JP2012505315A - High electric field anodizing equipment - Google Patents

High electric field anodizing equipment Download PDF

Info

Publication number
JP2012505315A
JP2012505315A JP2011534411A JP2011534411A JP2012505315A JP 2012505315 A JP2012505315 A JP 2012505315A JP 2011534411 A JP2011534411 A JP 2011534411A JP 2011534411 A JP2011534411 A JP 2011534411A JP 2012505315 A JP2012505315 A JP 2012505315A
Authority
JP
Japan
Prior art keywords
current
anodizing apparatus
electrolyte
temperature
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011534411A
Other languages
Japanese (ja)
Other versions
JP5250700B2 (en
Inventor
ハ,ウン−チェル
ゾン,デ−ヨン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Electrotechnology Research Institute KERI
Original Assignee
Korea Electrotechnology Research Institute KERI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Electrotechnology Research Institute KERI filed Critical Korea Electrotechnology Research Institute KERI
Publication of JP2012505315A publication Critical patent/JP2012505315A/en
Application granted granted Critical
Publication of JP5250700B2 publication Critical patent/JP5250700B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/005Apparatus specially adapted for electrolytic conversion coating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • C25D17/12Shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/02Heating or cooling
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation

Abstract

本発明は、金属の表面にナノ構造体を形成するための高電界陽極酸化装置に関するものであって、電解液内に金属陽極と相対電極を浸漬し、金属を電気化学的に酸化させて表面にナノ構造体を形成する陽極酸化装置において、電解液中の金属陽極と相対電極との間に一定のパターンの電圧を印加する電源供給手段と、前記電極および電解液の温度が一定に維持されるように制御する温度制御手段と、前記電源供給手段で供給された電圧によって発生する電流を測定し、電流値に応じて電解質の濃度を調節することにより、電流を一定の水準に維持する反応速度調節手段とを含んでなることを特徴とする、高電界陽極酸化装置を技術的要旨とする。よって、本発明は、高電界陽極酸化によって発生しうる金属の急速な溶解または酸化膜の絶縁破壊によるナノ構造体の破損を予防することができるうえ、ナノ構造体の成長速度を制御することができるようにすることにより、ナノ構造体の生産性を大きく向上させるという利点がある。  The present invention relates to a high-field anodizing apparatus for forming nanostructures on the surface of a metal. The surface is obtained by dipping a metal anode and a relative electrode in an electrolytic solution to oxidize the metal electrochemically. In the anodizing apparatus for forming the nanostructure, the power supply means for applying a constant pattern voltage between the metal anode in the electrolytic solution and the relative electrode, and the temperature of the electrode and the electrolytic solution are maintained constant. A temperature control unit that controls the current and a reaction that measures the current generated by the voltage supplied by the power supply unit and adjusts the electrolyte concentration according to the current value, thereby maintaining the current at a constant level. The technical gist of the present invention is a high electric field anodizing apparatus comprising a speed adjusting means. Thus, the present invention can prevent the nanostructure from being damaged due to rapid metal dissolution or oxide breakdown caused by high-field anodization, and can control the growth rate of the nanostructure. By making it possible, there is an advantage that the productivity of the nanostructure is greatly improved.

Description

本発明は、金属の表面にナノ構造体を形成するための高電界陽極酸化装置に係り、特に、陽極酸化反応温度と反応速度の制御によってナノ構造体の破損を予防し且つその成長速度を制御することのできる、高電界陽極酸化装置に関する。   The present invention relates to a high-field anodizing apparatus for forming a nanostructure on a metal surface, and in particular, prevents the nanostructure from being damaged and controls its growth rate by controlling the anodizing reaction temperature and reaction rate. The present invention relates to a high electric field anodizing apparatus capable of performing the same.

陽極酸化法は、金属の表面処理技術の一つであって、金属の表面に酸化膜を形成して腐食を予防し、或いは金属表面を彩色するために広く用いられてきたが、最近では、ナノドット、ナノ線、ナノチューブ、ナノ棒などのナノ構造体を直接形成させるか或いはナノ構造体の形成のための鋳型を製造する方法として大きく活用されている。   Anodization is one of the metal surface treatment techniques, and it has been widely used to prevent corrosion by forming an oxide film on the metal surface or to color the metal surface. Nanostructures such as nanodots, nanowires, nanotubes, and nanorods are directly formed, or are widely used as a method for producing a template for forming nanostructures.

このような陽極酸化によってナノ構造体を形成することが可能な金属としてはAl、Ti、Zr、Hf、Ta、Nb、Wなどが知られており、特に、アルミニウム陽極酸化膜は、製造が容易であり、フッ素イオンを使用する他の金属とは異なり電解質の取扱いが比較的安全であるうえ、ナノ気孔および厚さの制御が容易であるため、ナノ技術の研究に多く活用されてきた。   Al, Ti, Zr, Hf, Ta, Nb, W, and the like are known as metals that can form nanostructures by such anodization. In particular, an anodized aluminum film is easy to manufacture. Unlike other metals that use fluoride ions, the handling of electrolytes is relatively safe and the control of nanopores and thickness is easy, so they have been used extensively in research on nanotechnology.

アルミニウムは、硫酸、シュウ酸またはリン酸などの電解質を含む水溶液で電気化学的に陽極酸化させると、表面に厚い陽極酸化膜が形成されるが、この膜は、規則的な間隔を有する気孔が外部表面から内部金属方向に成長した多孔層(porous layer)と、アルミニウム/アルミニウム酸化物の境界でアルミニウムの酸化と酸化膜の流動(J. E. Houser, et al., Nat Mater. 8, 415-420(2009))によって連続的な気孔が形成される境界層(barrier layer)とから構成される。   When aluminum is electrochemically anodized with an aqueous solution containing an electrolyte such as sulfuric acid, oxalic acid, or phosphoric acid, a thick anodized film is formed on the surface. This film has pores with regular intervals. A porous layer grown from the external surface to the internal metal, and aluminum oxidation and oxide flow at the aluminum / aluminum oxide interface (JE Houser, et al., Nat Mater. 8, 415-420 ( 2009))) and a barrier layer in which continuous pores are formed.

このような多孔層と境界層の構造、すなわち気孔間の間隔(Dint)、気孔サイズおよび境界層の厚さなどは、電解質の種類や温度とは殆ど関係なく、印加された電圧に応じて支配的に決定されることが知られている。 The structure of the porous layer and the boundary layer, that is, the distance between the pores (D int ), the pore size, the thickness of the boundary layer, etc. is almost independent of the type and temperature of the electrolyte, and depends on the applied voltage. It is known to be determined dominantly.

