JP2007000727A - Method for operating membrane separation activated sludge treatment apparatus - Google Patents

Method for operating membrane separation activated sludge treatment apparatus Download PDF

Info

Publication number
JP2007000727A
JP2007000727A JP2005181715A JP2005181715A JP2007000727A JP 2007000727 A JP2007000727 A JP 2007000727A JP 2005181715 A JP2005181715 A JP 2005181715A JP 2005181715 A JP2005181715 A JP 2005181715A JP 2007000727 A JP2007000727 A JP 2007000727A
Authority
JP
Japan
Prior art keywords
membrane
water
treated
separation
activated sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005181715A
Other languages
Japanese (ja)
Inventor
Takanori Itonaga
貴範 糸永
Wataru Fujii
渉 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Engineering Co Ltd
Original Assignee
Mitsubishi Rayon Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Engineering Co Ltd filed Critical Mitsubishi Rayon Engineering Co Ltd
Priority to JP2005181715A priority Critical patent/JP2007000727A/en
Publication of JP2007000727A publication Critical patent/JP2007000727A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for operating a membrane separation activated sludge treatment apparatus which suppresses the progress of membrane fouling and can carry out solid-liquid separation of water to be treated by a stable separation membrane for a long time. <P>SOLUTION: In the method for operating the membrane separation activated sludge treatment apparatus which carries out solid-liquid separation of the water to be treated by the separation membrane 12, when the turbidity of filtrate obtained by filtering the water to be treated collected during treatment becomes 3 NTU or higher, or the CODcr concentration of the filtrate becomes 40 mg/L or higher, a rise in pressure difference between the water to be treated side and the permeated water side of the separation membrane 12 is suppressed. Also, a sedimentation test is carried out after the water to be treated collected during treatment is diluted n times by water, and when the turbidity of a supernatant liquid obtained by the test becomes (8×n) NTU or higher, or the CODcr concentration of the supernatant liquid becomes (20×n) mg/L or higher, a rise in pressure difference between the water to be treated side and the permeated water side of the separation membrane 12 is suppressed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、分離膜によって被処理水の固液分離を行う膜分離活性汚泥処理装置の運転方法に関する。   The present invention relates to a method for operating a membrane separation activated sludge treatment apparatus that performs solid-liquid separation of water to be treated by a separation membrane.

有機性排水等の被処理水を処理する方法の一つとして、被処理水中に存在する有機物等の汚濁物質を活性汚泥中に存在する微生物により生物分解し、活性汚泥を精密ろ過膜あるいは限外ろ過膜等の分離膜により固液分離し、清澄な透過水を得る膜分離活性汚泥法がある。
膜分離活性汚泥法の固液分離において、吸引ポンプを用い、分離膜の単位膜面積あたりの処理流量(以下、フラックスと記す。)を一定とする運転を実行した際に、被処理水を分離膜により長期間継続して膜ろ過すると、被処理水に存在する有機物等の汚濁物質が分離膜の細孔に吸着されることおよび表面に堆積されることに起因して、膜が汚染される(膜ファウリング)。
As one method of treating treated water such as organic wastewater, organic substances and other pollutants present in the treated water are biodegraded by microorganisms present in the activated sludge, and the activated sludge is microfiltered or ultra-thin. There is a membrane separation activated sludge method in which solid-liquid separation is performed with a separation membrane such as a filtration membrane to obtain clear permeated water.
In the solid-liquid separation of the membrane separation activated sludge method, the water to be treated is separated when an operation is performed with a suction pump to keep the treatment flow rate per unit membrane area (hereinafter referred to as flux) constant. When membrane filtration is continued for a long period of time with a membrane, the membrane is contaminated due to the fact that pollutants such as organic substances present in the water to be treated are adsorbed on the pores of the separation membrane and deposited on the surface. (Membrane fouling).

膜ファウリングが進行すると、分離膜における被処理水側と透過水側との圧力差(以下、膜間差圧と記す。)が大きくなり、吸引ポンプの能力である最大吸引圧に膜間差圧の値が近づくと、著しくフラックスが低下し、安定した運転の継続が困難となる。
膜ファウリングが原因で膜間差圧が過度に上昇した際には、汚染された分離膜を薬液洗浄に供するか、または分離膜を新品のものと交換することによって、運転初期の膜間差圧まで回復させることが可能である。しかし、これらの対策は、膜分離活性汚泥処理装置の運転を停止することに伴う煩雑な作業を行うばかりでなく、薬液洗浄時の薬品コストまたは膜交換時の分離膜コストの増大につながり、ランニングコストにも影響を与える。
As the membrane fouling progresses, the pressure difference between the treated water side and the permeated water side in the separation membrane (hereinafter referred to as transmembrane pressure difference) increases, and the maximum suction pressure, which is the capacity of the suction pump, increases to the maximum suction pressure. As the pressure value approaches, the flux decreases significantly, making it difficult to continue stable operation.
When the transmembrane pressure rises excessively due to membrane fouling, the contaminated separation membrane is subjected to chemical cleaning, or the separation membrane is replaced with a new one. It is possible to recover to pressure. However, these measures not only perform complicated operations associated with stopping the operation of the membrane separation activated sludge treatment apparatus, but also lead to an increase in chemical costs during chemical cleaning or separation membrane costs during membrane replacement. It also affects the cost.

また、冬期の水温低下に伴い微生物活性が低下することにより、被処理水中の有機物が充分に生物分解されない場合には、未分解の有機物が膜ファウリングを加速させる。その結果、冬期では、夏期と比較して膜間差圧の上昇速度に高い傾向が認められ、上述した薬液洗浄等の対策を頻繁に実行しなければならなくなる。また、一時的に膜分離活性汚泥装置に流入する有機物量が増大すると、活性汚泥による有機物の生物処理が追いつかなくなり、未分解の有機物が膜ファウリングを加速させる。
このように膜間差圧の上昇速度は、連続運転を通じて一定ではなく、被処理水中に存在する膜ファウリングを進行させる物質の量に依存することが予想されることから、膜分離活性汚泥処理装置を安定して運転するためには、膜ファウリングの進行を予測可能なモニタリング技術およびそれに見合った適切な対策といった、膜ファウリングの進行を制御可能な技術の確立が必要である。
In addition, when the microbial activity decreases with a decrease in the water temperature in winter, and the organic matter in the water to be treated is not sufficiently biodegraded, the undegraded organic matter accelerates membrane fouling. As a result, in winter, there is a tendency that the rate of increase in the transmembrane pressure difference is higher than in summer, and measures such as the above-described chemical cleaning must be frequently performed. Moreover, when the amount of organic matter flowing into the membrane separation activated sludge apparatus temporarily increases, biological treatment of the organic matter by the activated sludge cannot catch up, and undegraded organic matter accelerates membrane fouling.
Thus, the rate of increase in the transmembrane pressure difference is not constant throughout the continuous operation, and it is expected to depend on the amount of substances that promote membrane fouling present in the water to be treated. In order to operate the apparatus stably, it is necessary to establish a technology capable of controlling the progress of membrane fouling, such as a monitoring technology capable of predicting the progress of membrane fouling and an appropriate measure corresponding to the monitoring technology.

