JP2013063862A - Porous carbon base material and capacitor using the same - Google Patents

Porous carbon base material and capacitor using the same Download PDF

Info

Publication number
JP2013063862A
JP2013063862A JP2011201961A JP2011201961A JP2013063862A JP 2013063862 A JP2013063862 A JP 2013063862A JP 2011201961 A JP2011201961 A JP 2011201961A JP 2011201961 A JP2011201961 A JP 2011201961A JP 2013063862 A JP2013063862 A JP 2013063862A
Authority
JP
Japan
Prior art keywords
resin
porous carbon
base material
carbonized
paper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011201961A
Other languages
Japanese (ja)
Inventor
Nobuaki Oguri
延章 大栗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2011201961A priority Critical patent/JP2013063862A/en
Publication of JP2013063862A publication Critical patent/JP2013063862A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing an activated porous carbon base material derived from paper, wherein the surface of the base material has high smoothness and fibrous carbon derived from a raw material paper is not exposed to the surface, thereby preventing short circuit from occurring when used as a capacitor electrode.SOLUTION: The porous carbon base material can be obtained by carbonizing and activating the paper. Then a layer where only a resin that does not contain a fiber is carbonized and activated is formed on one surface of the porous carbon base material.

Description

この発明は、高い比表面積と電子伝導性を有する多孔質炭素基材、およびこれを用いた電気二重層キャパシタや、リチウムイオンキャパシタ等の電気化学素子に関する。   The present invention relates to a porous carbon substrate having a high specific surface area and electronic conductivity, and an electrochemical device such as an electric double layer capacitor and a lithium ion capacitor using the same.

電気二重層キャパシタやリチウムイオンキャパシタなどの電気化学素子の電極には、静電容量を確保するために比表面積が大きいことや、充放電時に電子を輸送するための電子伝導性、成型体としての構造を維持するための強度などの機能が要求される。   Electrodes of electrochemical elements such as electric double layer capacitors and lithium ion capacitors have a large specific surface area to ensure capacitance, electronic conductivity for transporting electrons during charge and discharge, Functions such as strength to maintain the structure are required.

従来のキャパシタの電極には、木材や樹脂を炭化したものを粉砕して得る炭素材を水蒸気やアルカリにより賦活することで、比表面積を1000〜3000m2/g程度に増大した活性炭、PTFE(ポリテトラフルオロエチレン)などのバインダー、および、導電性を補助するための炭素粉末を混練したペーストをシート状に成形したものが多く使われている。 For conventional capacitor electrodes, activated carbon, PTFE (polyethylene oxide) with a specific surface area increased to about 1000 to 3000 m 2 / g by activating a carbon material obtained by pulverizing wood or resin carbonized with water vapor or alkali. In many cases, a paste obtained by kneading a binder such as tetrafluoroethylene) and carbon powder for assisting conductivity is formed into a sheet shape.

一方、バインダーや導電補助剤は静電容量を発現しないため、これらの添加により電極質量あるいは体積あたりの静電容量が低下する。そこで、バインダーや導電補助剤の添加による静電容量低下を改善するため、フェノール樹脂を含浸した紙を積層したものを炭化したバルク状炭素基材を賦活することにより、比表面積を増加したものも使われている。   On the other hand, since the binder and the conductive auxiliary agent do not express the capacitance, the addition of these lowers the capacitance per electrode mass or volume. Therefore, in order to improve the decrease in capacitance due to the addition of binders and conductive additives, the specific surface area was increased by activating a bulk carbon substrate obtained by carbonizing a paper layer impregnated with a phenol resin. It is used.

このような電極材料を得る方法として、特許文献1には、セルロース質繊維と熱硬化性樹脂からなる組成物を炭化焼成後に粉砕してなるカーボン粉末をセルロース質繊維と共に抄紙したシートに、熱硬化性樹脂を含浸して硬化し、炭化焼成後、賦活処理することが記載されている。   As a method for obtaining such an electrode material, Patent Document 1 discloses that a sheet made of a carbon powder obtained by pulverizing a composition comprising cellulosic fibers and a thermosetting resin after carbonization and baking together with cellulosic fibers is thermoset. It is described that the resin is impregnated and cured, and activated after carbonization and baking.

また、特許文献2には、固相炭化する有機高分子繊維を抄紙したものに、フェノール樹脂液を含浸させた多孔質シートを焼成炭化して水蒸気賦活する、電極用多孔質活性炭素材の製造方法が記載されている。   Patent Document 2 discloses a method for producing a porous activated carbon material for an electrode, in which a paper made of organic polymer fibers to be solid-phase carbonized is fired and carbonized by firing a porous sheet impregnated with a phenol resin liquid. Is described.

さらに、特許文献3には、パルプ、レーヨンなどの原料を抄紙して得た平均気孔径50〜150μm、気孔率50%以上の抄造紙を積層して基材とし、これにフェノール樹脂等の熱硬化性樹脂を含浸して加熱硬化、焼成炭化した後、炭酸ガス雰囲気下で賦活化処理して、多孔質ガラス状カーボンシートを製造することが記載されている。   Further, Patent Document 3 discloses that a base paper is formed by laminating papermaking paper having an average pore diameter of 50 to 150 μm and a porosity of 50% or more obtained by papermaking raw materials such as pulp and rayon. It is described that a porous glassy carbon sheet is produced by impregnating a curable resin, heat-curing and baking carbonization, and then activation treatment in a carbon dioxide atmosphere.

また、図3に示すように、これらの多孔質炭素に電解液を含浸させてなる1対の分極性電極1でセパレータ2を挟持し、外部に電流を取り出すための集電板3および密閉するためのガスケット4で構成された構造の電気二重層キャパシタが知られている。   Further, as shown in FIG. 3, a separator 2 is sandwiched between a pair of polarizable electrodes 1 obtained by impregnating an electrolytic solution into these porous carbons, and a current collector plate 3 for taking out current to the outside and hermetically sealed. An electric double layer capacitor having a structure composed of a gasket 4 is known.

特開平11−340103JP 11-340103 A 特開2000−143225JP 2000-143225 A 特開2006−169058JP 2006-169058 A

上述した従来技術において、紙を炭化した多孔質炭素基材を賦活して得た電極基材は、活性炭粉末を混練したペーストをシート状に成形して作製した電極基材に比べ、基材表面の平滑度が低く、また、原料紙由来の繊維状炭素が電極表面に露出していた。それゆえ、この多孔質炭素基材を図3に示すようなキャパシタの電極1として用いた場合に、電極1のセパレータ2側の表面から突出した繊維状炭素がセパレータを貫通することによる短絡を生じやすいという課題があった。   In the prior art described above, the electrode base material obtained by activating the porous carbon base material obtained by carbonizing the paper has a base material surface compared to an electrode base material prepared by molding a paste kneaded with activated carbon powder into a sheet shape. And the fibrous carbon derived from the raw paper was exposed on the electrode surface. Therefore, when this porous carbon substrate is used as the electrode 1 of the capacitor as shown in FIG. 3, a short circuit occurs due to the fibrous carbon protruding from the surface of the electrode 1 on the separator 2 side penetrating the separator. There was a problem that it was easy.

そこで本発明では、表面粗さの小さい多孔質炭素基材、および、電極の短絡のおそれのないキャパシタを提供することを目的とする。   Therefore, an object of the present invention is to provide a porous carbon base material having a small surface roughness and a capacitor that does not cause a short circuit of electrodes.

上記課題を解決するために、本願発明の多孔質炭素基材は、繊維および樹脂を炭化し賦活した多孔質炭素基材の一方の主面に、繊維を含有しない樹脂を炭化し賦活してなる樹脂炭化層を有するものとした。   In order to solve the above-mentioned problems, the porous carbon substrate of the present invention is formed by carbonizing and activating a resin not containing fibers on one main surface of a porous carbon substrate obtained by carbonizing and activating fibers and a resin. The resin carbonized layer was used.

前記樹脂炭化層の表面の算術平均粗さは、2.0μm以下であることが好ましく、また、 前記樹脂炭化層の厚さは、1〜20μmであることが好ましい。
また上述の本発明に係る多孔質炭素基材を正極および負極の少なくとも一方に用いてキャパシタを構成し、前記多孔質炭素基材の樹脂炭化層側の主面をセパレータ側に対向配置したものとする。
The arithmetic average roughness of the surface of the resin carbonized layer is preferably 2.0 μm or less, and the thickness of the resin carbonized layer is preferably 1 to 20 μm.
Further, a capacitor is constituted by using the porous carbon base material according to the present invention as at least one of a positive electrode and a negative electrode, and the main surface of the porous carbon base material on the resin carbonized layer side is arranged opposite to the separator side; To do.

本発明により、バルク状の多孔質炭素基材の基材表面の粗さを低減することができ、これを電気二重層キャパシタやリチウムイオンキャパシタなどの電気化学素子の電極に用いることで、短絡を防ぐことができる。   According to the present invention, the roughness of the surface of the bulk porous carbon substrate can be reduced, and this can be used for an electrode of an electrochemical element such as an electric double layer capacitor or a lithium ion capacitor, thereby short-circuiting. Can be prevented.

本発明の実施例にかかる多孔質炭素基材の製造工程を示すフロー図。The flowchart which shows the manufacturing process of the porous carbon base material concerning the Example of this invention. 本発明に係る多孔質炭素基材の断面構造模式図。The cross-sectional structure schematic diagram of the porous carbon base material which concerns on this invention. 電気二重層キャパシタの断面構造模式図。The cross-section schematic diagram of an electric double layer capacitor.

本発明の実施形態に係る多孔質炭素基材について、図1に示す製造工程のフローおよび図2を参照しながら説明する。
まず、繊維を含有する紙の原料を水に分散し、抄紙用スラリーを調整する(S1)。原料に用いられる繊維材料としては、パルプやカーボンファイバー、カーボンナノチューブを用いる事ができるが、安価であること、繊維長が長い事からパルプ、特に針葉樹パルプが望ましい。
また、繊維間の導電性を補助するために、炭素粉末や黒鉛粉末を混合してもよい。
A porous carbon substrate according to an embodiment of the present invention will be described with reference to the manufacturing process flow shown in FIG. 1 and FIG.
First, a paper raw material containing fibers is dispersed in water to prepare a papermaking slurry (S1). As the fiber material used as the raw material, pulp, carbon fiber, and carbon nanotube can be used. However, pulp, particularly softwood pulp, is preferable because it is inexpensive and has a long fiber length.
Moreover, in order to assist the electrical conductivity between fibers, carbon powder or graphite powder may be mixed.

次に、抄紙用スラリーを抄紙機にて抄紙する(S2)。紙の厚さは、ハンドリング性の観点から0.1mm以上が好ましく、次の工程(S3)において紙の内部まで十分に樹脂を含浸するために、20mm以下に抄紙することが好ましい。   Next, the papermaking slurry is made with a papermaking machine (S2). The thickness of the paper is preferably 0.1 mm or more from the viewpoint of handling properties, and in order to sufficiently impregnate the resin to the inside of the paper in the next step (S3), it is preferable to make the paper to 20 mm or less.

抄紙により得られた紙に、樹脂を含浸する(S3)。含浸する樹脂としては、フェノール樹脂やエポキシ樹脂などの熱硬化性樹脂を用いる事ができるが、炭化後の残炭率が高いものが好ましく、フェノール樹脂が好適に用いられる。樹脂を含浸させた紙を熱風乾燥することにより、含浸樹脂を硬化し(S4)、樹脂含浸成型体を得る。   The paper obtained by papermaking is impregnated with resin (S3). As the resin to be impregnated, a thermosetting resin such as a phenol resin or an epoxy resin can be used. A resin having a high residual carbon ratio after carbonization is preferable, and a phenol resin is preferably used. The paper impregnated with the resin is dried with hot air to cure the impregnated resin (S4) to obtain a resin-impregnated molded body.

次に、この樹脂含浸成型体の一方の主面上に、樹脂溶液を塗布する(S5)。塗布する樹脂には、フェノール樹脂やエポキシ樹脂などの熱硬化性樹脂を用いる事ができるが、上記の含浸用の樹脂と同様に、フェノール樹脂が好ましい。   Next, a resin solution is applied on one main surface of the resin-impregnated molded body (S5). As the resin to be applied, a thermosetting resin such as a phenol resin or an epoxy resin can be used, and a phenol resin is preferable like the resin for impregnation described above.

また、樹脂溶液を塗布する以外の方法としては、高濃度の樹脂溶液中へ浸漬して引き上げる方法もあるが、例えばバーコーター等を用いて塗布する方法が簡便である。高密度で平滑な樹脂層を形成するため、塗布する樹脂の濃度は、高い方が好ましく、フェノール樹脂では50wt%以上が好ましい。   Further, as a method other than the application of the resin solution, there is a method of immersing it in a high concentration resin solution and pulling it up, but a method of applying using a bar coater or the like is simple. In order to form a high-density and smooth resin layer, the concentration of the resin to be applied is preferably higher, and 50 wt% or more is preferable for a phenol resin.

次に、樹脂含浸成型体の表面に塗布した樹脂溶液を熱風乾燥により半硬化状態とし、この状態で熱プレスして完全に硬化させることにより、樹脂含浸成型体の表面に平滑な樹脂層が形成される(S6)。   Next, the resin solution applied to the surface of the resin-impregnated molded body is made into a semi-cured state by hot air drying, and in this state, the resin solution is completely cured by hot pressing to form a smooth resin layer on the surface of the resin-impregnated molded body (S6).

このようにして樹脂層が形成された樹脂含浸成形体は、不活性雰囲気下600〜1100℃で焼成することにより炭化して炭素基材とする(S7)。炭化温度が高いほど電子抵抗が減少するが、高すぎると後段の賦活工程(S8)において賦活反応が遅くなるため、600℃〜1100℃が好ましい。   The resin-impregnated molded body thus formed with the resin layer is carbonized by firing at 600 to 1100 ° C. in an inert atmosphere to form a carbon substrate (S7). The higher the carbonization temperature, the lower the electronic resistance, but if it is too high, the activation reaction is delayed in the subsequent activation step (S8), so 600 ° C to 1100 ° C is preferable.

最後に炭素基材を賦活する(S8)。賦活方法はガス賦活、アルカリ賦活などがあるが、ガス賦活が簡便で良い。ガス種として水蒸気や二酸化炭素を用いることができる。800℃以上で数時間、賦活ガスを通流させた炉内で賦活処理をする事により、基材全体の比表面積が1000〜3000m/gの多孔質炭素基材が得られる。 Finally, the carbon substrate is activated (S8). The activation method includes gas activation and alkali activation, but gas activation may be simple. Water vapor or carbon dioxide can be used as the gas species. A porous carbon substrate having a specific surface area of 1000 to 3000 m 2 / g as a whole is obtained by performing an activation treatment in a furnace in which an activation gas is allowed to flow at 800 ° C. or more for several hours.

このようにして得られた図2に示す高比表面積の多孔質炭素基材5のうち、樹脂のみの層が炭化した樹脂炭化層6と、紙に樹脂を含浸させた成型体が炭化した樹脂含浸成型体炭化層7とでは、樹脂炭化層6の賦活反応速度の方が遅いため残炭率が高く、多孔質炭素基材5の樹脂炭化層6側の表面は高密度、かつ、平滑となる。   Of the porous carbon substrate 5 having a high specific surface area shown in FIG. 2 thus obtained, a resin carbonized layer 6 in which a resin-only layer is carbonized, and a resin in which a molded body obtained by impregnating a paper with a resin is carbonized. In the impregnated molded body carbonized layer 7, the activation reaction rate of the resin carbonized layer 6 is slower, so the residual carbon ratio is high, and the surface of the porous carbon substrate 5 on the resin carbonized layer 6 side is high in density and smooth. Become.

なお、本発明に係る多孔質炭素基材5を電気二重層キャパシタ電極として用いる場合、主として静電容量を発現する部位は紙由来の炭素質であるため、樹脂炭化層6の厚さは薄い方が静電容量の観点からは好ましいが、短絡防止の点も鑑み、1〜20μmとすることが好ましい。樹脂炭化層6の厚さは、樹脂含浸成型体の表面へ塗布する樹脂の量により制御でき、焼成(炭化)工程(S7)における収縮を考慮し、塗布樹脂硬化(S6)後の樹脂層の厚さを、2〜40μmにすることが好ましい。   When the porous carbon substrate 5 according to the present invention is used as an electric double layer capacitor electrode, the portion that expresses the capacitance is mainly carbon derived from paper, so the resin carbonized layer 6 is thinner. Is preferable from the viewpoint of capacitance, but it is preferably 1 to 20 μm in view of prevention of short circuit. The thickness of the resin carbonized layer 6 can be controlled by the amount of resin applied to the surface of the resin-impregnated molded body, and in consideration of the shrinkage in the firing (carbonization) step (S7), the resin layer after coating resin curing (S6) The thickness is preferably 2 to 40 μm.

このようにして、多孔質炭素基材5の一方の表面の算術平均粗さRaを、活性炭ペーストをシート状に形成した電極と同程度の2.0μm以下とすることができた。
以下、本発明の実施例について説明する。
In this way, the arithmetic average roughness Ra of one surface of the porous carbon base material 5 could be set to 2.0 μm or less, which is the same level as that of the electrode in which the activated carbon paste is formed in a sheet shape.
Examples of the present invention will be described below.

まず、針葉樹未晒クラフトパルプと、捲縮処理が施された炭素繊維(商品名「ドナカーボ・Sチョップ」ドナック社製)を、パルプ:炭素繊維=80:20(質量比)で混合し、水を加えてスラリー状の組成物とした。この組成物を抄紙機で抄紙して、厚さ2mmの紙材を得た。   First, unbleached kraft pulp of conifers and carbon fiber subjected to crimping treatment (trade name “Donna Carbo S-Chop” manufactured by Donac Co., Ltd.) are mixed with pulp: carbon fiber = 80: 20 (mass ratio), water Was added to obtain a slurry composition. The composition was made with a paper machine to obtain a paper material having a thickness of 2 mm.

次に、この紙材に、フェノール樹脂50wt%メタノール溶液を含浸させた。フェノール樹脂は、フェノール樹脂と紙材合計の質量に占める割合が、35wt%となるように含浸させた。これを120℃で20分間、熱風乾燥することにより、樹脂を硬化させて厚さ2mmの樹脂含浸成型体を得た。   Next, this paper material was impregnated with a phenol resin 50 wt% methanol solution. The phenol resin was impregnated so that the proportion of the total mass of the phenol resin and the paper material was 35 wt%. This was hot-air dried at 120 ° C. for 20 minutes to cure the resin and obtain a resin-impregnated molded body having a thickness of 2 mm.

次に、この樹脂含浸成型体の一方の表面に、フェノール樹脂50wt%メタノール溶液をバーコーターにより塗布し、60℃で10分乾燥して、半硬化状態とした後、120℃で熱プレスすることにより完全に硬化した。これにより、樹脂含浸成型体の表面に、厚さ30μmの樹脂層を作製した。   Next, a phenol resin 50 wt% methanol solution is applied to one surface of this resin-impregnated molded body with a bar coater, dried at 60 ° C. for 10 minutes to be semi-cured, and then hot-pressed at 120 ° C. Completely cured. Thereby, a resin layer having a thickness of 30 μm was formed on the surface of the resin-impregnated molded body.

次に、この樹脂含浸成型体を不活性ガス雰囲気下、900℃で2時間焼成することで、成型体を構成するパルプとフェノール樹脂を炭化すると共に、タールなどの余分な成分を除去した。これにより、炭素のみからなる多孔質炭素基材が得られた。得られた多孔質炭素基材は厚さ1.0mm、かさ密度は0.6g/ccであった。   Next, this resin-impregnated molded body was baked at 900 ° C. for 2 hours in an inert gas atmosphere to carbonize the pulp and phenol resin constituting the molded body and to remove extra components such as tar. Thereby, the porous carbon base material which consists only of carbon was obtained. The obtained porous carbon substrate had a thickness of 1.0 mm and a bulk density of 0.6 g / cc.

次に、得られた多孔質炭素基材6を1辺30mmの矩形に切り出し、炉の中に配置し、炉中に窒素ガスを導入して870℃まで昇温した。温度が安定した後、COガスに切り替えて、15時間賦活処理を行った。 Next, the obtained porous carbon base material 6 was cut into a rectangle having a side of 30 mm, placed in a furnace, and nitrogen gas was introduced into the furnace to raise the temperature to 870 ° C. After the temperature was stabilized, switch to CO 2 gas and subjected to 15 hours activation treatment.

これにより得られた高比表面積の多孔質炭素基材の比表面積をN−BETにより測定したところ2000m/gであった。厚さは0.9mmであった。また、この多孔質炭素基材の表面のうち、樹脂層を炭化した側の表面を表面粗さ計で測定したところ、算術平均粗さRaが1.1μmであった。 Thus the specific surface area of the porous carbon substrate having a high specific surface area obtained was 2000 m 2 / g as measured by N 2 BET. The thickness was 0.9 mm. Moreover, when the surface on the carbonized side of the surface of the porous carbon substrate was measured with a surface roughness meter, the arithmetic average roughness Ra was 1.1 μm.

比較例1Comparative Example 1

比表面積1500m/gの粉末状活性炭(商品名:「活力炭」 ユー・イー・エス社製)と、PTFEディスパージョン(商品名:「PTFE 31-JR」三井デュポンフロロケミカル製)とを質量比9:1(PTFEディスパージョンは固形分の質量)で混練し、シート状に成形後乾燥させた多孔質炭素基材を作製した。このシート状多孔質炭素基材の表面粗さを表面粗さ計で測定したところ、算術平均粗さRaは0.7μmであった。 Mass of powdered activated carbon with a specific surface area of 1500 m 2 / g (trade name: “Vital Coal” manufactured by UES) and PTFE dispersion (trade name: “PTFE 31-JR” manufactured by Mitsui DuPont Fluoro Chemical) A porous carbon substrate was prepared by kneading at a ratio of 9: 1 (PTFE dispersion is the mass of solid content), forming into a sheet and then drying. When the surface roughness of the sheet-like porous carbon substrate was measured with a surface roughness meter, the arithmetic average roughness Ra was 0.7 μm.

比較例2Comparative Example 2

紙に樹脂を含浸し、熱風乾燥により硬化させて樹脂含浸成型体を得る工程(S4)までを実施例1と同様に製作した。
これにより得られた厚さ3mmの樹脂含浸成型体について、表面にフェノール樹脂を塗布することなく、実施例と同様の条件で炭化、賦活処理を行って、多孔質炭素基材を得た。得られた多孔質炭素基材の比表面積をN−BETにより測定したところ2200m/gであった。厚さは0.9mmであった。基材の表面粗さを表面粗さ計で測定したところ、算術平均粗さRaは16.4μmであった。
A process up to a step (S4) of impregnating a resin into paper and curing it by hot air drying to obtain a resin-impregnated molded body was produced in the same manner as in Example 1.
The resin-impregnated molded body having a thickness of 3 mm thus obtained was subjected to carbonization and activation treatment under the same conditions as in the example without applying a phenol resin to the surface to obtain a porous carbon substrate. The specific surface area of the obtained porous carbon substrate was 2200 m 2 / g as measured by N 2 BET. The thickness was 0.9 mm. When the surface roughness of the substrate was measured with a surface roughness meter, the arithmetic average roughness Ra was 16.4 μm.

比較例3Comparative Example 3

比較例2で作製した多孔質炭素基材の表面を♯600サンドペーパーにより研磨した多孔質炭素基材を製作した。研磨後の多孔質炭素基材の表面粗さを表面粗さ計で測定したところ、算術平均粗さRaは7.7μmであった。
炭化前の成型体にフェノール樹脂層を設ける事が、賦活後の高比表面積多孔質炭素基材の表面を平滑に製造できる効果を確認した。
A porous carbon substrate was prepared by polishing the surface of the porous carbon substrate prepared in Comparative Example 2 with # 600 sandpaper. When the surface roughness of the porous carbon substrate after polishing was measured with a surface roughness meter, the arithmetic average roughness Ra was 7.7 μm.
It was confirmed that the provision of the phenol resin layer on the molded body before carbonization can smoothly produce the surface of the high specific surface area porous carbon substrate after activation.

上述のとおり、本発明の実施例の多孔質炭素基材の樹脂層を形成して炭化した表面の粗さは、樹脂層を形成しなかった場合(比較例1)や、また、その表面を研磨して平滑化した場合(比較例2)と比べて、大幅に表面を平滑化できることができた。   As described above, the roughness of the carbonized surface formed by forming the resin layer of the porous carbon base material of the example of the present invention is the case where the resin layer was not formed (Comparative Example 1) or the surface thereof. Compared with the case of polishing and smoothing (Comparative Example 2), the surface could be greatly smoothed.

次に、実施例および比較例1〜3で得られた各多孔質炭素基材を正極および負極に用いて、表1に示す構成の電気二重層キャパシタセルを作成した。多孔質炭素基材の表面のうち、樹脂層を形成して炭化した側の表面をセパレータ側に配置して、電解液を入れずに図3に示すセルを組み、短絡の有無を評価した。なお、短絡は、抵抗が100kΩ以上あった場合を「短絡無し」と判定した。実施例および比較例の各基材の算術平均粗さRaおよび短絡有無の評価結果を表2に示す。   Next, the electric double layer capacitor cell of the structure shown in Table 1 was created using each porous carbon base material obtained by the Example and Comparative Examples 1-3 for the positive electrode and the negative electrode. Of the surface of the porous carbon substrate, the surface of the carbonized side formed with the resin layer was disposed on the separator side, and the cell shown in FIG. In addition, the short circuit was determined as “no short circuit” when the resistance was 100 kΩ or more. Table 2 shows the results of evaluation of arithmetic average roughness Ra and short-circuit presence / absence of each substrate of Examples and Comparative Examples.

この結果より、本発明により、バルク状の多孔質炭素基材であっても、表面の算術平均粗さRaをシート状電極と同程度とすることができ、短絡のない電気二重層キャパシタ等の電気化学素子を製造できることが確認できた。   From this result, according to the present invention, even in the case of a bulk porous carbon substrate, the arithmetic average roughness Ra of the surface can be made the same level as that of the sheet-like electrode, such as an electric double layer capacitor without a short circuit. It was confirmed that an electrochemical device could be manufactured.

1 分極性電極
2 セパレータ
3 集電板
4 ガスケット
5 多孔質炭素基材
6 樹脂炭化層
7 樹脂含浸成型体炭化層
1 Polarized Electrode 2 Separator 3 Current Collector Plate 4 Gasket 5 Porous Carbon Base 6 Resin Carbonized Layer 7 Resin Impregnated Molded Body Carbonized Layer

Claims (4)

繊維および樹脂を炭化し賦活した多孔質炭素基材であって、当該多孔質炭素基材の一方の主面に、繊維を含有しない樹脂を炭化し賦活してなる樹脂炭化層を備えることを特徴とする多孔質炭素基材。   A porous carbon base material obtained by carbonizing and activating fibers and a resin, comprising a carbonized resin layer formed by carbonizing and activating a resin not containing fibers on one main surface of the porous carbon base material. A porous carbon substrate. 前記樹脂炭化層の表面の算術平均粗さが2.0μm以下であることを特徴とする請求項1に記載の多孔質炭素基材。   The porous carbon substrate according to claim 1, wherein the surface of the carbonized resin layer has an arithmetic average roughness of 2.0 μm or less. 前記樹脂炭化層の厚さが、1〜20μmであることを特徴とする請求項1または2に記載の多孔質炭素基材。   The porous carbon substrate according to claim 1, wherein the carbonized resin layer has a thickness of 1 to 20 μm. 請求項1〜3の何れかに記載の多孔質炭素基材を正極および負極の少なくとも一方に用いたキャパシタであって、前記多孔質炭素基材の樹脂炭化層側の主面をセパレータ側に配置したことを特徴とするキャパシタ。   A capacitor using the porous carbon substrate according to any one of claims 1 to 3 for at least one of a positive electrode and a negative electrode, wherein a main surface on the resin carbonized layer side of the porous carbon substrate is disposed on a separator side. Capacitor characterized by that.
JP2011201961A 2011-09-15 2011-09-15 Porous carbon base material and capacitor using the same Withdrawn JP2013063862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011201961A JP2013063862A (en) 2011-09-15 2011-09-15 Porous carbon base material and capacitor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011201961A JP2013063862A (en) 2011-09-15 2011-09-15 Porous carbon base material and capacitor using the same

Publications (1)

Publication Number Publication Date
JP2013063862A true JP2013063862A (en) 2013-04-11

Family

ID=48187746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011201961A Withdrawn JP2013063862A (en) 2011-09-15 2011-09-15 Porous carbon base material and capacitor using the same

Country Status (1)

Country Link
JP (1) JP2013063862A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109850894A (en) * 2019-03-20 2019-06-07 西安理工大学 A kind of method and application preparing porous carbon materials using useless corrugation paper fiber as raw material
CN114531853A (en) * 2019-10-08 2022-05-24 东丽株式会社 Fiber bundle, method for producing same, and purification column

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109850894A (en) * 2019-03-20 2019-06-07 西安理工大学 A kind of method and application preparing porous carbon materials using useless corrugation paper fiber as raw material
CN114531853A (en) * 2019-10-08 2022-05-24 东丽株式会社 Fiber bundle, method for producing same, and purification column
CN114531853B (en) * 2019-10-08 2024-03-19 东丽株式会社 Fiber bundle, method for producing same, and purifying column

Similar Documents

Publication Publication Date Title
CA3009605C (en) Gas diffusion electrode and method for manufacturing same
US11329293B2 (en) Gas diffusion electrode substrate and method for producing gas diffusion electrode substrate
US10651477B2 (en) Porous carbon electrode substrate, method of manufacturing same, gas diffusion layer, and membrane-electrode assembly for fuel cell
JP5433147B2 (en) Porous electrode substrate, method for producing the same, membrane-electrode assembly, and polymer electrolyte fuel cell
JP3356534B2 (en) Electrolyte holding plate and method for manufacturing the same
JP3332980B2 (en) Manufacturing method of polarizable electrode material
JP2013063862A (en) Porous carbon base material and capacitor using the same
JP2013043785A (en) Porous carbon substrate, and capacitor using the same
JPH11340103A (en) Manufacture of activated carbon material
JP3132098B2 (en) Manufacturing method of polarizable electrode material
JP2013239681A (en) Electrode and manufacturing method of the same
JP3159754B2 (en) Electric double layer capacitor
JP4785681B2 (en) ELECTROCHEMICAL ELEMENT AND ELECTRONIC DEVICE HAVING THE SAME
JP5260948B2 (en) Porous electrode substrate, method for producing the same, membrane-electrode assembly, and polymer electrolyte fuel cell
JPH0424850B2 (en)
JP2012041199A (en) Method for producing porous carbon material
JP2012158487A (en) Method for manufacturing porous activated carbon substrate, and capacitor
JP5433146B2 (en) Porous electrode substrate, method for producing the same, membrane-electrode assembly, and polymer electrolyte fuel cell
JP2009004136A (en) Porous base material for fuel cell
JP2010109189A (en) Electrode for electric double layer capacitor
JP2019149505A (en) Electric double layer capacitor and manufacturing method thereof
JP2006169058A (en) Method of manufacturing porous vitreous carbon sheet and polarizing electrode material for electric double layer capacitor comprising the sheet
JPH07115970B2 (en) Method for manufacturing porous carbon material
JPH05155672A (en) Porous carbon plate and its production
JPH07263020A (en) Alkaline secondary battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202