アルミニウムの陽極酸化には比較的低い電圧で時間当たり数μm程度の低い膜成長速度を有する軟質陽極酸化(mild anodization)と、比較的高い電圧で時間当たり数十μmの膜成長速度を有する硬質陽極酸化(hard anodization)が知られているが、本発明で定義する高電界陽極酸化(high-field anodization)は、伝統的なアルミニウム表面処理産業における硬質陽極酸化とは異なり、高い電圧で高速にて気孔の成長と配列が行われる陽極酸化の特定の条件に定義することができる。ナノ構造体の形成に関連して重要な特徴の一つである自己整列(self-ordering)が起こる代表的な軟質陽極酸化と高電界陽極酸化は、表1のとおり知られている。表1は、自己整列が起こる軟質陽極酸化および高電界陽極酸化の条件を示す。   For anodization of aluminum, soft anodization with a low film growth rate of about several μm per hour at a relatively low voltage and a hard anode with a film growth rate of several tens of μm per hour at a relatively high voltage Although known as hard anodization, high-field anodization as defined in the present invention is different from hard anodization in the traditional aluminum surface treatment industry at high voltage and high speed. It can be defined as specific conditions of anodization in which pore growth and alignment takes place. As shown in Table 1, typical soft anodization and high field anodization in which self-ordering, which is one of the important characteristics related to the formation of nanostructures, is known. Table 1 shows the conditions for soft anodization and high field anodization where self-alignment occurs.

欧州特許出願EP 1884578A1European patent application EP 1884578A1

H. Masuda, et al., J. Electrochem. Soc. 144, L127-L130(1997).H. Masuda, et al., J. Electrochem. Soc. 144, L127-L130 (1997). H. Masuda, et al., Science 268, 1466-1468(1995).H. Masuda, et al., Science 268, 1466-1468 (1995). H. Masuda, et al., Jpn. J. Appl. Phys. 37, L1340-L1342(1998).H. Masuda, et al., Jpn. J. Appl. Phys. 37, L1340-L1342 (1998). S. Chu, et al., Adv. Mater. 17, 2115-2119(2005).S. Chu, et al., Adv. Mater. 17, 2115-2119 (2005). K Schwirn, et al., ACS nano 2, 302-310(2008).K Schwirn, et al., ACS nano 2, 302-310 (2008). W. Lee, et al., Nat. Mater. 5, 741-747(2006).W. Lee, et al., Nat. Mater. 5, 741-747 (2006).

アルミニウムナノ構造体で最も重要な因子である気孔間の間隔(interpore distance、Dint)は、軟質陽極酸化では約2.5nm/V、高電界陽極酸化では約2.0nm/Vであると知られている。ナノ構造体の生産速度に関連した酸化膜成長速度において、軟質陽極酸化の場合、電流密度が一定に低い値(数mA/cm)を示すので、金属/酸化膜の界面における急激な温度上昇がないため、一般な二重ジャケットセルなどの簡単な冷却手段のみでも膜の絶縁破壊を防止することができるが、高電界陽極酸化の場合、初期電流密度が非常に大きく(数百mA/cm)電極の温度が急激に上昇するので、冷却のために大きい電解槽を用いるか(S. Chu, et al., Adv. Mater. 17, 2115-2119(2005))、或いはアルミニウムの下部に冷却板を取り付ける追加手段を使用しなければならない(W. Lee. et al., Nat. Mater. 5, 741-747(2006))。また、高電界陽極酸化のために高い電圧(〜700V)を印加する場合、絶縁破壊を防止するためには一般に用いられる0.1〜0.5モルより一層低い濃度の電解質を使用する方法も知られている(C. A. Grims, et al., US Patent Application 20030047505A1, filed Sep. 13, 2002)。 It is known that the interpore distance (D int ), which is the most important factor in aluminum nanostructures, is about 2.5 nm / V for soft anodization and about 2.0 nm / V for high-field anodization. It has been. In the oxide film growth rate related to the nanostructure production rate, in the case of soft anodization, the current density shows a constant low value (several mA / cm 2 ), so a rapid temperature rise at the metal / oxide interface Therefore, even with a simple cooling means such as a general double jacket cell, the dielectric breakdown of the film can be prevented. However, in the case of high electric field anodization, the initial current density is very large (several hundred mA / cm). 2 ) Since the temperature of the electrode rises rapidly, use a large electrolytic cell for cooling (S. Chu, et al., Adv. Mater. 17, 2115-2119 (2005)) or at the bottom of the aluminum Additional means of attaching the cold plate must be used (W. Lee. Et al., Nat. Mater. 5, 741-747 (2006)). In addition, when a high voltage (up to 700 V) is applied for high electric field anodization, there is a method of using an electrolyte having a concentration lower than 0.1 to 0.5 mol generally used in order to prevent dielectric breakdown. (CA Grims, et al., US Patent Application 20030047505A1, filed Sep. 13, 2002).

一般に、アルミニウム陽極酸化膜の気孔整列性を向上させるために、2段階の陽極酸化法(H. Masuda, et al., Science 268, 1466-1468(1995))を使用することができるが、軟質陽極酸化では、酸化膜の成長が遅いので、第1段階で形成された酸化膜を除去し、第2段階の酸化を経て、取り扱いし易い陽極酸化へのメンブレインを製造するためには1日以上の時間がかかる。これに対し、高電界陽極酸化では、初期電流が大きくて数十分以内に気孔の整列がなされるので、気孔の整列性に優れたナノメンブレインを得るのにも有用な方法である。   In general, a two-step anodic oxidation method (H. Masuda, et al., Science 268, 1466-1468 (1995)) can be used to improve the pore alignment of an aluminum anodic oxide film. In anodic oxidation, since the growth of the oxide film is slow, the oxide film formed in the first stage is removed, and after the second stage of oxidation, a membrane for anodic oxidation that is easy to handle is manufactured in one day. It takes more time. On the other hand, in the high electric field anodization, since the pores are aligned within a few tens of minutes with a large initial current, it is a useful method for obtaining a nanomembrane excellent in pore alignment.

このように成長した陽極酸化膜をメンブレインに製造するためには残存するアルミニウムと境界層を除去しなければならないが、それらの除去方法として電気化学的方法と化学的方法が活用されている。まず、電気化学的方法としては、電圧低減法(voltage reduction)、電流低減法(current reduction)または電気化学的還元法を用いて境界層を除去した後、アルミニウムを選択的に溶出させる方法と、パルス分離法(pulse detachment)でアルミニウムから酸化膜を分離した後、境界層を適切に溶出させる方法があり、化学的方法としては、アルミニウムを選択的に溶解させた後、境界層を溶出させる方法が知られている。また、境界層を化学的に分離する過程を適切に活用してメンブレインの気孔サイズを大きくすることができ、化学的・物理的方法によって気孔壁に適切なコーティング膜を被覆して気孔サイズを減らすこともできる。   In order to manufacture the anodic oxide film grown in this way into a membrane, the remaining aluminum and the boundary layer must be removed, and an electrochemical method and a chemical method are utilized as a removal method thereof. First, as an electrochemical method, after removing a boundary layer using a voltage reduction method (voltage reduction), a current reduction method (electrochemical reduction method) or an electrochemical reduction method, aluminum is selectively eluted, and After separating the oxide film from aluminum by pulse detachment, there is a method to properly elute the boundary layer, and as a chemical method, the aluminum is selectively dissolved and then the boundary layer is eluted. It has been known. In addition, the pore size of the membrane can be increased by properly utilizing the process of chemically separating the boundary layer, and the pore size can be increased by coating the pore wall with a suitable coating film by chemical and physical methods. It can also be reduced.