膜ファウリングをモニタリングする方法としては、活性汚泥の呼吸速度を測定する方法が提案されている(特許文献1参照)。しかし、この方法では、膜ファウリングを進行させる物質の量と呼吸速度との関係が明らかでないため、膜間差圧の上昇が観察される時期を正確に予測することは、困難である。
また、膜ファウリングの進行を抑制する目的で、活性炭等の吸着剤を膜分離槽に添加し、膜ファウリングを進行させる物質を吸着除去することが知られている(特許文献2参照)。しかし、有機性排水のような様々な大きさの有機物が存在する場合には、膜ファウリングを進行させる物質を選択的に吸着除去することが困難である。このため、膜ファウリングの進行を抑制させるほどの充分な効果を得るためには、吸着剤が有する吸着能以上に吸着剤を添加しなければならず、この方法は、経済的に不利である。
As a method for monitoring membrane fouling, a method for measuring the respiration rate of activated sludge has been proposed (see Patent Document 1). However, in this method, since the relationship between the amount of a substance that promotes membrane fouling and the respiration rate is not clear, it is difficult to accurately predict when the increase in transmembrane pressure difference is observed.
Further, for the purpose of suppressing the progress of membrane fouling, it is known to add an adsorbent such as activated carbon to the membrane separation tank to adsorb and remove substances that cause membrane fouling to proceed (see Patent Document 2). However, when organic substances of various sizes such as organic wastewater are present, it is difficult to selectively adsorb and remove substances that promote membrane fouling. For this reason, in order to obtain a sufficient effect to suppress the progress of membrane fouling, it is necessary to add an adsorbent in excess of the adsorbing capacity of the adsorbent, and this method is economically disadvantageous. .

他には、凝集剤を添加し、膜ファウリングの進行を抑制する方法が提案されている(特許文献3参照)。しかし、この方法は、膜ファウリングの進行をモニタリングすることを念頭に置いていない。そのため、凝集剤を添加する適切な時期を決定することが困難であるとともに、凝集剤を過剰に添加することは、凝集剤コストを増大させるのみでなく、余剰の凝集剤が膜ファウリングを進行させる結果となる。
上記の通り、従来では、膜間差圧の上昇を正確に予測することができないとともに、膜ファウリングをモニタリングせずに、膜ファウリングを抑制する対策が講じられてきた。
特開平8−332495号公報 特開平10−309567号公報 特開平9−38680号公報
In addition, a method has been proposed in which a flocculant is added to suppress the progress of membrane fouling (see Patent Document 3). However, this method is not intended to monitor the progress of membrane fouling. For this reason, it is difficult to determine an appropriate timing for adding the flocculant, and adding the flocculant excessively increases the flocculant cost, and the excessive flocculant advances the membrane fouling. Result.
As described above, conventionally, it has not been possible to accurately predict an increase in transmembrane pressure, and measures have been taken to suppress membrane fouling without monitoring membrane fouling.
JP-A-8-332495 JP-A-10-309567 Japanese Patent Laid-Open No. 9-38680

よって本発明の目的は、膜ファウリングの進行を抑え、分離膜による被処理水の固液分離を長期間にわたって安定して行うことができる膜分離活性汚泥処理装置の運転方法を提供することにある。   Therefore, an object of the present invention is to provide a method for operating a membrane separation activated sludge treatment apparatus capable of suppressing the progress of membrane fouling and stably performing solid-liquid separation of water to be treated by a separation membrane over a long period of time. is there.

本発明の膜分離活性汚泥処理装置の運転方法は、分離膜によって被処理水の固液分離を行う膜分離活性汚泥処理装置の運転方法において、処理中に採取した被処理水をろ紙によりろ過して得られたろ液の濁度が3NTU以上またはろ液のCODcr濃度が40mg/L以上となった際に、分離膜の被処理水側と透過水側との差圧の上昇を抑制する処理を施すことを特徴とする。   The operation method of the membrane separation activated sludge treatment apparatus of the present invention is the operation method of the membrane separation activated sludge treatment apparatus that performs solid-liquid separation of the treated water by the separation membrane, and the treated water collected during the treatment is filtered with a filter paper. When the turbidity of the filtrate obtained is 3 NTU or more or the CODcr concentration of the filtrate is 40 mg / L or more, a treatment for suppressing an increase in the differential pressure between the treated water side and the permeate side of the separation membrane is performed. It is characterized by giving.

本発明の膜分離活性汚泥処理装置の運転方法は、分離膜によって被処理水の固液分離を行う膜分離活性汚泥処理装置の運転方法において、処理中に採取した被処理水を水でn倍に希釈した後に沈降性試験を行い、該試験で得られた上澄み液の濁度が(8×n)NTU以上または上澄み液のCODcr濃度が(20×n)mg/L以上となった際に、分離膜の被処理水側と透過水側との差圧の上昇を抑制する処理を施すことを特徴とする。   The operation method of the membrane separation activated sludge treatment apparatus of the present invention is the operation method of the membrane separation activated sludge treatment apparatus that performs solid-liquid separation of the treated water by the separation membrane. When the supernatant turbidity obtained in this test was (8 × n) NTU or more or the CODcr concentration of the supernatant was (20 × n) mg / L or more. Further, the present invention is characterized in that a treatment for suppressing an increase in the differential pressure between the treated water side and the permeated water side of the separation membrane is performed.

本発明の膜分離活性汚泥処理装置の運転方法によれば、膜ファウリングの進行を抑え、分離膜による被処理水の固液分離を長期間にわたって安定して行うことができる。   According to the operation method of the membrane separation activated sludge treatment apparatus of the present invention, the progress of membrane fouling can be suppressed, and solid-liquid separation of water to be treated by the separation membrane can be performed stably over a long period of time.

本発明の膜分離活性汚泥処理装置の運転方法は、分離膜によって被処理水の固液分離を行う排水処理全般に適用可能である。以下、膜分離活性汚泥法を例にとり、本発明の膜分離活性汚泥処理装置の運転方法を詳しく説明する。   The operation method of the membrane separation activated sludge treatment apparatus of the present invention can be applied to all wastewater treatments in which solid water is separated from the water to be treated by the separation membrane. Hereinafter, taking the membrane separation activated sludge method as an example, the operation method of the membrane separation activated sludge treatment apparatus of the present invention will be described in detail.

