JP2013024401A - 車両の駆動力制御装置 - Google Patents

車両の駆動力制御装置 Download PDF

Info

Publication number
JP2013024401A
JP2013024401A JP2011163004A JP2011163004A JP2013024401A JP 2013024401 A JP2013024401 A JP 2013024401A JP 2011163004 A JP2011163004 A JP 2011163004A JP 2011163004 A JP2011163004 A JP 2011163004A JP 2013024401 A JP2013024401 A JP 2013024401A
Authority
JP
Japan
Prior art keywords
clutch
torque
power transmission
transmission device
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011163004A
Other languages
English (en)
Inventor
Akio Murasugi
明夫 村杉
Hideki Takamatsu
秀樹 高松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011163004A priority Critical patent/JP2013024401A/ja
Publication of JP2013024401A publication Critical patent/JP2013024401A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Transmission Device (AREA)

Abstract

【課題】車両に要求される駆動力を得ることができるとともに、変速によるショックを低減することができる車両の駆動力制御装置を提供する。
【解決手段】回転方向における一方向の動力のみ伝達するワンウェイクラッチと、係合および解放を選択的に切り換えることができるクラッチとのそれぞれを係合させることにより動力を伝達する動力伝達装置を備え、前記ワンウェイクラッチが動力を伝達していない状態から動力を伝達する状態に切り替わる場合に、前記クラッチをスリップさせるように構成された車両の駆動力制御装置において、前記動力伝達装置の出力軸の角加速度と、前記クラッチをスリップさせる目標滑り量とに基づいて、前記動力伝達装置に入力するトルクと前記クラッチのトルク容量との制御量を算出する第1トルク算出手段を備えている。
【選択図】図1