このように気孔間の間隔および気孔サイズの調節が容易であるうえ、その形態が均一なナノ気孔を有するナノ構造体の応用が爆発的に増加しているが、これに対し、その大部分は実験室レベルで軟質陽極酸化した膜を基礎研究に活用しているレベルに止まっており、高速生産または量産のための高電界陽極酸化用工程および装置の開発は足りない実情である。高電界陽極酸化を用いて気孔の整列性に優れたナノ構造体を製造するためには、反応界面の温度を一定に維持すること、および電解質の濃度を低い濃度から始めることが必要であるが、このような場合、反応速度が著しく遅くて十分な成長速度が得られないという問題点がある。   As described above, the interval between pores and the pore size can be easily adjusted, and the application of nanostructures having nanopores with uniform morphology has been explosively increasing. At the laboratory level, soft anodized films are still used for basic research, and development of high-field anodizing processes and equipment for high-speed production or mass production is insufficient. In order to produce nanostructures with excellent pore alignment using high-field anodization, it is necessary to keep the reaction interface temperature constant and to start with a low electrolyte concentration. In such a case, there is a problem that the reaction rate is extremely slow and a sufficient growth rate cannot be obtained.

そこで、本発明は、ナノ構造体の高速生産で最も大きい問題点となっている酸化膜の絶縁破壊と生産速度の低下問題を温度と反応速度の制御によって解消し、ナノ構造体の破損を予防し、その成長速度を制御することのできる、高電界陽極酸化装置を提供することを目的とする。   Therefore, the present invention solves the problems of oxide breakdown and production speed reduction, which are the biggest problems in high-speed production of nanostructures, by controlling temperature and reaction rate, and prevents damage to nanostructures. An object of the present invention is to provide a high electric field anodizing apparatus capable of controlling the growth rate.

上記目的を達成するために、本発明は、電解液内に金属陽極と相対電極を浸漬し、金属を電気化学的に酸化させて表面にナノ構造体を形成する陽極酸化装置において、電解液中の金属陽極と相対電極との間に一定のパターンの電圧を印加する電源供給手段と、前記電極および電解液の温度が一定に維持されるように制御する温度制御手段と、前記電源供給手段で供給された電圧によって発生する電流を測定し、電流値に応じて電解質の濃度を調節することにより、電流を一定の水準に維持する反応速度調節手段とを含んでなることを特徴とする、高電界陽極酸化装置を技術的要旨とする。   In order to achieve the above object, the present invention provides an anodic oxidation apparatus in which a metal anode and a relative electrode are immersed in an electrolytic solution, and a metal is electrochemically oxidized to form a nanostructure on the surface. A power supply means for applying a voltage of a constant pattern between the metal anode and the relative electrode, a temperature control means for controlling the electrodes and the temperature of the electrolyte to be kept constant, and the power supply means. A reaction rate adjusting means for measuring the current generated by the supplied voltage and adjusting the concentration of the electrolyte in accordance with the current value to maintain the current at a constant level. The technical point of view is an electric field anodizing apparatus.

また、前記陽極酸化する金属陽極の材料は、Al、Ti、Zr、Hf、Ta、Nb、Wおよびこれらの合金のいずれか一つであり、必要に応じて熱処理、電解研磨または化学研磨の前処理が行われることが好ましい。   The material of the metal anode to be anodized is any one of Al, Ti, Zr, Hf, Ta, Nb, W and alloys thereof, and if necessary, before heat treatment, electrolytic polishing or chemical polishing. It is preferred that processing be performed.

また、前記相対電極はチューブ状に形成されることが好ましく、前記チューブ状に形成された相対電極の内部に冷却水が流れるようにして電解液を冷却できるようにすることが好ましい。   In addition, the relative electrode is preferably formed in a tube shape, and it is preferable that the electrolytic solution can be cooled by allowing cooling water to flow inside the tube-shaped relative electrode.

また、前記電源供給手段は、直流、交流、パルスおよびバイアスのうちいずれか一つの電圧またはこれらの組み合わせを前記金属陽極と前記相対電極との間に印加し、ナノ構造体の気孔間の間隔に合わせて電圧を制御することができるように形成されることが好ましい。   The power supply means may apply a voltage of any one of direct current, alternating current, pulse, and bias, or a combination thereof between the metal anode and the relative electrode, so that a gap between the pores of the nanostructure is obtained. It is preferably formed so that the voltage can be controlled together.

また、前記温度制御手段は、前記金属陽極の後面に接触して設けられ、温度センサーと冷却手段を備え、必要に応じて一定温度の維持のために加熱手段を共に備えることが好ましい。また、前記温度制御手段は、電解液の温度を低めるために電解液冷却手段をさらに備えることが好ましい。   Moreover, it is preferable that the said temperature control means is provided in contact with the rear surface of the said metal anode, is provided with a temperature sensor and a cooling means, and is provided with both a heating means for maintaining constant temperature as needed. Moreover, it is preferable that the temperature control unit further includes an electrolyte solution cooling unit in order to lower the temperature of the electrolyte solution.

また、前記反応速度調節手段は、前記電源供給手段で供給される電圧によって前記金属陽極と前記相対電極との間に発生する電流を測定する計測手段と、前記計測手段によって、予め設定した電流値より低い電流が測定される場合には開放され、高い電流が測定される場合には閉鎖される高濃度電解液供給手段とを含むことが好ましい。   Further, the reaction rate adjusting means includes a measuring means for measuring a current generated between the metal anode and the relative electrode by a voltage supplied by the power supply means, and a current value preset by the measuring means. It is preferable to include a high concentration electrolyte supply means that is opened when a lower current is measured and closed when a higher current is measured.

上述した手段を備えた本発明に係る高電界陽極酸化装置は、高電界陽極酸化によって発生しうる金属の急速な溶解または酸化膜の絶縁破壊によるナノ構造体の破損を予防することができるうえ、ナノ構造体の成長速度を制御することができるようにすることにより、ナノ構造体の生産性を大きく向上させるという効果がある。   The high electric field anodizing apparatus according to the present invention having the above-described means can prevent the nanostructure from being damaged due to rapid dissolution of metal or dielectric breakdown of the oxide film that can be generated by high electric field anodizing. By making it possible to control the growth rate of the nanostructure, the productivity of the nanostructure is greatly improved.