(膜分離活性汚泥装置)
図1は、膜分離活性汚泥法による排水処理に用いられる膜分離活性汚泥装置の一例を示す概略構成図である。この膜分離活性汚泥装置10は、被処理水中に存在する有機物等の汚濁物質を活性汚泥中に存在する微生物により生物分解する生物反応槽11と;生物反応槽11内部に設置され、活性汚泥を固液分離し、清澄な透過水を得る分離膜12と;分離膜12の下方に設けられた散気管13と;分離膜12に接続し、透過水を吸引する吸引ポンプ14と;吸引ポンプ14の手前に設けられ、膜間差圧を測定する圧力計15と;散気管13に空気を供給するブロア16とから概略構成される。
(Membrane separation activated sludge device)
FIG. 1 is a schematic configuration diagram showing an example of a membrane separation activated sludge apparatus used for wastewater treatment by a membrane separation activated sludge method. This membrane separation activated sludge apparatus 10 is installed in the biological reaction tank 11 for biodegrading pollutants such as organic substances existing in the treated water by microorganisms present in the activated sludge; A separation membrane 12 for solid-liquid separation to obtain clear permeated water; an air diffuser 13 provided below the separation membrane 12; a suction pump 14 connected to the separation membrane 12 and sucking permeate; and a suction pump 14 And a pressure gauge 15 for measuring the transmembrane pressure difference; and a blower 16 for supplying air to the air diffuser 13.

生物反応槽11は、処理の目的に応じて複数設置してもよい。
分離膜12の種類としては、精密ろ過膜または限外ろ過膜が好ましい。
分離膜12の形状としては、中空糸膜、平膜、管状膜、袋状膜等が挙げられる。これらのうち、容積ベースで比較した場合に膜面積の高度集積が可能であることから、中空糸膜が好ましい。
A plurality of biological reaction tanks 11 may be installed according to the purpose of processing.
As the type of the separation membrane 12, a microfiltration membrane or an ultrafiltration membrane is preferable.
Examples of the shape of the separation membrane 12 include a hollow fiber membrane, a flat membrane, a tubular membrane, and a bag-like membrane. Of these, hollow fiber membranes are preferred because they can be highly integrated when compared on a volume basis.

分離膜12の材質としては、セルロース、ポリオレフィン、ポリスルフォン、ポリビニルアルコール、ポリメチルメタクリレート、ポリフッ化ビニリデン、ポリ4フッ化エチレン等の有機材料;ステンレス等の金属、セラミック等の無機材料が挙げられる。分離膜12の材質は、有機性排水等の被処理水の性状に応じて適宜選択する。   Examples of the material of the separation membrane 12 include organic materials such as cellulose, polyolefin, polysulfone, polyvinyl alcohol, polymethyl methacrylate, polyvinylidene fluoride, and polytetrafluoroethylene; metals such as stainless steel, and inorganic materials such as ceramic. The material of the separation membrane 12 is appropriately selected according to the properties of water to be treated such as organic waste water.

分離膜12の孔径は、処理の目的に応じて適宜選択すればよい。膜分離活性汚泥法において、分離膜12の孔径は、0.001〜3μmが好ましい。孔径が0.001μm未満では、膜の抵抗が大きくなるため、フラックスを高く設定することができなくなるおそれがある。孔径が3μmを超えると、活性汚泥を完全に分離することができないため、透過水の水質が悪化するおそれがある。分離膜12の孔径は、精密ろ過膜の範囲とされる0.05〜1.0μmがより好ましい。   What is necessary is just to select the hole diameter of the separation membrane 12 suitably according to the objective of a process. In the membrane separation activated sludge method, the pore size of the separation membrane 12 is preferably 0.001 to 3 μm. If the pore diameter is less than 0.001 μm, the resistance of the film increases, and there is a possibility that the flux cannot be set high. If the pore diameter exceeds 3 μm, the activated sludge cannot be completely separated, and the water quality of the permeate may be deteriorated. The pore size of the separation membrane 12 is more preferably 0.05 to 1.0 μm, which is the range of the microfiltration membrane.

(膜分離活性汚泥装置の運転方法)
膜分離活性汚泥装置10の運転は、以下のようにして行われる。
生物反応槽11に供給された被処理水中に存在する有機物等の汚濁物質は、活性汚泥中の微生物によって生物分解される。この際、分離膜12の洗浄および生物分解に必要な酸素供給のために、散気管13から、被処理水に空気を絶えず供給する。
ついで、吸引ポンプ14を作動させることにより、被処理水を、分離膜12を透過する透過水と、透過しない活性汚泥とに固液分離する。
(Operation method of membrane separation activated sludge device)
The operation of the membrane separation activated sludge apparatus 10 is performed as follows.
Contaminating substances such as organic substances present in the water to be treated supplied to the biological reaction tank 11 are biodegraded by microorganisms in the activated sludge. At this time, in order to supply oxygen necessary for cleaning and biodegradation of the separation membrane 12, air is continuously supplied to the water to be treated from the air diffuser 13.
Next, by operating the suction pump 14, the water to be treated is solid-liquid separated into permeated water that permeates the separation membrane 12 and activated sludge that does not permeate.

生物反応槽11内の被処理水のMLSS(生物反応槽内浮遊性固形物)濃度は、3,000〜15,000mg/Lに設定することが好ましい。MLSS濃度は、微生物濃度の代替指標である。MLSS濃度を3,000mg/L以上とすることによって、微生物による有機物の生物分解が充分に進行し、未分解有機物による膜ファウリングの進行を抑制する効果が高くなる。MLSS濃度を15,000mg/L以下にすることによって、被処理水の粘度上昇に起因する膜ファウリングの進行を抑制する効果が高くなる。MLSS濃度は、7,000〜12,000mg/Lがより好ましい。   The concentration of MLSS (floating solid in the biological reaction tank) of the water to be treated in the biological reaction tank 11 is preferably set to 3,000 to 15,000 mg / L. MLSS concentration is an alternative indicator of microbial concentration. By setting the MLSS concentration to 3,000 mg / L or more, biodegradation of organic substances by microorganisms proceeds sufficiently, and the effect of suppressing the progress of membrane fouling by undegraded organic substances becomes high. By setting the MLSS concentration to 15,000 mg / L or less, the effect of suppressing the progress of membrane fouling due to the increase in the viscosity of the water to be treated is enhanced. The MLSS concentration is more preferably 7,000 to 12,000 mg / L.

