JP2003286085A - Porous carbon plate and manufacturing method thereof - Google Patents

Porous carbon plate and manufacturing method thereof

Info

Publication number
JP2003286085A
JP2003286085A JP2002088350A JP2002088350A JP2003286085A JP 2003286085 A JP2003286085 A JP 2003286085A JP 2002088350 A JP2002088350 A JP 2002088350A JP 2002088350 A JP2002088350 A JP 2002088350A JP 2003286085 A JP2003286085 A JP 2003286085A
Authority
JP
Japan
Prior art keywords
porous carbon
carbon plate
plate
short
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002088350A
Other languages
Japanese (ja)
Inventor
Sachiyo Yoshida
幸代 吉田
Shuichi Inogakura
周一 猪ヶ倉
Mikio Inoue
幹夫 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2002088350A priority Critical patent/JP2003286085A/en
Publication of JP2003286085A publication Critical patent/JP2003286085A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porous carbon plate for a solid high polymer type fuel cell which has excellent gas permeability, low electric resistance, no fear of the occurrence of a short-circuit with a counter electrode, is hardly broken by pressure and exhibits excellent contact property with other members and a method of efficiently manufacturing the porous carbon plate. <P>SOLUTION: The porous carbon plate is formed by binding carbon short fibers dispersed in random on a substantially two dimensional plane by means of carbon and has ≤15 μm center line average roughness Ra (JIS B 0601) at least on one surface and ≥50% load length ratio (tp) when the cutting level is 20 μm. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、たとえば固体高
分子型燃料電池電極基材や電解用電極など、導電性、耐
腐食性、熱伝導性、強度、多孔性、気体透過性、接触性
等を生かした用途に好適な多孔質炭素板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to, for example, polymer electrolyte fuel cell electrode base materials and electrodes for electrolysis, conductivity, corrosion resistance, thermal conductivity, strength, porosity, gas permeability, contactability, etc. The present invention relates to a porous carbon plate that is suitable for applications that utilize the above.

【0002】[0002]

【従来の技術】燃料電池用電極基材には、集電機能に加
えて電極反応に関与する物質の拡散・透過性が要求され
る。すなわち電極基材を構成する材料には、導電性、気
体拡散・透過性、ハンドリングに耐えるための強度等が
必要とされる。また、燃料電池用電極基材は、燃料電池
の構造として、片面が気体流路セパレータと接し、反対
面が触媒層を介して高分子電解質膜と接する構造になっ
ている。高分子電解質膜の強度は高くなってきてはいる
が、厚みが薄くなっていることから、電極基材の凸部が
貫通することで、短絡を起こす虞がある。また、電極基
材の表面が粗いと複雑な溝を持つセパレータとの電極基
材の接触性が低下し、気体漏れを起こす虞がある。した
がって、電極基材の表面構造は凸部がなく、表面平滑性
が高いことが要求される。
2. Description of the Related Art An electrode base material for a fuel cell is required to have a current collecting function as well as diffusion and permeability of substances involved in an electrode reaction. That is, the material forming the electrode base material is required to have conductivity, gas diffusion / permeability, strength to withstand handling, and the like. In addition, the fuel cell electrode base material has a structure of a fuel cell in which one surface is in contact with the gas flow path separator and the other surface is in contact with the polymer electrolyte membrane via the catalyst layer. Although the strength of the polymer electrolyte membrane is increasing, the thinness thereof causes a short circuit due to the protrusion of the electrode base material penetrating therethrough. Further, if the surface of the electrode base material is rough, the contact property of the electrode base material with the separator having a complicated groove may be deteriorated, which may cause gas leakage. Therefore, the surface structure of the electrode base material is required to have no convex portion and high surface smoothness.

【0003】また、高分子電解質膜、触媒層および電極
基材とを一体化するときに加圧することも多いために、
電池を組むときの加圧だけでなく、一体化時の加圧によ
っても壊れないこと、また高分子電解質膜を通しての短
絡を起こさないことが要求される。
Further, since pressure is often applied when the polymer electrolyte membrane, the catalyst layer and the electrode substrate are integrated,
It is required that not only the pressure applied when assembling the battery but also the pressure applied during the integration does not cause damage and that a short circuit does not occur through the polymer electrolyte membrane.

【0004】従来、このような燃料電池の電極基材とし
ては、たとえば特開平6−20710号公報、特開平7
−326362号公報、特開平7−220735号公報
に記載されるような、炭素短繊維を炭素で結着してなる
多孔質炭素板を用いたものが知られている。このような
電極基材は、まず炭素繊維またはその前駆体繊維からな
る短繊維の集合体を作り、これに樹脂を含浸または混合
し、さらに焼成することによって作られるが、密度が低
い場合には、電極製造時や電池に組んだときの加圧によ
り結着した炭素が崩壊しやすいという問題がある。
Conventionally, as an electrode base material for such a fuel cell, for example, Japanese Patent Application Laid-Open No. 6-20710 and Japanese Patent Application Publication No.
There is known one using a porous carbon plate formed by binding short carbon fibers with carbon as described in JP-A-326362 and JP-A-7-220735. Such an electrode base material is made by first forming an aggregate of short fibers made of carbon fibers or precursor fibers thereof, impregnating or mixing a resin into the aggregate, and further firing, but when the density is low, However, there is a problem in that carbon bound to each other easily collapses due to pressure applied during electrode production or when assembled in a battery.

【0005】さらに、特開平7−105957号公報に
記載のものは、炭素短繊維が任意の方向に向いているた
めに、電極製造時や電池に組んで加圧したときに厚み方
向を向いている炭素短繊維が高分子電解質膜を突き抜け
て対極との短絡を起こしたり、炭素短繊維の折損を起こ
したりしやすい。また、特開平8−7897号公報に
は、電極となる高分子電解質膜、触媒反応層、拡散層の
接合体の拡散層側表面に、その拡散層に含まれる炭素粒
子と絡み合った状態で炭素短繊維を付着させたものが記
載されているが、炭素短繊維が拡散層中の炭素粒子と絡
み合うことで固定されているために表面に現れている炭
素短繊維は全て接合体の面方向からある角度をもってそ
の厚み方向を向いていることになり、電池に組んで加圧
したときに炭素短繊維が高分子電解質膜を通して対極と
の短絡を起こしたり、炭素短繊維の折損を起こしたりし
やすいという問題がある。
Further, in the one disclosed in JP-A-7-105957, since the carbon short fibers are oriented in any direction, the carbon fibers are oriented in the thickness direction at the time of electrode production or when assembled in a battery and pressed. The short carbon fibers present easily penetrate the polymer electrolyte membrane to cause a short circuit with the counter electrode, or the short carbon fibers are likely to break. Further, in Japanese Unexamined Patent Publication No. 8-7897, carbon is entangled with carbon particles contained in the diffusion layer on the surface of the diffusion layer side of a polymer electrolyte membrane serving as an electrode, a catalytic reaction layer, and a diffusion layer. Although the ones with short fibers attached are described, the carbon short fibers appearing on the surface are fixed because the short carbon fibers are entangled with the carbon particles in the diffusion layer. It is oriented in the thickness direction at an angle, and when assembled in a battery and pressed, the short carbon fibers are likely to cause a short circuit with the counter electrode through the polymer electrolyte membrane or breakage of the short carbon fibers. There is a problem.