図1は本発明に係る高電界陽極酸化装置の構成図である。FIG. 1 is a configuration diagram of a high-field anodizing apparatus according to the present invention. 図2は電解研磨前処理時の電圧−電流−温度曲線およびこれによるアルミニウム母材の表面を示す図である。FIG. 2 is a diagram showing a voltage-current-temperature curve and a surface of the aluminum base material by the voltage-current-temperature curve during the electropolishing pretreatment. 図3は1次高電解陽極酸化時の電圧−電流−温度曲線およびこれにより形成された酸化膜の形状を示す図である。FIG. 3 is a diagram showing a voltage-current-temperature curve at the time of primary high electrolytic anodic oxidation and the shape of the oxide film formed thereby. 図4は本発明に係る反応速度調節手段を用いた2次高電界陽極酸化時の電圧−電流−温度曲線およびこれによる酸化膜の形状を示す図である。FIG. 4 is a diagram showing a voltage-current-temperature curve at the time of secondary high-field anodization using the reaction rate adjusting means according to the present invention and the shape of the oxide film. 図5はパルス分離法によって分離された酸化膜の形状を示す図である。FIG. 5 is a diagram showing the shape of the oxide film separated by the pulse separation method. 図6は境界層を除去し気孔を拡張したナノ構造体の最終形状を示す図である。FIG. 6 is a diagram showing the final shape of the nanostructure in which the boundary layer is removed and the pores are expanded.

本発明は、高電界陽極酸化膜を用いてナノ気孔構造が規則的に整列されている金属酸化物ナノ構造体を製造するための高電界陽極酸化装置に関する。本発明の高電界陽極酸化装置は、酸化させようとする金属と相対電極との間に一定のパターンの電圧を印加する電源供給手段と、電極および電解液の温度が一定に維持されるように制御する温度制御手段と、前記電源供給手段で供給された電圧によって発生する電流を測定し、電流値に応じて電解質の濃度を調節することにより、電流を一定の水準に維持する反応速度調節手段とから構成される。   The present invention relates to a high-field anodic oxidation apparatus for producing a metal oxide nanostructure in which nanopore structures are regularly aligned using a high-field anodic oxide film. The high electric field anodizing apparatus of the present invention is such that a power supply means for applying a voltage of a constant pattern between a metal to be oxidized and a relative electrode, and the temperature of the electrode and the electrolyte are kept constant. Temperature control means for controlling, and reaction rate adjusting means for measuring the current generated by the voltage supplied by the power supply means and adjusting the electrolyte concentration according to the current value to maintain the current at a constant level It consists of.

このような手段を備えた本発明に係る高電界陽極酸化装置は、高電界陽極酸化によって発生しうる金属の急速な溶解または酸化膜の絶縁破壊によるナノ構造体の破損を予防することができるうえ、ナノ構造体の成長速度を制御することができるようにすることにより、ナノ構造体の生産性を大きく向上させるという利点がある。   The high field anodizing apparatus according to the present invention having such means can prevent the nanostructure from being damaged due to rapid dissolution of metal or dielectric breakdown of the oxide film, which can be generated by high field anodization. By making it possible to control the growth rate of the nanostructure, there is an advantage that the productivity of the nanostructure is greatly improved.

前記陽極酸化する金属陽極の材料としては、Al、Ti、Zr、Hf、Ta、Nb、Wおよびこれらの合金などがあり、必要に応じて熱処理、電解研磨または化学研磨などの前処理を介して均一な組織と平坦な表面を作って使用する。また、前記相対電極である陰極の材料としては、炭素系物質や金属などの導電性材質、例えば白金、黒鉛、炭素ナノチューブ、カーボンブラックおよびステンレス鋼などの材料を使用する。   Examples of the material of the metal anode to be anodized include Al, Ti, Zr, Hf, Ta, Nb, W, and alloys thereof, and the like, through pretreatment such as heat treatment, electrolytic polishing, or chemical polishing, as necessary. Create and use a uniform tissue and flat surface. Moreover, as a material of the cathode which is the said relative electrode, electroconductive materials, such as a carbon-type substance and a metal, for example, materials, such as platinum, graphite, a carbon nanotube, carbon black, and stainless steel, are used.

前記電解液は、陽極材料に応じて可変的であり、アルミニウムの場合には硫酸、シュウ酸、リン酸、クロム酸水溶液またはこれらの混合水溶液を使用し、温度を零下に低めなければならない場合にはエチレングリコールなどの溶液と混合して使用することができる。また、TiまたはZr金属の場合、フッ素イオンを電解質として用いる非水系有機溶液などを使用することができる。   The electrolyte is variable depending on the anode material. In the case of aluminum, sulfuric acid, oxalic acid, phosphoric acid, chromic acid aqueous solution or a mixed aqueous solution thereof is used, and the temperature must be lowered to zero. Can be used by mixing with a solution such as ethylene glycol. In the case of Ti or Zr metal, a non-aqueous organic solution using fluorine ions as an electrolyte can be used.

前記電源供給手段は、直流、交流、パルスおよびバイアス電圧を前記金属陽極と相対電極との間に印加して金属陽極の表面に酸化膜を形成させ、製造しようとするナノ構造体の気孔間の間隔に合わせて電圧を印加することができなければならないが、直流電圧を基準として250V以下、パルス電圧を基準として700V以下の電圧容量と当該金属の単位面積(cm)当たり500mA以上の電流容量を持つようにする。 The power supply means applies direct current, alternating current, a pulse, and a bias voltage between the metal anode and the relative electrode to form an oxide film on the surface of the metal anode, and between the pores of the nanostructure to be manufactured. The voltage must be able to be applied in accordance with the interval, but the voltage capacity is 250 V or less on the basis of DC voltage and 700 V or less on the basis of pulse voltage and the current capacity of 500 mA or more per unit area (cm 2 ) of the metal. To have.

前記温度制御手段は、前記金属陽極の後面に接触して金属陽極の温度が基準値以上に上昇することを防止するための温度センサーと冷却手段を備えたもので、必要に応じて一定温度の維持のために加熱手段を共に備えることもできる。また、必要に応じて陰極反応によって上昇しうる電解液の温度を低めるために電解液冷却手段を備えることもできる。前記電解液冷却手段は後述する相対電極の内部に冷却水を供給することもできる。   The temperature control means is provided with a temperature sensor and a cooling means for contacting the rear surface of the metal anode and preventing the temperature of the metal anode from rising above a reference value. A heating means can be provided together for maintenance. Further, if necessary, an electrolyte solution cooling means can be provided in order to lower the temperature of the electrolyte solution that can be raised by the cathode reaction. The electrolyte cooling means can also supply cooling water to the inside of a relative electrode described later.

前記反応速度調節手段は、前記電源供給手段で供給される電圧によって前記金属陽極と相対電極との間に発生する電流を測定するアナログまたはデジタル計測手段と、この計測手段によって、使用者が予め設定した電流値より低い電流が測定される場合には開放され、高い電流が測定される場合は閉鎖される高濃度電解液供給手段とから構成される。これにより、電流値を一定の水準に維持することにより、高電界による金属の急激な溶解または酸化膜の絶縁破壊を防止することができるが、このために、初期に低い濃度の電解質で電圧を印加することが好ましい。   The reaction rate adjusting means includes an analog or digital measuring means for measuring a current generated between the metal anode and the relative electrode by a voltage supplied from the power supply means, and the measuring means sets in advance by a user. The high-concentration electrolyte supply means is opened when a current lower than the measured current value is measured and closed when a high current is measured. As a result, by maintaining the current value at a constant level, it is possible to prevent a rapid dissolution of the metal due to a high electric field or a dielectric breakdown of the oxide film. It is preferable to apply.