(膜ファウリングの進行予測)
生物反応槽11において、有機物の生物分解が充分に進行している状態では、膜ファウリングの進行が抑えられる。しかし、先に述べた原因によって、生物反応槽11の被処理水中に微細な有機物が蓄積した状態では、膜ファウリングが進行して、膜間差圧の値が急激に上昇することにより安定した運転の継続が困難となる。ここで、膜間差圧は、吸引ポンプ14の作動時における圧力計15の数値と、吸引ポンプ14の停止時における圧力計15の数値との差である。
生物反応槽11の被処理水中に蓄積する微細な有機物量を把握することができれば、膜間差圧の上昇速度が変化する前に、膜間差圧の上昇を抑制する処理を施すことが可能となる。
(Prediction of membrane fouling progress)
In the biological reaction tank 11, the progress of the membrane fouling is suppressed when the biodegradation of the organic matter is sufficiently advanced. However, due to the above-described causes, in the state where fine organic matter is accumulated in the water to be treated in the biological reaction tank 11, the membrane fouling progresses, and the value of the transmembrane pressure difference is rapidly increased, thereby being stabilized. It becomes difficult to continue driving. Here, the transmembrane pressure difference is the difference between the numerical value of the pressure gauge 15 when the suction pump 14 is operated and the numerical value of the pressure gauge 15 when the suction pump 14 is stopped.
If the amount of fine organic matter accumulated in the water to be treated in the biological reaction tank 11 can be grasped, it is possible to perform a process for suppressing the increase in the transmembrane pressure difference before the rate of increase in the transmembrane pressure difference changes. It becomes.

本発明者らは、膜分離活性汚泥処理装置10における膜ファウリングの原因について検討を重ねた結果、サブミクロンから数ミクロン程度の微細な有機物の蓄積が膜ファウリングの原因の一つであることを見出した。すなわち、膜ろ過時にサブミクロンから数ミクロン程度の微細な有機物が膜面に輸送されることにより、微細な有機物が膜表面に堆積および吸着することにより、膜ファウリングを進行させ、膜間差圧を上昇させる。   As a result of repeated investigations on the cause of membrane fouling in the membrane separation activated sludge treatment apparatus 10, the present inventors have found that accumulation of fine organic substances of submicron to several microns is one of the causes of membrane fouling. I found. In other words, fine organic matter of submicron to several microns is transported to the membrane surface during membrane filtration, so that fine organic matter is deposited and adsorbed on the membrane surface, thereby promoting membrane fouling, and transmembrane pressure difference. To raise.

よって、本発明は、この知見に基づき、被処理水をろ紙によりろ過して得られたろ液の濁度またはCODcr濃度(有機物濃度)、または被処理水の沈降性試験後における上澄み液の濁度またはCODcr濃度を測定することにより、膜ファウリングの進行をモニタリングしようとするものである。
ろ液または上澄み液の濁度が、ある数値を超えると膜間差圧の上昇が観察される傾向にあるため、膜間差圧の上昇を事前に判断することが可能である。
また、有機物の指標であるCODcr濃度は、濁度と高い相関がある。よって、CODcr濃度が、ある数値を超えると急激な膜間差圧の上昇が観察される傾向にあるため、膜間差圧の上昇を事前に判断することが可能である。
Therefore, the present invention is based on this finding, and the turbidity or CODcr concentration (organic substance concentration) of the filtrate obtained by filtering the water to be treated with filter paper, or the turbidity of the supernatant after the sedimentation test of the water to be treated. Alternatively, it is intended to monitor the progress of membrane fouling by measuring the CODcr concentration.
When the turbidity of the filtrate or supernatant exceeds a certain value, an increase in the transmembrane pressure difference tends to be observed, so that the increase in the transmembrane pressure difference can be determined in advance.
Further, the CODcr concentration, which is an indicator of organic matter, has a high correlation with turbidity. Accordingly, when the CODcr concentration exceeds a certain value, a rapid increase in the transmembrane pressure difference tends to be observed, and therefore it is possible to determine in advance the increase in the transmembrane pressure difference.

(ろ液の調製)
ろ液を得るために用いるろ紙の公称孔径は、1〜5μmが好ましい。
ろ紙の公称孔径が1μm未満では、被処理水中に微細な有機物が多く蓄積していても、それがろ液に移行しにくくなり、被処理水中に蓄積する微細な有機物量を把握しにくくなるおそれがある。その結果、膜間差圧の上昇を抑制する処理が遅れ、膜ファウリングの進行を充分に抑えることができないおそれがある。
ろ紙の公称孔径が5μmを超えると、被処理水中に蓄積した微細な有機物量が少なくても、活性汚泥自体が流出してしまい、ろ液の濁度またはCODcr濃度がすぐに後述の値を超えて、常に膜間差圧の上昇を抑制する処理を行わなければならないおそれがある。その結果、膜分離活性汚泥装置のランニングコストが増大することになる。
(Preparation of filtrate)
The nominal pore diameter of the filter paper used for obtaining the filtrate is preferably 1 to 5 μm.
When the nominal pore size of the filter paper is less than 1 μm, even if a large amount of fine organic matter is accumulated in the water to be treated, it is difficult to transfer to the filtrate, and it is difficult to grasp the amount of fine organic matter accumulated in the water to be treated. There is. As a result, the process for suppressing the increase in the transmembrane pressure difference is delayed, and the progress of the membrane fouling may not be sufficiently suppressed.
If the nominal pore size of the filter paper exceeds 5 μm, even if the amount of fine organic matter accumulated in the treated water is small, the activated sludge itself will flow out, and the turbidity or CODcr concentration of the filtrate immediately exceeds the values described below. Therefore, there is a risk that processing for constantly suppressing an increase in transmembrane pressure difference must be performed. As a result, the running cost of the membrane separation activated sludge apparatus increases.

よって、ろ紙の公称孔径が1〜5μmであれば、被処理水中に蓄積した微細な有機物量を定量することが可能である。
公称孔径1〜5μmのろ紙としては、JIS P 3801で定められている5種C(保留粒子径1μm)、6種(保留粒子径3μm)、5種B(保留粒子径4μm)、東洋濾紙(株)製のNo.3(保留粒子径5μm)等が挙げられる。
Therefore, if the nominal pore diameter of the filter paper is 1 to 5 μm, it is possible to quantify the amount of fine organic matter accumulated in the water to be treated.
As filter paper having a nominal pore diameter of 1 to 5 μm, 5 types C (retained particle size 1 μm), 6 types (retained particle size 3 μm), 5 types B (retained particle size 4 μm), Toyo filter paper (Toyo filter paper) defined in JIS P 3801 No. manufactured by Co., Ltd. 3 (retained particle diameter: 5 μm) and the like.

(上澄み液の調製)
通常、活性汚泥の沈降性試験においては、1Lのメスシリンダーを被処理水で満たし、30分静置させて活性汚泥を沈降させ、沈降率を測定する。ただし、膜分離活性汚泥法では、被処理水の固形分濃度が非常に高いため、30分で活性汚泥が沈降しない。そのため、膜分離活性汚泥法においても上澄み液を得るために、あらかじめ被処理水を水で希釈する必要がある。希釈倍率nは、3〜5倍が好ましい。希釈用の水としては、透過水または水道水を用いることができる。
(Preparation of supernatant)
Usually, in the sedimentation test of activated sludge, a 1 L graduated cylinder is filled with water to be treated, and allowed to stand for 30 minutes to sediment activated sludge, and the sedimentation rate is measured. However, in the membrane separation activated sludge method, the activated sludge does not settle in 30 minutes because the solid concentration of the water to be treated is very high. Therefore, in order to obtain a supernatant liquid also in the membrane separation activated sludge method, it is necessary to dilute water to be treated with water in advance. The dilution factor n is preferably 3 to 5 times. As the dilution water, permeated water or tap water can be used.

