JP6186944B2 - Papermaking wastewater treatment method - Google Patents

Papermaking wastewater treatment method Download PDF

Info

Publication number
JP6186944B2
JP6186944B2 JP2013135804A JP2013135804A JP6186944B2 JP 6186944 B2 JP6186944 B2 JP 6186944B2 JP 2013135804 A JP2013135804 A JP 2013135804A JP 2013135804 A JP2013135804 A JP 2013135804A JP 6186944 B2 JP6186944 B2 JP 6186944B2
Authority
JP
Japan
Prior art keywords
coagulant
structural unit
wastewater
organic
polymer flocculant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013135804A
Other languages
Japanese (ja)
Other versions
JP2014028365A (en
Inventor
佐藤 達哉
達哉 佐藤
國分 信孝
信孝 國分
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2013135804A priority Critical patent/JP6186944B2/en
Publication of JP2014028365A publication Critical patent/JP2014028365A/en
Application granted granted Critical
Publication of JP6186944B2 publication Critical patent/JP6186944B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Description

本発明は製紙排水の処理方法に関し、詳しくは、難分解性有機物を含む製紙排水の処理方法に関する。   The present invention relates to a method for treating papermaking wastewater, and more particularly, to a method for treating papermaking wastewater containing a hardly decomposable organic substance.

製紙排水処理において、高分子凝集剤を用いた化学処理によるCODの低減は、古紙のリサイクル化などにより近年困難となってきている。そのため、化学処理の前段処理として、沈降性の良い汚泥の維持管理が難しいとされてきた活性汚泥法に代わる生物処理方法として生物膜法があり、その中でも閉塞が起きないとされる担体流動床を併用した排水の処理方法が行われてきている。   In papermaking wastewater treatment, reduction of COD by chemical treatment using a polymer flocculant has become difficult in recent years due to recycling of waste paper. Therefore, as a pretreatment of chemical treatment, there is a biofilm method as an alternative to the activated sludge method, which has been considered difficult to maintain and maintain sludge with good sedimentation, among which the carrier fluidized bed that does not cause clogging Wastewater treatment methods have been used in combination.

担体流動床は、浄化に不可欠な微生物は担体表面に付着するため、返送汚泥の必要がない、高負荷運転が可能であるなどの特長をもつ。一方で、担体流動床での運転を続けると、対数増殖期にはバクテリアが増えることにより、得られる処理水は白濁し、担体から剥離流出する汚泥は沈降しにくい傾向にある(非特許文献1)。例えば、水性塗装排水の処理において、固定化担体を流動床に用い、担体処理後に得られた処理水を無機凝集剤とアニオン性高分子凝集剤を併用して処理することで、排水中の難分解性有機物を分離除去している(特許文献1)。しかし、処理水の白濁は改善されるものの不十分であり、CODも十分に低いとは言い難い。   The fluidized bed of the carrier has features such that microorganisms essential for purification adhere to the surface of the carrier, so that there is no need for return sludge and high load operation is possible. On the other hand, if the operation in the carrier fluidized bed is continued, the number of bacteria increases in the logarithmic growth phase, so that the treated water obtained becomes cloudy, and the sludge that separates and flows out from the carrier tends not to settle (Non-Patent Document 1). ). For example, in the treatment of aqueous paint wastewater, the use of an immobilized carrier for the fluidized bed, and treating the treated water obtained after the carrier treatment with an inorganic flocculant and an anionic polymer flocculant together, Decomposable organic substances are separated and removed (Patent Document 1). However, although the white turbidity of the treated water is improved, it is insufficient and the COD is not sufficiently low.

高濃度着色排水の処理において、脱色菌を固定化した担体を流動床に用い、担体処理後に得られた処理水を無機凝集剤と高分子凝集剤を併用して処理することで、高濃度汚濁排水を凝集し、着色成分及びSS分を排水から分離除去している(特許文献2)。得られた処理水の脱色に効果はあるものの、CODは十分に低いとは言い難い。更に、排水の担体流動処理及び無機凝集剤とカチオン系高分子凝集剤を併用して処理することで、排水中の窒素及びリンの除去処理が開示されている(特許文献3)。   In the treatment of high-concentration colored wastewater, a carrier with immobilized decolorizing bacteria is used for the fluidized bed, and the treated water obtained after the carrier treatment is treated with a combination of an inorganic flocculant and a polymer flocculant. The waste water is agglomerated, and the coloring component and SS are separated and removed from the waste water (Patent Document 2). Although effective in decoloring the obtained treated water, it is difficult to say that COD is sufficiently low. Furthermore, a treatment for removing nitrogen and phosphorus in the wastewater is disclosed (Patent Document 3) by treating the carrier with the wastewater and treating the inorganic flocculant and the cationic polymer flocculant in combination.