本発明に係る高電界陽極酸化装置の実施例では、シュウ酸溶液で280nmの気孔間の間隔を有するナノメンブレインを製造するために、次のように装置を構成し、メンブレインを製造した。   In the example of the high electric field anodizing apparatus according to the present invention, in order to manufacture a nano membrane having an interval between pores of 280 nm with an oxalic acid solution, the apparatus was configured as follows to manufacture the membrane.

図1は垂直型陽極酸化セルに適用した高電界陽極酸化装置の構成図である。図示の如く、垂直型陽極酸化セル10は、一般に、電極から気体の発生が多い場合に使用する形態であって、電源供給手段100の(+)端子に連結された金属支持体16上に陽極13を設け、陰極14を陰極リード線15を介して電源供給手段100の(−)端子に連結した構造であるが、電解槽11と陽極13との間にはOリング18を取り付け、電解液12が外部に漏れないように構成し、攪拌のためにインペラなどの攪拌手段17を含んでいる。   FIG. 1 is a configuration diagram of a high-field anodizing apparatus applied to a vertical anodizing cell. As shown in the drawing, the vertical type anodizing cell 10 is generally used when gas is generated from an electrode, and the anode is formed on a metal support 16 connected to the (+) terminal of the power supply means 100. 13, and the cathode 14 is connected to the (−) terminal of the power supply means 100 via the cathode lead wire 15. An O-ring 18 is attached between the electrolytic cell 11 and the anode 13, and the electrolytic solution 12 is configured not to leak to the outside, and includes a stirring means 17 such as an impeller for stirring.

前記電源供給手段100で供給される電圧によって陽極13における酸化膜形成反応と、陰極14における還元反応(水の電解など)によって各電極/電解質界面の温度が上昇するおそれがあり、特に陽極13の温度が一定の温度以上に上昇すると気孔の整列度が悪くなるので、アルミニウムの高電界陽極酸化では温度を0℃に維持しなければならないが、このために、陽極13の下部にある金属支持体16の下部に冷却台19を設置した。前記冷却台19は、温度制御手段200の冷却手段220である循環器(circulator)から低温(0℃以下)の液体の供給を受けて金属支持体16の下部を冷却させ、熱伝導によって陽極13の熱を吸収する。このために、金属支持体16は熱伝導度に優れた銅板を使用することが好ましい。   The voltage supplied by the power supply means 100 may cause the temperature of each electrode / electrolyte interface to rise due to an oxide film formation reaction at the anode 13 and a reduction reaction (such as water electrolysis) at the cathode 14. When the temperature rises above a certain temperature, the degree of alignment of the pores deteriorates. Therefore, in high-field anodization of aluminum, the temperature must be maintained at 0 ° C. For this purpose, the metal support located under the anode 13 is used. A cooling table 19 is installed at the bottom of 16. The cooling table 19 is supplied with a low-temperature (0 ° C. or lower) liquid from a circulator which is a cooling means 220 of the temperature control means 200 to cool the lower part of the metal support 16, and the anode 13 by heat conduction. Absorbs heat. For this reason, it is preferable that the metal support body 16 uses the copper plate excellent in thermal conductivity.

高電界陽極酸化の初期での如く、陽極13から発生する熱が過度に大きい場合には、より精巧な温度制御のためには循環器の温度をさらに低める代わりに、金属支持体16の内部に温度センサー210と加熱手段230を設置して冷却と加熱の組み合わせで0℃に維持させると、過度な熱発生の際に加熱手段230を中止させて急速な冷却が可能である。このような手段は、製造しようとするナノ構造体の広さが大きくなる場合の温度制御にさらに有用な形態である。   If the heat generated from the anode 13 is excessively high, such as in the early stages of high field anodization, instead of lowering the temperature of the circulator for more precise temperature control, the metal support 16 is placed inside. If the temperature sensor 210 and the heating means 230 are installed and maintained at 0 ° C. by a combination of cooling and heating, the heating means 230 is stopped when excessive heat is generated, and rapid cooling is possible. Such a means is a form more useful for temperature control when the size of the nanostructure to be manufactured becomes large.

また、電解液の温度を低めるために相対電極として一般に使われる白金網陰極14の代わりに金属チューブを使用して内部に冷却水を流し、或いは高濃度電解液供給手段320で電解液12の温度を低める方法も可能である。前記チューブ状の相対電極の内部に冷却水が供給されるが、前記冷却水は前記温度制御手段の電解液冷却手段によって供給される。   In addition, in order to lower the temperature of the electrolytic solution, a metal tube is used instead of the platinum mesh cathode 14 that is generally used as a relative electrode, and cooling water is caused to flow inside, or the temperature of the electrolytic solution 12 is increased by the high concentration electrolytic solution supply means 320. It is also possible to lower the value. Cooling water is supplied into the tube-like counter electrode, and the cooling water is supplied by the electrolyte cooling means of the temperature control means.

したがって、前記温度制御手段200は、金属支持体16を冷却して陽極13の熱を吸収すると同時に、電解液冷却手段によって相対電極の内部に冷却水を供給して電解液の温度を低める役割を果たす。   Accordingly, the temperature control means 200 serves to cool the metal support 16 and absorb the heat of the anode 13, and simultaneously supply cooling water to the inside of the relative electrode by the electrolyte cooling means to lower the temperature of the electrolyte. Fulfill.

一方、気孔の整列性に優れたナノ構造体を得るためには、初期酸化で生成された酸化膜を除去し、電圧を直接印加する2段階の陽極酸化法を適用し、或いは予め表面に規則的なパターンを作るインプリント法を適用しなければならないが、1次陽極酸化で使用する高濃度の電解液(一般に、シュウ酸の場合には0.3モル)で2次陽極酸化を施すと、大部分が急速な溶解または膜の絶縁破壊によりナノ構造体の破損をもたらす。かかる問題は、電解質が100分の1程度に希釈された電解液の中で2次陽極酸化を施して抑制することができるが、この際、初期電流も低く、持続的に減少して所望の成長速度を得ることができない場合をもたらす。   On the other hand, in order to obtain nanostructures with excellent pore alignment, a two-step anodic oxidation method in which the oxide film formed by the initial oxidation is removed and voltage is directly applied is applied, or the surface is regulated in advance. The imprint method for creating a typical pattern must be applied, but when the secondary anodization is performed with a high concentration electrolytic solution (generally 0.3 mol in the case of oxalic acid) used in the primary anodization , Mostly resulting in nanostructure failure due to rapid dissolution or dielectric breakdown of the film. Such a problem can be suppressed by performing secondary anodic oxidation in an electrolyte solution in which the electrolyte is diluted to about 1/100. However, at this time, the initial current is also low, and it is continuously reduced. This brings about the case where the growth rate cannot be obtained.