被処理水の希釈倍率が3倍未満では、希釈が不充分であり、30分で活性汚泥が沈降しないケースがある。その結果、上澄み液を得ることができないため、被処理水中に蓄積する微細な有機物量を把握することができない。
被処理水の希釈倍率が5倍を超えると、上澄みの濁度またはCODcrの濃度が薄くなりすぎ正確な値が得にくくなる。
よって、被処理水の希釈倍率が3〜5倍であれば、被処理水中に蓄積した微細な有機物量を定量することが可能である。
If the dilution rate of the water to be treated is less than 3 times, the dilution is insufficient, and the activated sludge may not settle in 30 minutes. As a result, since a supernatant cannot be obtained, the amount of fine organic matter accumulated in the water to be treated cannot be grasped.
When the dilution rate of the water to be treated exceeds 5 times, the turbidity of the supernatant or the concentration of CODcr becomes too thin and it becomes difficult to obtain an accurate value.
Therefore, if the dilution rate of the water to be treated is 3 to 5 times, the amount of fine organic matter accumulated in the water to be treated can be quantified.

(濁度およびCODcr濃度の測定)
濁度およびCODcr濃度の測定は、建設省都市局下水道部・厚生省生活衛生局水道環境部監修の下水試験法上巻(1997年度版)に従う。
測定(被処理水の採取)は、0.5〜5日に1回の頻度で行うことが好ましい。
(Measurement of turbidity and CODcr concentration)
Turbidity and CODcr concentration are measured according to the Sewerage Test Method Volume 1 (1997 edition) supervised by the Ministry of Construction, Urban Bureau, Sewerage Department, Ministry of Health and Welfare, Health Sanitation Bureau, Waterworks Environment Department.
The measurement (collection of water to be treated) is preferably performed at a frequency of once every 0.5 to 5 days.

(膜間差圧上昇抑制処理)
本発明においては、ろ液の濁度が3NTU以上またはろ液のCODcr濃度が40mg/L以上となった際に、膜間差圧の上昇を抑制する処理を施す。または、上澄み液の濁度が(8×n)NTU以上または上澄み液のCODcr濃度が(20×n)mg/L以上となった際に、膜間差圧の上昇を抑制する処理を施す(nは採取された被処理水の希釈倍率である。)。より好ましくは、ろ液の濁度および上澄みの濁度両方を測定し、ろ液の濁度が3NTU以上または上澄み液の濁度が(8×n)NTU以上となった際、あるいは、ろ液のCODcrおよび上澄みのCODcrの両方を測定し、ろ液のCODcr濃度が40mg/L以上または上澄み液のCODcr濃度が(20×n)mg/L以上となった際に膜間差圧の上昇を抑制する処理を施す。
(Transmembrane differential pressure rise suppression treatment)
In the present invention, when the turbidity of the filtrate is 3 NTU or more or the CODcr concentration of the filtrate is 40 mg / L or more, a treatment for suppressing an increase in transmembrane pressure difference is performed. Alternatively, when the turbidity of the supernatant liquid is (8 × n) NTU or more, or the CODcr concentration of the supernatant liquid is (20 × n) mg / L or more, a treatment for suppressing an increase in transmembrane pressure difference is performed ( n is the dilution rate of the collected water to be treated.) More preferably, both the turbidity of the filtrate and the turbidity of the supernatant are measured, and when the turbidity of the filtrate is 3 NTU or more, or the turbidity of the supernatant is (8 × n) NTU or more, or the filtrate The CODcr of the supernatant and the CODcr of the supernatant were measured, and when the CODcr concentration of the filtrate was 40 mg / L or more or the CODcr concentration of the supernatant was (20 × n) mg / L or more, the increase in transmembrane pressure difference was observed. Apply suppression processing.

膜間差圧の上昇を抑制する処理としては、例えば、被処理水への凝集剤の添加が挙げられる。凝集剤を添加することにより、サブミクロンから数ミクロン程度の微細な有機物が凝集され、膜ファウリングの進行が抑制され、その結果、膜間差圧の上昇が抑制される。
凝集剤としては、塩化第二鉄、硫酸アルミニウム、ポリ塩化アルミニウム(PAC)、鉄シリカ系高分子凝集剤(PSI,水道機工(株))等の無機凝集剤;カチオン系高分子凝集剤等の有機系高分子凝集剤が挙げられる。
Examples of the treatment for suppressing the increase in transmembrane pressure include addition of a flocculant to the water to be treated. By adding the flocculant, fine organic substances of submicron to several microns are aggregated, and the progress of membrane fouling is suppressed, and as a result, the increase in transmembrane pressure difference is suppressed.
As the flocculant, inorganic flocculants such as ferric chloride, aluminum sulfate, polyaluminum chloride (PAC), and iron silica-based polymer flocculants (PSI, Seiko Kiko Co., Ltd.); cationic polymer flocculants, etc. An organic polymer flocculant is mentioned.

無機凝集剤は、主に、公称孔径1〜5μmのろ紙によりろ過して得られたろ液の濁度およびCODcr濃度をコントロールするのに適している。ろ液中に存在する物質は、大部分がサブミクロンクラスの有機物であり、該有機物は、負に帯電して反発しあっていることにより、水中で分散している。負に帯電した有機物は、無機凝集剤の金属イオン(正の荷電)により中和され、膜ファウリングに影響を及ぼさない大きさへと成長する。   The inorganic flocculant is mainly suitable for controlling the turbidity and CODcr concentration of the filtrate obtained by filtering with a filter paper having a nominal pore size of 1 to 5 μm. Most of the substances present in the filtrate are submicron-class organic substances, and the organic substances are dispersed in water because they are negatively charged and repelled. The negatively charged organic matter is neutralized by the metal ions (positive charge) of the inorganic flocculant and grows to a size that does not affect the membrane fouling.

高分子凝集剤は、沈降性試験後で得られた上澄み液の濁度およびCODcr濃度をコントロールするのに適している。上澄み液中に存在する物質は、数ミクロン程度までの有機物であり、高分子凝集剤の架橋作用により、膜ファウリングに影響を及ぼさない大きさへと成長する。   The polymer flocculant is suitable for controlling the turbidity and CODcr concentration of the supernatant obtained after the sedimentation test. The substance present in the supernatant is an organic substance up to several microns, and grows to a size that does not affect the film fouling by the crosslinking action of the polymer flocculant.