このように担体流動床と凝集剤の併用により、本来の課題である排水中のCODの低減、及び担体流動床を用いた処理で起きる処理水の白濁の改善には多少の効果が見られるが、まだいずれも十分とは言い難い。特に、製紙排水に対してはより高度な排水処理技術が望まれている。   As described above, the combined use of the carrier fluidized bed and the flocculant has some effects in reducing the COD in the wastewater, which is the original problem, and in improving the white turbidity of the treated water caused by the treatment using the carrier fluidized bed. Neither is still enough. In particular, more advanced wastewater treatment technology is desired for papermaking wastewater.

紙パ技協誌 第58巻第10号(2004年10月)p43〜48Paper pamphlet technical journal Vol.58 No.10 (October 2004) p43-48

特開2009−119406号公報JP 2009-119406 A 特開平10−277540号公報Japanese Patent Laid-Open No. 10-277540 特開2001−259683号公報JP 2001-259683 A

本発明は、上記実情に鑑みなされたものであり、その目的は、難分解性有機物を含む製紙排水の処理方法であって、製紙排水中のCODを大幅に低減することができ、更に、生物処理後の白濁した処理水の濁度を十分に低下させることができる、製紙排水の処理方法を提供することにある。   The present invention has been made in view of the above circumstances, and an object thereof is a method for treating papermaking wastewater containing a hardly decomposable organic substance, which can significantly reduce COD in papermaking wastewater, An object of the present invention is to provide a papermaking wastewater treatment method that can sufficiently reduce the turbidity of the treated water that has become cloudy after the treatment.

すなわち、本発明の要旨は、難分解性有機物を含む製紙排水の処理方法であって、先ず微生物を固定化した担体が添加された流動床式生物反応槽で前記排水を生物処理し、次いで生物処理により得られた処理水に凝結剤を添加混合し、その後前記凝結剤とは異なるカチオン性高分子凝集剤を添加混合することにより、前記難分解性有機物の凝集物を生成させ、得られた凝集物を固液分離することを特徴とする製紙排水の処理方法に存する。 That is, the gist of the present invention is a method for treating papermaking wastewater containing a hardly decomposable organic substance, wherein the wastewater is first biologically treated in a fluidized bed biological reaction tank to which a carrier having immobilized microorganisms is added, and then biologically treated. A coagulant was added to and mixed with the treated water obtained by the treatment, and then a cationic polymer flocculant different from the coagulant was added and mixed, thereby generating an aggregate of the hardly decomposable organic matter, and obtained. The present invention resides in a method for treating papermaking wastewater, which comprises solid-liquid separation of agglomerates.

本発明の製紙排水の処理方法によれば、微生物を固定化した担体が添加された流動床式生物反応槽で製紙排水の生物処理を行った後、凝結剤とカチオン性高分子凝集剤を添加混合することで、難分解性有機物を凝集して前記排水から固液分離により除去できる。これにより、製紙排水中のCODを大幅に低減することができる。更に、生物処理後の白濁した処理水の濁度を十分に低下させることができる。   According to the paper wastewater treatment method of the present invention, after a biological treatment of paper wastewater in a fluidized bed biological reaction tank to which a carrier immobilizing microorganisms is added, a coagulant and a cationic polymer flocculant are added. By mixing, the hardly decomposable organic substance can be aggregated and removed from the waste water by solid-liquid separation. Thereby, COD in papermaking waste water can be reduced significantly. Furthermore, the turbidity of the turbid treated water after biological treatment can be sufficiently reduced.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

<製紙排水>
本発明では、難分解性有機物を含む製紙排水を処理対象とする。斯かる製紙排水としては、例えば、古紙再生処理工程からの排水を含む製紙排水が挙げられる。
<Paper drainage>
In the present invention, paper wastewater containing persistent organic substances is treated. Examples of such papermaking wastewater include papermaking wastewater including wastewater from the used paper recycling process.

すなわち、一般的な製紙工場で古新聞紙等の一度使用した古紙を再生する製紙方法は、古紙パルプ工程、抄紙工程、仕上工程からなる。古紙パルプ工程では、パルパーにおいて原料である古紙を水に溶解し、機械的な力や薬品を利用して紙繊維以外の異物である金属やフィルム、粘着性樹脂、印刷インク(染料系、顔料系)、コピートナー等を分離除去し、漂白処理、脱水、乾燥して古紙パルプを得るが、粘着性樹脂、印刷インク(染料系、顔料系)、コピートナーは、難分解性有機物である。   That is, a papermaking method for recycling used paper such as used newspaper in a general papermaking factory includes a used paper pulp process, a paper making process, and a finishing process. In the waste paper pulp process, waste paper, which is the raw material in the pulper, is dissolved in water, and metal, film, adhesive resin, and printing ink (dye type, pigment type) that are foreign matters other than paper fibers using mechanical power and chemicals. ), Separating and removing copy toner and the like, and bleaching, dehydrating and drying to obtain waste paper pulp. Adhesive resin, printing ink (dye system, pigment system) and copy toner are hardly decomposable organic substances.

