminoethyl methacrylate, methyl chloride quaternary salt of dimethylaminoethyl acrylate, acrylamide and acrylic acid, was used. .

<実施例1>
中空糸精密ろ過膜(三菱レイヨン(株)製、ポリフッ化ビニリデン製「SADF膜」)を幅0.088cmに19本均等に配置し、該中空糸精密ろ過膜の両端を環状支持体に接続した膜モジュール(有効膜長さ0.077cm、膜面積0.0012m)を用意した。
その膜モジュールを、膜長さ方向が鉛直方向に沿うように、曝気槽(横幅0.2m、奥行き0.1m、高さ0.35m)の内部の、散気管の上方に設置して、膜分離活性汚泥装置とした。
曝気槽に、MLSSが5000mg/Lの化学工場排水処理設備の活性汚泥(pH6.7)を4000ml充填し、曝気量9L/分で、化学工業排水を流速0.8m/日となるよう供給し、それと同時に、分離膜を通した処理水の引き抜きを開始した。
12時間後に、分離膜を通した処理水の引き抜きを停止し、曝気槽に、水溶性重合体としてKP7000を0.3質量%の水溶液状で、活性汚泥全量当たり30mg/Lとなるように5秒間かけて添加した。
添加後、分離膜を通した処理水の引き抜きを再開し、1日目及び7日目の膜間差圧を圧力センサ((株)キーエンス製、AP−10S(達成圧型))を用いて計測し、添加開始からそれぞれの時点までの膜間差圧上昇速度を求めた。
<Example 1>
Nineteen hollow fiber microfiltration membranes ("SADF membrane" manufactured by Mitsubishi Rayon Co., Ltd., polyvinylidene fluoride) were equally arranged in a width of 0.088 cm, and both ends of the hollow fiber microfiltration membrane were connected to an annular support. A membrane module (effective membrane length 0.077 cm, membrane area 0.0012 m 2 ) was prepared.
The membrane module is installed above the air diffuser in the aeration tank (width 0.2 m, depth 0.1 m, height 0.35 m) so that the membrane length direction is along the vertical direction. A separation activated sludge apparatus was used.
Fill the aeration tank with 4000 ml of activated sludge (pH 6.7) of chemical factory wastewater treatment equipment with MLSS of 5000 mg / L, and supply chemical industrial wastewater at an aeration rate of 9 L / min and a flow rate of 0.8 m / day. At the same time, extraction of treated water through the separation membrane was started.
After 12 hours, the extraction of the treated water through the separation membrane was stopped, and the aeration tank was filled with KP7000 as a water-soluble polymer in the form of an aqueous solution of 0.3% by mass so that the total amount of activated sludge was 30 mg / L. Added over a second.
After the addition, withdrawal of treated water through the separation membrane was resumed, and the transmembrane pressure difference on day 1 and day 7 was measured using a pressure sensor (AP-10S (achieved pressure type) manufactured by Keyence Corporation). Then, the transmembrane pressure increase rate from the start of addition to each time point was determined.

<実施例2>
KP7000を2秒かけて添加してから処理水引き抜きを再開した以外は実施例1と同様に水処理し、膜間差圧上昇速度を求めた。
<Example 2>
Water treatment was carried out in the same manner as in Example 1 except that KP7000 was added over 2 seconds and the drawing of treated water was resumed, and the rate of increase in transmembrane pressure difference was determined.

<実施例3>
KP7000を5秒かけて添加してから処理水引抜きを595秒後に再開した以外は実施例1と同様に水処理し、膜間差圧上昇速度を求めた。
<Example 3>
Water treatment was carried out in the same manner as in Example 1 except that KP7000 was added over 5 seconds and the drawing of the treated water was resumed after 595 seconds, and the transmembrane pressure increase rate was determined.

<実施例4>
添加する水溶性重合体をKP201Gとした以外は実施例1と同様に水処理し、膜間差圧上昇速度を求めた。
<Example 4>
Water treatment was performed in the same manner as in Example 1 except that the water-soluble polymer to be added was KP201G, and the rate of increase in transmembrane pressure difference was determined.

<実施例5>
添加する水溶性重合体をKA305BHとした以外は実施例1と同様に水処理し、膜間差圧上昇速度を求めた。
<Example 5>
Water treatment was performed in the same manner as in Example 1 except that the water-soluble polymer to be added was KA305BH, and the rate of increase in transmembrane pressure difference was determined.

<比較例1>
水溶性重合体を添加せず、処理水の引き抜きを停止しなかった以外は実施例1と同様に水処理した。
<Comparative Example 1>
Water treatment was carried out in the same manner as in Example 1 except that the water-soluble polymer was not added and the withdrawal of treated water was not stopped.

<比較例2>
KP7000を添加するときに引き抜きを停止しなかった以外は実施例1と同様に水処理した。
<Comparative example 2>
Water treatment was carried out in the same manner as in Example 1 except that the drawing was not stopped when KP7000 was added.