前記反応速度調節手段300は、かかる問題点を解決するためのもので、前記計測手段310で測定された電流値から所定の電流値以上に維持することができるように調節し、前記高濃度電解液供給手段320によって高濃度の電解液を供給する。すなわち、前記高濃度電解液供給手段320は、計測手段310によって、使用者が予め設定した電流値より低い電流が測定される場合には開放され、高い電流が測定される場合には閉鎖されるように形成される。これにより、電流値を一定の水準に維持することにより、高電界による金属の急激な溶解または酸化膜の絶縁破壊を防止することができるが、このために、初期に低い濃度の電解質で電圧を印加することが好ましい。   The reaction rate adjusting means 300 is for solving such a problem, and is adjusted so that the current value measured by the measuring means 310 can be maintained at a predetermined current value or more, so that the high concentration electrolysis is performed. A high concentration electrolytic solution is supplied by the liquid supply means 320. That is, the high-concentration electrolyte supply unit 320 is opened when the measuring unit 310 measures a current lower than a current value preset by the user, and is closed when a high current is measured. Formed as follows. As a result, by maintaining the current value at a constant level, it is possible to prevent a rapid dissolution of the metal due to a high electric field or a dielectric breakdown of the oxide film. It is preferable to apply.

図2は純度99.999%のアルミニウムディスクを体積比1:4の過塩素酸とエタノールの混合溶液で5分間電解研磨した試片の写真(図2a)と、このときの電圧、電流および試片温度の変化様相(図2b)を示した。   FIG. 2 shows a photograph (FIG. 2a) of a specimen obtained by electropolishing an aluminum disk having a purity of 99.999% for 5 minutes with a mixed solution of perchloric acid and ethanol having a volume ratio of 1: 4, and the voltage, current, and specimen at this time. The change aspect of the half temperature (FIG. 2b) was shown.

図3は電解研磨された試片を試片温度0℃、0.3モルのシュウ酸溶液条件で白金陰極に対して0Vから140Vまで電圧を上昇させた後、30分間維持させた1次陽極酸化膜の写真(図3a)、このときの電圧、電流および試片温度の変化様相(図3b)、酸化膜上部の初期気孔に対するSEM写真(図3c)、酸化膜の下部である境界層に対するSEM写真(図3d、塩化銅と塩酸との混合溶液でアルミニウムを選択的に除去)、酸化膜を除去し、パターニングされた表面のみを残したアルミニウムの表面写真(図3e、クロム酸とリン酸との混合溶液でアルミナ膜を選択的に除去)およびSEM写真(図3f)を示した。図3bにおいて、約80〜90Vの電圧区間で急激に膜が形成され始めて最大電流値を示した後、140Vの一定の電圧に到達すると、電解質の拡散制御機構による急激な電流減少が現れ、140Vを維持する区間で持続的に電流が減少しながら気孔の整列が起こる。このような気孔の整列性は1次陽極酸化時間が長ければ長いほど良くなることが知られている。   FIG. 3 shows a primary anode in which an electropolished specimen was maintained at 30 minutes after the voltage was raised from 0 V to 140 V with respect to a platinum cathode at a specimen temperature of 0 ° C. and a 0.3 molar oxalic acid solution condition. A photograph of the oxide film (FIG. 3a), a change in voltage, current and specimen temperature at this time (FIG. 3b), an SEM photograph of the initial pores above the oxide film (FIG. 3c), and a boundary layer below the oxide film SEM photograph (FIG. 3d, aluminum is selectively removed with a mixed solution of copper chloride and hydrochloric acid), oxide film is removed, and a surface photograph of aluminum leaving only the patterned surface (FIG. 3e, chromic acid and phosphoric acid) The alumina film was selectively removed with a mixed solution of (3) and an SEM photograph (FIG. 3f). In FIG. 3b, after a film starts to form rapidly in a voltage interval of about 80 to 90V and shows a maximum current value, when a constant voltage of 140V is reached, a rapid current decrease due to the diffusion control mechanism of the electrolyte appears and 140V The pores are aligned while the current continuously decreases in the period of maintaining the current. It is known that such pore alignment improves as the primary anodization time increases.

図4は1次陽極酸化の後にアルミナ酸化膜を選択的に除去した試片に対して試片温度0℃、初期濃度0.003モルのシュウ酸溶液で140Vを直接印加しながら電流値を15mA/cmに設定し、この電流値より低くなると高濃度電解液を供給するようにした場合の2次陽極酸化膜の写真(図4a)と、このときの電圧、電流および試片温度の変化様相(図4b)を示した。図4bの初期電流値は60mA/cmから急速に減少して高濃度電解質の供給がない場合に軟質陽極酸化レベルに減少するが、図4bに示すように、電解質を供給する時点に電流が増加するので、反応速度を制御することができるうえ、時間に応じて一定に又は可変的に成長速度を制御することができる。 FIG. 4 shows a current value of 15 mA while directly applying 140 V with an oxalic acid solution having a specimen temperature of 0 ° C. and an initial concentration of 0.003 mol to a specimen from which the alumina oxide film has been selectively removed after the primary anodic oxidation. / Cm 2 , a photograph of the secondary anodic oxide film when a high concentration electrolyte is supplied when the current value is lower than this value (FIG. 4a), and changes in voltage, current, and specimen temperature at this time The appearance (Figure 4b) was shown. The initial current value in FIG. 4b decreases rapidly from 60 mA / cm 2 and decreases to the soft anodization level in the absence of high concentration electrolyte supply, but as shown in FIG. Since it increases, the reaction rate can be controlled, and the growth rate can be controlled constantly or variably according to time.

図5は2次陽極酸化の後に形成された酸化膜を体積比1:1の過塩素酸とエタノールの混合溶液で150Vの電圧でパルス分離法によって分離させた酸化膜の写真(図5a)、傾斜角度で撮ったSEM写真(図5b)、および断面全体のSEM写真(図5c)を示した。1次陽極酸化によって形成されたパターンに合わせて気孔が成長して時間当たり約30μmの膜が形成されたことが分かる。
図6は5%リン酸溶液で数分間境界層を除去し気孔を拡張した最終メンブレインの写真(図6a)とSEM写真(図6b)を示した。
FIG. 5 is a photograph of an oxide film obtained by separating the oxide film formed after secondary anodic oxidation by a pulse separation method with a mixed solution of perchloric acid and ethanol having a volume ratio of 1: 1 at a voltage of 150 V (FIG. 5a). An SEM photograph (FIG. 5b) taken at an inclination angle and an SEM photograph of the entire cross section (FIG. 5c) are shown. It can be seen that pores grew in accordance with the pattern formed by the primary anodic oxidation to form a film of about 30 μm per hour.
FIG. 6 shows a photograph (FIG. 6a) and a SEM photograph (FIG. 6b) of the final membrane in which the boundary layer was removed for several minutes with a 5% phosphoric acid solution to expand the pores.

このように、本発明の方法および装置は、ナノメンブレインの製造だけでなく、母材から酸化膜を分離しないナノテンプレートおよびこのような方法で製造されるナノ気孔体、ナノ線およびナノチューブの製造にも適用可能である。   Thus, the method and apparatus of the present invention not only produce nanomembranes, but also nanotemplates that do not separate the oxide film from the matrix and the production of nanopores, nanowires and nanotubes produced by such methods. It is also applicable to.