<生物処理>
先ず、本発明では微生物を固定化した担体が添加された流動床式生物反応槽で前記排水を生物処理する。この生物処理は、例えば、難分解性有機物を含む排水の処理方法として提案された前述の特許文献1に記載された方法に準じて行うことができる。
<Biological treatment>
First, in the present invention, the waste water is biologically treated in a fluidized bed type bioreactor to which a carrier on which microorganisms are immobilized is added. This biological treatment can be performed, for example, according to the method described in Patent Document 1 proposed as a method for treating wastewater containing hardly decomposable organic matter.

担体の形状としては、中空状のもの、凹凸状のもの、多孔質状等で単位体積当たりの表面積が大きいもの、水を吸収して膨潤するもの等が用いられ、特に、槽内で容易に流動するもの、表面積が大きく付着微生物量が多い担体が好ましい。また、担体の素材としては、従来公知の各種の有機・無機担体を用いることができ、例えば活性炭、ゼオライト、砂粒、樹脂、セラミックス、ポリエチレングリコール等の高分子含水ゲル等が挙げられ、これらは1種又は2種以上併用して用いることができる。   As the shape of the carrier, hollow ones, concave and convex ones, porous ones having a large surface area per unit volume, ones that absorb water and swell, etc. are used. A carrier that is fluid and has a large surface area and a large amount of attached microorganisms is preferred. As the carrier material, conventionally known various organic / inorganic carriers can be used. Examples thereof include activated carbon, zeolite, sand particles, resin, ceramics, and hydrous polymer gel such as polyethylene glycol. It can be used in combination of two or more species.

流動床式生物反応槽の底部にはブロアーに接続された散気管が配設され、ブロアーによって散気管にエアーが送気され、送気されたエアーは無数の気泡となって流動床式生物反応槽内に散気され、この気泡が上昇することによって担体が流動され、且つ、担体の微生物にエアーが供給される。流動床式生物反応槽内での生物処理により、粒子径1〜10μmの微細な微生物フロックが発生し、生物処理後の処理水(以下、「生物処理水」という。)にその粒子が含まれる。   An air diffuser connected to a blower is installed at the bottom of the fluidized bed biological reaction tank, and air is sent to the air diffuser by the blower. Air is diffused into the tank, and the bubbles are raised to flow the carrier, and air is supplied to the microorganisms of the carrier. By the biological treatment in the fluidized bed biological reaction tank, fine microbial flocs having a particle diameter of 1 to 10 μm are generated, and the treated water after biological treatment (hereinafter referred to as “biologically treated water”) contains the particles. .

<凝集処理>
次いで、本発明では、生物処理水に凝結剤を添加混合し、その後カチオン性高分子凝集剤を添加混合することにより、前記難分解性有機物(微生物フロック)の凝集物を生成させる。
<Aggregation treatment>
Next, in the present invention, a coagulant is added to and mixed with biologically treated water, and then a cationic polymer flocculant is added and mixed, thereby generating an aggregate of the hardly decomposable organic substance (microorganism floc).

凝結剤としては、無機凝結剤及び/又は有機凝結剤が挙げられる。   Examples of the coagulant include an inorganic coagulant and / or an organic coagulant.

無機凝結剤としては、例えば、硫酸アルミニウム、ポリ塩化アルミニウム、塩化第二鉄等を使用することができる。有機凝結剤としては、例えば、ポリアミン、ポリジアリルジメチルアンモニウムクロライド、ポリジアルキルアミノアルキルメタクリレートのアルキルクロライド4級塩、ポリ(ジアルキルアミノアルキルアクリレートのアルキルクロライド4級塩−アクリルアミド)、カチオン性界面活性剤、ポリアミジン等を使用することができる。有機凝結剤は、前記の無機凝結剤と同様の作用を有するものであり、後述のカチオン性高分子凝集剤とは別個のものである。凝結剤の後に添加するカチオン性高分子凝集剤との組み合わせの観点から、有機凝結剤としては、ポリジアルキルアミノアルキルメタクリレートのアルキルクロライド4級塩、及びポリアミジンが好ましい。ポリジメチルアミノエチルメタクリレートのメチルクロライド4級塩の重量平均分子量は、通常10万〜100万である。またポリアミジンの重量平均分子量は、通常1万〜50万であり、好ましくは5万〜20万である。   As the inorganic coagulant, for example, aluminum sulfate, polyaluminum chloride, ferric chloride and the like can be used. Examples of the organic coagulant include polyamine, polydiallyldimethylammonium chloride, alkyl chloride quaternary salt of polydialkylaminoalkyl methacrylate, poly (alkyl chloride quaternary salt of dialkylaminoalkyl acrylate-acrylamide), cationic surfactant, Polyamidine and the like can be used. The organic coagulant has the same action as the above-mentioned inorganic coagulant and is separate from the cationic polymer flocculant described later. From the viewpoint of combination with the cationic polymer flocculant added after the coagulant, the organic coagulant is preferably an alkyl chloride quaternary salt of polydialkylaminoalkyl methacrylate and polyamidine. The weight average molecular weight of the methyl chloride quaternary salt of polydimethylaminoethyl methacrylate is usually 100,000 to 1,000,000. The weight average molecular weight of polyamidine is usually 10,000 to 500,000, preferably 50,000 to 200,000.

