JP2012228667A - Metal complex and separating material including the same - Google Patents

Metal complex and separating material including the same Download PDF

Info

Publication number
JP2012228667A
JP2012228667A JP2011099043A JP2011099043A JP2012228667A JP 2012228667 A JP2012228667 A JP 2012228667A JP 2011099043 A JP2011099043 A JP 2011099043A JP 2011099043 A JP2011099043 A JP 2011099043A JP 2012228667 A JP2012228667 A JP 2012228667A
Authority
JP
Japan
Prior art keywords
metal complex
gas
metal
group
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011099043A
Other languages
Japanese (ja)
Other versions
JP5705010B2 (en
Inventor
Susumu Kitagawa
進 北川
Ryotaro Matsuda
亮太郎 松田
Hiroshi Sato
弘志 佐藤
Joji Akiyama
穣慈 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2011099043A priority Critical patent/JP5705010B2/en
Publication of JP2012228667A publication Critical patent/JP2012228667A/en
Application granted granted Critical
Publication of JP5705010B2 publication Critical patent/JP5705010B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an adsorbing material selectively adsorbing a substance such as a gas or a separating material having high separation performance.SOLUTION: In this metal complex, a metal ion and an organic ligand capable of being coordinated to the metal ion constitute a repeating unit. The metal complex highly selectively adsorbs the gas to be adsorbed according to the kind of the gas to be adsorbed, an adsorption pressure or an adsorption temperature.

Description

本発明は、金属イオンと有機配位子からなる金属錯体、並びに、該金属錯体を用いた分離材に関する。具体的には、製鉄所や石油化学での副生ガス及び石油天然ガス等の改質ガス、部分酸化ガス、石炭タールサンド等の改質ガス、メタノール分解ガス等の主として水素、メタン、窒素、一酸化炭素ガスを含んだ混合ガスから一酸化炭素ガスを、圧力スイング吸着法を用いて分離する技術に関する。   The present invention relates to a metal complex composed of a metal ion and an organic ligand, and a separating material using the metal complex. Specifically, reformed gas such as by-product gas and petroleum natural gas in steelworks and petrochemistry, reformed gas such as partially oxidized gas, coal tar sand, etc., mainly hydrogen, methane, nitrogen, etc. The present invention relates to a technique for separating carbon monoxide gas from a mixed gas containing carbon monoxide gas using a pressure swing adsorption method.

従来、原料ガスから目的とするガス(製品ガスという)を分離して得る方法の1つとして圧力スイング吸着法(「PSA法」)が一般に知られている。この方法は、吸着材を充填した吸着塔内に加圧した原料ガスを供給して目的のガス(製品ガス)を吸着材に吸着させ、これにより不純物を分離回収した後(吸着工程)、吸着塔内を減圧して吸着材から製品ガスを脱着させることにより吸着材を再生(脱着工程)させ、この吸着工程と脱着工程とを交互に繰り返すことにより連続的に製品ガスを取出し得るようにしたものである。一般に、分離吸着材として分子ふるい炭やゼオライト、シリカ、アルミナなどが使用されており、その平衡吸着量または吸着速度の差により分離を行っている。   Conventionally, a pressure swing adsorption method (“PSA method”) is generally known as one of methods for obtaining a target gas (referred to as a product gas) from a source gas. In this method, a pressurized raw material gas is supplied into an adsorption tower filled with an adsorbent, and the target gas (product gas) is adsorbed on the adsorbent, thereby separating and recovering impurities (adsorption process). The adsorbent is regenerated (desorption process) by depressurizing the inside of the tower and desorbing the product gas from the adsorbent, and the product gas can be continuously taken out by repeating this adsorption process and desorption process alternately. Is. In general, molecular sieve charcoal, zeolite, silica, alumina, or the like is used as a separation adsorbent, and separation is performed by the difference in the equilibrium adsorption amount or adsorption rate.