本発明においては、無機凝集剤と有機系高分子凝集とを併用することが好ましい。無機凝集剤のみでは、散気管13からの空気により、凝集したフロックが破砕され、サブミクロンから数ミクロン程度の微細な有機物が再び発生するおそれがある。高分子凝集剤のみでは、添加量が増大していしまい、コスト面から好ましくない。   In the present invention, it is preferable to use an inorganic flocculant and an organic polymer flocculant in combination. If only the inorganic flocculant is used, the flocs aggregated may be crushed by the air from the air diffuser 13, and fine organic matter of submicron to several microns may be generated again. If only the polymer flocculant is added, the addition amount increases, which is not preferable from the viewpoint of cost.

無機凝集剤の添加量は、被処理水を公称孔径1〜5μmのろ紙によりろ過して得られたろ液の濁度が3NTU未満またはろ液のCODcr濃度が40mg/L未満となる量が好ましい。高分子凝集剤の添加量は、被処理水を水でn倍に希釈した後に沈降性試験を行い、該試験で得られた上澄み液の濁度が(8×n)NTU未満または上澄み液のCODcr濃度が(20×n)mg/L未満となる量が好ましい。   The amount of the inorganic flocculant added is preferably such that the filtrate obtained by filtering the water to be treated with a filter paper having a nominal pore size of 1 to 5 μm has a turbidity of less than 3 NTU or a CODcr concentration of the filtrate of less than 40 mg / L. The amount of the polymer flocculant added is determined by diluting the water to be treated n times with water, and then performing a sedimentation test. The turbidity of the supernatant obtained in the test is less than (8 × n) NTU or the supernatant liquid. An amount such that the CODcr concentration is less than (20 × n) mg / L is preferable.

凝集剤の添加は、上述した値を超えないように連続あるいは間欠的に実行することが好ましい。運転開始から、上述した値を超えた際には、凝集剤をある程度多量に添加するか、その量を数日に分けて添加して、上述した値以下となるように調整を行う。   The flocculant is preferably added continuously or intermittently so as not to exceed the above-mentioned value. When the above-mentioned value is exceeded from the start of operation, the flocculant is added in a large amount to some extent, or the amount is added in several days, and the adjustment is performed so as to be equal to or less than the above-described value.

以上説明した本発明の膜分離活性汚泥処理装置の運転方法にあっては、被処理水のろ液または上澄み液の濁度またはCODcr濃度を測定することにより、膜ファウリングの進行をモニタリングすることができ、適切なタイミングで、かつ適切な頻度で膜間差圧の上昇を抑制する処理を施すことができる。これにより、膜ファウリングの進行を抑え、分離膜による被処理水の固液分離を長期間にわたって安定して行うことができるばかりでなく、煩雑である分離膜の薬液洗浄の頻度を抑えることもできる。   In the operation method of the membrane separation activated sludge treatment apparatus of the present invention described above, the progress of membrane fouling is monitored by measuring the turbidity or CODcr concentration of the filtrate or supernatant of the water to be treated. It is possible to perform a process for suppressing the increase in the transmembrane pressure difference at an appropriate timing and with an appropriate frequency. As a result, the progress of membrane fouling can be suppressed, and solid-liquid separation of water to be treated by the separation membrane can be stably performed over a long period of time, and also the frequency of complicated chemical cleaning of the separation membrane can be suppressed. it can.

本発明の膜分離活性汚泥処理装置の運転方法は、複数の生物反応槽を用いる場合、嫌気槽および無酸素槽を用いる場合、膜分離活性汚泥処理装置に流入する有機物負荷の変動が大きい場合、膜分離活性汚泥処理装置の水温が低い場合等、被処理水が固液分離しにくい性状になりやすい場合において、特に有効である。   The operation method of the membrane separation activated sludge treatment apparatus of the present invention is, when using a plurality of biological reaction tanks, when using an anaerobic tank and an anaerobic tank, when there is a large variation in organic matter load flowing into the membrane separation activated sludge treatment apparatus, This is particularly effective when the water to be treated tends to be difficult to separate into solid and liquid, such as when the water temperature of the membrane separation activated sludge treatment apparatus is low.

以下、実施例により本発明を具体的に説明する。
生活系排水を原水(被処理水)として図1に示す膜分離活性汚泥処理装置10を用いて、生活系排水の処理を行った。
分離膜12としては、公称孔径0.4μmのポリフッ化ビニリデン(PVDF)の精密ろ過膜(MF膜)を装着した中空糸膜エレメントを用いた。
Hereinafter, the present invention will be described specifically by way of examples.
Living system wastewater was treated using the membrane-separated activated sludge treatment apparatus 10 shown in FIG. 1 using the domestic wastewater as raw water (treated water).
As the separation membrane 12, a hollow fiber membrane element equipped with a microfiltration membrane (MF membrane) of polyvinylidene fluoride (PVDF) having a nominal pore diameter of 0.4 μm was used.

運転開始時の種汚泥としては、他の膜分離活性汚泥処理装置から採取した活性汚泥を用い、該活性汚泥を、被処理水のMLSS濃度が10,000mg/Lとなるように供給した。また、運転中の被処理水のMLSS濃度が10,000〜12,000mg/Lとなるように、適宜、活性汚泥の引き抜きを行った。
膜分離活性汚泥処理装置10のフラックスは、0.8m3 /m2 /dayに設定した。また、膜分離活性汚泥処理装置10における水理学的滞留時間は、5時間とした。
As seed sludge at the start of operation, activated sludge collected from another membrane separation activated sludge treatment apparatus was used, and the activated sludge was supplied so that the MLSS concentration of treated water became 10,000 mg / L. In addition, the activated sludge was appropriately extracted so that the MLSS concentration of the water to be treated during operation was 10,000 to 12,000 mg / L.
The flux of the membrane separation activated sludge treatment apparatus 10 was set to 0.8 m 3 / m 2 / day. The hydraulic residence time in the membrane separation activated sludge treatment apparatus 10 was 5 hours.

分離膜12の洗浄および生物分解に必要な酸素供給を兼ねて、分離膜12の下方に設置している散気管13から空気を供給した。空気量は、中空糸膜部の投影面積当たり100Nm3 /m2 /hr.とした。
膜ろ過は、吸引ポンプ14により7分間吸引した後に、1分間ろ過を停止させるサイクルにて実行した。
Air was supplied from an air diffuser 13 installed below the separation membrane 12 to supply oxygen necessary for cleaning and biodegradation of the separation membrane 12. The amount of air is 100 Nm 3 / m 2 / hr. Per projected area of the hollow fiber membrane part. It was.
Membrane filtration was performed in a cycle in which filtration was stopped for 1 minute after suction for 7 minutes by the suction pump 14.