カチオン性高分子凝集剤としては、特に制限はなく公知のものを使用することができる。例えば、ジメチルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリレート又はそれらの4級塩もしくは3級塩の単独重合物、あるいはそれらとアクリルアミド又はメタクリルアミドとの共重合物、ポリアクリルアミド又はポリメタクリルアミドのホフマン分解物、ポリアミジン等が挙げられる。   There is no restriction | limiting in particular as a cationic polymer flocculant, A well-known thing can be used. For example, dimethylaminoethyl (meth) acrylate, dimethylaminopropyl (meth) acrylate or a homopolymer of quaternary salt or tertiary salt thereof, or a copolymer thereof with acrylamide or methacrylamide, polyacrylamide or polymethacrylate Examples include Hoffman degradation products of amides and polyamidines.

本発明において、カチオン性高分子凝集剤として、特に、ジメチルアミノエチルアクリレート4級塩構造単位及びアクリルアミド構造単位を有する共重合体(X)、又は当該共重合体(X)と下記一般式(1)及び/又は(2)で表される構造単位を必須成分とする重合体(Y)の混合物が推奨される。更に、有機凝結剤として、下記一般式(1)及び/又は(2)で表される構造単位を必須成分とする重合体(Z)が推奨される。ここで「構造単位」とは、原料単量体に由来する基本単位または重合体の変性によって生成する基本単位のことをいう。   In the present invention, as the cationic polymer flocculant, in particular, a copolymer (X) having a dimethylaminoethyl acrylate quaternary salt structural unit and an acrylamide structural unit, or the copolymer (X) and the following general formula (1) ) And / or a mixture of the polymer (Y) having the structural unit represented by (2) as an essential component is recommended. Furthermore, as the organic coagulant, a polymer (Z) having a structural unit represented by the following general formula (1) and / or (2) as an essential component is recommended. Here, the “structural unit” refers to a basic unit derived from a raw material monomer or a basic unit generated by modification of a polymer.

Figure 0006186944
(ただし、一般式(1)、(2)中、R、Rは、それぞれ独立に水素原子又はメチル基であり、Xは陰イオンである。)
Figure 0006186944
(However, in general formula (1), (2), R < 1 >, R < 2 > is a hydrogen atom or a methyl group each independently, and X < - > is an anion.)

共重合体(X)において、ジメチルアミノエチルアクリレート4級塩の割合は、共重合体(X)の割合として通常20〜90モル%である。共重合体(X)は公知の製造方法によって容易に得ることができ、その分子量(重量平均分子量)は、通常200万〜2000万である。   In the copolymer (X), the proportion of the dimethylaminoethyl acrylate quaternary salt is usually 20 to 90 mol% as the proportion of the copolymer (X). The copolymer (X) can be easily obtained by a known production method, and the molecular weight (weight average molecular weight) is usually 2 million to 20 million.

重合体(Y)及び重合体(Z)は、アミジン系高分子と称され、例えば、N−ビニルホルムアミド及びアクリロニトリルを共重合し、合成した共重合体(アミジン系高分子前駆体)を塩酸酸性下、加水分解(及びその後の熱処理)により分子内側鎖の一級アミノ基とシアノ基が環化しアミジン環を形成することによって得られる。アミジン構造単位の割合は、全構造単位中の割合として、通常20〜90モル%であり、他の構造単位としては、ビニルアミド、アクリルアミド、アクリロニトリル、ビニルアミン、アクリル酸等が含まれる。重合体(Y)の分子量(重量平均分子量)は、通常100万〜500万、好ましくは200万〜500万である。   The polymer (Y) and the polymer (Z) are called amidine polymers. For example, N-vinylformamide and acrylonitrile are copolymerized, and the synthesized copolymer (amidine polymer precursor) is acidified with hydrochloric acid. Then, it is obtained by cyclization of the primary amino group and cyano group of the inner chain of the molecule by hydrolysis (and subsequent heat treatment) to form an amidine ring. The proportion of the amidine structural unit is usually 20 to 90 mol% as a proportion in the total structural units, and other structural units include vinylamide, acrylamide, acrylonitrile, vinylamine, acrylic acid and the like. The molecular weight (weight average molecular weight) of the polymer (Y) is usually 1 million to 5 million, preferably 2 million to 5 million.

