JPH02184510A - Production of carbon plate - Google Patents

Production of carbon plate

Info

Publication number
JPH02184510A
JPH02184510A JP1001926A JP192689A JPH02184510A JP H02184510 A JPH02184510 A JP H02184510A JP 1001926 A JP1001926 A JP 1001926A JP 192689 A JP192689 A JP 192689A JP H02184510 A JPH02184510 A JP H02184510A
Authority
JP
Japan
Prior art keywords
carbon
resin
sheet
carbon plate
impregnated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1001926A
Other languages
Japanese (ja)
Other versions
JP2780987B2 (en
Inventor
Shigeru Murakami
村上 繁
Takeo Uemura
植村 武夫
Shingo Morimoto
信吾 森本
Keigo Sasabayashi
笹林 敬吾
Ikuro Akiba
秋葉 育郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP1001926A priority Critical patent/JP2780987B2/en
Publication of JPH02184510A publication Critical patent/JPH02184510A/en
Application granted granted Critical
Publication of JP2780987B2 publication Critical patent/JP2780987B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To obtain a carbon plate useful for electrode of fuel cell, separator, etc., having strength in the direction perpendicular to plane, high electrical conductivity and thermal conductivity by impregnating a carbon fiber dispersion of thermosetting resin solution into a carbon fiber sheet, curing and calcining the sheet. CONSTITUTION:Carbon fibers having <=0.5mm length such as gas-phase grown carbon fibers are dispersed into a solution of thermosetting resin such as phenol resin or furan resin in the ratio of about 5-30 pts.wt. carbon fibers based on 100 pts.wt. resin content. The dispersion is impregnated into a sheet (300g/m<2>) made of carbon fibers, precursor thereof, cellulose or mixture thereof. The amount of the resin impregnated is 30-60wt.% based on the weight of sheet in the case of dense carbon plate and 10-40 wt.% in the case of porous carbon plate. The resin impregnated sheet is dried, plural dried sheets are laminated, bonded under pressure, the resin is cured and the laminate is calcined to give a carbon plate.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は5面と垂直方向に対する電気伝導性、熱伝導性
の高い炭素板の製造法に関するものであり、燃料電池の
電極やセパレーターあるいは電解槽の隔膜等に使用する
緻密質および多孔質の炭素板の製造法に関する。
Detailed Description of the Invention [Industrial Application Field 1] The present invention relates to a method for manufacturing a carbon plate with high electrical conductivity and thermal conductivity in five planes and vertical directions, and is suitable for use in fuel cell electrodes, separators, or electrolysis. This invention relates to a method for manufacturing dense and porous carbon plates used for tank diaphragms, etc.

[従来の技術] 炭素材料は非金属であるが電気及び熱の良導体で、耐食
性、耐熱性に極めて優れている。電解あるいは電池にお
いて不溶性電極として、あるいはセパレーターとして重
要な材料である。
[Prior Art] Although carbon materials are non-metals, they are good conductors of electricity and heat, and have extremely excellent corrosion resistance and heat resistance. It is an important material as an insoluble electrode or separator in electrolysis or batteries.

これらの電極、セパレーター等は通常は自ら反応に直接
関与せず、電流の授受を行なうので酸化以外の部分に用
いるには、炭素材料は最適の材料である1通常燃料電池
のセパレーターは緻密なものが要求されることが多く、
また逆に燃料電池の電極や、弗素の溶液塩電解等では多
孔質炭素電極が用いられる等各種の要望がある。
These electrodes, separators, etc. usually do not directly participate in the reaction themselves, but instead send and receive current, so carbon materials are the best materials for use in areas other than oxidation.1 Normally, fuel cell separators are dense. is often required,
On the other hand, there are various demands such as the use of porous carbon electrodes in fuel cell electrodes, fluorine solution salt electrolysis, and the like.

これらに用いられる喫素板は、炭素繊維シートあるいは
その前駆体繊維シート、セルローズシート(バルブ、紙
、根等)等に熱硬化性樹脂液を含浸させ、&f!化、焼
成する方法によることが多い。
The base plate used for these is made by impregnating a carbon fiber sheet or its precursor fiber sheet, cellulose sheet (bulb, paper, root, etc.) with a thermosetting resin liquid, &f! It often depends on the method of oxidation and firing.

この場合、シートに対し樹脂の含浸晴を多くし、昇温速
度をゆっくりして、炭化焼成するときは緻密なガラス状
カーボンを得ることができ。
In this case, by increasing the amount of resin impregnated into the sheet and slowing down the heating rate, it is possible to obtain dense glassy carbon when carbonizing and firing the sheet.