Description

この発明は、動力伝達部材の係合および解放を選択的に変更することができるクラッチと、一方の回転方向の動力のみを伝達するワンウェイクラッチとを有した動力伝達装置を備えた車両の駆動力制御装置に関し、特に、クラッチとワンウェイクラッチとの双方が係合して動力を伝達するように構成された動力伝達装置の駆動力の制御を行う装置に関するものである。
ワンウェイクラッチは、動力を伝達させるために油圧や電力を必要とせず、また、そのクラッチを係合させるための制御を必要としないので、車両における動力伝達装置に利用されている。特許文献1には、エンジンと自動変速機との間にワンウェイクラッチを設けており、車両が惰性走行している状態から加速要求があり、ワンウェイクラッチのエンジン側の入力軸の回転数が、自動変速機側の出力軸の回転数と同期した場合に、ワンウェイクラッチが係合して自動変速機にエンジンの動力が伝達されるように構成された装置が記載されている。このように構成された装置において、車両が加速し始めてからワンウェイクラッチが係合すると、エンジンの動力が急激に自動変速機に入力される。そのため、車両の駆動力が急激に増大すること、すなわち加速度が急激に増大することによって、車両にショックが生じてしまう。したがって、特許文献1に記載された装置は、車両の加速要求があった場合には、エンジンの出力を点火時期遅延制御によって低下させ、また自動変速機に設けられた油圧クラッチの締結力を低下させることによって、ワンウェイクラッチが係合された際の急激な変速ショックを抑制するように構成されている。
また、ワンウェイクラッチと油圧クラッチとが係合して変速段が選択されるように構成された自動変速機が特許文献2に記載されている。この特許文献2に記載された自動変速機は、加速要求があり上記変速段が選択された場合に、その加速要求に応じたエンジントルクを出力することにより、ワンウェイクラッチの入力側の回転数と出力側の回転数とが同期する時間を短くするように構成されている。また、ワンウェイクラッチが係合することによるショックを抑制するために、ワンウェイクラッチが係合する前に、エンジンの出力トルクを低下させ、そのエンジンの出力トルクが入力されてもスリップしない程度でかつ低圧に係合させるように油圧クラッチの油圧が設定されている。さらに、ワンウェイクラッチが係合すると、エンジントルクを増大させるが、その際には、油圧クラッチのトルク容量を増大させる時間より、エンジントルクを増大させる時間を速くすることによって、油圧クラッチに滑りを生じさせて、変速によるショックを抑制するように構成されている。
さらに、特許文献3には、エンジンとトロイダル型無段変速機との間に副変速機と前後進切換機能を有した主変速機とを備えた動力伝達装置が記載されている。この副変速機の出力軸にはワンウェイクラッチが設けられており、また主変速機には、車両を前進走行させる場合に係合される油圧クラッチが設けられている。そして、アクセル開度が所定値以上である場合には、ワンウェイクラッチが係合する際の変速ショックを抑制するために、油圧クラッチの制御デューティを下げるように構成されている。つまり、油圧クラッチをスリップさせることにより、ワンウェイクラッチが係合した際の急激なトルク変動を抑制するように構成されている。さらに、油圧クラッチをスリップさせる目標スリップ時間とスリップ回転数は変速比乖離量とアクセル開度差から設定するように構成されている。
そして、特許文献4には、クラッチツウクラッチ変速時に、係合される側の油圧クラッチの油圧を低下させることによって、車両の駆動側の部材に伝達されるエンジンの出力トルクを低下させるように構成された装置が記載されている。
特開平10−324178号公報 特開2010−242926号公報 特開2006−348984号公報 特開2007−2899号公報
上述したように変速比を変化させることにより、変速前後の車両の駆動力が急激に変化してしまうので、各特許文献に記載されたように、変速後の変速比を設定する場合に係合されるクラッチの係合圧を低下させてクラッチをスリップさせることにより、車両の出力軸にエンジンから伝達されるトルクを低下させて、車両の駆動力が急激に変化することを抑制することができる。つまり、エンジンの出力トルクとクラッチの係合圧との関係によって出力軸に伝達されるトルクを低下させることができる。したがって、エンジンの出力トルクを低下させて車両の駆動力が急激に変化することを抑制することもできる。
一方、エンジンのトルクを低下させたり、クラッチの係合圧を低下させたりすると、車両に要求される駆動力を得ることができなくなる可能性ある。したがって、従来は、駆動力が急激に変化せず、また要求駆動力を得ることができるように、予め実験などによって用意されたマップに基づいて、エンジントルクとクラッチの係合圧とを設定していた。そのため、要求駆動力やエンジントルクあるいはクラッチの係合圧など種々のパラメータを元にマップを用意する必要があり、そのマップを用意するための工数が増大してしまう可能性があった。
この発明は上述した事情を背景としてなされたものであって、車両に要求される駆動力を得ることができるとともに、変速によるショックを低減することができる車両の駆動力制御装置を提供することを目的とするものである。
上記の目的を達成するために請求項1の発明は、回転方向における一方向の動力のみ伝達するワンウェイクラッチと、係合および解放を選択的に切り換えることができるクラッチとのそれぞれを係合させることにより動力を伝達する動力伝達装置を備え、前記ワンウェイクラッチが動力を伝達していない状態から動力を伝達する状態に切り替わる場合に、前記クラッチをスリップさせるように構成された車両の駆動力制御装置において、前記動力伝達装置の出力軸の目標角加速度と、前記クラッチをスリップさせる目標滑り量とに基づいて、前記動力伝達装置に入力するトルクと前記クラッチのトルク容量との制御量を算出する第1トルク算出手段を備えていることを特徴とするものである。
請求項2の発明は、請求項1の発明において、前記第1トルク算出手段は、前記動力伝達装置の出力軸の角加速度が、前記目標角加速度に達する際に前記クラッチが完全に係合するように、前記動力伝達装置に入力するトルクと前記クラッチのトルク容量との制御量を算出する手段を含むことを特徴とする車両の駆動力制御装置である。
請求項3の発明は、請求項1または2の発明において、前記クラッチが完全に係合する前後における前記目標滑り量の変化率が小さくなるように、前記動力伝達装置に入力するトルクと前記クラッチのトルク容量との制御量を算出する第2トルク算出手段を更に備え、前記クラッチが完全に係合する以前に、前記第1トルク算出手段により算出される前記動力伝達装置に入力するトルクと前記クラッチのトルク容量との制御量から、前記第2トルク算出手段により算出される前記動力伝達装置に入力するトルクと前記クラッチのトルク容量との制御量に切り換えて、前記動力伝達装置に入力するトルクと前記クラッチのトルク容量とを出力するように構成されていることを特徴とする車両の駆動力制御装置である。
請求項4の発明は、請求項3の発明において、前記第2トルク算出手段は、前記クラッチが完全に係合する際に、前記動力伝達装置に入力されるトルクの制御量が、前記目標角加速度に応じたトルクとなるように算出され、その算出された制御量に応じた前記クラッチのトルク容量の制御量を算出する手段を含むことを特徴とする車両の駆動力制御装置である。
請求項5の発明は、請求項1ないし4のいずれかの発明において、前記クラッチの滑り量を検出する滑り量検出手段を更に備え、前記動力伝達装置に入力するトルクと前記クラッチのトルク容量との制御量に基づいて算出される滑り量と、前記動力伝達装置に入力するトルクと前記クラッチのトルク容量との応答が遅れて前記滑り量検出手段により検出された実滑り量との偏差に基づいて、前記動力伝達装置に入力するトルクと前記クラッチのトルク容量とのいずれか一方の制御量をフィードバック制御するように構成されていることを特徴とする車両の駆動力制御装置である。
請求項1の発明によれば、ワンウェイクラッチが動力を伝達していない状態から動力を伝達する状態に切り替わる場合に、クラッチをスリップさせるように構成されているので、ワンウェイクラッチが係合する際に生じるパルス状の変速ショックを抑制もしくは防止することができる。また、動力伝達装置に入力されるトルクとクラッチのトルク容量との制御量は、動力伝達装置の出力軸の角加速度と、クラッチをスリップさせる目標滑り量とに基づいて算出される。したがって、動力伝達装置に入力されるトルクとクラッチのトルク容量とのマップを用意するための工数を削減することができる。
請求項2の発明によれば、動力伝達装置の出力軸の角加速度が、目標角加速度に達する際にクラッチが完全に係合するように、動力伝達装置に入力するトルクとクラッチのトルク容量との制御量を算出するので、動力伝達装置の出力軸の角加速度が目標角加速度に達した際にクラッチがスリップすることを抑制もしくは防止することができる。すなわち、過剰に動力伝達装置に入力する動力の回転数を増大させることを抑制もしくは防止することができる。したがって、過剰に回転数を増大させたことによる動力損失を抑制もしくは防止することができる。
請求項3の発明によれば、クラッチが完全に係合する以前に、クラッチが完全に係合する前後における目標滑り量の変化率が小さくなるように、動力伝達装置に入力するトルクとクラッチのトルク容量との制御量が算出され、それ以前に算出された制御量から切り換えて動力伝達装置に入力するトルクとクラッチのトルク容量とを出力するので、クラッチが係合することによるパルス状の変速ショックを抑制もしくは防止することができる。