<比較例3>
添加する水溶性重合体をKP201Gとした以外は比較例2と同様に水処理し、膜間差圧上昇速度を求めた。
<Comparative Example 3>
Water treatment was performed in the same manner as in Comparative Example 2 except that the water-soluble polymer to be added was KP201G, and the rate of increase in transmembrane pressure difference was determined.

<比較例4>
添加する水溶性重合体をKA305BHとした以外は比較例2と同様に水処理し、膜間差圧上昇速度を求めた。
<Comparative example 4>
Water treatment was performed in the same manner as in Comparative Example 2 except that the water-soluble polymer to be added was changed to KA305BH, and the rate of increase in transmembrane pressure difference was determined.

Figure 2013202598
Figure 2013202598

曝気槽への水溶性重合体の添加を、分離膜での固液分離を停止している際に行う実施例1〜5では、膜間差圧上昇速度が低く抑えられていた。
また、水溶性重合体としてKP7000を用いた実施例1〜3は、水溶性重合体としてKP7000を用いなかった実施例4,5よりも、膜間差圧上昇速度が低く、7日目でも差圧は小さかった。
水溶性重合体を添加しなかった比較例1、曝気槽への水溶性重合体を添加したが、添加の間は処理水の引き抜きを停止しなかった比較例2〜4では、膜間差圧上昇速度が速かった。特に、比較例1,2では、7日目よりも前に膜間差圧が20kPaに達したため、実験を中止した。
In Examples 1 to 5 in which the addition of the water-soluble polymer to the aeration tank was performed when the solid-liquid separation in the separation membrane was stopped, the rate of increase in the transmembrane pressure difference was kept low.
In addition, Examples 1 to 3 using KP7000 as the water-soluble polymer had a lower rate of increase in transmembrane pressure difference than Examples 4 and 5 which did not use KP7000 as the water-soluble polymer. The pressure was small.
In Comparative Example 1 in which the water-soluble polymer was not added and the water-soluble polymer in the aeration tank was added, but in Comparative Examples 2 to 4 in which the extraction of the treated water was not stopped during the addition, the transmembrane pressure difference The ascent rate was fast. In particular, in Comparative Examples 1 and 2, the transmembrane pressure reached 20 kPa before the seventh day, so the experiment was stopped.

Claims (3)

水溶性重合体の添加及び活性汚泥処理がなされた処理水を分離膜により固液分離する水処理方法において、
前記水溶性重合体の添加は分離膜での固液分離を停止している際に行うことを特徴とする水処理方法。
In a water treatment method for solid-liquid separation of treated water that has been subjected to addition of a water-soluble polymer and activated sludge treatment using a separation membrane,
The water treatment method is characterized in that the addition of the water-soluble polymer is performed when the solid-liquid separation in the separation membrane is stopped.
前記水溶性重合体として、カチオン性重合体および両性重合体の少なくとも一方を用いることを特徴とする請求項1に記載の水処理方法。   The water treatment method according to claim 1, wherein at least one of a cationic polymer and an amphoteric polymer is used as the water-soluble polymer. 前記カチオン性重合体が、下記一般式(1)で表されるアミジン構造単位及び下記一般式(2)で表されるアミジン構造単位の少なくとも一方を有するカチオン性重合体であることを特徴とする請求項2に記載の水処理方法。
Figure 2013202598
[一般式(1)、(2)中、R〜Rは各々独立して水素原子またはメチル基である。X、Yは各々陰イオンである。]
The cationic polymer is a cationic polymer having at least one of an amidine structural unit represented by the following general formula (1) and an amidine structural unit represented by the following general formula (2). The water treatment method according to claim 2.
Figure 2013202598
[In General Formulas (1) and (2), R 1 to R 4 each independently represents a hydrogen atom or a methyl group. X and Y are each an anion. ]
JP2012077910A 2012-03-29 2012-03-29 Water treatment method Active JP6115017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012077910A JP6115017B2 (en) 2012-03-29 2012-03-29 Water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012077910A JP6115017B2 (en) 2012-03-29 2012-03-29 Water treatment method

Publications (3)

Publication Number Publication Date
JP2013202598A true JP2013202598A (en) 2013-10-07
JP2013202598A5 JP2013202598A5 (en) 2015-05-21
JP6115017B2 JP6115017B2 (en) 2017-04-19

Family

ID=49522296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012077910A Active JP6115017B2 (en) 2012-03-29 2012-03-29 Water treatment method

Country Status (1)

Country Link
JP (1) JP6115017B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016010770A (en) * 2014-06-30 2016-01-21 三菱レイヨン株式会社 Sludge dewatering method
JP2018144040A (en) * 2018-07-02 2018-09-20 三菱ケミカル株式会社 Dehydration method of sludge