本発明は、金属の表面にナノ構造体を形成するための高電界陽極酸化装置に関し、陽極酸化反応温度と反応速度の制御によってナノ構造体の破損を予防し成長速度を制御することのできる高電界陽極酸化装置に関する。   The present invention relates to a high electric field anodizing apparatus for forming a nanostructure on a metal surface, and is capable of preventing damage to the nanostructure and controlling the growth rate by controlling the anodizing reaction temperature and reaction rate. The present invention relates to an electric field anodizing apparatus.

10:陽極酸化セル
11:電解槽
12:電解液
13:陽極
14:陰極
15:陰極リード線
16:金属支持体
17:攪拌手段
18:Oリング
19:冷却台
100:電源供給手段
200:温度制御手段
210:温度センサー
220:冷却手段
230:加熱手段
300:反応速度調節手段
310:計測手段
320:高濃度電解液供給手段
DESCRIPTION OF SYMBOLS 10: Anodizing cell 11: Electrolysis tank 12: Electrolyte 13: Anode 14: Cathode 15: Cathode lead wire 16: Metal support 17: Stirring means 18: O-ring 19: Cooling stand 100: Power supply means 200: Temperature control Means 210: Temperature sensor 220: Cooling means 230: Heating means 300: Reaction rate adjusting means 310: Measuring means 320: High concentration electrolyte supply means

Claims (8)

陽極酸化セル(10)の電解液(12)に金属陽極(13)と相対電極を浸漬し、金属を酸化させて表面にナノ構造体を形成する陽極酸化装置において、
電解液(12)中の金属陽極(13)と相対電極との間に一定のパターンの電圧を印加する電源供給手段(100)と、
前記電極および電解液(12)の温度が一定に維持されるように制御する温度制御手段(200)と、
前記電源供給手段(100)で供給された電圧によって発生する電流を測定し、電流値に応じて電解質の濃度を調節することにより、電流を一定の水準に維持する反応速度調節手段(300)とを含んでなることを特徴とする高電界陽極酸化装置。
In an anodic oxidation apparatus in which a metal anode (13) and a relative electrode are immersed in an electrolytic solution (12) of an anodizing cell (10) to oxidize a metal to form a nanostructure on the surface,
Power supply means (100) for applying a constant pattern of voltage between the metal anode (13) in the electrolyte (12) and the relative electrode;
Temperature control means (200) for controlling the temperature of the electrode and the electrolyte (12) to be kept constant;
A reaction rate adjusting means (300) for measuring the current generated by the voltage supplied by the power supply means (100) and adjusting the electrolyte concentration according to the current value to maintain the current at a constant level; A high electric field anodizing apparatus comprising:
前記陽極酸化する金属陽極(13)の材料は、Al、Ti、Zr、Hf、Ta、Nb、Wおよびこれらの合金のうちいずれか一つであり、必要に応じて熱処理、電解研磨または化学研磨の前処理が行われることを特徴とする請求項1に記載の高電界陽極酸化装置。   The material of the metal anode (13) to be anodized is any one of Al, Ti, Zr, Hf, Ta, Nb, W and alloys thereof, and heat treatment, electropolishing or chemical polishing as required. The high-field anodizing apparatus according to claim 1, wherein the pretreatment is performed. 前記相対電極はチューブ状に形成されることを特徴とする請求項1に記載の高電界陽極酸化装置。   The high field anodizing apparatus according to claim 1, wherein the relative electrode is formed in a tube shape. 前記チューブ状に形成された相対電極の内部に冷却水が流れるようにして電解液を冷却させることを特徴とする請求項3に記載の高電界陽極酸化装置。   4. The high field anodizing apparatus according to claim 3, wherein the electrolytic solution is cooled such that cooling water flows inside the tube-shaped relative electrode. 前記電源供給手段(100)は、直流、交流、パルスおよびバイアスのうちいずれか一つの電圧またはこれらの組み合わせを前記金属陽極(13)と前記相対電極との間に印加し、ナノ構造体の気孔間の間隔に合わせて電圧を制御することができるように形成されることを特徴とする請求項1に記載の高電界陽極酸化装置。   The power supply means (100) applies a voltage of any one of direct current, alternating current, pulse, and bias, or a combination thereof, between the metal anode (13) and the relative electrode, so that the pores of the nanostructure The high-field anodizing apparatus according to claim 1, wherein the high-field anodizing apparatus is formed so that a voltage can be controlled in accordance with an interval therebetween. 前記温度制御手段(200)は、前記金属陽極(13)の後面に接触して設けられ、温度センサー(210)と冷却手段(220)を備えるもので、必要に応じて一定温度の維持のために加熱手段(230)を共に備えることを特徴とする請求項1に記載の高電界陽極酸化装置。   The temperature control means (200) is provided in contact with the rear surface of the metal anode (13) and includes a temperature sensor (210) and a cooling means (220) for maintaining a constant temperature as required. The high-field anodizing apparatus according to claim 1, further comprising a heating means (230). 前記温度制御手段(200)は、電解液(12)の温度を低めるために電解液冷却手段をさらに備えることを特徴とする請求項6に記載の高電界陽極酸化装置。   The high-field anodizing apparatus according to claim 6, wherein the temperature control means (200) further comprises an electrolyte cooling means for lowering the temperature of the electrolyte (12). 前記反応速度調節手段(300)は、前記電源供給手段(100)で供給される電圧によって前記金属陽極(13)と前記相対電極との間に発生する電流を測定する計測手段(310)と、前記計測手段(310)によって、予め設定した電流値より低い電流が測定される場合には開放され、高い電流が測定される場合には閉鎖される高濃度電解液供給手段(320)とを含んでなることを特徴とする請求項1に記載の高電界陽極酸化装置。   The reaction rate adjusting means (300) includes a measuring means (310) for measuring a current generated between the metal anode (13) and the relative electrode by a voltage supplied from the power supply means (100). A high-concentration electrolyte supply means (320) that is opened when a current lower than a preset current value is measured by the measuring means (310) and closed when a high current is measured; The high electric field anodizing apparatus according to claim 1, wherein
JP2011534411A 2009-10-01 2009-12-07 High electric field anodizing equipment Expired - Fee Related JP5250700B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020090093786A KR101215536B1 (en) 2009-10-01 2009-10-01 apparatus for high-field fabrication of anodic nanostructures
KR10-2009-0093786 2009-10-01
PCT/KR2009/007268 WO2011040679A1 (en) 2009-10-01 2009-12-07 High field anodizing apparatus

Publications (2)

Publication Number Publication Date
JP2012505315A true JP2012505315A (en) 2012-03-01
JP5250700B2 JP5250700B2 (en) 2013-07-31

Family

ID=43826465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011534411A Expired - Fee Related JP5250700B2 (en) 2009-10-01 2009-12-07 High electric field anodizing equipment

Country Status (5)

Country Link
US (1) US20110209990A1 (en)
JP (1) JP5250700B2 (en)
KR (1) KR101215536B1 (en)
CN (1) CN102209803A (en)
WO (1) WO2011040679A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016522735A (en) * 2013-03-15 2016-08-04 プレジデント アンド フェローズ オブ ハーバード カレッジ Fabrication of nanopores in atomically thin films by ultrashort electrical pulses