請求項4の発明によれば、クラッチが完全に係合する際に、動力伝達装置に入力されるトルクの制御量が、目標角加速度に応じたトルクとなるように算出され、その算出された制御量に応じたクラッチのトルク容量の制御量を算出するので、クラッチが係合した後に動力伝達装置に入力されるトルクを増減する制御を行う必要がない。
請求項5の発明によれば、クラッチの滑り量を検出する滑り量検出手段を更に備え、動力伝達装置に入力するトルクとクラッチのトルク容量との制御量に基づいて算出される滑り量と、動力伝達装置に入力するトルクとクラッチのトルク容量との応答が遅れて滑り量検出手段により検出された実滑り量との偏差に基づいて、動力伝達装置に入力するトルクとクラッチのトルク容量とのいずれか一方の制御量をフィードバック制御するように構成されている。したがって、動力伝達装置に入力するトルクやクラッチのトルク容量の応答遅れを考慮して制御することができ、その結果、クラッチの滑り量の制御性を向上させることができる。
この発明に係る車両の駆動力制御装置によるタービントルクおよび第1クラッチのトルク容量の制御量の変化、ならびに各回転部材などの動力の変化を示すタイムチャートである。 この発明で対象とすることのできる車両の駆動系統および制御系統の構成を示す模式図である。 図2におけるトルクコンバータおよび自動変速機のスケルトン図である。 図3における自動変速機の共線図である。 その作動表を示す図表である。 ワンウェイクラッチが係合することによる変速ショックを抑制するための制御例を説明するためのフローチャートである。 第1クラッチが係合することによる変速ショックを抑制するための制御例を説明するためのフローチャートである。 フィードバック制御を説明するためのフローチャートである。 エンジントルクおよび第1クラッチのトルク容量の遅れを示すタイムチャートである。
つぎに、この発明を具体例に基づいて説明する。図2は、この発明で対象とすることのできる車両Veの駆動系統および制御系統の構成を説明するための模式図である。まず、ガソリンエンジンやディーゼルエンジンあるいはLPGエンジンなどの内燃機関や電動機などによって構成された動力源(以下、単にエンジン1と記す。)が設けられている。このエンジン1には、トルクコンバータ2を介して自動変速機3が連結されており、エンジン1から出力された動力を増減して出力することができるように構成されている。そして、自動変速機3の出力側にはプロペラシャフト4、デファレンシャルギヤ5、ドライブシャフト6を介して駆動輪7が連結されている。
図3は、それらトルクコンバータ2および自動変速機3の構成を説明するためのスケルトン図である。図に示すトルクコンバータ2は、エンジン1の出力軸1aと一体に回転して内部に液密に流入されたオイルの流れを生じさせるポンプインペラ2aと、そのポンプインペラ2aと対向して配置され、ポンプインペラ2aによって発生させられたオイルの流れによって駆動させられ動力を出力するタービンランナー2bと、ポンプインペラ2aとタービンランナー2bとの間に配置され、タービンランナー2bから排出されたオイルの流れを整流してポンプインペラ2aに還元することによってトルク増幅作用を生じさせるステータ2cとを備えている。さらに、変速作用が必要ない場合にタービンランナー2bとエンジン1の出力軸1aとを直接連結して動力を伝達するロックアップクラッチ2dが設けられている。なお、このロックアップクラッチ2dは、油圧や電力に応じて動力を伝達する状態と、動力を遮断する状態とが切り換えられるように構成されている。
そして、トルクコンバータ2の出力軸2eに自動変速機3が連結されている。図に示す自動変速機3は、2組の遊星歯車機構、すなわちシングルピニオン型の遊星歯車機構8およびラビニョ型の遊星歯車機構9とによって構成されている。それら各遊星歯車機構8,9には、各回転要素同士を連結もしくは遮断することができるクラッチ、およびいずれかの回転要素の回転を選択的に禁止(固定)することができるブレーキ、ならびに一方向のみの動力伝達を許容するワンウェイクラッチなどの締結装置が設けられている。
図3に示す自動変速機3の構成をより具体的に説明する。図に示す自動変速機3は、トルクコンバータ2、シングルピニオン型の遊星歯車機構8、ラビニョ型の遊星歯車機構9の順に配置されている。そのシングルピニオン型の遊星歯車機構8は、タービンランナー2bの出力軸2eと一体に回転するサンギヤS10と、そのサンギヤS10と同軸上に配置されたリングギヤR10と、それらサンギヤS10とリングギヤR10とに噛み合い、キャリアC10によって自転および公転自在に保持された複数のピニオンギヤとによって構成されている。また、ラビニョ型の遊星歯車機構9は、タービンランナー2bの出力軸2eの回転軸線と同軸上に配置されたサンギヤS20と、そのサンギヤS20と同軸線上に配置されたリングギヤR20と、それらサンギヤS20とリングギヤR20とに噛み合い、かつそれらサンギヤS20およびリングギヤR20の軸長より長く形成された複数の第1ピニオンギヤと、前記シングルピニオン型の遊星歯車機構8を構成するキャリアC10と一体に回転し、タービンランナー2bの出力軸2eと同軸線上に配置されたサンギヤS30と、第1のピニオンギヤとサンギヤS30とに噛み合う複数の第2ピニオンギヤと、それら第1および第2ピニオンギヤを自転および公転自在に保持するキャリアC20とによって構成されている。そして、ラビニョ型の遊星歯車機構9のキャリアC20が出力軸として機能し、プロペラシャフト4に連結されている。
さらに、図に示す自動変速機3は、タービンランナー2bの出力軸2eからサンギヤS20に選択的に動力を伝達もしくは遮断することができる第1クラッチC1と、タービンランナー2bの出力軸2eからリングギヤR20に選択的に動力を伝達もしくは遮断することができる第2クラッチC2と、係合することによってシングルピニオン型の遊星歯車機構8を構成するキャリアC10、すなわちラビニョ型の遊星歯車機構9を構成するサンギヤS30の回転を禁止する第1ブレーキB1と、係合することによってリングギヤR20の回転を禁止する第2ブレーキB2と、係合することによってシングルピニオン型の遊星歯車機構8を構成するリングギヤR10の回転を禁止する第3ブレーキB3と、リングギヤR20が一方向に回転した場合にリングギヤR20を解放してリングギヤR20を空転させ、他方向に回転する場合に係合してリングギヤR20の回転を禁止するように構成されたワンウェイクラッチF1とを備えている。上述したワンウェイクラッチF1を除く各クラッチC1,C2やブレーキB1,B2,B3は、油圧式の係合機構であってもよく、電動式の係合機構であってもよい。すなわち、各クラッチC1,C2やブレーキB1,B2,B3は、係合状態と遮断状態とを制御することができる係合機構であればよい。さらに、各クラッチC1,C2は、係合力を制御することができるものであればよい。なお、以下の説明では、各クラッチC1,C2やブレーキB1,B2,B3が油圧によって係合もしくは解放される、いわゆる油圧締結装置を用いた場合を例に挙げて説明する。
そして、タービンランナー2bの出力軸2eの回転数を検出するセンサ10や、自動変速機3の出力軸、すなわちキャリアC20の回転数を検出するセンサ11、運転者によるアクセル操作、すなわちアクセル開度を検出するアクセル開度センサ12などが設けられており、それらセンサ10,11,12から入力された信号に基づいてエンジントルクや各締結装置の油圧を制御する信号を出力する電子制御装置(ECU)13が設けられている。
つぎに、上述した自動変速機3の作用について図4に示す共線図および図5に示す作動表に基づいて簡単に説明する。図に示す自動変速機3は、4つの変速段を設定することができる変速機である。まず、第1速の変速段を設定する場合は、図5に示す作動表のように第1クラッチC1およびワンウェイクラッチF1が係合される。すなわち、第1クラッチC1が係合されると、サンギヤS20が入力要素として機能し、自動変速機3の出力軸の回転数、すなわち車速が一定速度以下の場合にワンウェイクラッチF1が係合する。つまり、車両Veが低速もしくは停車している状態から、加速要求があった場合に、第1クラッチC1を係合させると、必然的にワンウェイクラッチF1が係合して、そのワンウェイクラッチF1が反力要素として機能してキャリアC20から動力が出力される。なお、エンジンブレーキを作用させる場合、すなわちシフトレバーによって第1速を選択されている場合には、第2ブレーキB2が係合されて強制的に第1速が選択されるように構成されいる。
第2速は、第1クラッチC1と第1ブレーキB1とを係合させることによって設定される。すなわち、第1速が設定されている状態でキャリアC20の回転数が増大することに伴ってリングギヤR20の回転数が増大するので、ワンウェイクラッチF1が解放され、そして、第1ブレーキB1を係合することによって第2速が設定される。さらに、車速が増加すると、第1クラッチC1を係合した状態で、第1ブレーキB1を解放しつつ、第2クラッチC2を係合させて、サンギヤS20とリングギヤR20とを一体に回転させ、ラビニョ型の遊星歯車機構9を直結状態とすることによって、第3速が設定される。
さらに、車速が増加すると、第2クラッチC2を係合させた状態で、第1クラッチを解放しつつ、第1ブレーキB1が係合させて第4速が設定される。すなわち、トルクコンバータ2の出力軸2eからリングギヤR20に動力が伝達されるので、リングギヤR20が入力要素として機能し、サンギヤS30は第1ブレーキB1によって回転が禁止されて反力要素として機能し、キャリアC20が出力要素として機能して第4速が設定される。なお、第1速ないし第4速が選択されている場合には、シングルピニオン型の遊星歯車機構8におけるリングギヤR10は、空転した状態となっている。そして、シフトレバーによって後進走行が選択された場合に、第2および第3ブレーキB2,B3が係合される。すると、シングルピニオン型の遊星歯車機構8におけるキャリアC10を介してラビニョ型の遊星歯車機構9におけるサンギヤS30に動力が伝達され、第2ブレーキB2が係合されていることによりキャリアC20が反転して回転するので、車両Veが後進走行することができる。つまり、シングルピニオン型の遊星歯車機構8は、前後進切換装置として機能するように構成されている。
この発明は、上述したようにワンウェイクラッチF1を備えた動力伝達装置において、そのワンウェイクラッチF1が解放された状態から係合することによって、パルス状のトルク変動が生じることにより変速ショックが発生してしまうことを抑制するためのものである。図6にその制御例を説明するためのフローチャートを示す。図6に示すフローチャートでは、車両Veが低速でかつ惰性走行している状態を前提としている。具体的には、第2速もしくは第3速が設定されかつアクセル開度がOFFの状態で走行している状態を前提としている。まず、アクセル開度がOFFからONに変更されたか否かを判断する(ステップS11)。この判断は、アクセル開度センサ12によって運転者によりアクセルが踏み込まれたか否かによって判断することができる。この判断で否定的に判断された場合には、そのままこの制御を一旦終了する。それとは反対に、アクセルが踏み込まれてステップS11で肯定的に判断された場合は、第1クラッチC1のトルク容量が0(ゼロ)Nmとなるように油圧を低下させる(ステップS12)。つまり、第1クラッチC1を解放する。これは、第1クラッチC1のみを係合させた状態でタービンランナー2bの出力軸2e、すなわち自動変速機3の入力軸(以下、自動変速機3の入力軸を単に入力軸3aと記す。)の回転数を増加させると、その入力軸回転数とキャリアC20の回転数(以下、キャリアC20の回転数を出力軸回転数と記す。)との関係からワンウェイクラッチF1が係合し、その結果、変速ショックが発生してしまうことを防止するためである。
ついで、入力軸回転数が、出力軸回転数と変速後の変速比、すなわち第1速が設定されたときの変速比とを積算した回転数と一致したか否かを判断する(ステップS13)。すなわち、第1クラッチC1が係合することによりワンウェイクラッチF1が係合する回転数、つまりワンウェイクラッチF1が同期する回転数であるか否かを判断する。これは、入力軸回転数および出力軸回転数を検出するセンサ10,11により検出された信号に基づいて判断することができる。なお、第1クラッチC1が解放されている状態では、入力軸回転数を増加させても、その動力が出力軸に伝達されないので、出力軸回転数は一定に保たれている。ステップS13で否定的に判断された場合は、入力軸回転数が出力軸回転数と変速後の変速比とを積算した回転数と一致するまで、ステップS13の判断を繰り返す。それとは反対にステップS13で肯定的に判断された場合、すなわち入力軸回転数が出力軸回転数と変速後の変速比とを積算した回転数と一致した場合は、車両Veに要求される加速度(DWOTGT)およびその加速度DWOTGTに到達するまでの時間(以下、単に第1所定時間TC1SLP1と記す。)ならびにタービン吹き量(WTSLPTGT)を決定する(ステップS14)。なお、ステップS14における加速度DWOTGTは、アクセル開度センサ12により検出された値から決定することができる。また、第1所定時間TC1SLP1は、車両毎に任意に決定することができる。すなわち、スポーツタイプの車両の場合には、その時間TC1SLP1を短くし、ファミリータイプの車両の場合には、その時間TC1SLP1を長くするなど任意に決定することができる。なお、アクセルの踏み込み速度などに基づいてその時間TC1SLP1を変化させてもよい。さらに、タービン吹き量WTSLPTGTとは、第1クラッチC1の滑り量と比例したものであり、具体的には、第1クラッチC1が完全に係合して第1速が設定されている場合での入力軸回転数より速く回転している回転数である。すなわち、第1クラッチC1が滑ることにより、入力軸3aの回転に対する反力が弱く、その結果入力軸3aの回転数が増加する。その増加分がタービン吹き量WTSLPTGTに相当する。
そして、ステップS14で決定された加速度DWOTGTと第1所定時間TC1SLP1とタービン吹き量WTSLPTGTとに基づいて、以下の式における係数a,bおよびタービントルクの初期値TTを算出する(ステップS15)。つまり、タービントルクおよび第1クラッチのトルク容量の制御量を算出する。なお、タービントルクがこの発明における『自動変速機へ入力されるトルク』に相当し、ステップS15が、この発明における第1トルク算出手段に相当する。つまり、この発明における『自動変速機へ入力されるトルク』は、動力源の構成によらず、ワンウェイクラッチF1が設けられている変速機へ入力されるトルクを算出することができればよい。
Figure 2013024401
なお、上式におけるTTはタービントルク、TC1は第1クラッチC1のトルク容量、tは経過時間である。また、この発明は、タービントルクTTと第1クラッチC1のトルク容量TC1とを演算式によって定めるものであり、それらタービントルクTTおよび第1クラッチC1のトルク容量TC1を簡易的な関数で設定するために、上式のように一次関数としている。
ここで、ステップS15における演算について具体的に説明する。まず、自動変速機3内部の運動方程式方程式から、第1クラッチC1が滑っている状態は、以下の式が成立する。
Figure 2013024401
なお、上式におけるωtslpはタービン吹き量、ωoは出力軸回転数である。また、α、β、γは車両Veおよび自動変速機3の諸元から決まる係数である。具体的には、各軸に作用する慣性モーメントやギヤの歯数から算出することができる係数である。
以上の各式からタービン吹き量ωtslpおよび出力軸の角加速度dωoは、以下に示す時間tの関数とすることができる。すなわち、式(1)を式(3)に代入して積分することによりタービン吹き量ωtslpの関数を定めることができ、式(2)を式(4)に代入することにより出力軸の角加速度dωoを定めることができる。
Figure 2013024401
式(5)からタービン吹き量ωtslpを示す関数は、2次関数となることが分かる。そこで、タービン吹き量ωtslpおよび出力軸の角加速度dωoの目標値を以下のように設定する。
Figure 2013024401
すなわち、出力軸の角加速度dωoが目標加速度に到達する際もしくは同時にタービン吹き量ωtslpが0(ゼロ)に収束し、かつ第1所定時間TC1SLP1の半分でタービン吹き量ωtslpが最大となるようにタービン吹き量ωtslpの目標値を設定する。
そして、上述した各式から係数a,bおよびタービントルクTTの初期値TTを求める。具体的には、まず、式(6)と式(9)から係数bを求めることができる。
Figure 2013024401
ついで、式(5)および式(7)からタービントルクTTの初期値TTの演算式を求め、式(5)および式(8)から係数aの演算式を求める。
Figure 2013024401
そして、式(11)および式(12)に、式(10)で算出した係数bを代入し、かつ式(11)および式(12)から、係数aおよびタービントルクTTの初期値TTを求める。
そして、上述したように算出された係数a,bおよびタービントルクTTの初期値TTを式(1)および式(2)に代入することによってタービントルクTTと第1クラッチC1のトルク容量TC1とのそれぞれの関数を決定することでき、その関数における経過時間に応じた制御量のタービントルクTTと第1クラッチC1のトルク容量TC1とを出力する(ステップS16)。ついで、第1クラッチC1のスリップが収束したか否かを判断する(ステップS17)。つまり、タービン吹き量ωtslpが0(ゼロ)になったか否かを判断する。ステップS17で肯定的に判断された場合は、第1クラッチC1が係合されて第1速が設定されたことを意味するので、この制御を一旦終了する。
それとは反対にステップS17で否定的に判断された場合は、第1所定時間TC1SLP1より時間が経過しているか否かを判断する(ステップS18)。ステップS18で否定的に判断された場合は、ステップS16に戻って再度経過時間に応じた制御量のタービントルクTTおよび第1クラッチC1のトルク容量TC1を出力する。それとは反対にステップS18で肯定的に判断された場合は、想定した制御によって第1クラッチC1のスリップが収束していないので、油圧を増加させるなどのバックアップ制御を実行する(ステップS19)。すなわち、強制的に第1クラッチC1を係合させるように制御を行う。そして、バックアップ制御を行ったことによってスリップが収束したか否かを再度判断する(ステップS20)。ステップS20で否定的に判断された場合は、ステップS19に戻り再度バックアップ制御を実行する。それとは反対にステップS20で肯定的に判断された場合は、この制御を一旦終了する。
上述したように、この発明に係る駆動力制御装置は、タービントルクTTと第1クラッチC1のトルク容量TC1とを、車両Veに要求された加速度とタービン吹き量ωtslpとから算出することができる。したがって、タービントルクTTと第1クラッチC1のトルク容量TC1とを定めるために予めマップを用意する必要が無く、そのマップを定めるための工数を削減することができる。さらに、第1クラッチC1のトルク容量TC1を低下させた状態で、ワンウェイクラッチF1が係合するので、ワンウェイクラッチF1が係合することによりトルク変動が一時的に生じたとしても、第1クラッチC1がスリップすることにより車両Veの加速度の変化、すなわりパルス状の変速ショックが生じることを抑制もしくは防止することができる。
一方、上述した制御例では、第1所定時間TC1SLP1が経過して第1クラッチC1
の係合が完了することにより、パルス状の変速ショックが生じる可能性がある。したがって、この発明に係る駆動力制御装置は、更にその変速ショックを抑制もしくは防止するために、図7に示すフローチャートのように第1クラッチの係合が完了する以前からなまし制御を行う。図7に示す制御例は、図6に示す制御例のステップS17以降に実行されるものであり、したがって、図7では図6に示すステップS11からステップS15までを省略して記載している。ステップS17で否定的に判断された場合は、第1所定時間TC1SLP1から一定時間T1を引いた時間より経過しているか否かを判断する(ステップS21)。ステップS21における一定時間T1とは、なまし制御を実行するための時間であって、例えば第1所定時間TC1SLP1の8分の1程度の時間である。なお、一定時間T1は、固定値であってもよく、目標加速度DWOTGTや車速などに応じて任意に設定した時間であっても良い。そして、ステップS21で否定的に判断された場合は、図6に示す制御を実行している過程であるので、ステップS16に戻り再度、経過時間に応じた制御量のタービントルクTTおよび第1クラッチC1のトルク容量TC1を出力する。それとは反対に、ステップS21で肯定的に判断された場合は、第2所定時間TC1SLP2でタービン吹き量ωtslpが0(ゼロ)となるようにタービン吹き量ωtslpの関数を決定する(ステップS22)。具体的には、タービン吹き量ωtslpの関数を放物線、すなわち2次関数に設定し、その2次関数における係数Pを算出する。なお、ステップS22における関数は、2次関数に限らず、要はタービン吹き量ωtslpが0(ゼロ)に収束するように定められた関数であればよい。
ステップS22を具体的に説明する。まず、一定時間T1を第1所定時間TC1SLP1の8分の1とする。したがって、上式(5)および式(11)から、ステップS22におけるタービン吹き量ωtslpの初期値を算出することができる。
Figure 2013024401
一方、ステップS22で決定する関数は、第2所定時間TC1SLP2でタービン吹き量ωtslpが0(ゼロ)となる2次関数であるので、以下の式と仮定することができる。
Figure 2013024401
したがって、式(13)および式(14)から2次関数の係数Pを算出することができ、ステップS22の関数を次式のように決定することができる。
Figure 2013024401
そして、ステップS22で決定された関数に基づいてタービントルクTTおよび第1クラッチC1のトルク容量TC1の関数、すなわち制御量を決定する(ステップS23)。ステップS23を具体的に説明すると、まず、タービントルクTTおよび第1クラッチC1のトルク容量TC1の関数を式(1)および式(2)と同様に設定する。なお、ステップS23が、この発明における第2トルク算出手段に相当する。
Figure 2013024401
また、タービン吹き量ωtslpは、運動方程式から以下に示す関数となる。具体的には、式(3)に示すようにタービントルクTTと第1クラッチC1のトルク容量TC1とから求まる、言い換えるとタービン吹き量ωtslpは、式(3)におけるタービントルクTTおよび第1クラッチC1のトルク容量TC1を積分した関数となる。なお、タービントルクTTおよび第1クラッチC1のトルク容量TC1は、上式(17)および式(18)である。したがって、第1所定時間TC1SLP1から一定時間T1を引いた時間以降のタービン吹き量ωtslpの関数は、次式となる。
Figure 2013024401
一方、式(14)もしくは式(16)に示すように、第2所定時間TC1SLP2でタービン吹き量ωtslpが0(ゼロ)となる。したがって、式(19)における最終項は、次式となる。
Figure 2013024401
なお、式(18)におけるb×(TC1SLP1−T1)は、ワンウェイクラッチF1の変速ショックを抑制する制御における第1クラッチC1のトルク容量TC1の関数により求めることができる。したがって、式(20)では、TC1と示している。
ここで、式(16)と式(19)との各項の係数を比較すると、
Figure 2013024401
となる。
つまり、式(21)から、
Figure 2013024401
の関係が成り立つ。
したがって、式(24)を式(23)に代入して整理すると、タービン吹き量ωtslpを収束させるための制御におけるタービントルクTTの初期値TTを算出することができる。
Figure 2013024401
ここでタービントルクTTは、タービン吹き量ωtslpを収束させるための制御に切り換えられた時点から第2所定時間TC1SLP2の経過までに、アクセル開度から決定されるトルクTTfwdへ戻すため、すなわち、第1クラッチC1が完全に係合する際に、タービントルクTTの制御量が、アクセル開度から決定されるトルクTTfwd、つまり、目標加速度に応じたトルクとなるように、そのタービントルクTTの変化率を算出する。すなわち、係数a2は、以下の式となる。
Figure 2013024401
また、式(21)から、第1クラッチC1のトルク容量TC1の変化率、つまり、係数b2は、以下の式となる。すなわち、係数b2は、係数a2に応じた値であり、第1クラッチC1のトルク容量TC1の制御量は、タービントルクTTの制御量に応じたものとなる。
Figure 2013024401
したがって、式(25)ないし式(27)から、タービン吹き量ωtslpを収束させるための制御に切り換えられた以降のタービントルクTTおよび第1クラッチC1のトルク容量TC1の関数を求めることができる。
そして、ステップS23で求められたタービントルクTTおよび第1クラッチC1のトルク容量TC1の関数に基づいて、タービントルクTTと第1クラッチC1のトルク容量TC1とを出力する(ステップS24)。ついで、第1クラッチC1のスリップが収束したか否かを再度判断する(ステップS25)。ステップS25で否定的に判断された場合は、ステップS24に戻り、再度、タービントルクTTと第1クラッチC1のトルク容量TC1とを出力する。それとは反対にステップS25で肯定的に判断された場合は、この制御を一旦終了する。
上述したように第1クラッチC1のスリップを収束させることにより、第1クラッチC1が係合することによるパルス状のトルク変動、すなわち変速ショックが生じることを抑制もしくは防止することができる。
ここで、上述したワンウェイクラッチF1の係合による変速ショックおよび第1クラッチC1の係合による変速ショックを抑制するための制御を実行した場合の、タービントルクTTおよび第1クラッチC1のトルク容量TC1の制御量の変化、ならびにその制御を行うことによる各部材の回転数などの変化を図1に示すタイムチャートに基づいて説明する。なお、タービントルクTTおよび第1クラッチC1のトルク容量TC1の制御量の変化を示す図における実線はタービントルクTTの制御量、破線は第1クラッチC1のトルク容量TC1の制御量を示す。図1に示すタイムチャートは、第2速または第3速が設定され、かつアクセルがOFF状態すなわち惰性走行している状態を前提としたものである。まず、加速するために運転者によりアクセルが踏み込まれて、アクセル開度がOFFからONに切り替わる。すると、そのアクセル開度に基づいてエンジン回転数とエンジントルクとが上昇し始める。言い換えると、自動変速機3に入力される回転数とトルク(以下、入力トルクと記す。)とが上昇し始める。そして、入力軸回転数が出力軸回転数と変速後の変速比とを積算した回転数まで上昇すると同時に入力トルクが低下し、かつ第1クラッチC1が係合し始める。この時点をt0時点とする。t0時点で第1クラッチC1が係合すると、ワンウェイクラッチF1が係合する。一方、ワンウェイクラッチF1が係合するとトルク変動が生じる可能性があるが、第1クラッチC1の係合圧が低く、すなわち第1クラッチC1のトルク容量TC1が低いことから、ワンウェイクラッチF1が係合することによるトルク変動は、第1クラッチC1で吸収され、言い換えると第1クラッチC1によりトルクが抜けるので、出力軸の駆動力に変化が生じることを抑制もしくは防止することができる。つまり、変速ショックを抑制もしくは防止することができる。
そして、上述したステップS15で算出されたタービントルクTTと第1クラッチC1のトルク容量TC1との関数に基づいて、タービントルクTTおよび第1クラッチC1のトルク容量TC1が比例的に上昇し始める。具体的には、タービントルクTTが勾配a、第1クラッチC1のトルク容量がTC1勾配bとなるように上昇し始める。また、タービントルクTTおよび第1クラッチC1のトルク容量TC1は、出力軸の角加速度dωoが比例的に変化することを前提とした関数に応じて変化させられているので、結局、出力軸の角加速度dωoが比例的に上昇する。さらに、タービン吹き量ωtslpは、タービントルクTTおよび第1クラッチC1のトルク容量TC1を比例的に変化させていることから、2次関数に基づいて変化する。すなわち、タービン吹き量ωtslpの軌跡が放物線となる。
そして、予め決定された第1所定時間TC1SLP1から一定時間T1前の時点(以下、t1時点と記す。)で、第1クラッチC1が係合することによる変速ショックを抑制するための制御に切り替えられる。具体的には、タービントルクTTが勾配a2、第1クラッチC1のトルク容量TC1が勾配b2となるように増減される。なお、図1では第1クラッチC1のトルク容量TC1が低下するように制御されているが、第1クラッチC1のトルク容量TC1の勾配は、式(27)により算出されたものであって、低下する方向となるとは限らない。また、タービントルクTTがt1時点で急激に上昇しているが、このタービントルクTTの上昇は制御が切り換えられたことによるものであって、式(25)により算出されたトルクである。さらに、t1時点では、タービン吹き量ωtslpの関数が変更されて、t0時点からt1時点までの関数とは上下反転した方向となる。なお、t1時点以降のタービン吹き量ωtslpの関数における係数は、式(15)で算出されたものであり、t0時点からt1時点までの関数とは異なっている。
そして、第1所定時間TC1SLP1に到達すると出力軸の角加速度dωoが目標角加速度DWOTGTすなわち車両Veの目標加速度に一致する(t2時点)。一方、t2時点では、入力軸回転数と、出力軸回転数に変速後の変速比を積算した回転数とが一致していない。したがって、t2時点以降においてもタービントルクTTが勾配a2、第1クラッチC1のトルク容量TC1が勾配b2となるように変化させられる。そして、第2所定時間TC1SLP2に到達すると入力軸回転数と、出力軸回転数に変速後の変速比を積算した回転数とが一致する(t3時点)。ついで、第1クラッチC1が完全に係合する。したがって、第1クラッチC1の滑りを抑制もしくは防止するために、t3時点で第1クラッチC1のトルク容量TC1を上昇させる。この第1クラッチC1のトルク容量TC1は、例えばライン圧に基づくトルク容量程度まで上昇する。
このようにタービントルクTTおよび第1クラッチC1のトルク容量TC1を制御することにより、t0時点でワンウェイクラッチF1が係合することによる変速ショックを抑制もしくは防止することができる。また、車両Veに要求される加速度に基づいてタービントルクTTと第1クラッチC1のトルク容量TC1とを制御しているので、加速性を維持することができる。さらに、入力軸回転数を出力軸回転数と変速後の変速比とを積算した回転数に近づけて、第1クラッチC1を係合させることができるので、第1クラッチC1が係合することによる変速ショックを抑制もしくは防止することができる。
上述したように制御することによりワンウェイクラッチF1および第1クラッチC1が係合することによる変速ショックを抑制することができる。一方、油圧クラッチやエンジントルクの特性によるばらつきや、経時劣化などにより、制御性が低下する可能性がある。したがって、この発明は、フィードバック制御を実行するように構成されている。すなわち、目標タービン吹き量ωtslp(t)と、実際のタービン回転数から算出されたタービン吹き量ωtslp_realとの偏差に基づいてフィードバック制御を実行するように構成されている。また、通常、フィードバック制御は、ある特定の時間における目標値と実測値との偏差に基づいて実行するように構成されているが、タービンの回転数が変化するまでには不可避的な応答遅れが生じてしまう、すなわちエンジントルクや第1クラッチC1のトルク容量TC1を変化させる油圧などには不可避的な応答遅れが生じるので、この発明は、その応答遅れを考慮してフィードバック制御を実行するように構成されている。具体的には、実際にタービン回転数を測定した時点より前の時間の目標タービン吹き量を用いる。すなわち、ここで利用される目標タービン吹き量は、実際にタービン回転数を測定した時点から応答遅れ分を差し引いた時間での目標タービン吹き量を、フィードバック制御における比較対象としている。つまり、フィードバック制御で用いられる目標タービン吹き量は、ωtslp(t-TLAG)の関数により算出されるものである。なお、ここでのTLAGとは、タービン吹き量の応答遅れ時間を示している。
このフィードバック制御について図8に示すフローチャートに基づいて具体的に説明する。なお、図8に示すフローチャートにおいて、上述したステップS23までと同様の部分については説明および各ステップの記載を省略する。また、図8に示すフローチャートでは、フィードバック制御を第1クラッチが係合することによる変速ショックを抑制するための制御の時点で実行するように構成されているが、上述したt0時点、すなわちワンウェイクラッチが係合し始めると同時にフィードバック制御を実行しても良い。つまり、フィードバック制御の開始時期は特に限定されない。ステップS23により、タービントルクTTおよび第1クラッチC1のトルク容量TC1の関数が決定されると、そのタービントルクTTおよび第1クラッチC1のトルク容量TC1の関数のいずれかにフィードバック補正項を追加する(ステップS31)。つまり、次式に示すフィードバック補正項を追加する。
Figure 2013024401
なお、式(28)におけるωtslp_realは実タービン吹き量、gは制御ゲインである。また、実タービン吹き量ωtslp_realは、タービン回転数と出力軸回転数との差から算出することができる。さらに、第1クラッチC1の入力側の部材にセンサを設け、出力側の回転数との差を検出して第1クラッチの滑り量を検出し、その滑り量から実タービン吹き量を算出しても良い。つまり、タービン回転数や出力軸回転数あるいは第1クラッチC1の入力側もしくは出力側の部材の回転数を、または回転数差を検出する手段が、この発明における滑り量検出手段に相当する。
すなわち、実タービン吹き量ωtslp_realと、その経過時間からタービン吹き量の応答遅れ時間を差し引いた時点での目標タービン吹き量との偏差を用いることにより、制御性を向上させるように構成されている。なお、目標タービン吹き量は、要はタービン吹き量の応答遅れを考慮することができればよいので、実タービン吹き量ωtslp_realの経過時間からタービン吹き量の応答遅れ時間を引いた時点に限られない。一方、タービン吹き量は、式(4)に示すように第1クラッチC1のトルク容量TC1に基づく値であるため、入力トルクに影響されない。したがって、入力トルクが大きい場合には、実タービン吹き量ωtslp_realと目標タービン吹き量との偏差が大きくなる可能性がある。つまり、目標タービン吹き量に実タービン吹き量ωtslp_realが収束しにくくなってしまう可能性がある。そのため、この発明は、入力トルクに応じて制御ゲインgを大きく設定するなどして、制御ゲインgを可変としている。なお、入力トルク以外に、例えばアクセル開度やトルク変化などに応じて制御ゲインgを設定しても良い。
そして、ステップS31で設定されたタービントルクTTおよび第1クラッチC1のトルク容量TC1の関数に応じた制御量のタービントルクTTおよび第1クラッチC1のトルク容量TC1を出力し(ステップS32)、ついで、第1クラッチC1のスリップが収束したか否かを判断する(ステップS33)。ステップS33で否定的に判断された場合は、ステップS31に戻り、ステップS33で肯定的に判断された場合は、この制御を一旦終了する。
上述したようにフィードバック補正項をタービントルクTTもしくは第1クラッチC1のトルク容量TC1の関数に追加することによって、タービン吹き量ωtslpの制御性を向上させることができる。
エンジントルクおよび第1クラッチC1のトルク容量TC1の制御量の変化と、各部材の回転数などの変化を図9に示すタイムチャートに基づいて説明する。つまり、上述したエンジントルクおよび第1クラッチC1のトルク容量TC1の応答遅れを図9に示す。なお、図9における入力トルクと第1クラッチC1のトルク容量TC1との制御量の変化を示すグラフは、図1のタイムチャートと同様である。図9に示すようにt0時点から入力トルクおよび第1クラッチC1のトルク容量が上昇し始める。一方、エンジントルクや第1クラッチC1のトルク容量は、上述したように不可避的な応答遅れがあるため、入力軸回転数が出力回転数にギヤ比を積算した回転数と一致する時点や出力軸の角加速度が上昇し始める時点が、t0時点から所定時間TLAG遅れる。同様にタービン吹き量ωtslpもt0時点から所定時間TLAG遅れて上昇し始める。
そして、制御の切替時点(t1時点)や第1クラッチC1のスリップが収束する時点(t3時点)も上述した理由により所定時間TLAG遅れている。したがって、この発明におけるフィードバック制御は、例えば、図9におけるt4時点では、フィードバック制御における演算上の目標タービン吹き量をt1時点での目標タービン吹き量、具体的には図9におけるA点とする。このようにフィードバック制御を行うことにより、エンジントルクや第1クラッチC1のトルク容量TC1などの不可避的な応答遅れに影響されずに制御性を向上させることができる。
なお、上述した例では、タービン吹き量ωtslpの制御性を向上させるために、エンジントルクや第1クラッチC1のトルク容量TC1などの応答遅れを考慮してフィードバック制御を行うように構成されているが、例えば、車両Veの加速度を第1所定時間TC1SLP1内で目標加速度DWOTGTまで到達させるために、フィードバック制御における目標タービン吹き量を図9におけるt4時点での目標タービン吹き量、具体的には図9におけるB点としてもよく、また、フィードバック制御における補正項に実タービン吹き量とB点の目標タービン吹き量との偏差に基づく補正項を追加してもよい。
なお、この発明で対象とすることのできる車両は、クラッチとワンウェイクラッチとが係合することにより動力が伝達される構成のものであればよく、上述したように変速機にクラッチおよびワンウェイクラッチが備えられているものに限らない。
9…ラビニョ型の遊星歯車機構、 10,11…センサ、 S20…サンギヤ、 R20…リングギヤ、 C20…キャリア、 Ve…車両、 C1,C2…クラッチ、 F1…ワンウェイクラッチ。

Claims (5)

  1. 回転方向における一方向の動力のみ伝達するワンウェイクラッチと、係合および解放を選択的に切り換えることができるクラッチとのそれぞれを係合させることにより動力を伝達する動力伝達装置を備え、前記ワンウェイクラッチが動力を伝達していない状態から動力を伝達する状態に切り替わる場合に、前記クラッチをスリップさせるように構成された車両の駆動力制御装置において、
    前記動力伝達装置の出力軸の目標角加速度と、前記クラッチをスリップさせる目標滑り量とに基づいて、前記動力伝達装置に入力するトルクと前記クラッチのトルク容量との制御量を算出する第1トルク算出手段を備えていることを特徴とする車両の駆動力制御装置。
  2. 前記第1トルク算出手段は、前記動力伝達装置の出力軸の角加速度が、前記目標角加速度に達する際に前記クラッチが完全に係合するように、前記動力伝達装置に入力するトルクと前記クラッチのトルク容量との制御量を算出する手段を含むことを特徴とする請求項1に記載の車両の駆動力制御装置。
  3. 前記クラッチが完全に係合する前後における前記目標滑り量の変化率が小さくなるように、前記動力伝達装置に入力するトルクと前記クラッチのトルク容量との制御量を算出する第2トルク算出手段を更に備え、
    前記クラッチが完全に係合する以前に、前記第1トルク算出手段により算出される前記動力伝達装置に入力するトルクと前記クラッチのトルク容量との制御量から、前記第2トルク算出手段により算出される前記動力伝達装置に入力するトルクと前記クラッチのトルク容量との制御量に切り換えて、前記動力伝達装置に入力するトルクと前記クラッチのトルク容量とを出力するように構成されていることを特徴とする請求項1または2に記載の車両の駆動力制御装置。
  4. 前記第2トルク算出手段は、前記クラッチが完全に係合する際に、前記動力伝達装置に入力されるトルクの制御量が、前記目標角加速度に応じたトルクとなるように算出され、その算出された制御量に応じた前記クラッチのトルク容量の制御量を算出する手段を含むことを特徴とする請求項3に記載の車両の駆動力制御装置。
  5. 前記クラッチの滑り量を検出する滑り量検出手段を更に備え、
    前記動力伝達装置に入力するトルクと前記クラッチのトルク容量との制御量に基づいて算出される滑り量と、前記動力伝達装置に入力するトルクと前記クラッチのトルク容量との応答が遅れて前記滑り量検出手段により検出された実滑り量との偏差に基づいて、前記動力伝達装置に入力するトルクと前記クラッチのトルク容量とのいずれか一方の制御量をフィードバック制御するように構成されていることを特徴とする請求項1ないし4のいずれかに記載の車両の駆動力制御装置。
JP2011163004A 2011-07-26 2011-07-26 車両の駆動力制御装置 Pending JP2013024401A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011163004A JP2013024401A (ja) 2011-07-26 2011-07-26 車両の駆動力制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011163004A JP2013024401A (ja) 2011-07-26 2011-07-26 車両の駆動力制御装置

Publications (1)

Publication Number Publication Date
JP2013024401A true JP2013024401A (ja) 2013-02-04

Family

ID=47782981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011163004A Pending JP2013024401A (ja) 2011-07-26 2011-07-26 車両の駆動力制御装置

Country Status (1)

Country Link
JP (1) JP2013024401A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017116040A (ja) * 2015-12-25 2017-06-29 ダイハツ工業株式会社 自動変速機の制御装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007016964A (ja) * 2005-07-11 2007-01-25 Denso Corp 自動変速機の制御装置
JP2008081099A (ja) * 2006-08-29 2008-04-10 Nissan Motor Co Ltd ハイブリッド車両の制御装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007016964A (ja) * 2005-07-11 2007-01-25 Denso Corp 自動変速機の制御装置
JP2008081099A (ja) * 2006-08-29 2008-04-10 Nissan Motor Co Ltd ハイブリッド車両の制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017116040A (ja) * 2015-12-25 2017-06-29 ダイハツ工業株式会社 自動変速機の制御装置

Similar Documents

Publication Publication Date Title
JP5701150B2 (ja) ハイブリッド車両の制御装置
JP5494839B2 (ja) 車両制御装置
WO2014162563A1 (ja) 車両の制御装置および方法
JP6268197B2 (ja) 無段変速機の制御装置
JP6344373B2 (ja) 遠心振子ダンパ付きパワートレインの制御装置
WO2014068656A1 (ja) 車両の制御装置
JP6015852B2 (ja) 車両の制御装置および方法
JP6461054B2 (ja) 車両の制御装置
JP2011020570A (ja) ハイブリッド車両の制御装置
JP4135022B2 (ja) ハイブリッド駆動装置の制御装置
US10112616B2 (en) Control device for vehicle
JP6555109B2 (ja) 動力伝達装置の制御装置
JP2013245590A (ja) 車両の変速制御装置
JP6200208B2 (ja) 変速機の制御装置
EP2833029B1 (en) Automatic transmission and method for controlling same
JP6423393B2 (ja) 自動変速機の制御装置
JP2013024401A (ja) 車両の駆動力制御装置
JP5834874B2 (ja) 路面勾配推定装置
WO2015071954A1 (ja) 車両用変速機の制御装置
JP6170459B2 (ja) 前後進切替装置の制御装置および制御方法
JP6036484B2 (ja) 無段変速機の制御装置
JP4211712B2 (ja) パワートレインの制御装置
JP2008298025A (ja) 車両用駆動力制御装置
JP3891209B2 (ja) ハイブリッド駆動装置の制御装置
JP2008064156A (ja) 自動変速機の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140924