JP2013043785A - Porous carbon substrate, and capacitor using the same - Google Patents

Porous carbon substrate, and capacitor using the same Download PDF

Info

Publication number
JP2013043785A
JP2013043785A JP2011180374A JP2011180374A JP2013043785A JP 2013043785 A JP2013043785 A JP 2013043785A JP 2011180374 A JP2011180374 A JP 2011180374A JP 2011180374 A JP2011180374 A JP 2011180374A JP 2013043785 A JP2013043785 A JP 2013043785A
Authority
JP
Japan
Prior art keywords
paper
porous carbon
substrate
carbon substrate
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011180374A
Other languages
Japanese (ja)
Inventor
Nobuaki Oguri
延章 大栗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2011180374A priority Critical patent/JP2013043785A/en
Publication of JP2013043785A publication Critical patent/JP2013043785A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a porous carbon substrate having reduced resistance in the thickness direction, and to provide a capacitor using the same.SOLUTION: A fibrous carbide in this porous carbon substrate obtained by carbonizing and activating paper has a higher degree of orientation in the thickness direction of the substrate than that in the surface direction thereof.

Description

この発明は、高い比表面積と電子伝導性を有する多孔質炭素基材、およびこれを用いた電気二重層キャパシタや、リチウムイオンキャパシタ等のキャパシタに関する。   The present invention relates to a porous carbon substrate having a high specific surface area and electronic conductivity, and an electric double layer capacitor and a capacitor such as a lithium ion capacitor using the same.

電気二重層キャパシタやリチウムイオンキャパシタの電極には、静電容量を確保するために比表面積が大きいことや、充放電時に電子を輸送するための電子伝導性、成型体としての構造を維持するための強度などの機能が要求される。   Electrodes of electric double layer capacitors and lithium ion capacitors have a large specific surface area to ensure electrostatic capacity, electron conductivity for transporting electrons during charge / discharge, and a structure as a molded body Functions such as strength are required.

このような電極材料を得る方法として、特許文献1には、セルロース質繊維と熱硬化性樹脂からなる組成物を炭化焼成後に粉砕してなるカーボン粉末をセルロース質繊維と共に抄紙したシートに、熱硬化性樹脂を含浸して硬化し、炭化焼成後、賦活処理することが記載されている。   As a method for obtaining such an electrode material, Patent Document 1 discloses that a sheet made of a carbon powder obtained by pulverizing a composition comprising cellulosic fibers and a thermosetting resin after carbonization and baking together with cellulosic fibers is thermoset. It is described that the resin is impregnated and cured, and activated after carbonization and baking.

また、特許文献2には、固相炭化する有機高分子繊維を抄紙したものに、フェノール樹脂液を含浸させた多孔質シートを焼成炭化し、水蒸気賦活する電極用多孔質活性炭素材の製造方法が記載されている。   Patent Document 2 discloses a method for producing a porous activated carbon material for an electrode in which a paper sheet made of organic polymer fibers to be solid-phase carbonized is calcined and carbonized by impregnating a porous sheet impregnated with a phenol resin solution and activated with water vapor. Have been described.

さらに、特許文献3には、パルプ、レーヨンなどの原料を抄紙して得た平均気孔径50〜150μm、気孔率50%以上の抄造紙を積層して基材とし、これにフェノール樹脂等の熱硬化性樹脂を含浸して加熱硬化、焼成炭化した後、炭酸ガス雰囲気下で賦活化処理して、多孔質ガラス状カーボンシートを製造することが記載されている。   Further, Patent Document 3 discloses that a base paper is formed by laminating papermaking paper having an average pore diameter of 50 to 150 μm and a porosity of 50% or more obtained by papermaking raw materials such as pulp and rayon. It is described that a porous glassy carbon sheet is produced by impregnating a curable resin, heat-curing and baking carbonization, and then activation treatment in a carbon dioxide atmosphere.

特開平11−340103JP 11-340103 A 特開2000−143225JP 2000-143225 A 特開2006−169058JP 2006-169058 A

上記の従来技術により製造された多孔質炭素基材を用いて作製された電極は、活性炭の細孔構造が複雑であり、電極を厚くすると抵抗が増加することが課題であった。
そこで、本発明においては、電極の低抵抗化を実現し、かつ高比表面積の多孔質炭素基材を提供することを目的とする。
The electrode produced using the porous carbon substrate produced by the above-described conventional technique has a problem that the pore structure of the activated carbon is complicated and the resistance increases when the electrode is thickened.
Therefore, an object of the present invention is to provide a porous carbon base material that realizes low resistance of the electrode and has a high specific surface area.