〔比較例1〕
上記条件にて、膜分離活性汚泥処理装置10の運転を20℃から開始し、水温を徐々に低下させ、10℃で固定、被処理水の処理を行った。1〜2日に1回の頻度で、処理中に被処理水からサンプルを採取し、公称孔径1μmのろ紙(5種C、保留粒子径1μm)によりろ過してろ液を得た。また、サンプルを処理水で4倍に希釈した後に沈降性試験(30分静置)を行い、上澄み液を得た。ろ液および上澄み液の濁度およびCODcrを測定した。また、サンプルの採取時の膜間差圧を圧力計15から読み取った。結果を図2に示す。
運転開始から12日後にろ液のCODcrの値が40mg/Lを超え、15日後に、ろ液の濁度が3NTU、沈降性試験後の濁度が80NTU(20×4)、CODcrが32(8×4)をそれぞれ超え、その翌日には、膜間差圧が急激に上昇を始めた。また、運転開始から20日後に、差圧が18kPaを超えたため、運転を停止した。
[Comparative Example 1]
Under the above conditions, the operation of the membrane separation activated sludge treatment apparatus 10 was started at 20 ° C., the water temperature was gradually lowered, fixed at 10 ° C., and treated water was treated. A sample was collected from the water to be treated during the treatment once or twice a day, and filtered through a filter paper having a nominal pore diameter of 1 μm (5 types C, retained particle diameter of 1 μm) to obtain a filtrate. Moreover, after diluting the sample 4 times with treated water, a sedimentation test (standing for 30 minutes) was performed to obtain a supernatant. The turbidity and CODcr of the filtrate and supernatant were measured. Further, the transmembrane pressure difference at the time of sampling was read from the pressure gauge 15. The results are shown in FIG.
12 days after the start of operation, the value of CODcr of the filtrate exceeded 40 mg / L. After 15 days, the turbidity of the filtrate was 3 NTU, the turbidity after the sedimentation test was 80 NTU (20 × 4), and the CODcr was 32 ( On the next day, the transmembrane pressure difference started to increase rapidly. Moreover, since the differential pressure exceeded 18 kPa 20 days after the start of operation, the operation was stopped.

〔実施例1〕
比較例1における運転を停止した後、分離膜12の膜面を洗浄し、次の日から同じ条件で運転を再開し、被処理水の処理を行った。比較例1と同様にして、ろ液および上澄み液の濁度及びCODcrを測定し、また、サンプルの採取時の膜間差圧を圧力計15から読み取った。結果を図2に示す。
実験の運転開始から20日後に、ろ液の濁度が3NTUを超え、沈降性試験後の濁度が80NTU(20×4)、CODcrが32(8×4)をそれぞれ超えたため、各指標が規定値以下になるまで、塩化第二鉄を汚泥容量に対して20mg/L(鉄換算)およびカチオン系高分子凝集剤(ダイヤニトリックス社製、KP7000)を汚泥容量に対して50mg/L添加した。その後、各指標が規定ないように塩化第二鉄を原水に対して4mg/L(鉄換算)およびカチオン系高分子凝集剤(ダイヤニトリックス社製、KP7000)を原水に対して6mg/Lを連続的に添加した。
膜間差圧が急激に上昇することなく、長期間安定して被処理水の処理を行うことができた。
[Example 1]
After the operation in Comparative Example 1 was stopped, the membrane surface of the separation membrane 12 was washed, and the operation was restarted under the same conditions from the next day to treat the water to be treated. The turbidity and CODcr of the filtrate and supernatant were measured in the same manner as in Comparative Example 1, and the transmembrane pressure difference at the time of sample collection was read from the pressure gauge 15. The results are shown in FIG.
20 days after the start of the experiment, the turbidity of the filtrate exceeded 3 NTU, the turbidity after sedimentation test exceeded 80 NTU (20 × 4), and CODcr exceeded 32 (8 × 4). Until the specified value or less, ferric chloride was added to the sludge volume at 20 mg / L (iron conversion) and a cationic polymer flocculant (manufactured by Daianitrix, KP7000) was added at 50 mg / L to the sludge volume. Thereafter, ferric chloride is continuously added to raw water at 4 mg / L (iron conversion) and cationic polymer flocculant (manufactured by Daianitrix, KP7000) at 6 mg / L relative to raw water so that each index is not specified. Added to.
The treated water could be treated stably for a long period of time without a sudden increase in transmembrane pressure difference.

本発明の膜分離活性汚泥処理装置の運転方法は、凝集剤の添加量を必要最小限に抑えることができ、しかも分離膜の薬液洗浄の頻度も少なくなるため、低ランニングコストで被処理水の処理を行うことができ、経済的にとても有利である。   The operation method of the membrane separation activated sludge treatment apparatus of the present invention can suppress the addition amount of the flocculant to the minimum necessary, and also reduces the frequency of chemical cleaning of the separation membrane. It can be processed and is very economical.

膜分離活性汚泥装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of a membrane separation activated sludge apparatus. 実施例1および比較例1における、運転経過日数に対する膜間差圧、濁度およびCODcr濃度の変化を示すグラフである。6 is a graph showing changes in transmembrane pressure difference, turbidity, and CODcr concentration with respect to the number of days elapsed in operation in Example 1 and Comparative Example 1.

符号の説明Explanation of symbols

12 分離膜
12 Separation membrane

Claims (2)

分離膜によって被処理水の固液分離を行う膜分離活性汚泥処理装置の運転方法において、
処理中に採取した被処理水をろ紙によりろ過して得られたろ液の濁度が3NTU以上またはろ液のCODcr濃度が40mg/L以上となった際に、分離膜の被処理水側と透過水側との差圧の上昇を抑制する処理を施すことを特徴とする膜分離活性汚泥処理装置の運転方法。
In the operation method of a membrane separation activated sludge treatment apparatus that performs solid-liquid separation of water to be treated by a separation membrane,
When the turbidity of the filtrate obtained by filtering the treated water collected during the treatment with a filter paper is 3 NTU or more or the CODcr concentration of the filtrate is 40 mg / L or more, the separation membrane and the treated water side permeate. A method for operating a membrane-separated activated sludge treatment apparatus, characterized in that a treatment for suppressing an increase in differential pressure with respect to the water side is performed.
分離膜によって被処理水の固液分離を行う膜分離活性汚泥処理装置の運転方法において、
処理中に採取した被処理水を水でn倍に希釈した後に沈降性試験を行い、該試験で得られた上澄み液の濁度が(8×n)NTU以上または上澄み液のCODcr濃度が(20×n)mg/L以上となった際に、分離膜の被処理水側と透過水側との差圧の上昇を抑制する処理を施すことを特徴とする膜分離活性汚泥処理装置の運転方法。
In the operation method of a membrane separation activated sludge treatment apparatus that performs solid-liquid separation of water to be treated by a separation membrane,
The water to be treated collected during the treatment was diluted n-fold with water, and then the sedimentation test was conducted. The turbidity of the supernatant obtained in the test was (8 × n) NTU or more or the CODcr concentration of the supernatant was ( Operation of a membrane separation activated sludge treatment device characterized in that when 20 × n) mg / L or more is applied, a treatment for suppressing an increase in the differential pressure between the treated water side and the permeated water side of the separation membrane is performed. Method.
JP2005181715A 2005-06-22 2005-06-22 Method for operating membrane separation activated sludge treatment apparatus Pending JP2007000727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005181715A JP2007000727A (en) 2005-06-22 2005-06-22 Method for operating membrane separation activated sludge treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005181715A JP2007000727A (en) 2005-06-22 2005-06-22 Method for operating membrane separation activated sludge treatment apparatus