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH091187A (en) * 1995-06-14 1997-01-07 Toto Ltd Waste water treating device and its operating method
JPH10277550A (en) * 1997-04-10 1998-10-20 Mitsubishi Rayon Co Ltd Sludge thickening method and sludge thickening system
US20040168980A1 (en) * 2002-01-04 2004-09-02 Musale Deepak A. Combination polymer treatment for flux enhancement in MBR
JP2007000727A (en) * 2005-06-22 2007-01-11 Mitsubishi Rayon Eng Co Ltd Method for operating membrane separation activated sludge treatment apparatus
JP2010046561A (en) * 2008-08-19 2010-03-04 Toray Ind Inc Sludge dehydrating and concentrating method and apparatus thereof
JP2011016482A (en) * 2009-07-10 2011-01-27 Toyota Boshoku Corp Seat belt device
WO2011016482A1 (en) * 2009-08-05 2011-02-10 ダイヤニトリックス株式会社 Method for removing substance causative of flow velocity decrease in membrane-separation activated-sludge process
JP2011050946A (en) * 2009-08-05 2011-03-17 Daiyanitorikkusu Kk Method for removing coloring component
JP2012508091A (en) * 2008-11-07 2012-04-05 ゼネラル・エレクトリック・カンパニイ Method for conditioning a mixed liquid using a tannin-containing polymer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH091187A (en) * 1995-06-14 1997-01-07 Toto Ltd Waste water treating device and its operating method
JPH10277550A (en) * 1997-04-10 1998-10-20 Mitsubishi Rayon Co Ltd Sludge thickening method and sludge thickening system
US20040168980A1 (en) * 2002-01-04 2004-09-02 Musale Deepak A. Combination polymer treatment for flux enhancement in MBR
JP2007000727A (en) * 2005-06-22 2007-01-11 Mitsubishi Rayon Eng Co Ltd Method for operating membrane separation activated sludge treatment apparatus
JP2010046561A (en) * 2008-08-19 2010-03-04 Toray Ind Inc Sludge dehydrating and concentrating method and apparatus thereof
JP2012508091A (en) * 2008-11-07 2012-04-05 ゼネラル・エレクトリック・カンパニイ Method for conditioning a mixed liquid using a tannin-containing polymer
JP2011016482A (en) * 2009-07-10 2011-01-27 Toyota Boshoku Corp Seat belt device
WO2011016482A1 (en) * 2009-08-05 2011-02-10 ダイヤニトリックス株式会社 Method for removing substance causative of flow velocity decrease in membrane-separation activated-sludge process
JP2011050946A (en) * 2009-08-05 2011-03-17 Daiyanitorikkusu Kk Method for removing coloring component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016010770A (en) * 2014-06-30 2016-01-21 三菱レイヨン株式会社 Sludge dewatering method
JP2018144040A (en) * 2018-07-02 2018-09-20 三菱ケミカル株式会社 Dehydration method of sludge

Also Published As

Publication number Publication date
JP6115017B2 (en) 2017-04-19

Similar Documents

Publication Publication Date Title
JP5700932B2 (en) Method for improving membrane bioreactor performance
RU2403959C2 (en) Method to improve flow conditions in membrane reactor
JP5791592B2 (en) Polymer water treatment membrane and production method thereof
HU228884B1 (en) Method of using water soluble polymers in a membrane biological reactor
JP5512068B2 (en) Water treatment method
US20120255903A1 (en) Non-woven membrane bioreactor and its fouling control method
CN107253798A (en) A kind of advanced treatment and reclamation group technology of wastewater of steel industry
JP6115017B2 (en) Water treatment method
JP5672447B2 (en) Filtration device and water treatment device
JP5641642B2 (en) Concentration method of sludge
JP6060958B2 (en) Removal method of coloring components
WO2014034845A1 (en) Water production method
JP2014198300A (en) Treatment method of organic effluent
JP6142574B2 (en) Method for suppressing increase of transmembrane pressure difference in membrane activated sludge apparatus
JP5163152B2 (en) Wastewater treatment method
JP2010207752A (en) Water treatment device and water treatment method
JP6186944B2 (en) Papermaking wastewater treatment method
JP2013000655A (en) Polymeric water treatment membrane and water treatment method
KR20110093285A (en) Exclusion equipment nitrogen and phosphorus in aeration tank using sulfur charge membrane bioreactor
JP2016093789A (en) Water treatment method and water treatment system
JP2019188338A (en) Water treatment method and water treatment apparatus
JP2016059839A (en) Solid-liquid separation method in membrane separation activated sludge treatment
JP2014046235A (en) Fresh water generating method
JP6825318B2 (en) Water treatment equipment and water treatment method
TWI589532B (en) Methods for improving membrane bioreactor systems

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170306

R151 Written notification of patent or utility model registration

Ref document number: 6115017

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250