上記課題を解決するために、本願発明の多孔質炭素基材は、紙を炭化、賦活して得られる多孔質炭素基材であって、当該基材中の繊維状炭化物が、基材の面方向よりも厚さ方向への配向度が高いものとする。これによれば、厚さ方向に配向した繊維状炭化物が、基材の厚さ方向への導電経路として機能するので、基材の厚さに起因する抵抗の増加を抑制することができる。   In order to solve the above problems, the porous carbon substrate of the present invention is a porous carbon substrate obtained by carbonizing and activating paper, and the fibrous carbide in the substrate is the surface of the substrate. The degree of orientation in the thickness direction is higher than the direction. According to this, since the fibrous carbide oriented in the thickness direction functions as a conductive path in the thickness direction of the substrate, an increase in resistance due to the thickness of the substrate can be suppressed.

また、樹脂を含浸した紙の積層体を、樹脂の硬化後に、積層方向に切断して薄板とし、これを炭化、賦活して多孔質炭素基材とすれば、容易に、基材中の繊維状炭化物が基材面方向よりも厚さ方向へ配向したものを得る事ができる。   Moreover, if the laminated body of paper impregnated with resin is cut in the laminating direction after curing of the resin to form a thin plate, and this is carbonized and activated to form a porous carbon substrate, the fibers in the substrate can be easily obtained. It can be obtained that the carbonized carbide is oriented in the thickness direction rather than the substrate surface direction.

また、前記多孔質炭素基材を製作する為の紙は、パルプおよび炭素繊維を抄紙することにより得られたものが好ましい。また、前記紙の積層体が、各紙の抄紙方向を同一方向に配置して積層され、抄紙方向に垂直な方向かつ積層方向に切断されたものとすれば、より、厚さ方向に繊維配向度の高い多孔質炭素基材が得られるので好ましい。   The paper for producing the porous carbon base material is preferably one obtained by making pulp and carbon fiber. Further, if the paper laminate is laminated with the paper making directions of the papers arranged in the same direction and cut in the direction perpendicular to the paper making direction and in the lamination direction, the fiber orientation degree in the thickness direction is further increased. This is preferable because a porous carbon substrate having a high thickness can be obtained.

さらに、上記の多孔質炭素基材をキャパシタの電極に用いることにより、電極抵抗が低減されたキャパシタを得る事ができる。   Furthermore, a capacitor with reduced electrode resistance can be obtained by using the porous carbon substrate as an electrode of a capacitor.

本発明の多孔質炭素基材は、厚さ方向の導電経路の迷宮度が改善され、これを電極に用いたキャパシタは、電極の厚さ寸法に伴い抵抗が増大することを抑制できる。   The porous carbon substrate of the present invention has improved labyrinth of the conductive path in the thickness direction, and a capacitor using this as an electrode can suppress an increase in resistance with the thickness dimension of the electrode.

本発明の実施例にかかる多孔質炭素基材の製造工程を示すフロー図。The flowchart which shows the manufacturing process of the porous carbon base material concerning the Example of this invention. 図1の製造過程における紙および基材の模式図。FIG. 2 is a schematic diagram of paper and a substrate in the manufacturing process of FIG. 本発明および比較例の多孔質炭素基材を電極に用いたセルの電極厚さと直流抵抗の関係図。The relationship figure of the electrode thickness and direct current resistance of the cell which used the porous carbon base material of this invention and the comparative example for the electrode.

本発明の実施形態に係る多孔質炭素基材について、図1に示す製造工程のフローを参照しながら説明する。
まず、繊維を含有する紙の原料を水に分散し、抄紙用スラリーを調整する(S1)。原料に用いられる繊維材料としては、パルプやカーボンファイバー、カーボンナノチューブを用いる事ができるが、安価であること、繊維長が長い事からパルプ、特に針葉樹パルプが望ましい。
また、繊維間の導電性を補助するために、炭素粉末や黒鉛粉末を混合してもよい。
A porous carbon substrate according to an embodiment of the present invention will be described with reference to the manufacturing process flow shown in FIG.
First, a paper raw material containing fibers is dispersed in water to prepare a papermaking slurry (S1). As the fiber material used as the raw material, pulp, carbon fiber, and carbon nanotube can be used. However, pulp, particularly softwood pulp, is preferable because it is inexpensive and has a long fiber length.
Moreover, in order to assist the electrical conductivity between fibers, carbon powder or graphite powder may be mixed.