Publications (1)

Publication Number Publication Date
JP2007000727A true JP2007000727A (en) 2007-01-11

Family

ID=37686810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005181715A Pending JP2007000727A (en) 2005-06-22 2005-06-22 Method for operating membrane separation activated sludge treatment apparatus

Country Status (1)

Country Link
JP (1) JP2007000727A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100932903B1 (en) * 2007-10-01 2009-12-21 한국전자통신연구원 Conductive substrate structure with controlled nanorod density and method for manufacturing conductive substrate structure
JP2012501848A (en) * 2008-09-10 2012-01-26 ヨーロピアン・スペース・エージェンシー Equipment, toilet, livestock shed and method for treatment of urea-containing water
JP2012200631A (en) * 2011-03-24 2012-10-22 Kubota Corp Method for evaluating fouling of separation membrane and method for operating membrane separation equipment
JP2013202598A (en) * 2012-03-29 2013-10-07 Mitsubishi Rayon Co Ltd Water treatment method
WO2014112568A1 (en) * 2013-01-18 2014-07-24 株式会社 東芝 Membrane fouling diagnosis/control device, membrane fouling diagnosis/control method and membrane fouling diagnosis/control program
JP6264503B1 (en) * 2016-12-28 2018-01-24 株式会社明電舎 Membrane separation method and apparatus provided with particle sorting apparatus
KR101872329B1 (en) * 2016-07-07 2018-06-28 국민대학교산학협력단 Random number generator for supporting multi entropy pool
WO2018123092A1 (en) * 2016-12-28 2018-07-05 株式会社明電舎 Membrane separation method and device provided with particle sorting device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002191942A (en) * 2000-12-22 2002-07-10 Sumitomo Heavy Ind Ltd Method for waste water treatment
US20040188352A1 (en) * 2003-03-28 2004-09-30 Avijit Dey Apparatus and method for continuous electrodeionization
JP2005040787A (en) * 2003-07-04 2005-02-17 Toray Ind Inc Method and device for treating soluble organic matter-containing liquid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002191942A (en) * 2000-12-22 2002-07-10 Sumitomo Heavy Ind Ltd Method for waste water treatment
US20040188352A1 (en) * 2003-03-28 2004-09-30 Avijit Dey Apparatus and method for continuous electrodeionization
JP2005040787A (en) * 2003-07-04 2005-02-17 Toray Ind Inc Method and device for treating soluble organic matter-containing liquid

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100932903B1 (en) * 2007-10-01 2009-12-21 한국전자통신연구원 Conductive substrate structure with controlled nanorod density and method for manufacturing conductive substrate structure
JP2012501848A (en) * 2008-09-10 2012-01-26 ヨーロピアン・スペース・エージェンシー Equipment, toilet, livestock shed and method for treatment of urea-containing water
JP2012200631A (en) * 2011-03-24 2012-10-22 Kubota Corp Method for evaluating fouling of separation membrane and method for operating membrane separation equipment
JP2013202598A (en) * 2012-03-29 2013-10-07 Mitsubishi Rayon Co Ltd Water treatment method
WO2014112568A1 (en) * 2013-01-18 2014-07-24 株式会社 東芝 Membrane fouling diagnosis/control device, membrane fouling diagnosis/control method and membrane fouling diagnosis/control program
JP2014136210A (en) * 2013-01-18 2014-07-28 Toshiba Corp Film fouling diagnosis/control device, film fouling diagnosis/control method, and film fouling diagnosis/control program
KR101872329B1 (en) * 2016-07-07 2018-06-28 국민대학교산학협력단 Random number generator for supporting multi entropy pool
JP6264503B1 (en) * 2016-12-28 2018-01-24 株式会社明電舎 Membrane separation method and apparatus provided with particle sorting apparatus
WO2018123092A1 (en) * 2016-12-28 2018-07-05 株式会社明電舎 Membrane separation method and device provided with particle sorting device
US11097969B2 (en) 2016-12-28 2021-08-24 Meidensha Corporation Membrane separation method and device provided with particle sorting device

Similar Documents

Publication Publication Date Title
Trussell et al. The effect of organic loading on process performance and membrane fouling in a submerged membrane bioreactor treating municipal wastewater
Tewari et al. Membrane bioreactor (MBR) for wastewater treatment: Filtration performance evaluation of low cost polymeric and ceramic membranes
Huyskens et al. A new method for the evaluation of the reversible and irreversible fouling propensity of MBR mixed liquor
JP2007000727A (en) Method for operating membrane separation activated sludge treatment apparatus
JP2001327967A (en) Operating method and manufacturing method of membrane filtration plant
Kus et al. Gravity driven membrane filtration system to improve the water quality in rainwater tanks
JP5399065B2 (en) Wastewater treatment method
Kweon et al. Evaluation of coagulation and PAC adsorption pretreatments on membrane filtration for a surface water in Korea: A pilot study
EP3663266A1 (en) Water purifier and control method of the same
Leveille et al. PAC membrane bioreactor as an alternative to biological activated carbon filters for drinking water treatment
Huck et al. Pilot scale evaluation of biofiltration as an innovative pre-treatment for ultrafiltration membranes for drinking water treatment
JP2001276844A (en) Water producing method and water producing system
JP2000140585A (en) Operation of membrane separation apparatus, and membrane separation apparatus
WO2017159303A1 (en) Method for treating waste water having high hardness
JP2003080246A (en) Apparatus and method for treating water
JP2018008192A (en) Foulant quantification method
KR101522254B1 (en) Two stage membrane filtration system having flexible recovery ratio and operation method thereof
Gkotsis et al. Hydraulic performance and fouling characteristics of a membrane sequencing batch reactor (MSBR) for landfill leachate treatment under various operating conditions
JP4046661B2 (en) Wastewater treatment method
JP5772759B2 (en) Water treatment method and water treatment apparatus
JPH11169851A (en) Water filter and its operation
WO2021200752A1 (en) Method and program for determining cleaning trouble in fresh water generator
CA2682057C (en) Method for reducing fouling in microfiltration systems
Jang et al. Performance of ultrafiltration membrane process combined with coagulation/sedimentation
Abeynayaka et al. Long-term studies on hybrid ceramic microfiltration for treatment of surface water containing high dissolved organic matter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091124

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100803

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20101019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111018