【0006】一方、燃料電池用電極基材の要求特性に
は、上述した導電性や気体透過・拡散性、ハンドリング
に耐える強度等に加えて、触媒層との接合が良好である
ことも求められる。触媒層との接合に関しては、電極基
材と触媒層との間においても、電気抵抗が低く、気体透
過性が良好であることが必要である。ところが、従来の
電極基材では、気体透過性を向上させる場合、電極基材
の空孔率を高めた粗な構造となり、触媒層との接合が不
良になるという課題があった。
On the other hand, the required characteristics of the electrode base material for the fuel cell are required to have good bonding with the catalyst layer in addition to the above-mentioned conductivity, gas permeation / diffusion property, strength to withstand handling and the like. . Regarding the bonding with the catalyst layer, it is necessary that the electrical resistance is low and the gas permeability is good even between the electrode base material and the catalyst layer. However, in the case of improving the gas permeability, the conventional electrode base material has a problem that the electrode base material has a rough structure in which the porosity is increased and the bonding with the catalyst layer becomes poor.

【0007】[0007]

【発明が解決しようとする課題】この発明は、従来の技
術における上述した問題点に鑑みてなされたもので、そ
の目的とするところは、気体透過性が良好であり、対極
との短絡を起こす心配が少なく、また、加圧によっても
壊れる虞が少ないうえに、燃料電池電極基材として用い
た場合には触媒層との接合が良好で、接触有効表面積が
大きく、接触性の良好な多孔質炭素板を提供することに
ある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems in the prior art, and its object is to have good gas permeability and to cause a short circuit with the counter electrode. It is a porous material that is less likely to be damaged by pressure and has good bonding to the catalyst layer when used as a fuel cell electrode substrate, a large effective contact surface area, and good contact properties. To provide a carbon plate.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
の本発明は、実質的に二次元平面内においてランダムに
分散した炭素短繊維を炭素により結着させた多孔質炭素
板において、少なくとも一方の面の中心線平均粗さRa
(JIS B 0601)が15μm以下であり、か
つ、切断レベルが20μmのとき負荷長さ率tpが50
%以上であることを特徴とする多孔質炭素板である。
Means for Solving the Problems The present invention for achieving the above object is provided by at least one of a porous carbon plate in which short carbon fibers randomly dispersed in a substantially two-dimensional plane are bound by carbon. Center line average roughness Ra
When (JIS B 0601) is 15 μm or less and the cutting level is 20 μm, the load length ratio tp is 50.
% Or more, and is a porous carbon plate.

【0009】また、上記目的を達成するための本発明の
製造方法は、実質的に二次元平面内においてランダムに
分散させた炭素短繊維と樹脂との混合体を、表面の中心
線平均粗さRa(JIS B 0601)が1.0μm以
下の離型板を介して2段以上に積層して圧縮成形した
後、その圧縮成形品を炭素化処理することを特徴とする
ものである。
Further, in the production method of the present invention for achieving the above-mentioned object, a mixture of short carbon fibers and resin dispersed substantially randomly in a two-dimensional plane is used, and the center line average roughness of the surface is measured. It is characterized in that the compression molded product is carbonized after being laminated in two or more stages through a release plate having Ra (JIS B 0601) of 1.0 μm or less and compression molded.

【0010】[0010]

【発明の実施の形態】以下、本発明の好ましい実施の形
態を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the present invention will be described below.

【0011】まず、本発明の多孔質炭素板の好ましい形
態を説明する。多孔質炭素板に含まれる炭素短繊維はど
のようなものでも用いることができるが、ポリアクリロ
ニトリル(以後PANと略す)系炭素繊維、ピッチ系炭
素繊維、レーヨン系炭素繊維、フェノール系炭素繊維等
の炭素繊維を用いることができる。電極基材の強度を高
くするために、PAN系炭素繊維またはピッチ系炭素繊
維を用いるのが好ましく、PAN系炭素繊維を用いるの
がさらに好ましい。
First, a preferred form of the porous carbon plate of the present invention will be described. Although any short carbon fiber contained in the porous carbon plate can be used, polyacrylonitrile (hereinafter abbreviated as PAN) -based carbon fiber, pitch-based carbon fiber, rayon-based carbon fiber, phenol-based carbon fiber, etc. Carbon fibers can be used. In order to increase the strength of the electrode base material, it is preferable to use PAN-based carbon fibers or pitch-based carbon fibers, and it is more preferable to use PAN-based carbon fibers.

【0012】炭素繊維の繊維径としては、4〜20μm
程度とすることが好ましく、特に4〜10μmとするこ
とが電極基材強度を高くするためにより好ましい。偏平
な断面の炭素繊維の場合は、長径と短径の平均を繊維径
とする。短繊維の長さは3〜20mm程度とすることが
好ましく、5〜15mm程度とするのが製造の容易さお
よび電極基材の強度を高くするためにさらに好ましい。
The fiber diameter of the carbon fiber is 4 to 20 μm.
It is preferably about 4 to 10 μm, and more preferably 4 to 10 μm in order to increase the strength of the electrode base material. In the case of a carbon fiber having a flat cross section, the average of the major axis and the minor axis is the fiber diameter. The length of the short fibers is preferably about 3 to 20 mm, and more preferably about 5 to 15 mm for easier production and higher strength of the electrode base material.

【0013】本発明は、実質的に二次元平面内において
ランダムに分散させた上記の炭素短繊維を炭素により互
いに結着してなる混合体を炭素化処理した多孔質炭素板
である。炭素短繊維が実質的に二次元平面内においてラ
ンダムに分散されているということの意味は、炭素短繊
維がおおむね一つの面を形成するように横たわっている
というほどの意味である。このことにより炭素短繊維に
よる対極との短絡や炭素短繊維の折損を防止することが
できる。
The present invention is a porous carbon plate obtained by carbonizing a mixture obtained by binding the above-mentioned short carbon fibers randomly dispersed in a substantially two-dimensional plane with carbon. The meaning that the short carbon fibers are substantially randomly dispersed in a two-dimensional plane means that the short carbon fibers lie so as to form one surface. As a result, it is possible to prevent short circuit of the carbon short fiber to the counter electrode and breakage of the carbon short fiber.

【0014】炭素短繊維を互いに結着させる炭素として
は、たとえば樹脂の加熱による炭素化によって得られ
る。炭素化可能な樹脂としては、加熱により炭素化する
もの、たとえばフェノール樹脂、エポキシ樹脂、フラン
樹脂、メラミン樹脂、ピッチなどである。多孔質炭素板
の電気抵抗を低減させるためには、加熱して炭素化処理
したとき残炭率の高い樹脂が好ましく、特にフェノール
樹脂が好ましい。
The carbon for binding the short carbon fibers to each other can be obtained, for example, by heating a resin to carbonize it. The carbonizable resin is one that is carbonized by heating, such as phenol resin, epoxy resin, furan resin, melamine resin, pitch and the like. In order to reduce the electric resistance of the porous carbon plate, a resin having a high residual carbon rate when heated and carbonized is preferable, and a phenol resin is particularly preferable.

【0015】上述したように本発明の多孔質炭素板は、
少なくとも一方の面の中心線平均粗さRaが15μm以
下であり、かつ、切断レベルが20μmのとき負荷長さ
率tpが50%以上のであることを特徴とする多孔質炭
素板である。
As described above, the porous carbon plate of the present invention is
The porous carbon plate is characterized in that the center line average roughness Ra of at least one surface is 15 μm or less, and the load length ratio tp is 50% or more when the cutting level is 20 μm.

【0016】中心線平均粗さRaの測定は、JIS B
0601(1994)に準じて行う。具体的には、先端
曲率半径0.3mmの触針を用いて測定力0.4gf、
カットオフなし、基準長さ12.5mmで測定を行う。
上記の様に中心線平均粗さRaは15μm以下が好まし
く、これより大きいと接着性が悪くなったり、加圧する
ことで多孔質炭素板の表面の欠損が生じ、高分子電解質
膜を通して対極との短絡を起こしたりする虞がある。加
圧による多孔質炭素板の表面の欠損を防ぐためにはRa
はより小さいことが好ましい。より好ましくは12μm
以下、さらに好ましくは9μm以下である。
The center line average roughness Ra is measured according to JIS B
It is carried out according to 0601 (1994). Specifically, using a stylus having a tip curvature radius of 0.3 mm, a measuring force of 0.4 gf,
The measurement is performed at a reference length of 12.5 mm without cutoff.
As described above, the center line average roughness Ra is preferably 15 μm or less, and if it is larger than this, the adhesiveness is deteriorated or the surface of the porous carbon plate is damaged by pressurization, so that it may pass through the polymer electrolyte membrane to form a counter electrode. It may cause a short circuit. Ra is used to prevent loss of the surface of the porous carbon plate due to pressure.
Is preferably smaller. More preferably 12 μm
Hereafter, it is more preferably 9 μm or less.

【0017】負荷長さ率tpの測定は、JIS B 06
01に準じて行う。具体的には、先端曲率半径0.3m
mの触針を用いて測定力0.4gf、カットオフなし、
基準長さ12.5mmで測定を行う。上記の様に、より
低圧下においても接触有効表面積を増加させるには、切
断レベルが20μmのとき負荷長さ率tpは50%以上
必要である。また電気抵抗を低減させるためには、60
%以上がより好ましい。
The load length ratio tp is measured according to JIS B 06.
It is carried out according to 01. Specifically, the radius of curvature of the tip is 0.3 m
Measuring force of 0.4 gf with no stylus, no cutoff,
The measurement is performed with a reference length of 12.5 mm. As described above, in order to increase the contact effective surface area even under a lower pressure, the load length ratio tp needs to be 50% or more when the cutting level is 20 μm. Further, in order to reduce the electric resistance, 60
% Or more is more preferable.

【0018】多孔質炭素板の電気抵抗は、2枚の炭素板
の間に挟んで0.196MPaの一様な面圧をかけたと
き、1.0Aの電流を流して、電気抵抗を測定する。面
圧が高ければ多孔質炭素板の構造が破壊されて抵抗値が
正確に測定できないので、比較的低い面圧で電気抵抗を
測定し比較を行うのがよい。燃料電池用の電極基材とし
て用いるとき、電気抵抗は、30.0mΩ・cm2以下
になることが好ましく、25mΩ・cm2以下がより好
ましい。
The electric resistance of the porous carbon plate is measured by applying a current of 1.0 A when sandwiching it between two carbon plates and applying a uniform surface pressure of 0.196 MPa. If the surface pressure is high, the structure of the porous carbon plate will be destroyed and the resistance value cannot be accurately measured. Therefore, it is preferable to measure the electric resistance with a relatively low surface pressure for comparison. When used as an electrode substrate for a fuel cell, the electrical resistance is preferably made of a 30.0mΩ · cm 2 or less, 25mΩ · cm 2 or less being more preferred.

【0019】多孔質炭素板の接触性の評価としては、抵
抗比を用いるのがよい。ここでいう抵抗比とは、上記し
た電気抵抗値を多孔質炭素板の両面に接する水銀間に電
流を流して測定した基材抵抗値で割ったものである。こ
の抵抗比が小さいほど、多孔質炭素板と他の部材との接
触性が良好であるといえる。本発明の多孔質炭素板の抵
抗比としては、22mΩ・cm2以下であることが好ま
しい。表面平滑性が高いほど、接触有効表面積が増加す
るため、抵抗比は低減させることができる。
The resistance ratio is preferably used to evaluate the contact property of the porous carbon plate. The resistance ratio as used herein is obtained by dividing the above-mentioned electric resistance value by the base material resistance value measured by passing an electric current between mercury contacting both surfaces of the porous carbon plate. It can be said that the smaller the resistance ratio, the better the contactability between the porous carbon plate and other members. The resistance ratio of the porous carbon plate of the present invention is preferably 22 mΩ · cm 2 or less. The higher the surface smoothness, the larger the effective contact surface area, so that the resistance ratio can be reduced.

【0020】多孔質炭素板の嵩密度としては、0.25
〜0.85g/cm3程度であればよい。嵩密度が高い
と電気抵抗は低減できるが、気体透過性が下がる。ま
た、嵩密度が低いと多孔質炭素板の圧縮強度が低下し、
加圧により構造が破壊される虞がある。このため、嵩密
度は、気体透過性および圧縮強度が共に良好であるため
には、0.38〜0.48g/cm3程度がより好まし
い。
The bulk density of the porous carbon plate is 0.25.
It may be about 0.85 g / cm 3 . When the bulk density is high, the electric resistance can be reduced, but the gas permeability is lowered. In addition, when the bulk density is low, the compressive strength of the porous carbon plate decreases,
The structure may be destroyed by the pressure. Therefore, the bulk density is more preferably about 0.38 to 0.48 g / cm 3 in order to have good gas permeability and compressive strength.

【0021】次に、本発明の多孔質炭素板の製造方法に
ついて、図面を参照して詳細に説明する。図1は、本発
明の製造方法を説明するための縦断面図であり、混合体
1を4枚の離型板2を介して3段に積層し、上下から圧
縮成形する様子を示している。
Next, the method for producing the porous carbon plate of the present invention will be described in detail with reference to the drawings. FIG. 1 is a vertical cross-sectional view for explaining the manufacturing method of the present invention, showing a state in which a mixture 1 is laminated in three stages with four release plates 2 and compression molded from above and below. .

【0022】本発明の多孔質炭素板の製造方法は、実質
的に二次元平面内においてランダムに分散させた炭素短
繊維をマトリックス樹脂の含浸により互いに結着させた
混合体1を、表面の中心線平均粗さRaが1.0μm以
下の離型板2を介して2段以上に積層して圧縮成形した
後、その圧縮成形品を炭素化処理することを特徴とす
る。
In the method for producing a porous carbon plate of the present invention, a mixture 1 in which short carbon fibers randomly dispersed in a substantially two-dimensional plane are bound to each other by impregnation with a matrix resin is used as a center of the surface. The compression-molded product is characterized by being carbonized after being laminated in two or more stages through a release plate 2 having a line average roughness Ra of 1.0 μm or less and compression-molded.

【0023】炭素短繊維を実質的に二次元平面内におい
てランダムに分散させる方法としては、液体の媒体中に
炭素短繊維を分散させて抄造する湿式法や、空気中で炭
素短繊維を分散させて降り積もらせる乾式法がある。炭
素短繊維を確実に二次元平面内においてランダムに分散
させるため、また、強度を高くするためには、湿式法が
好ましい。実質的に二次元平面内においてランダムに分
散した炭素短繊維は、取り扱い易さのために抄造用バイ
ンダで結着することが好ましい。抄造用バインダとして
は、ポリビニルアルコール(PVA)、ポリエステル、
エポキシ樹脂、フェノール樹脂、セルロース、パルプ等
を用いることができる。抄造用バインダの付着量は5〜
40重量%が好ましく、10〜30重量%がより好まし
く、15〜25重量%がさらに好ましい。
As the method for randomly dispersing the short carbon fibers in a substantially two-dimensional plane, a wet method of dispersing the short carbon fibers in a liquid medium to produce paper, or dispersing the short carbon fibers in air There is a dry method that allows it to accumulate. The wet method is preferable in order to surely disperse the short carbon fibers randomly in a two-dimensional plane and to increase the strength. It is preferable that the short carbon fibers randomly dispersed in the substantially two-dimensional plane be bound with a papermaking binder for easy handling. As a binder for papermaking, polyvinyl alcohol (PVA), polyester,
Epoxy resin, phenol resin, cellulose, pulp and the like can be used. The amount of binder for papermaking is 5 to
40% by weight is preferable, 10 to 30% by weight is more preferable, and 15 to 25% by weight is further preferable.

【0024】炭素で炭素短繊維を互いに結着させる方法
としては、たとえば樹脂の加熱による炭素化によって得
られる。炭素化する樹脂で炭素短繊維を互いに決着させ
る方法としては、炭素短繊維を二次元平面内においてラ
ンダムに分散させるときに繊維状、粒状、液状の樹脂を
混合する方法と、炭素短繊維が実質的に二次元平面内に
おいてランダムに分散された集合体に繊維状、液状の樹
脂を付着させる方法等がある。本発明の多孔質炭素板の
場合には樹脂を液状で含浸するか、後の工程で溶融する
樹脂を用いることが電極基材の強度を高く、また導電性
を高くするために好ましい。また含浸時に樹脂を溶媒に
溶かし、含浸後に溶媒を除くこともよく用いられる方法
である。炭素短繊維に対する樹脂の添加量としては、用
いる炭素短繊維と樹脂の種類によって変わるが、たとえ
ば多孔質炭素板の嵩密度を0.25〜0.85g/cm
3とするためには、炭素繊維100重量部に対して樹脂
を50〜500重量部加える。
As a method of binding the carbon short fibers to each other with carbon, for example, carbonization can be obtained by heating a resin. As a method of binding the carbon short fibers to each other with the resin to be carbonized, when the carbon short fibers are randomly dispersed in a two-dimensional plane, a method of mixing fibrous, granular, and liquid resins, and carbon short fibers are substantially Specifically, there is a method of attaching a fibrous or liquid resin to an aggregate randomly dispersed in a two-dimensional plane. In the case of the porous carbon plate of the present invention, it is preferable to impregnate the resin in a liquid state or to use a resin that melts in a later step in order to increase the strength and conductivity of the electrode base material. It is also often used to dissolve the resin in a solvent during the impregnation and remove the solvent after the impregnation. The amount of resin added to the short carbon fibers varies depending on the types of short carbon fibers and resin used, but for example, the bulk density of the porous carbon plate is 0.25 to 0.85 g / cm.
In order to obtain 3 , the resin is added in an amount of 50 to 500 parts by weight with respect to 100 parts by weight of carbon fiber.

【0025】混合体1は、炭素短繊維と樹脂の接着性向
上、表面平滑性向上を達成するために、加熱による炭素
化処理の前に加熱加圧による圧縮成形が行われることが
好ましい。圧縮成形時の圧力としては、0.0098〜
1.96MPa程度が好ましく、0.098〜0.98
MPaとすることがより好ましい。さらに好ましくは、
圧力は0.1〜0.86MPa程度である。圧縮成形時
の圧力により基材密度を制御できるが、圧力が低過ぎる
と炭素短繊維と樹脂の接着性が悪くなり、圧力が高過ぎ
ると樹脂の過剰な流れ、材料の破損、また適度な多孔質
構造の確保ができなくなることがある。
The mixture 1 is preferably subjected to compression molding by heating and pressurizing before carbonization by heating in order to improve the adhesion between the short carbon fibers and the resin and the surface smoothness. The pressure during compression molding is 0.0098 to
1.96 MPa or so is preferable, and 0.098 to 0.98
More preferably, the pressure is set to MPa. More preferably,
The pressure is about 0.1 to 0.86 MPa. The base material density can be controlled by the pressure during compression molding, but if the pressure is too low, the adhesion between the short carbon fibers and the resin will deteriorate, and if the pressure is too high, the resin will flow excessively, the material will break, and the porosity will be moderate. It may not be possible to secure a quality structure.

【0026】圧縮成形時の温度としては、用いる樹脂
混合体1を2段以上に積層して圧縮成形するための離型
板2としては、積層した混合体1同士が融合しないこ
と、圧縮成形後に混合体1と離型板2とが容易に剥離す
ることが要求される。離型板2の材質としては、圧縮成
形温度下で燃焼・溶融・気体発生等を起こさず、かつ混
合体1と離型板2が容易に剥離されるものであれば、ど
んなものを用いてもよいが、硬度が低過ぎると圧縮成形
時に変形し、電極基材表面に凸凹を発生させる原因とな
る。したがって、圧縮成形圧に耐えることができ、熱伝
導性がよく、硬度の高いものが好ましい。離型板2の表
面形状は、圧縮成形によって多孔質炭素板の厚みムラが
発生しないために平坦である必要がある。そのため、離
型板2の表面の中心線平均粗さRaは1.0μm以下で
あることが必要であり、圧縮成形後の炭素短繊維が表面
に突出しないためには0.5μm以下が好ましい。離型
板2の厚みとしては、用いる材質によっても変わるが、
厚過ぎると熱の伝達を阻害するので、厚みは0.05〜
2.00mmであることが好ましい。一方、離型板2の
厚みが薄過ぎると圧縮成形によって反りが生じたり、ま
た混合体1との離型時に離型板2が変形したりすること
がある。これを防ぐためには、0.10〜1.00mm
がより好ましい。
The temperature used during compression molding depends on the resin used.
As the release plate 2 for laminating the mixture 1 in two or more stages and performing compression molding, the laminated mixtures 1 do not fuse with each other, and the mixture 1 and the release plate 2 are easily separated after compression molding. Required to do so. Any material may be used as the material of the release plate 2 as long as it does not cause combustion, melting, gas generation, etc. at the compression molding temperature and the mixture 1 and the release plate 2 are easily separated. However, if the hardness is too low, it may be deformed during compression molding, causing unevenness on the surface of the electrode base material. Therefore, a material that can withstand compression molding pressure, has good thermal conductivity, and has high hardness is preferable. The surface shape of the release plate 2 needs to be flat in order to prevent uneven thickness of the porous carbon plate due to compression molding. Therefore, the center line average roughness Ra of the surface of the release plate 2 needs to be 1.0 μm or less, and is preferably 0.5 μm or less so that the short carbon fibers after compression molding do not protrude to the surface. The thickness of the release plate 2 varies depending on the material used,
If it is too thick, it will hinder the transfer of heat.
It is preferably 2.00 mm. On the other hand, if the thickness of the release plate 2 is too thin, warping may occur due to compression molding, or the release plate 2 may be deformed during release from the mixture 1. To prevent this, 0.10-1.00 mm
Is more preferable.

【0027】積層段数の上限値としては、用いる離型板
2の材質および厚みによっても変わるが、積層段数が多
過ぎると混合体1への熱の伝達に差が生じて樹脂の硬化
にムラが発生する虞があるので、150段程度が好まし
い。
The upper limit of the number of stacking layers varies depending on the material and thickness of the release plate 2 used, but if the number of stacking layers is too large, the heat transfer to the mixture 1 will be different and the curing of the resin will be uneven. Since it may occur, about 150 steps is preferable.

【0028】混合体1の炭素化処理工程の温度として
は、樹脂の炭素化による導電性の発現のために700℃
以上が好ましく、導電性および熱伝導性を高くし、不純
物を減らし、耐食性を高めるために1300℃以上であ
ることがより好ましく、2000℃以上とすることがさ
らに好ましい。また炭素化処理工程は、炭化工程および
黒鉛化工程の2段階に分けて行ってもよい。
The temperature of the carbonization treatment step of the mixture 1 is 700 ° C. in order to exhibit conductivity due to carbonization of the resin.
It is preferably 1300 ° C. or higher, more preferably 2000 ° C. or higher, in order to increase conductivity and thermal conductivity, reduce impurities, and enhance corrosion resistance. Further, the carbonization treatment step may be carried out in two steps of a carbonization step and a graphitization step.

【0029】炭素化処理工程において、混合体1にかけ
る圧力としては、圧力が高過ぎると多孔質炭素板の空孔
率が低下して、気体透過性が悪くなるため、0.009
8MPa以下であることが好ましい。圧力が低過ぎると
多孔質炭素板の密度が低下するため、0.00098〜
0.0049MPa程度がより好ましい。
In the carbonization treatment step, when the pressure applied to the mixture 1 is too high, the porosity of the porous carbon plate is lowered and the gas permeability is deteriorated.
It is preferably 8 MPa or less. If the pressure is too low, the density of the porous carbon plate decreases, so 0.00098-
More preferably, it is about 0.0049 MPa.

【0030】本発明の多孔質炭素板は、機械的強度を比
較的高く保ったまま、電気抵抗を低減し、表面平滑性が
改善された多孔質炭素板であり、燃料電池積層体の構成
材料として好適である。
The porous carbon plate of the present invention is a porous carbon plate in which electrical resistance is reduced and surface smoothness is improved while keeping mechanical strength relatively high. Is suitable as

【0031】[0031]

【実施例】以下本発明の詳細を実施例を用いてさらに説
明する。 (実施例1)東レ株式会社製PAN系炭素繊維“トレ
カ”T300(平均短繊維径:7μm、単繊維数:60
00本)を長さ12mmに切断し、よく解繊した後、そ
れが0.04重量%になるように水中に分散させ、金網
上に抄造し、さらにそれをポリビニルアルコールの10
重量%水溶液に浸漬し、引き上げて乾燥し、炭素短繊維
100重量部に対してバインダであるポリビニルアルコ
ールが約30重量%付着したシート状中間基材を得た。
EXAMPLES The details of the present invention will be further described below with reference to examples. (Example 1) PAN-based carbon fiber “Torayca” T300 (average short fiber diameter: 7 μm, number of single fibers: 60) manufactured by Toray Industries, Inc.
(00 pieces) is cut into a length of 12 mm and well defibrated, then dispersed in water so that the content becomes 0.04% by weight, paper-making is performed on the wire mesh, and then 10 pieces of polyvinyl alcohol are added.
The sheet-shaped intermediate base material was obtained by immersing in a weight% aqueous solution, pulling it up and drying it, and about 30 weight% of polyvinyl alcohol as a binder adhered to 100 weight parts of carbon short fibers.

【0032】次に、上記中間電極基材を、レゾール型フ
ェノール樹脂100重量部に対して同重量部のノボラッ
ク型フェノール樹脂を含む混合樹脂の6重量%メタノー
ル溶液に浸漬し、引き上げて炭素短繊維100重量部に
対して混合樹脂を約200重量部付着させ、さらに90
℃で3分間加熱して乾燥した混合体1を得た。この混合
体1を表面の中心線平均粗さRaが0.4μm、厚みが
0.05mmのポリエステル製の離型板2を介して10
段積層し、145℃の温度下において0.50MPaの
圧力を25分間加えてレゾール型フェノール樹脂を硬化
させた。
Next, the intermediate electrode substrate is dipped in a 6 wt% methanol solution of a mixed resin containing the same parts by weight of the novolac type phenol resin with respect to 100 parts by weight of the resol type phenol resin, and the carbon short fiber is pulled up. About 200 parts by weight of the mixed resin is adhered to 100 parts by weight, and further 90
The mixture 1 was dried by heating for 3 minutes at 0 ° C. This mixture 1 was placed 10 times through a polyester release plate 2 having a surface center line average roughness Ra of 0.4 μm and a thickness of 0.05 mm.
The layers were stacked, and a pressure of 0.50 MPa was applied for 25 minutes at a temperature of 145 ° C. to cure the resol-type phenol resin.

【0033】次に、硬化により固くなった混合体1を、
窒素雰囲気中にて2400℃で30分間加熱して樹脂を
炭素化し、多孔質炭素板を得た。 (実施例2)実施例1と同様の方法で得られる混合体1
を表面の中心線平均粗さRaが0.4μm、厚みが0.
10mmのポリエステル製の離型板2を介して10段積
層し、実施例1と同様の方法で圧縮成形を行い混合体1
を硬化した。次に、混合体1を実施例1と同様の方法で
炭素化し、多孔質炭素板を得た。
Next, the mixture 1 hardened by curing is
The resin was carbonized by heating at 2400 ° C. for 30 minutes in a nitrogen atmosphere to obtain a porous carbon plate. (Example 2) Mixture 1 obtained by the same method as in Example 1
The surface centerline average roughness Ra is 0.4 μm and the thickness is 0.
10 layers are laminated via a 10 mm polyester release plate 2 and compression molding is performed in the same manner as in Example 1 to obtain a mixture 1.
Was cured. Next, the mixture 1 was carbonized in the same manner as in Example 1 to obtain a porous carbon plate.

【0034】(実施例3)実施例1と同様の方法で得ら
れる混合体1を表面の中心線平均粗さRaが0.3μ
m、厚みが0.5mmのステンレス製の離型板2を介し
て10段積層し、実施例1と同様の方法で圧縮成形を行
い混合体1を硬化した。次に、混合体1を実施例1と同
様の方法で炭素化し、多孔質炭素板を得た。
(Embodiment 3) The mixture 1 obtained by the same method as in Embodiment 1 has a surface center line average roughness Ra of 0.3 μm.
10 layers were stacked via a stainless steel release plate 2 having a thickness of 0.5 mm and a thickness of 0.5 mm, and compression molding was performed in the same manner as in Example 1 to cure the mixture 1. Next, the mixture 1 was carbonized in the same manner as in Example 1 to obtain a porous carbon plate.

【0035】(比較例1)実施例1と同様の方法で得ら
れる混合体1を表面の中心線平均粗さRaが0.4μ
m、厚みが0.025mmのポリエステル製の離型板2
を介して10段積層し、実施例1と同様の方法で圧縮成
形を行い混合体1を硬化した。次に、混合体1を実施例
1と同様の方法で炭素化し、多孔質炭素板を得た。
(Comparative Example 1) The mixture 1 obtained by the same method as in Example 1 had a surface center line average roughness Ra of 0.4 μm.
m, thickness 0.025 mm, polyester release plate 2
10 layers were laminated via the above, and compression molding was performed in the same manner as in Example 1 to cure the mixture 1. Next, the mixture 1 was carbonized in the same manner as in Example 1 to obtain a porous carbon plate.

【0036】(比較例2)実施例1と同様の方法で得ら
れる混合体1を表面の中心線平均粗さRaが8.0μ
m、厚みが0.8mmのステンレス製の離型板2を介し
て10段積層し、実施例1と同様の方法で圧縮成形を行
い混合体1を硬化した。次に、混合体1を実施例1と同
様の方法で炭素化し、多孔質炭素板を得た。
(Comparative Example 2) The mixture 1 obtained by the same method as in Example 1 had a surface center line average roughness Ra of 8.0 μm.
10 layers were laminated via a stainless steel release plate 2 having a thickness of m and a thickness of 0.8 mm, and compression molding was performed in the same manner as in Example 1 to cure the mixture 1. Next, the mixture 1 was carbonized in the same manner as in Example 1 to obtain a porous carbon plate.

【0037】以上の多孔質炭素板の物性を表1にまとめ
る。
The physical properties of the above porous carbon plate are summarized in Table 1.

【0038】[0038]

【表1】 [Table 1]

【0039】表1より、本発明の実施例1〜3の多孔質
炭素板は、比較例1、2のものに比べて、本発明の目的
である表面平滑性、電気抵抗が向上していることが分か
った。
From Table 1, the porous carbon plates of Examples 1 to 3 of the present invention have improved surface smoothness and electric resistance, which are the objects of the present invention, as compared with those of Comparative Examples 1 and 2. I found out.

【0040】[0040]

【発明の効果】本発明の多孔質炭素板は、表面が平坦で
接触有効表面積が大きく、気体透過性を比較的高く保っ
たまま電気抵抗が低減し、しかも接触性が良好な多孔質
炭素板となる。このような多孔質炭素板は、導電性、耐
腐食性、熱伝導性、強度、多孔性、気体透過性、接触性
等を生かした用途、たとえば固体高分子型燃料電池用電
極基材や電解用電極に好適である。
INDUSTRIAL APPLICABILITY The porous carbon plate of the present invention has a flat surface, a large effective contact surface area, a low electric resistance while maintaining a relatively high gas permeability, and a good contact property. Becomes Such a porous carbon plate is used in applications that take advantage of conductivity, corrosion resistance, thermal conductivity, strength, porosity, gas permeability, contactability, etc., such as polymer electrolyte fuel cell electrode base materials and electrolysis. It is suitable for electrodes.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造方法における離型板を用いた圧縮
成形工程の概略説明図である。
FIG. 1 is a schematic explanatory view of a compression molding process using a release plate in the manufacturing method of the present invention.

【符号の説明】[Explanation of symbols]

1: 混合体 2: 離型板 1: Mixture 2: Release plate

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G132 AA18 AA72 AB01 AB30 AB34 AB40 BA07 BA09 CA12 CA14 CA17 GA10 GA18 GA31 GA32 GA38 GA45 4G146 AA01 AB05 AD23 AD24 BA01 BA13 BB05 BC03 BC23 BC35B CB03 5H018 AA06 AS02 AS03 BB01 BB03 DD05 EE05 HH00 HH03 HH06 HH09 5H026 AA06 BB01 BB02 CX02 EE05 HH00 HH03 HH06 HH09    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4G132 AA18 AA72 AB01 AB30 AB34                       AB40 BA07 BA09 CA12 CA14                       CA17 GA10 GA18 GA31 GA32                       GA38 GA45                 4G146 AA01 AB05 AD23 AD24 BA01                       BA13 BB05 BC03 BC23 BC35B                       CB03                 5H018 AA06 AS02 AS03 BB01 BB03                       DD05 EE05 HH00 HH03 HH06                       HH09                 5H026 AA06 BB01 BB02 CX02 EE05                       HH00 HH03 HH06 HH09

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】実質的に二次元平面内においてランダムに
分散した炭素短繊維を炭素により結着させた多孔質炭素
板において、少なくとも一方の面の中心線平均粗さRa
(JIS B 0601)が15μm以下であり、か
つ、切断レベルが20μmのときの負荷長さ率tpが5
0%以上であることを特徴とする多孔質炭素板。
1. A porous carbon plate in which short carbon fibers randomly dispersed in a substantially two-dimensional plane are bound by carbon, and a center line average roughness Ra of at least one surface is Ra.
(JIS B 0601) is 15 μm or less and the load length ratio tp is 5 when the cutting level is 20 μm.
A porous carbon plate characterized by being 0% or more.
【請求項2】請求項1に記載の多孔質炭素板において、
2枚の炭素板の間に挟んで0.196MPaの一様な面
圧を加えたとき、電流1Aに対して電気抵抗が30.0
mΩ・cm2以下であることを特徴とする多孔質炭素
板。
2. The porous carbon plate according to claim 1, wherein
When sandwiched between two carbon plates and a uniform surface pressure of 0.196 MPa was applied, the electric resistance was 30.0 for a current of 1 A.
A porous carbon plate characterized by having mΩ · cm 2 or less.
【請求項3】実質的に二次元平面内においてランダムに
分散させた炭素短繊維と樹脂との混合体を、表面の中心
線平均粗さRa(JIS B 0601)が1.0μm以
下の離型板を介して2段以上に積層して圧縮成形した
後、その圧縮成形品を炭素化処理することを特徴とする
多孔質炭素板の製造方法。
3. A mold release having a center line average roughness Ra (JIS B 0601) of the surface of a mixture of short carbon fibers and a resin dispersed substantially randomly in a two-dimensional plane of 1.0 μm or less. A method for producing a porous carbon plate, which comprises laminating two or more layers via a plate, compression-molding the product, and carbonizing the compression-molded product.
【請求項4】請求項3に記載の多孔質炭素板の製造方法
において、前記圧縮成形工程において、用いる離型板の
厚みが0.05〜2.00mmであることを特徴とする
多孔質炭素板の製造方法。
4. The method for producing a porous carbon plate according to claim 3, wherein the release plate used in the compression molding step has a thickness of 0.05 to 2.00 mm. Method of manufacturing a plate.
【請求項5】請求項3または4に記載の多孔質炭素板の
製造方法において、圧縮成形工程で混合体にかける圧縮
成形圧力が0.0098〜1.96MPaであることを
特徴とする多孔質炭素板の製造方法。
5. The method for producing a porous carbon plate according to claim 3 or 4, wherein the compression molding pressure applied to the mixture in the compression molding step is 0.0098 to 1.96 MPa. Carbon plate manufacturing method.
【請求項6】請求項3〜5のいずれかに記載の多孔質炭
素板の製造方法において、炭素化処理工程で圧縮成形後
の混合体にかける圧力が0.0098MPa以下である
ことを特徴とする多孔質炭素板の製造方法。
6. The method for producing a porous carbon plate according to claim 3, wherein the pressure applied to the mixture after compression molding in the carbonization treatment step is 0.0098 MPa or less. Method for producing a porous carbon plate.
JP2002088350A 2002-03-27 2002-03-27 Porous carbon plate and manufacturing method thereof Pending JP2003286085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002088350A JP2003286085A (en) 2002-03-27 2002-03-27 Porous carbon plate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002088350A JP2003286085A (en) 2002-03-27 2002-03-27 Porous carbon plate and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2003286085A true JP2003286085A (en) 2003-10-07

Family

ID=29234237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002088350A Pending JP2003286085A (en) 2002-03-27 2002-03-27 Porous carbon plate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2003286085A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005158324A (en) * 2003-11-21 2005-06-16 Honda Motor Co Ltd Fuel cell
JP2005158515A (en) * 2003-11-26 2005-06-16 Nippon Soken Inc Gas diffusion layer for fuel cell and its manufacturing method
JP2010080286A (en) * 2008-09-26 2010-04-08 Mitsubishi Rayon Co Ltd Porous electrode base material, manufacturing method therefor, membrane-electrode assembly, and solid polymer fuel cell
JP2010095419A (en) * 2008-10-17 2010-04-30 Mitsubishi Rayon Co Ltd Porous electrode substrate, method for manufacturing the same, membrane-electrode assembly, and solid polymer fuel cell
JP2010095395A (en) * 2008-10-14 2010-04-30 Mitsubishi Rayon Co Ltd Porous electrode substrate, method for manufacturing the same, membrane-electrode assembly, and solid polymer fuel cell
JP2010244957A (en) * 2009-04-09 2010-10-28 Mitsubishi Rayon Co Ltd Manufacturing method for porous electrode base material, membrane-electrode assembly using the same, and fuel cell
WO2012102195A1 (en) * 2011-01-27 2012-08-02 三菱レイヨン株式会社 Porous electrode substrate, method for producing same, precursor sheet, membrane electrode assembly, and solid polymer fuel cell
US9716278B2 (en) 2012-03-30 2017-07-25 Mitsubishi Chemical Corporation Porous electrode base material, method for manufacturing same, and precursor sheet
KR101861315B1 (en) 2016-11-14 2018-07-02 한국과학기술연구원 Stretchable carbon eletrode, method for preparing the same, and stretchable supercapacitor compring the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005158324A (en) * 2003-11-21 2005-06-16 Honda Motor Co Ltd Fuel cell
JP2005158515A (en) * 2003-11-26 2005-06-16 Nippon Soken Inc Gas diffusion layer for fuel cell and its manufacturing method
JP4565830B2 (en) * 2003-11-26 2010-10-20 株式会社日本自動車部品総合研究所 Gas diffusion layer for fuel cell and manufacturing method thereof
JP2010080286A (en) * 2008-09-26 2010-04-08 Mitsubishi Rayon Co Ltd Porous electrode base material, manufacturing method therefor, membrane-electrode assembly, and solid polymer fuel cell
JP2010095395A (en) * 2008-10-14 2010-04-30 Mitsubishi Rayon Co Ltd Porous electrode substrate, method for manufacturing the same, membrane-electrode assembly, and solid polymer fuel cell
JP2010095419A (en) * 2008-10-17 2010-04-30 Mitsubishi Rayon Co Ltd Porous electrode substrate, method for manufacturing the same, membrane-electrode assembly, and solid polymer fuel cell
JP2010244957A (en) * 2009-04-09 2010-10-28 Mitsubishi Rayon Co Ltd Manufacturing method for porous electrode base material, membrane-electrode assembly using the same, and fuel cell
WO2012102195A1 (en) * 2011-01-27 2012-08-02 三菱レイヨン株式会社 Porous electrode substrate, method for producing same, precursor sheet, membrane electrode assembly, and solid polymer fuel cell
JP2014029873A (en) * 2011-01-27 2014-02-13 Mitsubishi Rayon Co Ltd Porous electrode base material, precursor sheet, film-electrode assembly, and solid polymer fuel battery
JP5458168B2 (en) * 2011-01-27 2014-04-02 三菱レイヨン株式会社 Method for producing porous electrode substrate
US9705137B2 (en) 2011-01-27 2017-07-11 Mitsubishi Rayon Co., Ltd. Porous electrode substrate, method for manufacturing same, precursor sheet, membrane electrode assembly, and polymer electrolyte fuel cell
US9825304B2 (en) 2011-01-27 2017-11-21 Mitsubishi Chemical Corporation Porous electrode substrate, method for manufacturing same, precursor sheet, membrane electrode assembly, and polymer electrolyte fuel cell
US9716278B2 (en) 2012-03-30 2017-07-25 Mitsubishi Chemical Corporation Porous electrode base material, method for manufacturing same, and precursor sheet
KR101861315B1 (en) 2016-11-14 2018-07-02 한국과학기술연구원 Stretchable carbon eletrode, method for preparing the same, and stretchable supercapacitor compring the same

Similar Documents

Publication Publication Date Title
KR100425889B1 (en) Porous Carbon Electrode Substrate
JP5844760B2 (en) Porous electrode substrate
WO2004085728A1 (en) Porous carbon base material, method for preparation thereof, gas-diffusing material, film-electrode jointed article, and fuel cell
JP3521619B2 (en) Carbon fiber paper and porous carbon plate
WO2005124907A1 (en) Porous electrode base material and process for producing the same
JP7136252B2 (en) Electrodes for redox flow batteries and redox flow batteries
KR20040111523A (en) Carbon fiber paper and porous carbon electrode substrate for fuel cell therefrom
JP4051714B2 (en) Electrode substrate for polymer electrolyte fuel cell and method for producing the same
WO2001022509A1 (en) Porous, electrically conductive sheet and method for production thereof
KR101392227B1 (en) Carbon fiber web comprising polymer nanofiber
JP3356534B2 (en) Electrolyte holding plate and method for manufacturing the same
JP4266699B2 (en) Porous electrode substrate for polymer electrolyte fuel cell and method for producing the same
JP5433147B2 (en) Porous electrode substrate, method for producing the same, membrane-electrode assembly, and polymer electrolyte fuel cell
JP2018018665A (en) Gas diffusion layer base material and method of manufacturing the same
JP2003286085A (en) Porous carbon plate and manufacturing method thereof
JP4730888B2 (en) Porous electrode substrate and method for producing the same
JP2004259711A (en) Carbon fiber paper and porous carbon electrode base material for fuel cells
JP5398297B2 (en) Method for producing porous carbon electrode substrate
JP2004363018A (en) Porous electrode base material for polymer electrolyte fuel cell
JP2007176750A (en) Porous carbon fiber sheet and method of manufacturing the same
JP2009234851A (en) Porous carbon sheet and its manufacturing process
JP2006004858A5 (en)
JP2006004858A (en) Porous electrode base material and its manufacturing method
JP2009280437A (en) Method for producing porous carbon sheet
JP2005104779A (en) Method of manufacturing porous carbon board