次に、抄紙用スラリーを抄紙機にて抄紙する(S2)。本発明の多孔質炭素基材の製造に用いられる紙は、特定方向に繊維配向度が高いものを用いることがより好ましい。そこで、抄紙における繊維配向は、抄紙方向(抄紙機上の紙の進行方向)の方が、抄紙方向に垂直な方向(抄紙幅方向)よりも多く配向するが、さらに、従来公知の方法により、抄紙方向への繊維配向度を高めることが好ましい。   Next, the papermaking slurry is made with a papermaking machine (S2). The paper used for the production of the porous carbon substrate of the present invention is more preferably one having a high degree of fiber orientation in a specific direction. Therefore, the fiber orientation in papermaking is more oriented in the papermaking direction (the paper traveling direction on the papermaking machine) than in the direction perpendicular to the papermaking direction (papermaking width direction). It is preferable to increase the degree of fiber orientation in the papermaking direction.

繊維配向性の調整は、長網式やツインワイヤー等の公知の抄紙機を用い、パルプスラリーのジェット流速度(J)とワイヤー速度(W)の比(J/W)等を調整する方法や、特に、インレットにおける壁面抵抗により、パルプスラリーのジェット流の流れが抄紙方向に対して大きく傾き易いマシン端部のジェット流の流れを、スライス開度、ブリーダー開度又は再循環流量を調整することによって抄紙方向に整える等、特許第3925676号や特許第3228304号に記載された方法がある。   The fiber orientation is adjusted by using a known paper machine such as a long net type or twin wire, and adjusting the ratio (J / W) of the jet flow velocity (J) and the wire velocity (W) of the pulp slurry, In particular, adjusting the slice opening, bleeder opening, or recirculation flow rate of the jet flow at the end of the machine where the jet flow of the pulp slurry tends to be greatly inclined with respect to the papermaking direction due to wall resistance at the inlet There are methods described in Japanese Patent No. 3925676 and Japanese Patent No. 3228304.

紙の厚さは、ハンドリング性の観点から0.1mm以上が好ましく、次の工程(S3)において紙の内部まで十分に樹脂を含浸するために、20mm以下に抄紙することが好ましい。そして、抄紙された長尺の紙は、同一寸法に切断する。   The thickness of the paper is preferably 0.1 mm or more from the viewpoint of handling properties, and in order to sufficiently impregnate the resin to the inside of the paper in the next step (S3), it is preferable to make the paper to 20 mm or less. The long paper that has been made is cut into the same dimensions.

樹脂含浸工程(S3)で紙に含浸される樹脂としては、フェノール樹脂やエポキシ樹脂などの熱硬化性樹脂が用いられる。
次に、樹脂を含浸した紙を複数枚積層する(S4)。積層する際には、各紙の漉き目(抄紙方向)が同一方向を向くように配置して積層する。これにより、特定方向に繊維配向性の高い積層体を得る事ができる。また、積層体の積層方向の厚さは、目的とする多孔質炭素基材の一辺の長さ以上とする。これは、後工程で、積層体を積層方向に切り出して基材とするためである。
As the resin impregnated in the paper in the resin impregnation step (S3), a thermosetting resin such as a phenol resin or an epoxy resin is used.
Next, a plurality of papers impregnated with resin are laminated (S4). When laminating, the papers are arranged so that the perforations (paper making direction) of the papers face in the same direction. Thereby, a laminated body with high fiber orientation in a specific direction can be obtained. Moreover, the thickness in the stacking direction of the laminate is set to be equal to or longer than the length of one side of the target porous carbon substrate. This is because the laminated body is cut out in the laminating direction as a base material in a subsequent process.

次に、この積層体を熱風乾燥して、熱硬化性樹脂を硬化し、直方体の成形体とする(S5)。得られた成形体を、紙面の積層方向に、かつ、繊維の配向方向(抄紙方向)に垂直な方向に切り出し、厚さ0.1〜10mmの基材とする(S6)。   Next, this laminate is dried with hot air to cure the thermosetting resin, thereby forming a rectangular parallelepiped (S5). The obtained molded body is cut out in the direction of lamination on the paper surface and in the direction perpendicular to the fiber orientation direction (papermaking direction) to obtain a substrate having a thickness of 0.1 to 10 mm (S6).

この基材を不活性雰囲気下600〜1100℃で焼成し、炭化する(S7)。炭化温度が高いほど電子抵抗が減少するが、高すぎると後段の賦活工程(S8)において賦活反応が遅くなるため、600℃〜1100℃が好ましい。
最後に炭化した基材を賦活する(S8)。賦活方法はガス賦活、アルカリ賦活などがあるが、ガス賦活が簡便で良い。ガス種としてH2OやCO2がある。800℃以上で数時間、賦活ガスを通流させた炉内で賦活処理をする事により、高比表面積の多孔質炭素基材が得られる。
This substrate is fired at 600 to 1100 ° C. in an inert atmosphere and carbonized (S7). The higher the carbonization temperature, the lower the electronic resistance, but if it is too high, the activation reaction is delayed in the subsequent activation step (S8), so 600 ° C to 1100 ° C is preferable.
Finally, the carbonized substrate is activated (S8). The activation method includes gas activation and alkali activation, but gas activation may be simple. Gas species include H 2 O and CO 2 . A porous carbon substrate having a high specific surface area can be obtained by performing an activation treatment in a furnace in which an activation gas is allowed to flow at 800 ° C. or more for several hours.

以下、図2を参照しながら本発明の実施例について説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIG.

まず、針葉樹未晒クラフトパルプと、捲縮処理が施された炭素繊維(商品名「ドナカーボ・Sチョップ」ドナック社製)を、パルプ:炭素繊維=80:20(質量比)で混合し、水を加えてスラリー状の組成物とした。この組成物を抄紙機で抄紙して、抄紙方向に繊維1が配向した厚さ6mmの紙材2を得た。   First, unbleached kraft pulp of conifers and carbon fiber subjected to crimping treatment (trade name “Donna Carbo S-Chop” manufactured by Donac Co., Ltd.) are mixed with pulp: carbon fiber = 80: 20 (mass ratio), water Was added to obtain a slurry composition. This composition was subjected to paper making with a paper machine to obtain a paper material 2 having a thickness of 6 mm in which fibers 1 were oriented in the paper making direction.

次に、この紙を300mm×300mmの矩形に裁断した紙材に、フェノール樹脂を含浸させた。フェノール樹脂は、フェノール樹脂と紙材合計の質量に占める割合が、35wt%となるように含浸させた。   Next, a paper material obtained by cutting this paper into a rectangle of 300 mm × 300 mm was impregnated with a phenol resin. The phenol resin was impregnated so that the proportion of the total mass of the phenol resin and the paper material was 35 wt%.

フェノール樹脂3を含浸した紙材2は、漉き目(抄紙方向。図中Aで示す。)を同一方向に揃えて30枚積層した。この積層体を120℃で20分間、熱風乾燥することにより、樹脂を硬化させて厚さ180mmの直方体の成形体4を得た。   The paper material 2 impregnated with the phenol resin 3 was laminated with 30 perforations (paper making direction, indicated by A in the figure) in the same direction. The laminated body was dried with hot air at 120 ° C. for 20 minutes to cure the resin and obtain a rectangular parallelepiped molded body 4 having a thickness of 180 mm.

次に、成形体4を積層方向、かつ、紙の漉き目(抄紙方向)に垂直な方向(図中Bで示す)に弓のこで切断して基材5とし、サンドペーパーにより研磨して厚さ6mmに調整した。   Next, the molded body 4 is cut with a bow saw in the stacking direction and in a direction (indicated by B in the figure) perpendicular to the paper perforation (paper making direction) to form a base material 5 and polished with sandpaper. The thickness was adjusted to 6 mm.

この基材5を、不活性ガス雰囲気下、900℃で2時間焼成することで、基材5中のパルプとフェノール樹脂を炭化すると共に、タールなどの余分な成分を除去して、炭素のみからなる多孔質炭素基材6を得た。得られた多孔質炭素基材6は、厚さ3mm、かさ密度は0.6g/ccであった。   By firing this base material 5 at 900 ° C. for 2 hours in an inert gas atmosphere, the pulp and phenol resin in the base material 5 are carbonized, and extra components such as tar are removed, and only from carbon. A porous carbon substrate 6 was obtained. The obtained porous carbon substrate 6 had a thickness of 3 mm and a bulk density of 0.6 g / cc.

次に、得られた多孔質炭素基材6を1辺30mmの矩形に切り出し、炉の中に配置し、炉中に窒素ガスを導入して870℃まで昇温した。温度が安定した後、COガスに切り替えて、15時間賦活処理を行った。 Next, the obtained porous carbon base material 6 was cut into a rectangle with a side of 30 mm, placed in a furnace, and nitrogen gas was introduced into the furnace to raise the temperature to 870 ° C. After the temperature was stabilized, switch to CO 2 gas and subjected to 15 hours activation treatment.

これにより得られた高比表面積多孔質炭素基材の比表面積をN−BETにより測定したところ2200m2/gであった。この高比表面積多孔質炭素基材をサンドペーパーで削り、厚さを2.5mmに調整した。 Thus the specific surface area of the obtained high specific surface area porous carbon substrate was 2200 m 2 / g as measured by N 2 BET. This high specific surface area porous carbon substrate was shaved with sandpaper and the thickness was adjusted to 2.5 mm.

この高比表面積多孔質炭素基材を電極とする電気二重層キャパシタの特性を、表1に示す評価セルにて、表2に示す条件で交流インピーダンス測定を行なった。その結果、直流抵抗は13.6Ωであった。   The characteristics of the electric double layer capacitor using the high specific surface area porous carbon substrate as an electrode were subjected to AC impedance measurement in the evaluation cell shown in Table 1 under the conditions shown in Table 2. As a result, the direct current resistance was 13.6Ω.

比較例1Comparative Example 1

比較例1として樹脂の含浸工程(S3)までは実施例1と同様に作製して、厚さ6mmのフェノール樹脂含浸紙材を得た。
この1枚の紙材を積層せずに、実施例1と同じ条件で、乾燥硬化、炭化、賦活処理を行い、高比表面積の孔質炭素基材を作製した。得られた多孔質炭素基材の比表面積をN−BETにより測定したところ2200mm2/gであった。この基材をサンドペーパーで削り、厚さを2.5mmに調整した。
As Comparative Example 1, a resin resin-impregnated paper material having a thickness of 6 mm was obtained in the same manner as in Example 1 until the resin impregnation step (S3).
Without laminating this single sheet of paper, dry curing, carbonization, and activation treatment were performed under the same conditions as in Example 1 to prepare a porous carbon substrate having a high specific surface area. The specific surface area of the obtained porous carbon substrate was 2200 mm 2 / g as measured by N 2 BET. This base material was shaved with sandpaper, and the thickness was adjusted to 2.5 mm.

この多孔質炭素基材を電極とする電気二重層キャパシタの特性を、実施例と同条件で交流インピーダンス測定を行ったところ、56.1Ωであった。
上記の実施例および比較例の方法により、夫々、厚さ0.2〜2.5mmの複数の多孔質炭素基材を作製し、同様に交流インピーダンス測定を行った結果を図3に示す。
The characteristics of the electric double layer capacitor having the porous carbon substrate as an electrode were subjected to AC impedance measurement under the same conditions as in the example, and found to be 56.1Ω.
A plurality of porous carbon base materials each having a thickness of 0.2 to 2.5 mm are prepared by the methods of the above-described Examples and Comparative Examples, and the results of AC impedance measurement in the same manner are shown in FIG.

比較例に比べて、実施例の多孔質炭素基材を用いた場合においては、電極の厚さの増加に伴う直流抵抗の増加が抑制された。   Compared with the comparative example, in the case where the porous carbon substrate of the example was used, an increase in DC resistance accompanying an increase in the electrode thickness was suppressed.

1 繊維
2 紙材
3 フェノール樹脂
4 成形体
5 基材
6 多孔質炭素基材

DESCRIPTION OF SYMBOLS 1 Fiber 2 Paper material 3 Phenolic resin 4 Molded object 5 Base material 6 Porous carbon base material

Claims (5)

紙を炭化、賦活して得られる多孔質炭素基材であって、当該基材中の繊維状炭化物が、基材の面方向よりも厚さ方向への配向度が高いことを特徴とする多孔質炭素基材。   A porous carbon substrate obtained by carbonizing and activating paper, wherein the fibrous carbide in the substrate has a higher degree of orientation in the thickness direction than in the surface direction of the substrate. Carbonaceous substrate. 樹脂を含浸した紙の積層体を、樹脂の硬化後に、積層方向に切断して得た薄板を炭化、賦活したものであることを特徴とする請求項1に記載の多孔質炭素基材。   2. The porous carbon substrate according to claim 1, wherein a thin plate obtained by cutting a laminated body of paper impregnated with resin in the laminating direction after curing of the resin is carbonized and activated. 前記紙が、パルプおよび炭素繊維を抄紙したものであることを特徴とする請求項2に記載の多孔質炭素基材。   The porous carbon substrate according to claim 2, wherein the paper is a paper made of pulp and carbon fiber. 前記紙の積層体が、各紙の抄紙方向を同じ方向に配置して積層され、抄紙方向に垂直な方向かつ積層方向に切断されたものであることを特徴とする請求項2または3に記載の多孔質炭素基材。   4. The paper laminate according to claim 2, wherein the paper laminates are laminated with the paper making directions of the papers arranged in the same direction, and are cut in a direction perpendicular to the paper making direction and in the lamination direction. Porous carbon substrate. 請求項1〜4の何れかに記載の多孔質炭素基材を電極として備えることを特徴とするキャパシタ。   5. A capacitor comprising the porous carbon substrate according to claim 1 as an electrode.
JP2011180374A 2011-08-22 2011-08-22 Porous carbon substrate, and capacitor using the same Withdrawn JP2013043785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011180374A JP2013043785A (en) 2011-08-22 2011-08-22 Porous carbon substrate, and capacitor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011180374A JP2013043785A (en) 2011-08-22 2011-08-22 Porous carbon substrate, and capacitor using the same

Publications (1)

Publication Number Publication Date
JP2013043785A true JP2013043785A (en) 2013-03-04

Family

ID=48007969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011180374A Withdrawn JP2013043785A (en) 2011-08-22 2011-08-22 Porous carbon substrate, and capacitor using the same

Country Status (1)

Country Link
JP (1) JP2013043785A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015193941A (en) * 2014-03-31 2015-11-05 日本製紙株式会社 sheet-like carbon material
JP2020132488A (en) * 2019-02-21 2020-08-31 関西熱化学株式会社 Production method of activated carbon

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015193941A (en) * 2014-03-31 2015-11-05 日本製紙株式会社 sheet-like carbon material
JP2020132488A (en) * 2019-02-21 2020-08-31 関西熱化学株式会社 Production method of activated carbon
JP7175217B2 (en) 2019-02-21 2022-11-18 関西熱化学株式会社 Activated carbon manufacturing method

Similar Documents

Publication Publication Date Title
TWI708423B (en) Gas diffusion electrode and manufacturing method thereof
KR102169124B1 (en) Graphitized carbon substrate for gas diffusion layer and gas diffusion layer emplying the same
JP3521619B2 (en) Carbon fiber paper and porous carbon plate
JP3356534B2 (en) Electrolyte holding plate and method for manufacturing the same
JP6729373B2 (en) Porous carbon electrode substrate, method for producing the same, gas diffusion layer, and membrane-electrode assembly for fuel cell
JP5433147B2 (en) Porous electrode substrate, method for producing the same, membrane-electrode assembly, and polymer electrolyte fuel cell
CN108292757B (en) Carbon sheet, gas diffusion electrode substrate, and fuel cell
JPH09157052A (en) Porous carbon sheet and its production
KR20210015240A (en) Method for preparing graphite sheet
JP2013043785A (en) Porous carbon substrate, and capacitor using the same
JP3332980B2 (en) Manufacturing method of polarizable electrode material
JP6172131B2 (en) Porous carbon electrode substrate
JP2013063862A (en) Porous carbon base material and capacitor using the same
JP2003286085A (en) Porous carbon plate and manufacturing method thereof
KR102388815B1 (en) High density gas diffusion layer, preparing method thereof, electrode, membrane-electrode assembly, and fuel cell emplying the same
JPH11340103A (en) Manufacture of activated carbon material
JPH02184510A (en) Production of carbon plate
JP2009155193A (en) Porous carbon sheet and method for manufacturing the same, and membrane electrode fusion product using porous carbon sheet
JP2685365B2 (en) Manufacturing method of porous carbon plate
JP3132098B2 (en) Manufacturing method of polarizable electrode material
JP2013239681A (en) Electrode and manufacturing method of the same
JPH1081575A (en) Production of porous carbon material
JP2009076347A (en) Gas diffusion electrode substrate and its manufacturing method
JPH05155672A (en) Porous carbon plate and its production
JP3159754B2 (en) Electric double layer capacitor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104