(特開昭60−161144号)、また樹脂の含NUN
を少なく、少し早いシ#温速度で焼成すると、どちらか
といえば多孔質のガラス状カーボンが得られる(特開昭
62−70215号)とされている。
(Japanese Unexamined Patent Publication No. 60-161144), and the resin containing NUN
It is said that if the carbon is fired at a slightly higher temperature with a smaller amount, a rather porous glassy carbon can be obtained (Japanese Unexamined Patent Publication No. 70215/1983).

この際、含浸する樹脂液に黒鉛微粉を分散させて、緻密
度を上げる方法(特開昭60−145952号)もある
At this time, there is also a method of dispersing fine graphite powder in the resin liquid to be impregnated to increase the density (Japanese Patent Laid-Open No. 145952/1983).

またシートの原料繊維としては、炭素繊維細断したもの
、あるいは炭素繊維の前駆物質(ポリアクリロニトリル
の不融化繊維、ポリアクリロニトリル繊維等)の細断ま
たは粉砕したもの、あるいはバルブ、紙、扱等のセルロ
ーズ等をシート状(不織布、紙、織布、パルプ等)にし
たものが挙げられる。
In addition, raw material fibers for sheets include shredded carbon fibers, shredded or crushed carbon fiber precursors (infusible polyacrylonitrile fibers, polyacrylonitrile fibers, etc.), or fibers used for valves, paper, handling, etc. Examples include cellulose etc. in sheet form (non-woven fabric, paper, woven fabric, pulp, etc.).

これらの方法によって得られたシートは、主として熱硬
化性樹脂(フェノール樹脂、フラン樹脂等残留炭素率の
高い樹脂が主に使用されている。)に含浸し、硬化復炭
素化する方法によって炭素板としている。
The sheets obtained by these methods are impregnated with a thermosetting resin (resins with a high residual carbon content such as phenolic resin and furan resin are mainly used) and then hardened and decarbonized to form carbon plates. It is said that

しかし、これらの方法によって(lられた炭素板は、抄
紙過程において繊維の並び)jがシート面に平行となり
、硬化、焼成等によってもこの配向は変わらず、このた
め特に多孔質炭素板はシート而内方向の電気伝導性に比
べ、シート面に垂直方向の電気伝導性は1衝程度低くな
る。また、曲げ強さの割に圧縮強度が低い(曲げ強さの
l/4〜175位)等?シ方性の強い炭素板しか得られ
ない。
However, with these methods (in the paper-making process, the alignment of fibers in the carbon plate) becomes parallel to the sheet surface, and this orientation does not change even after curing, baking, etc. Compared to the electrical conductivity in the inner direction, the electrical conductivity in the direction perpendicular to the sheet surface is about one impulse lower. Also, the compressive strength is low compared to the bending strength (1/4 to 175th of the bending strength), etc.? Only carbon plates with strong cytropism can be obtained.

[発明が解決しようとする課題] 炭素板は、例えば燃料電池のセパレーターでは、面に垂
直方向の電気伝導度が高いことが望ましく、また電極で
は表面での反応によるl:)部的な過熱を防止するため
、垂直方向においても熱伝導度が高いことが望ましい。
[Problems to be Solved by the Invention] For example, in a fuel cell separator, carbon plates desirably have high electrical conductivity in the direction perpendicular to the surface, and in electrodes, it is desirable to prevent local overheating due to reactions on the surface. To prevent this, it is desirable to have high thermal conductivity also in the vertical direction.

すなわち、燃料電池は今後のエネルギー供給方法の−・
つの重要な発電方法として位置づけられているものであ
り、中でも濃厚リン酸を電解質とする燃事・l電池は、
二酸化炭素混入のまま水素を負極活物質として利用でき
る利点のある特徴ある電池である。そして、そこで使用
される電極は濃厚熱リン酸に耐える材料で、多孔性のあ
るものとして黒鉛繊維を基材とした厚さ0.4〜2.0
mm、多孔度60〜80%の炭素板が必要である。
In other words, fuel cells will become the future energy supply method.
Among them, fuel batteries using concentrated phosphoric acid as an electrolyte are considered to be one of the most important power generation methods.
This is a unique battery that has the advantage of being able to use hydrogen as a negative electrode active material while still containing carbon dioxide. The electrodes used there are made of a material that can withstand concentrated hot phosphoric acid, and are made of porous graphite fibers with a thickness of 0.4 to 2.0 mm.
A carbon plate with a porosity of 60 to 80% is required.