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101352356B1 (en) * 2012-04-05 2014-02-05 한전원자력연료 주식회사 Apparatus and method of anodizing inner surface of tube
KR101349744B1 (en) * 2012-06-29 2014-01-17 한국표준과학연구원 Nano structure and method of manufacturing the same
CN103590084B (en) * 2012-08-16 2018-08-17 盛美半导体设备(上海)有限公司 A kind of device and method quickly preparing nano-structure array
TWI465301B (en) * 2012-09-25 2014-12-21 Univ Southern Taiwan Sci & Tec Preparation device of porous alumina template
EP2925912B1 (en) * 2012-12-03 2023-04-19 The Regents of The University of California Devices, systems and methods for coating surfaces
CN104152967B (en) * 2014-07-16 2017-02-01 常州大学 Aluminum alloy anode oxidation device
WO2019183083A1 (en) * 2018-03-19 2019-09-26 The Trustees Of The University Of Pennsylvania Bulk nanoporous materials for on-site and on-board generation of hydrogen and other products
CN110618172B (en) * 2018-06-20 2022-05-24 深圳市裕展精密科技有限公司 Analysis method and analysis system for anodic oxidation electrolyte of titanium or titanium alloy
DE102021105128A1 (en) 2021-03-03 2022-09-08 Nanowired Gmbh Electroplating a variety of nanowires
DE102021105126A1 (en) 2021-03-03 2022-09-08 Nanowired Gmbh Electrolytic growth of nanowires on a substrate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04120298A (en) * 1990-09-07 1992-04-21 Showa Alum Corp Method for controlling thickness of anodically oxidized film in anodic-oxidation treatment
JPH0920998A (en) * 1995-05-01 1997-01-21 Shimada Phys & Chem Ind Co Ltd Formation of oxidized film and power source device
JP2003025298A (en) * 2001-05-11 2003-01-29 Canon Inc Structure having pore and its manufacturing method
JP2004307917A (en) * 2003-04-04 2004-11-04 Fuji Photo Film Co Ltd Method and apparatus for controlling concentration of electrolytic treatment liquid

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2542112A (en) * 1945-04-16 1951-02-20 Boeing Co Method of regenerating aluminum anodizing solution
US3616325A (en) * 1967-12-06 1971-10-26 Fmc Corp Process for producing potassium peroxydiphosphate
JPH0849094A (en) * 1994-08-04 1996-02-20 Mitsubishi Heavy Ind Ltd Local anodization method and device therefor
JP2837397B2 (en) * 1995-12-04 1998-12-16 テクノ工業株式会社 Anodizing equipment for aluminum or aluminum alloy
JP2002235194A (en) * 2001-02-05 2002-08-23 Fuji Denka Kk Method for controlling treatment solution in anodic oxidation treatment for aluminum or aluminum alloy
WO2005014893A1 (en) * 2003-08-11 2005-02-17 Canon Kabushiki Kaisha Method for production of structure and porous member
US20060032760A1 (en) * 2004-08-13 2006-02-16 Fuji Photo Film Co., Ltd. Method of manufacturing lithographic printing plate support
KR100851204B1 (en) * 2006-11-09 2008-08-07 금오공과대학교 산학협력단 Anodic Oxidation Apparatus
US20110284385A1 (en) * 2010-05-21 2011-11-24 Pioneer Metal Finishing Method and Apparatus For Anodizing Objects

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04120298A (en) * 1990-09-07 1992-04-21 Showa Alum Corp Method for controlling thickness of anodically oxidized film in anodic-oxidation treatment
JPH0920998A (en) * 1995-05-01 1997-01-21 Shimada Phys & Chem Ind Co Ltd Formation of oxidized film and power source device
JP2003025298A (en) * 2001-05-11 2003-01-29 Canon Inc Structure having pore and its manufacturing method
JP2004307917A (en) * 2003-04-04 2004-11-04 Fuji Photo Film Co Ltd Method and apparatus for controlling concentration of electrolytic treatment liquid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016522735A (en) * 2013-03-15 2016-08-04 プレジデント アンド フェローズ オブ ハーバード カレッジ Fabrication of nanopores in atomically thin films by ultrashort electrical pulses

Also Published As

Publication number Publication date
WO2011040679A1 (en) 2011-04-07
CN102209803A (en) 2011-10-05
KR20110036233A (en) 2011-04-07
KR101215536B1 (en) 2012-12-26
US20110209990A1 (en) 2011-09-01
JP5250700B2 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
JP5250700B2 (en) High electric field anodizing equipment
Chung et al. Fabrication of enhanced anodic aluminum oxide performance at room temperatures using hybrid pulse anodization with effective cooling
Zhang et al. Simulation of anodizing current-time curves and morphology evolution of TiO2 nanotubes anodized in electrolytes with different NH4F concentrations
Jagminas et al. Growth peculiarities of aluminum anodic oxide at high voltages in diluted phosphoric acid
Chung et al. Effect of oxalic acid concentration on the formation of anodic aluminum oxide using pulse anodization at room temperature
Cheng et al. The electrical and mechanical properties of porous anodic 6061-T6 aluminum alloy oxide film
TW201140627A (en) Method for producing aluminum foil electrode of carbon nano-tube
JP2008038237A (en) Method of manufacturing alumina porous structure
Li et al. Self-organization process of aluminum oxide during hard anodization
TW201923159A (en) Method for manufacturing titanium or titanium alloy thin oxide film having micropores
Yang et al. Rapid growth of titanium oxide nanotubes under the critical breakdown voltage: Evidence against the dissolution reaction of fluoride ions
Ersching et al. Surface and interface characterization of nanoporous alumina templates produced in oxalic acid and submitted to etching procedures
JP3899413B2 (en) Nanomaterial fabrication method
CN102127788B (en) Method for preparing overlarge crystal-cell porous pellumina
Mousavi et al. Eliminating the irregular surface layer of anodically-grown Ni-Ti-O nanopore arrays in a two-stage anodization
JP5344850B2 (en) Anodized porous alumina and method for producing the same
CN104947167B (en) Method for preparing porous anode aluminum oxide nanotemplate with two consistent faces
KR101172813B1 (en) apparatus for tubular type high-field fabrication of anodic nanostructures
KR101172806B1 (en) method for high-field fabrication of anodic nanostructures
Bocchetta et al. Preparation of large area anodic alumina membranes and their application to thin film fuel cell
KR20140073475A (en) Method of a high-field anodization using electrolyte additive
KR101316082B1 (en) Asymmetric alumina membrane having monosized pores and manufacturing method thereof
CN111139511B (en) Cobaltosic oxide nanotube array assembled by anodic oxidation method and method
Huang et al. Kinetic models of controllable pore growth of anodic aluminum oxide membrane
JP5612741B2 (en) Method for producing anodized porous alumina

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130415

R150 Certificate of patent or registration of utility model

Ref document number: 5250700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees