JP2006169058A - Method of manufacturing porous vitreous carbon sheet and polarizing electrode material for electric double layer capacitor comprising the sheet - Google Patents

Method of manufacturing porous vitreous carbon sheet and polarizing electrode material for electric double layer capacitor comprising the sheet Download PDF

Info

Publication number
JP2006169058A
JP2006169058A JP2004365246A JP2004365246A JP2006169058A JP 2006169058 A JP2006169058 A JP 2006169058A JP 2004365246 A JP2004365246 A JP 2004365246A JP 2004365246 A JP2004365246 A JP 2004365246A JP 2006169058 A JP2006169058 A JP 2006169058A
Authority
JP
Japan
Prior art keywords
double layer
electric double
porous
sheet
layer capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004365246A
Other languages
Japanese (ja)
Inventor
Kazuo Yoshikawa
和男 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP2004365246A priority Critical patent/JP2006169058A/en
Publication of JP2006169058A publication Critical patent/JP2006169058A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a porous vitreous carbon sheet suitable as an electric double layer capacitor and a polarizing electrode material for the electric double layer capacitor using the porous vitreous carbon sheet. <P>SOLUTION: The method of manufacturing the porous vitreous carbon sheet is carried out by using a base material formed by laminating manufactured papers each having porous characteristics of 50-150 μm average pore diameter and ≥50% porosity, impregnating the base material with a thermosetting resin liquid prepared by dissolving a thermosetting resin having ≥40% residual carbon ratio and having 20-70 wt.% resin concentration in an organic solvent, hardening it by heating and applying a firing carbonization treatment and an activation treatment successively or simultaneously. The polarizing electrode material for the electric double layer capacitor uses the porous vitreous carbon sheet manufactured in this way and having the specified porous characteristics. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、多孔質ガラス状カーボンシートの製造方法、及び、該シートを用いた電気二重層キャパシタ用分極性電極材料に関する。   The present invention relates to a method for producing a porous glassy carbon sheet, and a polarizable electrode material for an electric double layer capacitor using the sheet.

電気二重層キャパシタは、分極性電極(固体)と電解液(液体)との界面に生じる電気二重層に蓄積された電気エネルギーを利用したコンデンサーであり、大きな静電容量を有し、大電流放電が可能であり、また充放電サイクル特性にも優れていることから、各種電気機器のバックアップ電源やハイブリッドカー、電気自動車のエンジン起動用電源などへの応用展開が進められている。   An electric double layer capacitor is a capacitor that uses electric energy stored in the electric double layer generated at the interface between a polarizable electrode (solid) and an electrolyte (liquid), has a large capacitance, and discharges a large current. In addition, because of its excellent charge / discharge cycle characteristics, it is being applied to backup power sources for various electric devices, hybrid cars, power sources for starting engines of electric vehicles, and the like.

この電気二重層キャパシタ用の分極性電極には静電容量が大きいこと、電気抵抗が小さいこと、耐食性に優れていること、などの材質性状が必要であり、比表面積が大きい活性炭や繊維状活性炭などの多孔質炭素材料が有用されている。   This polarizable electrode for electric double layer capacitors must have material properties such as high capacitance, low electrical resistance, and excellent corrosion resistance, and activated carbon and fibrous activated carbon with a large specific surface area. Such porous carbon materials are useful.

例えば、特許文献1には活性炭粉末とセルロース質繊維とフェノール樹脂とから主としてなるシートを硬化、焼成することを特徴とする分極性電極材の製造法が、特許文献2には活性炭粉末とセルロース質繊維及びポリアクリロニトリル系繊維を抄紙してシートとした後焼成することを特徴とする分極性電極の製造法が、開示されている。   For example, Patent Document 1 discloses a method for producing a polarizable electrode material characterized by curing and baking a sheet mainly composed of activated carbon powder, cellulosic fibers, and a phenol resin, and Patent Document 2 discloses activated carbon powder and cellulosic material. A method for producing a polarizable electrode is disclosed, wherein the fiber and polyacrylonitrile fiber are made into a sheet and then fired.

また、特許文献3には活性炭素材よりなる電極を両側に用いる電気二重層キャパシタにおいて、負極に用いる活性炭素材の比表面積が500〜1500m2 /g、正極に用いる活性炭素材の比表面積が1000〜2500m2 /g以下で、且つ負極に用いる活性炭素材の比表面積が正極に用いる活性炭素材の比表面積より小さいことを特徴とする電気二重層キャパシタが開示されている。 In Patent Document 3, in an electric double layer capacitor using electrodes made of activated carbon material on both sides, the specific surface area of the activated carbon material used for the negative electrode is 500-1500 m 2 / g, and the specific surface area of the activated carbon material used for the positive electrode is 1000-2500 m. There is disclosed an electric double layer capacitor characterized in that the specific surface area of the activated carbon material used for the negative electrode is less than 2 / g and the specific surface area of the activated carbon material used for the positive electrode is smaller.

特許文献4には繊維状活性炭、粉末活性炭およびバインダーよりなり、粉末活性炭含有量が50重量%以上、バインダーはポリオレフィンパルプを含み、これらの混合物を成形せしめた、比表面積700m2 /g以上、密度0.5g/cc以上、1.2g/cc以下である活性炭シートを電極とした電気二重層キャパシタが開示されている。 Patent Document 4 is composed of fibrous activated carbon, powdered activated carbon and a binder. The content of powdered activated carbon is 50% by weight or more, the binder contains polyolefin pulp, and a mixture of these is formed. The specific surface area is 700 m 2 / g or more. An electric double layer capacitor using an activated carbon sheet of 0.5 g / cc or more and 1.2 g / cc or less as an electrode is disclosed.

更に、特許文献5には分極性電極と電解液との界面で形成される電気二重層を利用した電気二重層キャパシタにおいて、上記分極性電極の主材料に、熱処理した活性炭を用いたことを特徴とする電気二重層キャパシタが開示されている。
特開平05−121271号公報 特開平05−258997号公報 特開平08−107047号公報 特開平08−119615号公報 特開2000−299259号公報
Further, Patent Document 5 is characterized in that, in an electric double layer capacitor using an electric double layer formed at the interface between the polarizable electrode and the electrolyte, heat-treated activated carbon is used as the main material of the polarizable electrode. An electric double layer capacitor is disclosed.
JP 05-121271 A Japanese Patent Laid-Open No. 05-258997 Japanese Patent Application Laid-Open No. 08-107047 Japanese Patent Laid-Open No. 08-119615 JP 2000-299259 A

このように、電気二重層キャパシタ用の電極材料には活性炭粉末、繊維状活性炭などの活性炭素材が好適に用いられているが、粉末状活性炭は取扱い難いので他の繊維成分によりシート化して使用されている。   As described above, activated carbon materials such as activated carbon powder and fibrous activated carbon are suitably used as electrode materials for electric double layer capacitors. However, powdered activated carbon is difficult to handle and used as a sheet with other fiber components. ing.

一般に、電気二重層キャパシタの静電容量の向上を図るためには、キャパシタモジュールとしての電極容積が限られている中で電極容積当たりの静電容量の大きいことが要望され、電極材料の嵩密度、比表面積などの増大が必要となる。   In general, in order to improve the capacitance of an electric double layer capacitor, it is required that the capacitance per electrode volume is large while the electrode volume as a capacitor module is limited. The specific surface area and the like need to be increased.

そこで、発明者は電気二重層キャパシタ用の電極材料として、活性炭を用いるのではなく炭素材を多孔質化することにより得られた多孔質活性炭素材を用いる方法について鋭意研究を行った結果、特定の気孔性状を有する抄造紙を所望形状に積層し、この積層体に熱硬化性樹脂を含浸して加熱硬化したのち、焼成炭化処理および賦活化処理して得た多孔質のガラス状カーボンシート成形体が電気二重層キャパシタ用の分極性電極材料として好適であることを見出した。   Therefore, as a result of earnest research on the method of using a porous activated carbon material obtained by making a carbon material porous instead of using activated carbon as an electrode material for an electric double layer capacitor, the inventor has found a specific result. A porous glassy carbon sheet molded article obtained by laminating papermaking paper having a porous property in a desired shape, impregnating a thermosetting resin into this laminate and heat-curing it, followed by firing carbonization treatment and activation treatment Has been found to be suitable as a polarizable electrode material for electric double layer capacitors.

すなわち、本発明はこの知見に基づいて完成したものであって、その目的は電気二重層キャパシタの大容量化、具体的には単位体積当たりの静電容量が25F/cm3 以上の高容量を有する電気二重層キャパシタ用分極性電極材料として好適な多孔質ガラス状カーボンシートの製造方法およびこの多孔質ガラス状カーボンシートを用いた電気二重層キャパシタを提供することにある。 That is, the present invention has been completed based on this finding, and its purpose is to increase the capacity of the electric double layer capacitor, specifically, to increase the capacitance per unit volume to 25 F / cm 3 or more. An object of the present invention is to provide a method for producing a porous glassy carbon sheet suitable as a polarizable electrode material for an electric double layer capacitor, and an electric double layer capacitor using the porous glassy carbon sheet.

上記目的を達成するための本発明の請求項1に係る多孔質ガラス状カーボンシートの製造方法は、平均気孔径50〜150μm、気孔率50%以上の気孔性状を有する抄造紙を積層して基材とし、該基材に残炭率40%以上の熱硬化性樹脂を有機溶媒に溶解した樹脂濃度20〜70wt%の熱硬化性樹脂液を含浸して加熱硬化し、次いで、非酸化性雰囲気下で加熱して焼成炭化処理した後、賦活化ガス雰囲気下600〜1500℃の温度に加熱して賦活化処理することを構成上の特徴とする。   In order to achieve the above object, a method for producing a porous glassy carbon sheet according to claim 1 of the present invention is based on laminating papermaking paper having an average pore diameter of 50 to 150 μm and a porosity of 50% or more. The material is impregnated with a thermosetting resin liquid having a resin concentration of 20 to 70 wt% in which a thermosetting resin having a residual carbon ratio of 40% or more is dissolved in an organic solvent, and then heat-cured, and then a non-oxidizing atmosphere It is structurally characterized in that after heating and baking carbonization treatment, the activation treatment is performed by heating to a temperature of 600 to 1500 ° C. in an activation gas atmosphere.

また、上記目的を達成するための本発明の請求項2に係る多孔質ガラス状カーボンシートの製造方法は、平均気孔径50〜150μm、気孔率50%以上の気孔性状を有する抄造紙を積層して基材とし、該基材に残炭率40%以上の熱硬化性樹脂を有機溶媒に溶解した樹脂濃度20〜70wt%の熱硬化性樹脂液を含浸して加熱硬化し、次いで、賦活化ガス雰囲気下600〜1500℃の温度に加熱して焼成炭化処理と賦活化処理を同時に施すことを構成上の特徴とする。   In order to achieve the above object, a method for producing a porous glassy carbon sheet according to claim 2 of the present invention comprises laminating papermaking paper having an average pore diameter of 50 to 150 μm and a porosity of 50% or more. Then, the substrate is impregnated with a thermosetting resin solution having a resin concentration of 20 to 70 wt% in which a thermosetting resin having a residual carbon ratio of 40% or more is dissolved in an organic solvent, heat-cured, and then activated. A structural feature is that the carbonization treatment and the activation treatment are simultaneously performed by heating to a temperature of 600 to 1500 ° C. in a gas atmosphere.

そして、本発明の請求項3に係る電気二重層キャパシタ用分極性電極材料は、上記の請求項1または請求項2の製造方法により製造された、平均細孔径2.0〜2.5nm、嵩密度0.55g/cm3 以上、比表面積800m2 /g以上、の多孔質ガラス状カーボンシートからなり、静電容量が25F/cm3 以上であることを構成上の特徴とする。 And the polarizable electrode material for electric double layer capacitors according to claim 3 of the present invention is produced by the production method of claim 1 or claim 2, and has an average pore diameter of 2.0 to 2.5 nm, bulk. It is composed of a porous glassy carbon sheet having a density of 0.55 g / cm 3 or more and a specific surface area of 800 m 2 / g or more, and has a structural feature that the capacitance is 25 F / cm 3 or more.

本発明によれば、特定の気孔性状を有する抄造紙を積層して基材とし、この基材に熱硬化性樹脂を含浸して加熱硬化したのち、焼成炭化処理および賦活化処理することにより、例えば電気二重層キャパシタ用に好適な多孔質ガラス状カーボンシートを製造することができる。更に、この多孔質ガラス状カーボンシートの多孔質性状を特定することにより、内部抵抗が小さく、単位体積当たりの静電容量が25F/cm3 以上の高容量を有する電気二重層キャパシタ用分極性電極材料が提供される。 According to the present invention, a papermaking paper having a specific pore property is laminated to form a base material, and after the base material is impregnated with a thermosetting resin and heat-cured, the carbonization treatment and the activation treatment are performed, For example, a porous glassy carbon sheet suitable for an electric double layer capacitor can be produced. Furthermore, by specifying the porous properties of this porous glassy carbon sheet, the polarizable electrode for electric double layer capacitors having a low internal resistance and a high capacitance per unit volume of 25 F / cm 3 or more Material is provided.

多孔質ガラス状カーボンシートを製造する際の基材となる抄造紙には、パルプ、レーヨン、ビニロンなどの原料を抄紙したものが使用され、好ましくはレーヨン級パルプやレーヨンが使用される。そして、平均気孔径50〜150μm、気孔率50%以上の気孔性状を有する抄造紙を積層して基材とする。   As the papermaking paper used as the base material for producing the porous glassy carbon sheet, paper made from raw materials such as pulp, rayon and vinylon is used, preferably rayon grade pulp or rayon. And the papermaking paper which has the porosity of 50 to 150 micrometers of average pore diameters and a porosity of 50% or more is laminated | stacked, and it is set as a base material.

抄造紙の気孔性状を平均気孔径が50〜150μm、気孔率が50%以上に特定するのは、平均気孔径が50μm、気孔率が50%を下回る場合には、基材に熱硬化性樹脂液を含浸する際に気孔の閉塞を起こし易く、均一に含浸することが困難なためである。更に、賦活化処理時に賦活化ガスの均一な拡散が阻害されるため均一に賦活化することが困難となり、ガラス状カーボンシートの多孔質性状が不均一化するためである。一方、平均気孔径が150μmを越えると強度低下が著しくなる。なお、気孔率は80%以下であることが好ましい。   The porosity of the papermaking paper is specified as an average pore diameter of 50 to 150 μm and a porosity of 50% or more. When the average pore diameter is 50 μm and the porosity is less than 50%, the base material is a thermosetting resin. This is because pores are easily clogged when the liquid is impregnated, and it is difficult to impregnate uniformly. Further, since uniform diffusion of the activation gas is inhibited during the activation process, it is difficult to activate the gas uniformly, and the porous property of the glassy carbon sheet becomes non-uniform. On the other hand, when the average pore diameter exceeds 150 μm, the strength decreases remarkably. The porosity is preferably 80% or less.

なお、抄造紙の気孔性状は抄紙原料の太さ、長さを変えることにより調整され、例えば太さ3.3〜11デシテックス、長さ5〜10mm程度の単一性状を有するレーヨンパルプ60〜90重量部と針葉樹パルプ40〜10重量部を混合抄紙する方法、あるいは、α−セルロースを主成分とする有機質物60〜90重量部、水溶性抄紙バインダー40〜10重量部に、水不溶性でかつ熱揮散性のバインダーを添加して混合抄紙する方法などにより調整される。   The pore property of the papermaking paper is adjusted by changing the thickness and length of the papermaking raw material. For example, rayon pulp 60 to 90 having a single property of 3.3 to 11 decitex in thickness and about 5 to 10 mm in length. A method of making paper by mixing 40 parts by weight and 40 to 10 parts by weight of softwood pulp, or 60 to 90 parts by weight of an organic material mainly composed of α-cellulose, and 40 to 10 parts by weight of a water-soluble papermaking binder. It is adjusted by the method of adding mixed volatile binder and making paper.

このような気孔性状を有する抄造紙を所望の厚さに積層し、必要により圧縮処理を施してシート状の基材とする。なお、抄造紙は積層前に予め50〜110℃程度の温度に加熱して含有する水分の除去と表面改質を行っておくと、樹脂液の含浸時に樹脂液との濡れ性が改善されるので好ましい。   The papermaking paper having such a porous property is laminated to a desired thickness, and if necessary, a compression treatment is performed to obtain a sheet-like substrate. In addition, the papermaking paper is heated to a temperature of about 50 to 110 ° C. in advance before lamination to remove the contained water and modify the surface, so that the wettability with the resin liquid is improved when the resin liquid is impregnated. Therefore, it is preferable.

この基材に残炭率40%以上の熱硬化性樹脂を有機溶媒に溶解した樹脂濃度20〜70wt%の熱硬化性樹脂液を含浸して加熱硬化する。なお、残炭率とは、樹脂を非酸化性雰囲気中で1000℃の温度で熱処理した時に残留する炭素分の重量割合を指し、これが40%未満の場合には生産性が低くなり、実用的でなくなる。このような熱硬化性樹脂としては、例えばフェノール樹脂、フラン樹脂、ポリイミド樹脂、尿素樹脂、メラミン樹脂、不飽和ポリエステル樹脂などが例示される。   This base material is impregnated with a thermosetting resin solution having a resin concentration of 20 to 70 wt% in which a thermosetting resin having a residual carbon ratio of 40% or more is dissolved in an organic solvent, and is cured by heating. The residual carbon ratio refers to the weight percentage of carbon remaining when the resin is heat-treated at 1000 ° C. in a non-oxidizing atmosphere. Not. Examples of such thermosetting resins include phenol resins, furan resins, polyimide resins, urea resins, melamine resins, and unsaturated polyester resins.

これらの熱硬化性樹脂はアルコール、アセトンのような常用の有機溶媒に溶解して熱硬化性樹脂液を調製して基材に含浸する。この場合、熱硬化性樹脂液の樹脂濃度を20〜70wt%に設定する。樹脂濃度が20wt%未満では熱硬化性樹脂の含浸量が少なくなりガラス状カーボンの収量が低下し、また強度特性の減退を招くことになる。一方、70wt%を越えると基材の気孔中への含浸を円滑に行うことができず、気孔の閉塞が起こり易くなり、賦活化処理時に賦活化ガスの均一な拡散が阻害されて均一に賦活化することができなくなる。なお、基材への熱硬化性樹脂液の含浸は浸漬、塗布など適宜な方法で行われる。   These thermosetting resins are dissolved in a common organic solvent such as alcohol and acetone to prepare a thermosetting resin solution and impregnated on the substrate. In this case, the resin concentration of the thermosetting resin liquid is set to 20 to 70 wt%. When the resin concentration is less than 20 wt%, the amount of impregnation of the thermosetting resin is reduced, the yield of glassy carbon is lowered, and strength characteristics are reduced. On the other hand, if it exceeds 70 wt%, the pores of the substrate cannot be smoothly impregnated, and the pores are likely to be clogged. Cannot be converted. In addition, the impregnation of the thermosetting resin liquid into the substrate is performed by an appropriate method such as dipping or coating.

基材に含浸した熱硬化性樹脂液は、加熱して有機溶媒を除去するとともに樹脂分を硬化させる。加熱硬化処理はゆっくりと昇温して、例えば6時間で140℃程度の温度に加熱昇温することで行うことが好ましい。このようにして基材の気孔中には硬化樹脂が充填されたシート状の成形体が得られる。   The thermosetting resin liquid impregnated in the substrate is heated to remove the organic solvent and harden the resin component. The heat curing treatment is preferably performed by slowly raising the temperature, for example, by heating to a temperature of about 140 ° C. in 6 hours. In this way, a sheet-like molded body filled with the cured resin is obtained in the pores of the base material.

本発明の請求項1に係る多孔質ガラス状カーボンシートの製造方法は、この加熱硬化した成形体を窒素、アルゴンなどの非酸化性雰囲気下で加熱して焼成炭化処理する。この焼成炭化処理により樹脂成分はガラス状カーボンに転化するとともに、基材の紙成分の一部は揮散し、一部は繊維状炭化物として残留し、全体としてある程度の多孔性状を示す成形体が得られる。すなわち、この成形体において、抄造紙の一部から転化残留した繊維状炭化物は成形体の骨格として機能し、多孔性状でありながら十分な強度の成形体とすることができる。   In the method for producing a porous glassy carbon sheet according to claim 1 of the present invention, the heat-cured molded body is heated and calcined in a non-oxidizing atmosphere such as nitrogen or argon. By this calcination carbonization, the resin component is converted to glassy carbon, part of the paper component of the base material is volatilized, and part of it remains as a fibrous carbide, giving a molded body showing a certain degree of porosity as a whole. It is done. That is, in this molded body, the fibrous carbides converted and remained from a part of the papermaking paper function as a skeleton of the molded body, and can be made into a molded body having sufficient strength while being porous.

次いで、焼成炭化処理された成形体は、水蒸気、炭酸ガスなどの賦活化ガス雰囲気中で熱処理して賦活化処理することにより成形体の組織の多孔質化を図ることができ、賦活化処理する温度を600〜1500℃の温度域に設定する。このようにして、多孔質ガラス状カーボンシートを製造することができる。   Next, the fired carbonized molded body can be activated by heat treatment in an activation gas atmosphere such as water vapor or carbon dioxide gas, whereby the structure of the molded body can be made porous. The temperature is set to a temperature range of 600 to 1500 ° C. In this way, a porous glassy carbon sheet can be produced.

本発明の請求項2に係る多孔質ガラス状カーボンシートの製造方法は、基材に熱硬化性樹脂液を含浸し、加熱硬化して硬化樹脂が充填されたシート状成形体を、水蒸気、炭酸ガスなどの賦活化ガス雰囲気下600〜1500℃の温度に加熱して焼成炭化処理と賦活化処理を同時に行って、多孔質ガラス状カーボンシートを製造するものである。   In the method for producing a porous glassy carbon sheet according to claim 2 of the present invention, a sheet-like molded body in which a base material is impregnated with a thermosetting resin liquid, heat-cured and filled with the cured resin, A porous glassy carbon sheet is produced by heating to a temperature of 600 to 1500 ° C. in an activation gas atmosphere such as gas and simultaneously performing a calcination carbonization treatment and an activation treatment.

すなわち、請求項2の製造方法は、請求項1に係る多孔質ガラス状カーボンシートの製造方法において、焼成炭化処理と賦活化処理とを同時に行って、製造工程の簡素化を図るものであり、コストの低減化が図られる。   That is, the production method of claim 2 is a method for producing a porous glassy carbon sheet according to claim 1, wherein the firing carbonization treatment and the activation treatment are simultaneously performed to simplify the production process. Costs can be reduced.

一般に、電気二重層キャパシタの静電容量を大きくするためには分極性電極の比表面積を大きくすることが有効であり、キャパシタモジュールの容積当たりの静電容量が大きいことが望ましい。また、電気抵抗が小さく、耐食性が高いことなどが必要である。   Generally, in order to increase the capacitance of the electric double layer capacitor, it is effective to increase the specific surface area of the polarizable electrode, and it is desirable that the capacitance per volume of the capacitor module is large. In addition, it must have low electrical resistance and high corrosion resistance.

そこで、本発明の請求項3に係る発明は、上記の製造方法により製造された多孔質ガラス状カーボンシートを電気二重層キャパシタ用分極性電極材料に適用し、その多孔質性状として、平均細孔径を2.0〜2.5nm、嵩密度を0.55g/cm3 以上、比表面積を800m2 /g以上、に特定するとともに、静電容量が25F/cm3 以上であることを特徴とする。 Therefore, the invention according to claim 3 of the present invention applies the porous glassy carbon sheet produced by the production method described above to a polarizable electrode material for an electric double layer capacitor. 2.0 to 2.5 nm, a bulk density of 0.55 g / cm 3 or more, a specific surface area of 800 m 2 / g or more, and a capacitance of 25 F / cm 3 or more. .

多孔質性状として、平均細孔径を2.0〜2.5nmの範囲に設定するのは、電解質イオンの吸脱着機能を有効かつ円滑に行わさせるためであって、平均細孔径が2.0nmを下回ると大電流下における充放電時に細孔内における電解液中のイオンの拡散抵抗によると思われる電気抵抗が増大し、高出力が得られなくなる。一方、平均細孔径が2.5nmを上回ると嵩密度の低下により、電極容積当たりの静電容量が低下するためである。   As the porous property, the average pore diameter is set in the range of 2.0 to 2.5 nm in order to effectively and smoothly perform the adsorption / desorption function of the electrolyte ions, and the average pore diameter is set to 2.0 nm. If it is less than that, the electrical resistance, which seems to be due to the diffusion resistance of ions in the electrolyte in the pores, during charge / discharge under a large current increases, and high output cannot be obtained. On the other hand, if the average pore diameter exceeds 2.5 nm, the capacitance per electrode volume decreases due to a decrease in bulk density.

したがって、分極性電極の容積当たりの静電容量を確保するために、嵩密度は0.55g/cm3 以上に設定される。また、静電容量を上げるためには分極性電極の比表面積を大きくすることが有効であり、800m2 /g以上に設定する。しかし、比表面積が大きくなると強度の低下を招くため、1000m2 /g程度に設定することが好ましい。 Therefore, in order to ensure the capacitance per volume of the polarizable electrode, the bulk density is set to 0.55 g / cm 3 or more. In order to increase the electrostatic capacity, it is effective to increase the specific surface area of the polarizable electrode, and it is set to 800 m 2 / g or more. However, because it causes a decrease in strength when the specific surface area is large, it is preferable to set to about 1000 m 2 / g.

これらの多孔質性状が総合的に機能して、本発明の電気二重層キャパシタ用分極性電極材料には静電容量25F/cm3 以上の高い静電容量が付与される。 These porous properties function comprehensively, and a high capacitance of 25 F / cm 3 or more is imparted to the polarizable electrode material for electric double layer capacitors of the present invention.

以下、本発明の実施例を比較例と対比して具体的に説明する。   Examples of the present invention will be specifically described below in comparison with comparative examples.

実施例1
α−セルロース分90%以上、太さ5.5デシテックス、長さ5mmのレーヨンパルプ(大和紡績社製)80重量部と晒し針葉樹パルプ(NBKP)20重量部を混合し、水に分散させたのち長網式抄紙機を用いて抄紙した。得られた、平均気孔径120μm、気孔率62%の抄造紙を一辺900mmの正方形に切断し、その縦方向と横方向を交互に直交させて積層し、基材を作製した。
Example 1
After mixing 80 parts by weight of rayon pulp (Daiwabo Co., Ltd.) with an α-cellulose content of 90% or more, a thickness of 5.5 decitex, and a length of 5 mm and 20 parts by weight of bleached softwood pulp (NBKP) and dispersing in water Paper was made using a long net paper machine. The resulting paper-making paper having an average pore diameter of 120 μm and a porosity of 62% was cut into a square having a side of 900 mm, and laminated with the vertical and horizontal directions alternately perpendicular to each other to prepare a substrate.

この基材を、残炭率45%のフェノール樹脂(住友デュレズ社製,スミライトレジンPR940)をエタノールに溶解した樹脂濃度50wt%のフェノール樹脂液に浸漬して、フェノール樹脂液を含浸したのち乾燥機に入れて60℃の温度で2時間保持してエタノールを揮散除去した後、加熱しながら面圧0.5kg/cm2 の圧力で圧縮した。この圧縮段階の加熱条件は1時間おきに20℃づつ温度を上昇させ、最終的に140℃まで昇温して樹脂を加熱硬化した。 This base material is immersed in a phenol resin solution having a resin concentration of 50 wt% in which a phenol resin (Sumitrite Dures Co., Sumitrite Resin PR940) having a residual carbon ratio of 45% is dissolved in ethanol, impregnated with the phenol resin solution, and then dried. After putting into a machine and maintaining at a temperature of 60 ° C. for 2 hours to evaporate and remove ethanol, it was compressed with a surface pressure of 0.5 kg / cm 2 while heating. The heating condition in this compression stage was to raise the temperature by 20 ° C. every 1 hour, and finally raise the temperature to 140 ° C. to heat and cure the resin.

このシート状の硬化成形体を窒素ガス雰囲気に保持した加熱炉に入れて1000℃の温度で焼成炭化処理した後、炭酸ガス雰囲気下950℃の温度で賦活化処理して、多孔質ガラス状カーボンシートを製造した。   The sheet-like cured molded body is placed in a heating furnace maintained in a nitrogen gas atmosphere, subjected to calcination carbonization at a temperature of 1000 ° C., and then activated at a temperature of 950 ° C. in a carbon dioxide atmosphere to obtain porous glassy carbon. A sheet was produced.

実施例2〜3、比較例1〜2
太さ、および、長さの異なるレーヨンパルプ(大和紡績社製)を使用し、針葉樹パルプ(NBKP)との混合比を変えて混合して水に分散させて、気孔性状の異なる抄造紙を作成し、積層して基材とした。この基材を用いて実施例1と同じ方法により多孔質ガラス状カーボンシートを製造した。
Examples 2-3 and Comparative Examples 1-2
Using rayon pulp (manufactured by Daiwa Boseki Co., Ltd.) with different thicknesses and lengths, changing the mixing ratio with softwood pulp (NBKP), mixing and dispersing in water, creating papermaking paper with different pore properties And laminated to make a substrate. Using this substrate, a porous glassy carbon sheet was produced by the same method as in Example 1.

比較例3
椰子殻系活性炭粉末80gにカーボンブラックを10g、PTFEを10gの割合で加えて混合し、混合物をシート状に加圧成形して多孔質炭素質シートを製造した。
Comparative Example 3
Carbon black (10 g) and PTFE (10 g) were added to 80 g of coconut shell activated carbon powder and mixed, and the mixture was pressed into a sheet to produce a porous carbonaceous sheet.

比較例4
椰子殻系活性炭粉末80gにカーボンブラックを10g、PTFEを40gの割合で加えて混合し、混合物をシート状に加圧成形して多孔質炭素質シートを製造した。
Comparative Example 4
Carbon black (10 g) and PTFE (40 g) were added to 80 g of coconut shell activated carbon powder and mixed, and the mixture was pressed into a sheet to produce a porous carbonaceous sheet.

このようにして製造した多孔質ガラス状カーボンシートおよび多孔質炭素質シートの多孔質性状を測定して、表1に示した。   The porous glassy carbon sheet thus produced and the porous properties of the porous carbonaceous sheet were measured and are shown in Table 1.

Figure 2006169058
Figure 2006169058

次に、これらの多孔質ガラス状カーボンシートおよび多孔質炭素質シートを分極性電極材料として、2枚重ね合わせて電気二重層キャパシタを作製し、その性能を評価するために下記の方法により静電容量を測定して、得られた結果を表2に示した。   Next, using these porous glassy carbon sheet and porous carbonaceous sheet as a polarizable electrode material, two sheets are stacked to produce an electric double layer capacitor, and in order to evaluate its performance, The capacity was measured, and the results obtained are shown in Table 2.

静電容量、内部抵抗の測定;
充放電試験装置(北斗電工社製、HJR−160mSM6)を使用して、充電0.5mA/cm2 の定電流充電を行い、電位が2.4Vに達した後、定電圧充電に移行し2時間充電を行った。次に、0.5mA/cm2 の定電流放電を電圧が0になるまで行った。この充放電サイクルを10サイクル実施した。そして、3サイクル目の放電曲線(放電電圧−放電時間)から放電エネルギー(放電電圧×電流)の時間積分として合計放電エネルギーを求め、静電容量(F)=2×合計放電エネルギー(W・s)/(放電開始電圧 (V) )2の関係式を用い静電容量を求めた。
Measurement of capacitance and internal resistance;
Using a charge / discharge test device (HJR-160mSM6, manufactured by Hokuto Denko Co., Ltd.), charging was performed at a constant current of 0.5 mA / cm 2 , and after the potential reached 2.4 V, the battery switched to constant voltage charging. Charged for hours. Next, constant current discharge of 0.5 mA / cm 2 was performed until the voltage became zero. This charge / discharge cycle was carried out 10 times. Then, the total discharge energy is obtained as a time integral of discharge energy (discharge voltage × current) from the discharge curve (discharge voltage−discharge time) at the third cycle, and capacitance (F) = 2 × total discharge energy (W · s). ) / (Discharge start voltage (V)) 2 was used to determine the capacitance.

また、放電時に電圧が0になった直後に放電を中止し、その際の電圧上昇から、放電中止10分後の電圧Vを測定して、内部抵抗(R)=V/Iより求めた。   Moreover, immediately after the voltage became 0 at the time of discharge, the discharge was stopped, and from the voltage increase at that time, the voltage V 10 minutes after the discharge was stopped was measured and obtained from the internal resistance (R) = V / I.

Figure 2006169058
Figure 2006169058

表1、2の結果から、平均気孔径が50〜150μm、気孔率が50%以上の気孔性状を有する抄造紙を積層して基材とし、フェノール樹脂を含浸して加熱硬化、焼成炭化したのち賦活化処理して得られた、多孔質性状が平均細孔径2〜2.5nm、嵩密度0.55g/cm3 以上、比表面積800m2 /g以上、の多孔質ガラス状カーボンシートを分極性電極材料とした実施例1〜3の電気二重層キャパシタは、体積当たりの静電容量が25F/cm3 を越え、内部抵抗も低位にある。 From the results shown in Tables 1 and 2, the papermaking paper having a porosity of 50 to 150 μm and a porosity of 50% or more is laminated as a base material, impregnated with a phenol resin, heat-cured, and calcined by firing. Polarization of a porous glassy carbon sheet having an average pore diameter of 2 to 2.5 nm, a bulk density of 0.55 g / cm 3 or more, and a specific surface area of 800 m 2 / g or more, obtained by activation treatment. The electric double layer capacitors of Examples 1 to 3 used as electrode materials have a capacitance per volume exceeding 25 F / cm 3 and an internal resistance at a low level.

これに対して、平均気孔径および気孔率が本発明で特定した範囲外にある抄造紙を積層した基材を用い、かつ、多孔質性状が本発明で特定した範囲外にある比較例1、2の電気二重層キャパシタは、体積当たりの静電容量が低く、内部抵抗も高いことが分かる。   On the other hand, Comparative Example 1 in which the average pore diameter and porosity are laminated using papermaking paper that is outside the range specified in the present invention, and the porous property is outside the range specified in the present invention, It can be seen that the electric double layer capacitor No. 2 has a low capacitance per volume and a high internal resistance.

また、椰子殻系活性炭粉末を、繊維成分としてPTFEでシート化した多孔質炭素質シートで電気二重層キャパシタを構成した比較例3〜4では、体積当たりの静電容量および内部抵抗が著しく劣ることが認められる。   Further, in Comparative Examples 3 to 4 in which the electric double layer capacitor is constituted by the porous carbonaceous sheet formed from PTFE as a fiber component with the coconut shell activated carbon powder, the capacitance per volume and the internal resistance are remarkably inferior. Is recognized.

Claims (3)

平均気孔径50〜150μm、気孔率50%以上の気孔性状を有する抄造紙を積層して基材とし、該基材に残炭率40%以上の熱硬化性樹脂を有機溶媒に溶解した樹脂濃度20〜70wt%の熱硬化性樹脂液を含浸して加熱硬化し、次いで、非酸化性雰囲気下で加熱して焼成炭化処理した後、賦活化ガス雰囲気下600〜1500℃の温度に加熱して賦活化処理することを特徴とする多孔質ガラス状カーボンシートの製造方法。 Resin concentration obtained by laminating papermaking paper having an average pore diameter of 50 to 150 μm and a porosity of 50% or more as a base material, and a thermosetting resin having a residual carbon ratio of 40% or more dissolved in an organic solvent on the base material It is impregnated with 20 to 70 wt% thermosetting resin liquid and heat-cured, and then heated and calcined in a non-oxidizing atmosphere, and then heated to a temperature of 600 to 1500 ° C. in an activation gas atmosphere. A method for producing a porous glassy carbon sheet, characterized by performing an activation treatment. 平均気孔径50〜150μm、気孔率50%以上の気孔性状を有する抄造紙を積層して基材とし、該基材に残炭率40%以上の熱硬化性樹脂を有機溶媒に溶解した樹脂濃度20〜70wt%の熱硬化性樹脂液を含浸して加熱硬化し、次いで、賦活化ガス雰囲気下600〜1500℃の温度に加熱して焼成炭化処理と賦活化処理を同時に施すことを特徴とする多孔質ガラス状カーボンシートの製造方法。 Resin concentration obtained by laminating papermaking paper having an average pore diameter of 50 to 150 μm and a porosity of 50% or more as a base material, and a thermosetting resin having a residual carbon ratio of 40% or more dissolved in an organic solvent on the base material It is characterized in that it is impregnated with 20 to 70 wt% of a thermosetting resin solution and cured by heating, and then heated to a temperature of 600 to 1500 ° C. in an activation gas atmosphere to simultaneously perform a calcination carbonization treatment and an activation treatment. A method for producing a porous glassy carbon sheet. 請求項1または請求項2の方法により製造され、平均細孔径2〜2.5nm、嵩密度0.55g/cm3 以上、比表面積800m2 /g以上、の多孔質ガラス状カーボンシートからなり、静電容量が25F/cm3 以上であることを特徴とする電気二重層キャパシタ用分極性電極材料。
A porous glassy carbon sheet produced by the method of claim 1 or claim 2 and having an average pore diameter of 2 to 2.5 nm, a bulk density of 0.55 g / cm 3 or more, and a specific surface area of 800 m 2 / g or more, A polarizable electrode material for an electric double layer capacitor, wherein the capacitance is 25 F / cm 3 or more.
JP2004365246A 2004-12-17 2004-12-17 Method of manufacturing porous vitreous carbon sheet and polarizing electrode material for electric double layer capacitor comprising the sheet Pending JP2006169058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004365246A JP2006169058A (en) 2004-12-17 2004-12-17 Method of manufacturing porous vitreous carbon sheet and polarizing electrode material for electric double layer capacitor comprising the sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004365246A JP2006169058A (en) 2004-12-17 2004-12-17 Method of manufacturing porous vitreous carbon sheet and polarizing electrode material for electric double layer capacitor comprising the sheet

Publications (1)

Publication Number Publication Date
JP2006169058A true JP2006169058A (en) 2006-06-29

Family

ID=36670200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004365246A Pending JP2006169058A (en) 2004-12-17 2004-12-17 Method of manufacturing porous vitreous carbon sheet and polarizing electrode material for electric double layer capacitor comprising the sheet

Country Status (1)

Country Link
JP (1) JP2006169058A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015069332A1 (en) * 2013-11-08 2015-05-14 The Regents Of The University Of California Three-dimensional graphene framework-based high-performance supercapacitors
CN114229821A (en) * 2021-07-28 2022-03-25 山东科技大学 Method for preparing porous carbon material from low-rank coal thermally-dissolved organic matter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015069332A1 (en) * 2013-11-08 2015-05-14 The Regents Of The University Of California Three-dimensional graphene framework-based high-performance supercapacitors
US10692660B2 (en) 2013-11-08 2020-06-23 The Regents Of The University Of California Three-dimensional graphene framework-based high-performance supercapacitors
CN114229821A (en) * 2021-07-28 2022-03-25 山东科技大学 Method for preparing porous carbon material from low-rank coal thermally-dissolved organic matter

Similar Documents

Publication Publication Date Title
US4064207A (en) Fibrillar carbon fuel cell electrode substrates and method of manufacture
JP5444224B2 (en) Electric double layer capacitor, composite carbon electrode useful for capacitive deionization, and manufacturing method thereof
JP5844760B2 (en) Porous electrode substrate
WO2005124907A1 (en) Porous electrode base material and process for producing the same
JP2004503456A (en) Medium porous carbon material, carbon / metal oxide composite material, and electrochemical capacitor using the material
JP4730888B2 (en) Porous electrode substrate and method for producing the same
JP3332980B2 (en) Manufacturing method of polarizable electrode material
JP2006169058A (en) Method of manufacturing porous vitreous carbon sheet and polarizing electrode material for electric double layer capacitor comprising the sheet
JPH11340103A (en) Manufacture of activated carbon material
JP2008156145A (en) Method for manufacturing porous carbon material
JPH10279303A (en) Caked activated carbon
JP2018041921A (en) Nonaqueous lithium power storage element
JP3739819B2 (en) Method for producing porous carbon material
JP3132098B2 (en) Manufacturing method of polarizable electrode material
JP3417206B2 (en) Activated carbon material for electric double layer capacitors
JP2013063862A (en) Porous carbon base material and capacitor using the same
JP7116468B2 (en) Method for manufacturing electric double layer capacitor
JP2013043785A (en) Porous carbon substrate, and capacitor using the same
KR102576543B1 (en) Preparing method activated carbon containing graphene domain
JP2013239681A (en) Electrode and manufacturing method of the same
KR100715872B1 (en) Preparation method of meso porous activated carbon by KOH for supercapacitor electrode
JPH06206780A (en) Production of active porous carbonaceous structure
JP3159754B2 (en) Electric double layer capacitor
WO2016066860A1 (en) A method for making a high-density carbon material for high-density carbon electrodes
JP4080095B2 (en) Manufacturing method of thick porous carbon material