また、セパレーターは気密性(通気率10ccm”/s
ec以下)をイ〜1し、厚さ0.4〜1.ommの炭素
板であって、電極の多孔質の炭素板と同様に耐リン酸性
、電気伝導性、熱伝導性に優れた材料であることが必要
である。
In addition, the separator is airtight (air permeability 10 ccm"/s
ec or less) from a to 1, and the thickness is from 0.4 to 1. Omm carbon plate, and like the porous carbon plate of the electrode, it needs to be made of a material that has excellent phosphoric acid resistance, electrical conductivity, and thermal conductivity.

燃料電池は温度が高いほど出力電圧が高くなる傾向があ
るが、単セルの出力電圧はせいぜい1ボルト程度である
ため発電装置としては積層化したスタックを使用しなけ
ればならない。
The higher the temperature of a fuel cell, the higher the output voltage. However, since the output voltage of a single cell is about 1 volt at most, a stack must be used as a power generation device.

スタックでは構成材料の保護、反応性の均一化のため熱
の除去を必要とするが、この場合セパレーター(あるい
はインターコネクター)に冷却水などの冷媒を通して冷
却が必要となるが、この場合は熱伝導率が高いほど、ま
た強度が高いほど伝熱面の11さな薄く出来るので好ま
しい。しかしながら、前述の製造法によって得られる炭
素板は板面に垂直方向の熱伝導性が低いため、これらの
要望には満足できないものであった。
In a stack, heat must be removed to protect the constituent materials and to equalize reactivity. In this case, cooling is required by passing a coolant such as cooling water through the separator (or interconnector), but in this case heat conduction is required. The higher the ratio and the higher the strength, the more the heat transfer surface can be made 11 times thinner, which is preferable. However, the carbon plate obtained by the above-mentioned manufacturing method has low thermal conductivity in the direction perpendicular to the plate surface, and therefore cannot satisfy these demands.

したがって、これらの用途面に要求される炭素板は、根
面の垂直方向においても強度が高く、電気伝導性も高く
、かつ熱伝導性も優れたものが要求されていた。
Therefore, carbon plates required for these applications are required to have high strength even in the direction perpendicular to the root surface, high electrical conductivity, and excellent thermal conductivity.

[課題を解決するための手段および作用1本発明とらは
、上記のごとき炭素板を製造するため鋭、0研究し、本
発明を完成するに至った。
[Means and Effects for Solving the Problems 1] The present invention has conducted extensive research in order to manufacture the above-mentioned carbon plate, and has completed the present invention.

すなわち、熱硬化性樹脂溶液に長さ0.5mm以下の炭
素繊維を分散し、この分散液を炭素繊維またはその前駆
体繊維のシートに含浸し、樹脂を硬化、焼成することに
よる炭素板の′!JJa法である。
That is, carbon fibers with a length of 0.5 mm or less are dispersed in a thermosetting resin solution, a sheet of carbon fibers or their precursor fibers is impregnated with this dispersion, and the resin is cured and fired. ! This is the JJa method.

ここで熱硬化性樹脂とは、一般に熱により硬化する樹脂
であれば特に制限はないが、フェノール樹脂(ノボラッ
ク、レゾールのどちらでも良い。)フラン樹脂、変性ア
クリル樹脂等残留炭素の高い樹脂が好ましい。
Here, the thermosetting resin is not particularly limited as long as it is a resin that is generally cured by heat, but resins with high residual carbon such as phenol resin (novolac or resol are fine), furan resin, and modified acrylic resin are preferable. .

長さ0.5mm以下の炭素繊維は、気相成長炭素繊維(
以下、VGCFという。)、ミルドファイバーMIO1
,M102 (太さは太いもので20μm以下)等のよ
うに市販されているものをそのまま使用できる。
Carbon fibers with a length of 0.5 mm or less are vapor grown carbon fibers (
Hereinafter referred to as VGCF. ), milled fiber MIO1
, M102 (with a thickness of 20 μm or less), etc., which are commercially available, can be used as they are.

VGCFは気体とした炭化水素を高Wで熱分解して炭素
繊維を製造するものであって、主として直径0.1〜O
,F5am、長さ数um −11100μmの形をして
おり、vGCF生成後そのまま使用することも出来るが
、1000℃以上において熱処理したものが市販されて
いる。本発明においては、これら市販品をそのまま前記
熱硬化性樹脂溶液中に分散すれば良い。
VGCF produces carbon fiber by thermally decomposing gaseous hydrocarbons at high W, and mainly has a diameter of 0.1~0.
. In the present invention, these commercially available products may be directly dispersed in the thermosetting resin solution.

添加量は揮発分を除く樹脂分100重量部に対し、5〜
,30重量部程度である。この範囲より少ないときは電
気伝導性及び熱伝導性が充分向上せず、また30%より
多いと含浸操作が困難となるばかりでなく、電気伝導性
、熱伝導性の改良も不充分となる。
The amount added is 5 to 100 parts by weight of resin excluding volatile matter.
, about 30 parts by weight. If it is less than this range, the electrical conductivity and thermal conductivity will not be sufficiently improved, and if it is more than 30%, not only will the impregnation operation be difficult, but the electrical conductivity and thermal conductivity will not be sufficiently improved.

本発明に使用するシートは、炭素繊維、その前駆体、セ
ルローズ、あるいはそれらの混合物を抄造したものを使
用する。バインダーとしては特に制限はないが、炭素繊
維であるときは弾性が強いのでアクリル系の微細な繊維
からなるバインダーを10〜30%使用すればシート化
が容易である。
The sheet used in the present invention is made from carbon fiber, its precursor, cellulose, or a mixture thereof. There are no particular restrictions on the binder, but since carbon fiber has strong elasticity, it can be easily formed into a sheet if 10 to 30% of the binder is made of fine acrylic fibers.

この場合、原料バルブとしてはセルローズのみでなく、
炭素繊維、ポリアクリロニトリルとの混抄したものの方
が効果がある。
In this case, the raw material valve is not only cellulose, but also
A mixture of carbon fiber and polyacrylonitrile is more effective.

この理由は明らかではないが、シートの気孔が大きい方
が根面に垂直方向の熱伝導性等が高(なるようであり、
測定は困難であるがSEMで見ると気孔の径が100g
m位あった時がよいところから、この気孔にVGCFな
どが重直に突き刺さり、これが電気伝導性、熱伝導性を
高めているのではないかと推定している。したがって、
気孔が小さすぎると炭素繊維の突き刺さる量が減少する
ために改占が不充分になると考えられる。
The reason for this is not clear, but it seems that the larger the pores in the sheet, the higher the thermal conductivity in the direction perpendicular to the root surface.
Although it is difficult to measure, the diameter of the pores is 100g when seen with SEM.
Since the pores were good when they were about m in diameter, it is assumed that VGCF and the like penetrate vertically into these pores, increasing electrical and thermal conductivity. therefore,
It is thought that if the pores are too small, the amount of carbon fibers that penetrate is reduced, resulting in insufficient reoccupation.

シートの厚みは制限はないが積層前で50〜300H/
m”位であるが、これは垂直に突き刺さるのに都合か良
い厚さであると考える。
There is no limit to the thickness of the sheet, but it is 50 to 300H/cm before lamination.
The thickness is approximately 1.5 m, which I think is a suitable thickness for vertical penetration.

樹脂の含浸せは、緻密炭素板の時はシートI量にλ・I
 L、 30〜60IR量%、昇温速度は1〜20”C
/ h r、多孔質炭素板においては樹脂含浸m10〜
40重に%、昇温速度1〜50℃/ h r程度がおお
よその目安である。これはシー1〜材料の種類、含浸樹
脂の種類、喰等により条件が若干異なってくるので簡単
な実験で適切な条件が求められる7得られる炭素板の性
質としては緻密状炭素板の場合、水銀ボリシメーターで
測定して気孔率(0,03〜+ 00 g mの孔径の
ボア容積の累計)0.熱伝導率4.5〜5.5Kcal
/m −h r・・℃程度のものから8、多孔性炭素板
として気孔率50〜80%、熱伝導率2〜4Kcal/
 m −rIr・℃程度のものまで条件を選ぶことによ
り製造することができる。
When impregnating with resin, adjust the amount of sheet I to λ・I when using a dense carbon plate.
L, 30-60 IR amount%, heating rate 1-20"C
/ hr, resin impregnated m10 ~ in porous carbon plate
A rough guideline is 40% by weight and a heating rate of 1 to 50°C/hr. Conditions for this will vary slightly depending on the type of material, type of impregnated resin, feed, etc., so appropriate conditions can be found through simple experiments.7 As for the properties of the resulting carbon plate, in the case of a dense carbon plate, Porosity (cumulative bore volume with pore diameters from 0.03 to + 00 g m) measured with a mercury borisimeter 0. Thermal conductivity 4.5-5.5Kcal
/m -hr...from about ℃ 8, porous carbon plate with porosity of 50-80% and thermal conductivity of 2-4 Kcal/
It can be manufactured by selecting conditions up to m −rIr·°C.

焼成に+11つでは、樹脂を含浸したシートを乾燥し、
複数枚、例えば希望する厚さを得る枚数を市ね、積層圧
着し、常法により焼成炭化する。この場合、多孔性炭素
板であって気孔率が50〜80重程度のものが欲しいと
きはプレス時にスペーサーを用い、所定厚さ以下になら
ないように(緻密にならないように)して成形すると良
い。
+11 for firing, the sheet impregnated with resin is dried,
A plurality of sheets, for example, the number of sheets to obtain a desired thickness, are stacked and pressed together, and fired and carbonized by a conventional method. In this case, if you want a porous carbon plate with a porosity of about 50 to 80, it is best to use a spacer when pressing so that the thickness does not fall below the specified thickness (so that it does not become dense). .

緻密質炭素板を製造するときは、発泡やヒビ割れを避け
るためにも焼成昇温速度は、どんなに急いでも多孔質の
ものより昇温速度は遅くする必要がある。−巨焼成して
目標の気孔率より高い場合には再度樹脂含浸−焼成炭化
をすれば、より気孔率の小さい炭素板が得られる。
When producing dense carbon plates, the heating rate for firing must be slower than that for porous plates, no matter how rapid, in order to avoid foaming and cracking. - If the porosity is higher than the target after large firing, if the resin impregnation and firing carbonization are performed again, a carbon plate with lower porosity can be obtained.

電気伝導性、熱伝導性は、炭素板の炭素化処理後の熱処
理温度を高くすること、気孔率を下げることにより、こ
れらの物性の改善は可能であるが、気孔率が60%以上
の多孔率を維持しながら電気伝導性、熱伝導性を高く維
持するためには黒鉛化温度は2500〜2600℃程度
にすることになり1本発明方法によりリンa型燃料電池
の電極として好ましい性質の炭;+:板が初めて製造で
きた。
Electrical conductivity and thermal conductivity can be improved by increasing the heat treatment temperature after carbonization of the carbon plate and by lowering the porosity, but if the porosity is 60% or more, In order to maintain high electrical conductivity and thermal conductivity while maintaining the thermal conductivity, the graphitization temperature must be approximately 2,500 to 2,600°C. ;+: The board was manufactured for the first time.

[実施例] 以下、実施例をもって本発明を説明する。[Example] The present invention will be explained below with reference to Examples.

(実施例1〜8、比較例1〜5) 太さ約15Itmx長さ約3mmのポリアクリロニトリ
ル繊維(東邦レーヨン製、商品名:ペスロン)及びこの
ポリアクリロニトリル繊MLを不融化処理した不融化ア
クリル繊維(東邦レーヨン製、商品名:バイロメックス
)を各々常法により表1に示した配合条件で抄紙用バイ
ンダー(脂化成製、商品名ニアクリルバインダーA30
2)と共に丸網式抄紙機(東洋精機製作新製、T、S、
S式シートマシーン)により100g7m2のシートと
した。
(Examples 1 to 8, Comparative Examples 1 to 5) Polyacrylonitrile fibers with a thickness of about 15 Itm x length of about 3 mm (manufactured by Toho Rayon, trade name: Peslon) and infusible acrylic fibers obtained by infusible treatment of this polyacrylonitrile fiber ML (manufactured by Toho Rayon Co., Ltd., trade name: Vyromex) was mixed with a papermaking binder (manufactured by Fukkasei Co., Ltd., trade name: Niacrylic Binder A30) under the compounding conditions shown in Table 1 using a conventional method.
2) along with a circular mesh paper machine (newly manufactured by Toyo Seiki Co., Ltd., T, S,
A sheet of 100 g and 7 m 2 was made using a S-type sheet machine).

このポリアクリロニトリル繊維からなる抄造紙、不融化
アクリル繊維からなる抄造紙、および市販炭素繊維紙(
東邦レーヨン製、商品名:ベスファイトnP l l 
0OA−EP)の3種のシートを基材シートとして用い
た。
Paper made from this polyacrylonitrile fiber, paper made from infusible acrylic fiber, and commercially available carbon fiber paper (
Manufactured by Toho Rayon, product name: Besphite nP l l
Three types of sheets (0OA-EP) were used as base sheets.

長さが0.5mm以下の炭素短繊維[呉羽化学■製、商
品名:ミルドファイバーMIOI、M2O3及び昭和電
工aη製、気相成長炭素繊維。
Short carbon fibers with a length of 0.5 mm or less [manufactured by Kureha Kagaku ■, product name: milled fiber MIOI, M2O3, and vapor grown carbon fibers manufactured by Showa Denko aη.

商品名: VGCF]を混合した樹脂液(エタノルにて
濃度20%に希釈したフェノール樹脂)にこれらのシー
トを含浸し、100℃で7分間乾燥した。このプリプレ
グ(含浸量25%: 1I51脂固形分十炭素短繊維)
を20枚積層し、厚さ3mmのスペーサーを用いて16
0℃、20分間圧着し、厚さ3mm、200mm角の大
きさの積層板とした。
These sheets were impregnated with a resin solution (phenol resin diluted with ethanol to a concentration of 20%) mixed with VGCF] and dried at 100° C. for 7 minutes. This prepreg (impregnated amount 25%: 1I51 fat solid content 10 carbon short fibers)
Stack 20 sheets and use 3mm thick spacers to form 16
Pressure bonding was carried out at 0° C. for 20 minutes to obtain a laminate having a thickness of 3 mm and a size of 200 mm square.

このようにして得られた積層板を黒鉛板に挟持し、常法
により昇温速度15℃/ h r −(’ 1000℃
に熱処理した後、−旦室温まで冷却した後アヂソン炉タ
イプの黒鉛化炉で2600℃において黒鉛化処理を行な
い、多孔質炭素板を得た。この多孔質炭素板の8F4物
性を調べた結果を表1に示した。
The thus obtained laminate was sandwiched between graphite plates and heated at a heating rate of 15°C/hr - (' 1000°C) using a conventional method.
After heat treatment, the material was cooled to room temperature, and then graphitized at 2600° C. in an Addison furnace type graphitization furnace to obtain a porous carbon plate. Table 1 shows the results of examining the 8F4 physical properties of this porous carbon plate.

また、比較として従来の多孔質炭素板の製法と同じよう
にフェノール崩脂囃味を含浸したものについても物性を
調べた。この結果を同様に表1に示した。
For comparison, we also investigated the physical properties of a porous carbon plate impregnated with phenol fat extract in the same manner as in the conventional method for manufacturing porous carbon plates. The results are also shown in Table 1.

表1の結果より明らかなように0.5mm以下の炭素短
繊維を混合し7たフェノール樹脂混合液を1λ材である
紙に含浸した多孔質炭素板は従来タイプのものに比べ、
シート面に垂直方向の電電伝導性(ただし、比抵抗で表
わしである。)、熱伝導性が大幅に改冴されている。
As is clear from the results in Table 1, compared to the conventional type, the porous carbon plate in which paper, which is a 1λ material, is impregnated with a phenolic resin mixture mixed with short carbon fibers of 0.5 mm or less,
Electrical conductivity (expressed in specific resistance) and thermal conductivity in the direction perpendicular to the sheet surface have been significantly improved.

(以下余白) (実施例9〜14、比較例6〜8) 実施例1〜3で使用した紙を基材シートとして用い、実
施例1〜8と同様にして炭素短繊維を混合した樹脂液(
昭和高分子什駒製、フェノール樹脂、濃度80%く溶媒
エチルアルコール〉)にシートを含浸して得たプリプレ
グ(含浸量55%、樹脂固JF5分十炭素短繊維)を5
枚積層し。
(Margin below) (Examples 9 to 14, Comparative Examples 6 to 8) Using the paper used in Examples 1 to 3 as a base sheet, a resin liquid mixed with short carbon fibers in the same manner as in Examples 1 to 8. (
A prepreg obtained by impregnating a sheet with phenolic resin (manufactured by Showa Kobunshi Yokoma, concentration 80%, solvent ethyl alcohol) (impregnated amount 55%, resin solid JF 50 carbon short fibers) was
Laminated.

l E50℃、20分間、50にg/cカの圧力下(ス
ペーサーなし)で圧着し、厚さ1mm、200mm角の
大きさの積層板とした。
1 E Pressure bonding was carried out at 50° C. for 20 minutes under a pressure of 50 g/c (without a spacer) to form a laminate with a thickness of 1 mm and a size of 200 mm square.

このようにして得られた積層板を黒鉛板に挟持し、5℃
/11rの胃、温速度で非酸化性雰囲気下1100℃に
熱処理し、緻密質炭素板を得た。この緻寓質は破面がガ
ラス状を一?しており、δ種物性を調べた結果は表2の
通りであった。
The thus obtained laminate was sandwiched between graphite plates and heated at 5°C.
A dense carbon plate was obtained by heat treatment at 1100° C. in a non-oxidizing atmosphere at a heating rate of /11r. Does this fine texture have a glass-like fracture surface? Table 2 shows the results of examining the physical properties of the δ species.

また、比較として従来の緻密質炭素板の製法と同じよう
にフェノール樹脂単味及び黒鉛微粉を混合したフェノー
ル樹脂を3Lしたものについても物性を調べた。この結
果を同様に表2に示した。
For comparison, the physical properties were also investigated using 3 L of phenol resin mixed with a single phenol resin and fine graphite powder in the same manner as in the conventional manufacturing method of dense carbon plates. The results are also shown in Table 2.

表2の結果より明らかなように1本発明により得られる
緻密質炭素板は従来タイプのものに比べ、シート面に垂
直方向の電気伝導性、熱伝導性が大幅に改善されている
As is clear from the results in Table 2, the dense carbon plate obtained by the present invention has significantly improved electrical conductivity and thermal conductivity in the direction perpendicular to the sheet surface compared to conventional types.

(以下余白) [9,明の効果1 本発明により得られる多孔質カーボン板はklの結果に
見られるように従来の多孔質カーボン扱と同様にリン酸
型燃料電池用多孔質カーボン電極として充分使用可能な
物性を具備している。また1面に垂直方向の熱伝導率、
ffi気比低比抵抗来品に比べて優れている。
(Blank below) [9. Light effect 1 As seen in the results of kl, the porous carbon plate obtained by the present invention is sufficient as a porous carbon electrode for phosphoric acid fuel cells in the same way as the conventional porous carbon treatment. It has usable physical properties. Also, the thermal conductivity perpendicular to one plane,
It is superior to previous products due to its low specific resistance.

この特徴は、リン酸型燃料電池用多孔質カーボン鈑どし
て一+1’6池の性能同士に寄与するところ大と思える
。電気比抵抗の低下は抵抗によるエネルギー・ロスの減
少に、また熱伝導率の増加は数セルに1枚づつ使われて
いる冷却板数の減少に没):tつ ta却板数の減少は
電池のコンパクト化及びコストダウンに役立つものと思
われる。
This feature seems to greatly contribute to the performance of the 1+1'6 cell as a porous carbon plate for phosphoric acid fuel cells. The decrease in electrical resistivity is due to a decrease in energy loss due to resistance, and the increase in thermal conductivity is due to a decrease in the number of cooling plates, one for each cell. This is believed to be useful for making batteries more compact and reducing costs.

また付随的ではあるが、本発明により4’Jられる多孔
質カーボン板は従来品と比べ圧縮強度の向Eも認められ
る。この傾向はリン酸型燃料電池用。
Additionally, although it is incidental, the porous carbon plate prepared by 4'J according to the present invention also has an improvement in compressive strength E compared to conventional products. This trend applies to phosphoric acid fuel cells.

他各種燃料電池用ポーラスカーボン電極抜としては好ま
しいものである。
It is also preferred as a porous carbon electrode for various other fuel cells.

更に、本発明方法により得られる緻密質炭素板は表2に
示すごとく、板面に垂直方向の電気伝導度、熱伝導率は
従来法で()られた炭素板に比して著しく改とされてお
り、燃料電池のセパレーターとしての利用に好ましい性
質を有している。
Furthermore, as shown in Table 2, the dense carbon plate obtained by the method of the present invention has significantly improved electrical conductivity and thermal conductivity in the direction perpendicular to the plate surface compared to carbon plates produced using the conventional method. It has properties suitable for use as a fuel cell separator.

Claims (1)

【特許請求の範囲】[Claims] (1)熱硬化性樹脂溶液に長さ0.5mm以下の炭素繊
維を分散し、この分散液を炭素繊維またはその前駆体繊
維のシートに含浸し、樹脂を硬化、焼成することを特徴
とする炭素板の製造法。
(1) Carbon fibers with a length of 0.5 mm or less are dispersed in a thermosetting resin solution, this dispersion is impregnated into a sheet of carbon fibers or their precursor fibers, and the resin is cured and fired. Carbon plate manufacturing method.
JP1001926A 1989-01-10 1989-01-10 Manufacturing method of carbon plate Expired - Lifetime JP2780987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1001926A JP2780987B2 (en) 1989-01-10 1989-01-10 Manufacturing method of carbon plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1001926A JP2780987B2 (en) 1989-01-10 1989-01-10 Manufacturing method of carbon plate

Publications (2)

Publication Number Publication Date
JPH02184510A true JPH02184510A (en) 1990-07-19
JP2780987B2 JP2780987B2 (en) 1998-07-30

Family

ID=11515205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1001926A Expired - Lifetime JP2780987B2 (en) 1989-01-10 1989-01-10 Manufacturing method of carbon plate

Country Status (1)

Country Link
JP (1) JP2780987B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05155672A (en) * 1991-12-05 1993-06-22 Oji Paper Co Ltd Porous carbon plate and its production
CN101794887A (en) * 2010-03-22 2010-08-04 中国海洋石油总公司 Vanadium battery bi-polar plate, preparation method and application thereof
US8323439B2 (en) 2009-03-08 2012-12-04 Hewlett-Packard Development Company, L.P. Depositing carbon nanotubes onto substrate
US8343452B2 (en) * 2006-03-20 2013-01-01 GM Global Technology Operations LLC Acrylic fiber bonded carbon fiber paper as gas diffusion media for fuel cell
WO2016063983A1 (en) * 2014-10-23 2016-04-28 昭和電工株式会社 Fuel-cell porous separator, fuel cell, and method for manufacturing fuel-cell porous separator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63215565A (en) * 1987-03-04 1988-09-08 日石三菱株式会社 Manufacture of carbon/carbon composite material
JPH01133914A (en) * 1987-08-05 1989-05-26 Kobe Steel Ltd Carbon fiber reinforced carbon composite material and production thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63215565A (en) * 1987-03-04 1988-09-08 日石三菱株式会社 Manufacture of carbon/carbon composite material
JPH01133914A (en) * 1987-08-05 1989-05-26 Kobe Steel Ltd Carbon fiber reinforced carbon composite material and production thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05155672A (en) * 1991-12-05 1993-06-22 Oji Paper Co Ltd Porous carbon plate and its production
US8343452B2 (en) * 2006-03-20 2013-01-01 GM Global Technology Operations LLC Acrylic fiber bonded carbon fiber paper as gas diffusion media for fuel cell
US8323439B2 (en) 2009-03-08 2012-12-04 Hewlett-Packard Development Company, L.P. Depositing carbon nanotubes onto substrate
CN101794887A (en) * 2010-03-22 2010-08-04 中国海洋石油总公司 Vanadium battery bi-polar plate, preparation method and application thereof
WO2016063983A1 (en) * 2014-10-23 2016-04-28 昭和電工株式会社 Fuel-cell porous separator, fuel cell, and method for manufacturing fuel-cell porous separator

Also Published As

Publication number Publication date
JP2780987B2 (en) 1998-07-30

Similar Documents

Publication Publication Date Title
US4579789A (en) Carbonaceous fuel cell electrode substrate incorporating three-layer separator, and process for preparation thereof
CN108541350B (en) Gas diffusion electrode and method for producing same
JP2010073699A (en) Water transport plate and its use method
JP3356534B2 (en) Electrolyte holding plate and method for manufacturing the same
US20170062836A1 (en) Gas diffusion substrate
JPH09157052A (en) Porous carbon sheet and its production
JP2004288489A (en) Porous carbon base material for electrode and manufacturing method of the same
JP3573444B2 (en) Carbonaceous separator member for polymer electrolyte fuel cell and method of manufacturing the same
JP2011192653A (en) Gas diffusion media, and fuel cell
JP2004311431A (en) Porous carbon board and its manufacturing method
JP5544960B2 (en) Porous carbon sheet for polymer electrolyte fuel cell and method for producing the same
JPH02184510A (en) Production of carbon plate
JP2007176750A (en) Porous carbon fiber sheet and method of manufacturing the same
JPH0559867B2 (en)
JPH09278558A (en) Carbonaceous porous body and its production
JP2023549666A (en) electrode material
JPH0660884A (en) Manufacture of porous carbon sheet for phosphoric acid fuel cell
JP2007012440A (en) Porous carbon material for fuel cell, thermal conductive member made of carbon fiber reinforced plastic, and manufacturing method of these
JP2820492B2 (en) Carbon plate and method for producing the same
JPH05325984A (en) Premolded carbon material and manufacture thereof and manufacture of electrode substrate for fuel cell
JPH01266223A (en) Production of anisotropic porous carbon formed product
JP2685365B2 (en) Manufacturing method of porous carbon plate
JPH07220732A (en) Manufacture of porous carbon plate for phosphoric acid fuel cell
JPH034508B2 (en)
JPH06263558A (en) Production of porous carbon plate and porous carbon electrode material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080515

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090515

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090515

Year of fee payment: 11