凝結剤の使用量は、微生物フロックの濃度の他、質や性状により異なるために一概には言えず、上記の条件に対応した適切な添加量を添加することが好ましいが、通常、無機凝集剤の使用量は100〜10,000ppm、有機凝結剤の使用量は0.1〜100ppmである。有機凝結剤は、水に0.1〜1質量%の濃度で溶解させて使用される。凝結剤の使用方法は、無機凝結剤のみを使用しても良いし、有機凝結剤のみを使用しても良い。更に、無機凝結剤と有機凝結剤を併用して使用しても良い。尚、無機凝結剤を使用せず有機凝結剤のみを凝結剤として使用する場合には、最終的に処分する廃棄物量が減ると言った利点が挙げられる。カチオン性高分子凝集剤の使用量は通常0.1〜10ppmである。カチオン性高分子凝集剤は、水に0.05〜0.5質量%の濃度で溶解させて使用される。カチオン性高分子凝集剤として共重合体(X)と重合体(Y)の混合物を使用する場合、両者の比率は、通常1:0.5〜2質量比である。尚、凝結剤を添加した後のカチオン性高分子凝集剤を添加する前までの攪拌混合時間は、例えば30秒〜5分程度である。   The amount of coagulant used depends on the quality and properties in addition to the concentration of microbial flocs, so it cannot be said unconditionally. It is preferable to add an appropriate amount corresponding to the above conditions. Is used in an amount of 100 to 10,000 ppm, and the organic coagulant is used in an amount of 0.1 to 100 ppm. The organic coagulant is used by dissolving in water at a concentration of 0.1 to 1% by mass. As for the method of using the coagulant, only the inorganic coagulant may be used, or only the organic coagulant may be used. Further, an inorganic coagulant and an organic coagulant may be used in combination. In addition, when only an organic coagulant is used as a coagulant without using an inorganic coagulant, there is an advantage that the amount of waste to be finally disposed is reduced. The amount of the cationic polymer flocculant used is usually 0.1 to 10 ppm. The cationic polymer flocculant is used after being dissolved in water at a concentration of 0.05 to 0.5% by mass. When a mixture of copolymer (X) and polymer (Y) is used as the cationic polymer flocculant, the ratio between the two is usually 1: 0.5 to 2 mass ratio. The stirring and mixing time after adding the coagulant and before adding the cationic polymer flocculant is, for example, about 30 seconds to 5 minutes.

<固液分離>
次いで、本発明では、前記で得られた凝集物を固液分離する。固液分離は、例えば、沈殿処理、加圧浮上処理等を使用した常法によって行うことができる。
<Solid-liquid separation>
Next, in the present invention, the agglomerates obtained above are subjected to solid-liquid separation. Solid-liquid separation can be performed by a conventional method using, for example, a precipitation process, a pressure flotation process, or the like.

以下、本発明を実施例及び比較例によって更に詳細に説明するが、これらは本発明を何ら限定するものではない。尚、以下の実施例及び比較例においては、次の(1)〜(4)の項目の測定を行った。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, these do not limit this invention at all. In the following examples and comparative examples, the following items (1) to (4) were measured.

(1)フロック径:
凝集物のフロック径は、目視により凝集物個々の大きさ(n=10)を求めその平均値とした。
(2)沈降時間:
高分子凝集剤の所定量を添加し、所定時間攪拌混合した後に攪拌を停止する。そして、生成した凝集物が500mLのビーカーの底に沈降する迄の時間を測定した。
(3)上澄液濁度:
濁度は、JIS K 0101に基づき測定した。
(4)上澄液COD:
CODは、JIS K 0101に基づき測定した。
(1) Flock diameter:
The floc diameter of the agglomerates was obtained by visually determining the size (n = 10) of each agglomerate and taking the average value.
(2) Settling time:
A predetermined amount of the polymer flocculant is added, and after stirring for a predetermined time, stirring is stopped. And the time until the produced | generated aggregate settles to the bottom of a 500 mL beaker was measured.
(3) Supernatant turbidity:
Turbidity was measured based on JIS K 0101.
(4) Supernatant COD:
COD was measured based on JIS K 0101.

なお、項目(3)及び(4)は、フロック径、沈降時間を測定した後、2分間静置し、表面から3cmの深さより二次処理水を採取して測定した。   Items (3) and (4) were measured by measuring the floc diameter and settling time, and then allowing to stand for 2 minutes, and collecting the secondary treated water from a depth of 3 cm from the surface.

実施例1:
<生物処理>
3.5Lの生物処理装置に製紙排水(古紙再生処理工程からの排水)と表面が凸構造の円筒リング担体(円筒径10mm、長さ10mm、ポリプロピレン製)を見掛け体積で0.7L添加し、2L/minで曝気しながら、COD負荷量3.2kg−COD/m・日(滞留時間4時間)で生物処理を行った。用いた製紙排水及び処理後の一次処理水の水質を表1に示す。
Example 1:
<Biological treatment>
Add 0.7L in apparent volume of paper making wastewater (drainage from used paper recycling process) and cylindrical ring carrier with convex surface (cylindrical diameter 10mm, length 10mm, made of polypropylene) to 3.5L biological treatment equipment, The biological treatment was carried out at a COD load of 3.2 kg-COD / m 3 · day (residence time 4 hours) while aeration was performed at 2 L / min. Table 1 shows the paper wastewater used and the quality of the primary treated water after treatment.

Figure 0006186944
Figure 0006186944

<凝集処理>
上記の生物処理で得られた一次処理水300mLをビーカーに採取し、無機凝結剤であるポリ塩化アルミニウム(以下、「PAC」という。)300ppmを添加し、150rpmの回転数で1分間攪拌、混合した。次いで、カチオン性高分子凝集剤(A)4ppmを添加し、上記と同様に攪拌、混合した。有機凝結剤(A)として、カチオン性凝集剤(B)及びアニオン性高分子凝集剤(C)として、それぞれ表2及び表3に記載のものを使用した。そして、前記の各項目(1)〜(4)を測定し、その結果を表4及び表5に示す。
<Aggregation treatment>
300 mL of primary treated water obtained by the above biological treatment is collected in a beaker, 300 ppm of polyaluminum chloride (hereinafter referred to as “PAC”) as an inorganic coagulant is added, and the mixture is stirred and mixed for 1 minute at a rotation speed of 150 rpm. did. Subsequently, 4 ppm of the cationic polymer flocculant (A) was added and stirred and mixed in the same manner as described above. As the organic coagulant (A), those described in Table 2 and Table 3 were used as the cationic flocculant (B) and the anionic polymer flocculant (C), respectively. And each said item (1)-(4) was measured, and the result is shown in Table 4 and Table 5.

Figure 0006186944
DMC:ジメチルアミノエチルメタクリレート・塩化メチル4級塩構造単位
VAD:アミジン塩酸塩構造単位
NVF:N−ビニルホルムアミド構造単位
AN:アクリロニトリル構造単位
VAM:ビニルアミン塩酸塩構造単位
Figure 0006186944
DMC: Dimethylaminoethyl methacrylate / methyl chloride quaternary salt structural unit VAD: Amidine hydrochloride structural unit NVF: N-vinylformamide structural unit AN: Acrylonitrile structural unit VAM: Vinylamine hydrochloride structural unit

Figure 0006186944
DME:ジメチルアミノエチルアクリレート・塩化メチル4級塩構造単位
AAM:アクリルアミド構造単位
AA:アクリル酸構造単位
Figure 0006186944
DME: dimethylaminoethyl acrylate / methyl chloride quaternary salt structural unit AAM: acrylamide structural unit AA: acrylic acid structural unit

実施例2〜7及び比較例1〜5:
実施例1において、無機凝集剤及び高分子凝集剤の種類と添加量を表4に示すように変更したこと以外は、実施例1と同様に行った。尚、実施例4、5及び比較例4においては、2種類の高分子凝集剤を50:50(質量比)で混合した混合物として用いた。そして、前記の各項目(1)〜(4)を測定し、その結果を表4に示す。
Examples 2-7 and Comparative Examples 1-5:
In Example 1, it carried out like Example 1 except having changed the kind and addition amount of the inorganic flocculant and the polymer flocculant as shown in Table 4. In Examples 4 and 5 and Comparative Example 4, two types of polymer flocculants were used as a mixture obtained by mixing at 50:50 (mass ratio). And each said item (1)-(4) was measured, and the result is shown in Table 4.

Figure 0006186944
Figure 0006186944

表4に示すように、無機凝結剤とカチオン性高分子凝集剤を用いた実施例1〜7では、難分解性有機物が凝集した大きなフロック径を得ることができ、その結果沈降時間を短くすることができた。固液分離により得られた二次処理水中のCODを大幅に低減することができ、更に生物処理後の一次処理水の濁度を十分に低下させることができた結果、白濁も確認されなかった。特に、実施例1、4、7のカチオン性高分子凝集剤B1及びB1/B3を使用した場合は、それら効果を顕著に見出すことができた。
一方、無機凝結剤のみ或いはカチオン性高分子凝集剤のみ、更に無機凝結剤とアニオン性高分子凝集剤を用いた比較例1〜5では、難分解性有機物が凝集した大きなフロック径を得ることができず、その結果沈降時間は長時間を要した。沈降後の固液分離により得られた二次処理水中のCODを十分に低減することができなかった。更に生物処理後の一次処理水の濁度を十分に低下させることができなかった結果、白濁も完全になくなることはなかった。
As shown in Table 4, in Examples 1 to 7 using the inorganic coagulant and the cationic polymer flocculant, a large floc diameter in which the hardly decomposable organic substances are aggregated can be obtained, and as a result, the sedimentation time is shortened. I was able to. As a result of being able to significantly reduce COD in the secondary treated water obtained by solid-liquid separation and further sufficiently reducing the turbidity of the primary treated water after biological treatment, no cloudiness was confirmed. . In particular, when the cationic polymer flocculants B1 and B1 / B3 of Examples 1, 4, and 7 were used, these effects could be found remarkably.
On the other hand, in Comparative Examples 1 to 5 using only the inorganic coagulant or the cationic polymer coagulant, and further using the inorganic coagulant and the anionic polymer coagulant, it is possible to obtain a large floc diameter in which the hardly decomposable organic substances are aggregated. As a result, the sedimentation time required a long time. COD in the secondary treated water obtained by solid-liquid separation after sedimentation could not be reduced sufficiently. Furthermore, as a result of not being able to sufficiently reduce the turbidity of primary treated water after biological treatment, white turbidity was not completely eliminated.

実施例8〜18及び比較例6〜10:
実施例1において、表5に示すように無機凝結剤を有機凝結剤(A)に変更したこと以外は、実施例1と同様に行った。尚、実施例18及び比較例8においては、2種類の凝結剤を併用して、つまり無機凝結剤であるPAC、有機凝結剤であるA2をそれぞれ150ppm、1.5ppm添加した。そして、前記の各項目(1)〜(4)を測定し、その結果を表5に示す。
Examples 8-18 and Comparative Examples 6-10:
In Example 1, it carried out like Example 1 except having changed the inorganic coagulant into the organic coagulant (A) as shown in Table 5. In Example 18 and Comparative Example 8, two kinds of coagulants were used in combination, that is, PAC as an inorganic coagulant and A2 as an organic coagulant were added at 150 ppm and 1.5 ppm, respectively. And each said item (1)-(4) was measured, and the result is shown in Table 5.

Figure 0006186944
Figure 0006186944

表5に示すように、有機凝結剤とカチオン性高分子凝集剤を用いた実施例8〜17では、難分解性有機物が凝集した大きなフロック径を得ることができ、その結果沈降時間を短くすることができた。固液分離により得られた二次処理水中のCODを大幅に低減することができ、更に生物処理後の一次処理水の濁度を十分に低下させることができた結果、白濁も確認されなかった。特に、実施例8、11、13、16、18のカチオン性高分子凝集剤B1及びB1/B3を使用した場合は、それら効果を顕著に見出すことができた。
一方、有機凝結剤のみ或いは有機凝結剤とアニオン性高分子凝集剤を用いた比較例6〜9では、難分解性有機物が凝集した大きなフロック径を得ることができず、その結果沈降時間は長時間を要した。沈降後の固液分離により得られた二次処理水中のCODを十分に低減することができなかった。更に生物処理後の一次処理水の濁度を十分に低下させることができなかった結果、白濁も完全になくなることはなかった。
As shown in Table 5, in Examples 8 to 17 using an organic coagulant and a cationic polymer flocculant, a large floc diameter in which hardly decomposable organic substances are aggregated can be obtained, and as a result, the sedimentation time is shortened. I was able to. As a result of being able to significantly reduce COD in the secondary treated water obtained by solid-liquid separation and further sufficiently reducing the turbidity of the primary treated water after biological treatment, no cloudiness was confirmed. . In particular, when the cationic polymer flocculants B1 and B1 / B3 of Examples 8, 11, 13, 16, and 18 were used, these effects could be found remarkably.
On the other hand, in Comparative Examples 6 to 9 using only the organic coagulant or the organic coagulant and the anionic polymer flocculant, it is not possible to obtain a large floc diameter in which the hardly decomposable organic substances are aggregated. As a result, the sedimentation time is long. It took time. COD in the secondary treated water obtained by solid-liquid separation after sedimentation could not be reduced sufficiently. Furthermore, as a result of not being able to sufficiently reduce the turbidity of primary treated water after biological treatment, white turbidity was not completely eliminated.

Claims (4)

難分解性有機物を含む製紙排水の処理方法であって、先ず微生物を固定化した担体が添加された流動床式生物反応槽で前記排水を生物処理し、次いで生物処理により得られた処理水に凝結剤を添加混合し、その後前記凝結剤とは異なるカチオン性高分子凝集剤を添加混合することにより、前記難分解性有機物の凝集物を生成させ、得られた凝集物を固液分離することを特徴とする製紙排水の処理方法。 A method for treating papermaking wastewater containing persistent organic substances, wherein the wastewater is first biologically treated in a fluidized bed biological reaction tank to which a carrier immobilizing microorganisms is added, and then treated water obtained by biological treatment. Adding and mixing a coagulant, and then adding and mixing a cationic polymer flocculant different from the coagulant to form an aggregate of the hardly decomposable organic substance, and solid-liquid separation of the obtained aggregate A method for treating papermaking wastewater. 前記カチオン性高分子凝集剤が、ジメチルアミノエチルアクリレート4級塩構造単位及びアクリルアミド構造単位を有する共重合体(X)、又は当該共重合体(X)と下記一般式(1)及び/又は(2)で表される構造単位を必須成分とする重合体(Y)の混合物である請求項1記載の製紙排水の処理方法。
Figure 0006186944
(ただし、一般式(1)、(2)中、R、Rは、それぞれ独立に水素原子又はメチル基であり、Xは陰イオンである。)
The cationic polymer flocculant is a copolymer (X) having a dimethylaminoethyl acrylate quaternary salt structural unit and an acrylamide structural unit, or the copolymer (X) and the following general formula (1) and / or ( The paper wastewater treatment method according to claim 1, which is a mixture of a polymer (Y) having the structural unit represented by 2) as an essential component.
Figure 0006186944
(However, in general formula (1), (2), R < 1 >, R < 2 > is a hydrogen atom or a methyl group each independently, and X < - > is an anion.)
前記凝結剤が、無機凝結剤及び/又は有機凝結剤である請求項1記載の製紙排水の処理方法。   The papermaking wastewater treatment method according to claim 1, wherein the coagulant is an inorganic coagulant and / or an organic coagulant. 前記有機凝結剤が、上記一般式(1)及び/又は(2)で表される構造単位を必須成分とする重合体(Z)である請求項3記載の製紙排水の処理方法。   The method for treating paper wastewater according to claim 3, wherein the organic coagulant is a polymer (Z) having the structural unit represented by the general formula (1) and / or (2) as an essential component.
JP2013135804A 2012-07-02 2013-06-28 Papermaking wastewater treatment method Active JP6186944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013135804A JP6186944B2 (en) 2012-07-02 2013-06-28 Papermaking wastewater treatment method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012148295 2012-07-02
JP2012148295 2012-07-02
JP2013135804A JP6186944B2 (en) 2012-07-02 2013-06-28 Papermaking wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2014028365A JP2014028365A (en) 2014-02-13
JP6186944B2 true JP6186944B2 (en) 2017-08-30

Family

ID=50201359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013135804A Active JP6186944B2 (en) 2012-07-02 2013-06-28 Papermaking wastewater treatment method

Country Status (1)

Country Link
JP (1) JP6186944B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017073209A1 (en) * 2015-10-28 2017-05-04 三菱レイヨン株式会社 Method for treating organic waste water and composition for treating organic waste water
MX2021011033A (en) * 2019-03-12 2021-10-13 Kemira Oyj Methods and compositions for treating produced water.

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3314432B2 (en) * 1993-01-27 2002-08-12 ダイヤニトリックス株式会社 Sludge dewatering agent
JP3222247B2 (en) * 1993-02-12 2001-10-22 ハイモ株式会社 Sludge dewatering method
JP4910415B2 (en) * 2006-02-09 2012-04-04 栗田工業株式会社 Organic wastewater treatment method and apparatus
JP4937779B2 (en) * 2007-02-08 2012-05-23 ダイヤニトリックス株式会社 Method for dewatering organic sludge
JP5145823B2 (en) * 2007-08-31 2013-02-20 栗田工業株式会社 Organic flocculant and wastewater flocculation treatment method using the chemical
JP2011050946A (en) * 2009-08-05 2011-03-17 Daiyanitorikkusu Kk Method for removing coloring component
JP5700354B2 (en) * 2010-04-15 2015-04-15 三菱レイヨン株式会社 Sludge dewatering agent and sludge dewatering treatment method
JP5906672B2 (en) * 2011-11-01 2016-04-20 三菱レイヨン株式会社 Sludge dewatering agent and organic sludge dewatering method using the same

Also Published As

Publication number Publication date
JP2014028365A (en) 2014-02-13

Similar Documents

Publication Publication Date Title
Guo et al. Effect of different flocculants on short-term performance of submerged membrane bioreactor
JP6378342B2 (en) Organic wastewater treatment method
Zonoozi et al. Removal of acid red 398 dye from aqueous solutions by coagulation/flocculation process
JP4854432B2 (en) Sludge dewatering method
US20120217201A1 (en) Method for enhancing biological water treatment
HU228884B1 (en) Method of using water soluble polymers in a membrane biological reactor
NZ575166A (en) A method of improving membrane bioreactor performance
WO2013160429A1 (en) Method for a membrane bioreactor
CN108821473A (en) A kind of dyeing and printing sewage treatment process
Liu et al. Enhanced cross-flow filtration with flat-sheet ceramic membranes by titanium-based coagulation for membrane fouling control
JP5423256B2 (en) Sludge dewatering method and sludge dewatering device
JP6738492B2 (en) Water treatment method and water treatment device
JP6186944B2 (en) Papermaking wastewater treatment method
JP2018535093A (en) Improvement of phosphorus precipitation and membrane flux in membrane bioreactors
CN104974454B (en) A kind of flocculant and preparation method thereof
JP2008086848A (en) Apparatus and method for treating organic liquid waste
JP6073109B2 (en) Decolorization method of wastewater subjected to anaerobic biological treatment
JP6134940B2 (en) Coagulation treatment method for oil-containing cleaning wastewater
JP2015062901A (en) Method for removing colored component
JP4799888B2 (en) Treatment method of brewing wastewater
JP2004202401A (en) Method for treating sludge generated from livestock facility
JP2017131842A (en) Treatment method and treatment device for organic waste water
Kulkarni Coagulation for wastewater treatment: a review on investigations and studies
CN109626724A (en) A kind of textile waste treatment for reuse technique
JP2010207752A (en) Water treatment device and water treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170717

R151 Written notification of patent or utility model registration

Ref document number: 6186944

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250