COガスも、H,CO,CO,CH,Nなどの混合ガス(例えば製鉄所の転炉から発生する割合 CO:70%、CO :15%、N :15%の混合ガス)から、高純度のCOが、PSA法によって分離回収されている。COは他の共存成分と、分子径、分子量においてあまり差がないため、分子間の物理吸着力の差ではなく、化学吸着力の差を利用して分離回収される。COを効率的に、かつ高純度で回収するためには、CO吸着に関与するCu(I)量を増やし、COをより多量に、かつ選択的に吸着させることが必要であるとされてきた。この観点から、高比表面積の担体にCu(I)化合物を担持させ、またはCu(II)化合物を担持させたのちこれをCu(I)に還元し、加熱による活性化処理を行なうことによってCO吸着量を増大させた吸着材がすでに提案されており、たとえば銅担持シリカ、銅担持アルミナまたは銅担持シリカ−アルミナ系(特許文献1)、銅担持活性炭系(特許文献2)、銅担持ゼオライト系(特許文献3)がある。 The CO gas is also a mixed gas of H 2 , CO, CO 2 , CH 4 , N 2, etc. (for example, a ratio of CO: 70%, CO 2 : 15%, N 2 : 15% generated from a steelworks converter) High purity CO is separated and recovered from the gas) by the PSA method. Since CO is not much different from other coexisting components in molecular diameter and molecular weight, it is separated and recovered by utilizing the difference in chemical adsorption force, not the difference in physical adsorption force between molecules. In order to recover CO efficiently and with high purity, it has been necessary to increase the amount of Cu (I) involved in CO adsorption and to selectively adsorb CO in a larger amount. . From this point of view, by supporting a Cu (I) compound on a carrier having a high specific surface area or by supporting a Cu (II) compound, this is reduced to Cu (I) and subjected to activation treatment by heating. Adsorbents with increased adsorption amount have already been proposed, such as copper-supported silica, copper-supported alumina or copper-supported silica-alumina system (Patent Document 1), copper-supported activated carbon system (Patent Document 2), and copper-supported zeolite system. (Patent Document 3).

しかし、このように多孔体に銅化合物を担持した吸着材では、COが吸着材に強く吸着されるためにCOが脱着しにくく、塔内を加熱処理し吸着材からCOを脱着させる必要があった。加熱処理に伴いCu(I)は容易に酸化されるため、吸着材の劣化が問題となっている。   However, in the adsorbent in which the copper compound is supported on the porous body as described above, since CO is strongly adsorbed by the adsorbent, it is difficult to desorb CO, and it is necessary to heat treat the inside of the tower and desorb CO from the adsorbent. It was. Since Cu (I) is easily oxidized with heat treatment, deterioration of the adsorbent is a problem.

一方、より優れた吸着性能を与える吸着材として、外部刺激により動的構造変化を生じる金属錯体が開発されている。この新規な動的構造変化を有する金属錯体をガス吸着材として使用した場合、ある一定の圧力まではガスを吸着しないが、ある一定圧を越えるとガス吸着が始まるという特異な現象が観測されている。また、ガスの種類によって吸着開始圧が異なる現象が観測されている。この様にガスを吸着することで動的構造変化を有する金属錯体は新しい分離材として開発されている(特許文献4、特許文献5参照)。   On the other hand, metal complexes that cause a dynamic structural change by an external stimulus have been developed as adsorbents that give better adsorption performance. When a metal complex having this new dynamic structural change is used as a gas adsorbent, a unique phenomenon is observed in which gas adsorption does not adsorb up to a certain pressure, but gas adsorption starts when a certain pressure is exceeded. Yes. In addition, a phenomenon has been observed in which the adsorption start pressure varies depending on the type of gas. A metal complex having a dynamic structure change by adsorbing a gas in this way has been developed as a new separating material (see Patent Document 4 and Patent Document 5).

特許第1623870号Japanese Patent No. 1623870 特許第1696677号Patent No. 1696677 特許第1531878号Japanese Patent No. 1531878 特許第4258608号Japanese Patent No. 4258608 特開2010−265245公報JP 2010-265245 A

本発明の課題は、ガス等の物質を選択的に吸着できる吸着材や、分離性能の高い分離材を提供することにある。並びに、該金属錯体を圧力スイング吸着法に適用し、種々の成分を含む混合ガスから一酸化炭素ガスのみ分離する分離材を提供することを目的とする。   An object of the present invention is to provide an adsorbent capable of selectively adsorbing a substance such as a gas or a separation material having high separation performance. Another object of the present invention is to provide a separation material that separates only carbon monoxide gas from a mixed gas containing various components by applying the metal complex to a pressure swing adsorption method.

本発明者らは上記の点に鑑みて種々の検討を行った結果、金属錯体を構成する有機架橋配位子の種類を選択して、具体的には、吸着される物質の種類、吸着圧力または吸着温度等により細孔の大きさ(構造) が変化する新規な外場応答型金属錯体を用いることにより、圧力スイング法や温度スイング法のいずれにおいても、物質を選択的に吸着することができることを見出し、本発明を完成するに至った。   As a result of various studies in view of the above points, the present inventors have selected the type of organic bridging ligand constituting the metal complex, specifically, the type of substance to be adsorbed, the adsorption pressure Alternatively, by using a novel external field responsive metal complex whose pore size (structure) changes depending on the adsorption temperature, it is possible to selectively adsorb substances in both the pressure swing method and the temperature swing method. The present inventors have found that this can be done and have completed the present invention.

即ち、本発明は、下記に示す金属錯体及び分離材を提供するものである。
(1)金属イオンと該金属イオンに配位可能な有機配位子とが繰り返し単位を構成する金属錯体であって、吸着されるガスの種類、吸着圧力または吸着温度により、吸着されるガスを高選択的に吸着することを特徴とする金属錯体。
(2)前記金属錯体が、一般式
That is, the present invention provides the following metal complex and separating material.
(1) A metal complex in which a metal ion and an organic ligand capable of coordinating to the metal ion constitute a repeating unit, and the gas to be adsorbed depends on the type of gas adsorbed, the adsorption pressure or the adsorption temperature. A metal complex characterized by highly selective adsorption.
(2) The metal complex has the general formula

Figure 2012228667
Figure 2012228667

〔式中、MはCu2+、Zn2+、Ru2+、Rh2+、Mo2+、Cr2+から選択される2価の金属イオンであり、Rは2個のCOOH基がメタ位の位置関係にある2価の芳香族基を示す。〕で表される2核金属クラスター構造を有することを特徴とする金属錯体。
(3) 前記有機配位子が、以下の式1〜式4のいずれかで表される化合物であることを特徴とする(1)又は(2)に記載の金属錯体:
[In the formula, M is a divalent metal ion selected from Cu 2+ , Zn 2+ , Ru 2+ , Rh 2+ , Mo 2+ , and Cr 2+ , and R is in a positional relationship between two COOH groups in the meta position. A divalent aromatic group is shown. ] The metal complex characterized by having a binuclear metal cluster structure represented by these.
(3) The metal complex according to (1) or (2), wherein the organic ligand is a compound represented by any one of formulas 1 to 4 below:

Figure 2012228667
Figure 2012228667

(式中、R〜R30 はそれぞれ同一または異なって水素原子、アルキル基、アリール基、アルコキシ基、アミノ基(NH)、アミド基(CONH)、アジド基(N)、アセチルアミノ基、ニトロ基もしくはハロゲン原子を示す。)
(4) 前記有機配位子が、イソフタル酸、5−アジドイソフタル酸、5−メチルイソフタル酸または5−メトキシイソフタル酸であることを特徴とする(1)〜(3)のいずれかに記載の金属錯体。
(5) 前記金属イオンが、Cu2+からなることを特徴とする(1)〜(4)のいずれかに記載の金属錯体。
(6) (1)〜(5)のいずれかに記載の金属錯体を含む分離材。
(7) 一酸化炭素若しくは一酸化窒素を分離することを特徴とする(6)に記載のガス分離材。
(In the formula, R 1 to R 30 Are the same or different and each represents a hydrogen atom, alkyl group, aryl group, alkoxy group, amino group (NH 2 ), amide group (CONH 2 ), azide group (N 3 ), acetylamino group, nitro group or halogen atom. . )
(4) The organic ligand is isophthalic acid, 5-azidoisophthalic acid, 5-methylisophthalic acid or 5-methoxyisophthalic acid, according to any one of (1) to (3) Metal complex.
(5) The metal complex according to any one of (1) to (4), wherein the metal ion is made of Cu 2+ .
(6) A separating material containing the metal complex according to any one of (1) to (5).
(7) The gas separation material according to (6), wherein carbon monoxide or nitrogen monoxide is separated.

本発明の金属錯体は、さまざまな混合ガス中から特定の吸着成分を選択的に吸着分離することができる分離材として好適に使用することができる、具体的には、製鉄所や石油化学での副生ガス及び石油天然ガス等の改質ガス、部分酸化ガス、石炭タールサンド等の改質ガス、メタノール分解ガス等の主として水素、メタン、窒素、一酸化炭素ガスを含んだ混合ガスから一酸化炭素ガスを圧力スイング吸着法を用いて選択的に分離できる分離材を提供することができる。   The metal complex of the present invention can be suitably used as a separating material capable of selectively adsorbing and separating a specific adsorbing component from various mixed gases, specifically in steelworks and petrochemicals. Monoxide from mixed gas containing mainly hydrogen, methane, nitrogen, carbon monoxide gas such as by-product gas and reformed gas such as petroleum natural gas, partially oxidized gas, reformed gas such as coal tar sand, and methanol cracked gas A separation material capable of selectively separating carbon gas using a pressure swing adsorption method can be provided.

実施例1で得られた金属錯体〔Cu(aip)〕nの結晶構造図。(a)単位構造 、(b)集積構造、(c)銅イオンの一次元チェーン構造。The crystal structure figure of the metal complex [Cu (aip)] n obtained in Example 1. FIG. (A) Unit structure, (b) Integrated structure, (c) One-dimensional chain structure of copper ions. 実施例1の金属錯体の各種ガスの吸着等温線。3 is an adsorption isotherm of various gases of the metal complex of Example 1. 実施例1〜4の金属錯体の100Kにおける一酸化炭素ガス吸着等温線。● 実施例1の金属錯体(5-アジドイソフタル酸)▲ 実施例2の金属錯体(5-メチルイソフタル酸) ■ 実施例3の金属錯体(5-メトキシイソフタル酸)× 実施例4の金属錯体(イソフタル酸)The carbon monoxide gas adsorption isotherm in 100K of the metal complex of Examples 1-4. ● Metal complex of Example 1 (5-azidoisophthalic acid) ▲ Metal complex of Example 2 (5-methylisophthalic acid) ■ Metal complex of Example 3 (5-methoxyisophthalic acid) × Metal complex of Example 4 ( Isophthalic acid) 比較例1の活性炭の一酸化炭素及び窒素の吸着等温線。The adsorption isotherm of carbon monoxide and nitrogen of the activated carbon of Comparative Example 1. 比較例2の金属錯体(Basolite C300(HKUST-1))の一酸化炭素及び窒素の吸着等温線。The adsorption isotherm of carbon monoxide and nitrogen of the metal complex of Comparative Example 2 (Basolite C300 (HKUST-1)). 一酸化炭素ガス吸着下での実施例1の結晶構造図。(a)単位構造、(b)集積構造、(c)単位細孔構造。The crystal structure figure of Example 1 under carbon monoxide gas adsorption | suction. (A) Unit structure, (b) Accumulated structure, (c) Unit pore structure. 実施例1の一酸化炭素吸着および粉末X線回折同時測定結果。吸着、粉末X線同時測定装置であり、吸着等温線のA〜J点は、それぞれの圧力下でのX線回折に対応する。The carbon monoxide adsorption | suction of Example 1 and a powder X-ray-diffraction simultaneous measurement result. It is an apparatus for simultaneous adsorption and powder X-ray measurement, and points A to J of the adsorption isotherm correspond to X-ray diffraction under each pressure. 実施例1の一酸化炭素吸着前後の銅イオン周りの結晶構造変化図Example 1 Crystal structure change diagram around copper ion before and after carbon monoxide adsorption 実施例1の金属錯体を用いた混合ガス(窒素・一酸化炭素)吸着前、吸着後のガスクロマトグラフィー。Gas chromatography before and after adsorption of mixed gas (nitrogen / carbon monoxide) using the metal complex of Example 1.

(金属錯体)
本発明の金属錯体は、金属イオンと有機配位子の反応により得られる錯体であり、その主鎖の繰り返し単位が配位結合によって結合しているものである。特に多孔性の金属錯体は多孔性金属錯体と呼ばれている。
(Metal complex)
The metal complex of the present invention is a complex obtained by a reaction between a metal ion and an organic ligand, and the repeating unit of the main chain is bonded by a coordination bond. In particular, a porous metal complex is called a porous metal complex.

(金属元素)
錯体を構成する金属イオン(金属原子) としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、長周期型周期表における6族元素から12族元素の中から選択される元素のイオン(原子) が挙げられる。これらは、1種単独で使用してもよいし、2 種以上を併用してもよい。これらの中でも、前記金属イオン二量体ユニットを形成可能とする観点から、{M(OOC−R−COO)}で示される2核金属クラスター構造をとるカルボン酸型クラスターが安定性の面より好ましい。
(Metal element)
The metal ion (metal atom) constituting the complex is not particularly limited and may be appropriately selected depending on the intended purpose. For example, it is selected from Group 6 elements to Group 12 elements in the long-period periodic table. Ion (atom) of the element. These may be used individually by 1 type and may use 2 or more types together. Among these, from the viewpoint of enabling formation of the metal ion dimer unit, a carboxylic acid type cluster having a binuclear metal cluster structure represented by {M (OOC-R-COO)} 2 is more stable. preferable.

ここで、Rは2個のCOOH基がメタ位の位置関係にある2価の芳香族基を示す。「COOH基がメタ位の位置関係にある2価の芳香族基」とは、イソフタル酸と同様な方向に2つのCOOH基が結合している芳香族基を示し、ベンゼン環では1,3位、ナフタレン環では1,4位、ベンゾフェノンでは4,4’位、1,3−ジフェニルベンゼンでは、フェニル置換基の4,4’位にCOOH基を有する芳香族基を意味する。本発明で使用する有機配位子において2つのCOOH基は芳香環に結合している配位子が好ましい。   Here, R represents a divalent aromatic group in which two COOH groups are in the meta position. The “divalent aromatic group in which the COOH group is in the meta-position” means an aromatic group in which two COOH groups are bonded in the same direction as isophthalic acid, and the 1,3-position in the benzene ring In the naphthalene ring, it means an aromatic group having a COOH group at the 1,4 position, in the 4,4 'position in benzophenone, and in 1,3-diphenylbenzene, in the 4,4' position of the phenyl substituent. In the organic ligand used in the present invention, the two COOH groups are preferably ligands bonded to an aromatic ring.

2核カルボン酸型クラスターを構成する金属種としては、Cu2+、Zn2+、Ru2+、Rh2+、Mo2+、Cr2+から選択される2価の金属イオンが好ましく例示され、Cu2+を含有するクラスターが選択的な吸着現象を発現しやすい金属種である為、より好ましい。なお、前記金属イオンは、前記有機金属錯体構造体の製造の際の原料としては、該金属イオンを含む塩等の化合物を使用してもよい。 As the metal species constituting the dinuclear carboxylic acid type cluster, a divalent metal ion selected from Cu 2+ , Zn 2+ , Ru 2+ , Rh 2+ , Mo 2+ , and Cr 2+ is preferably exemplified and contains Cu 2+ . A cluster is more preferable because it is a metal species that easily exhibits a selective adsorption phenomenon. In addition, the said metal ion may use compounds, such as a salt containing this metal ion, as a raw material in the case of manufacture of the said organometallic complex structure.

(有機配位子)
前記有機配位子としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、前記金属イオンに架橋可能な架橋配位子が好適に挙げられる。本発明の有機配位子は、2つのカルボン酸基(COOH)を有し、この2つのカルボン酸基が異なる金属イオンに配位することで架橋配位子として機能する。該有機配位子が前記架橋配位子である場合には、前記金属イオンと前記有機配位子とで前記金属錯体を形成することができる。前記有機配位子の具体例としては、比較的安定で高強度な前記金属錯体を形成する観点からは、環状構造を有する化合物が好適に挙げられる。前記環状構造を有する化合物としては、例えば、脂環式化合物及びその誘導体、芳香族化合物及びその誘導体、ヘテロ芳香族化合物及びその誘導体、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、芳香族化合物及びその誘導体から選択されるものが好ましい。この場合、前記金属錯体においては、該有機配位子における架橋性部が他の金属イオンに対して架橋可能である。
(Organic ligand)
There is no restriction | limiting in particular as said organic ligand, Although it can select suitably according to the objective, For example, the bridge | crosslinking ligand which can be bridge | crosslinked to the said metal ion is mentioned suitably. The organic ligand of the present invention has two carboxylic acid groups (COOH) and functions as a bridging ligand by coordination of the two carboxylic acid groups to different metal ions. When the organic ligand is the bridging ligand, the metal complex can be formed by the metal ion and the organic ligand. Specific examples of the organic ligand include compounds having a cyclic structure from the viewpoint of forming the metal complex having a relatively stable and high strength. Examples of the compound having a cyclic structure include alicyclic compounds and derivatives thereof, aromatic compounds and derivatives thereof, heteroaromatic compounds and derivatives thereof, and the like. These may be used individually by 1 type and may use 2 or more types together. Among these, those selected from aromatic compounds and derivatives thereof are preferable. In this case, in the said metal complex, the crosslinkable part in this organic ligand can be bridge | crosslinked with respect to another metal ion.

具体的な有機配位子としては、以下の式1〜式4からなる配位子がより好ましい。   As a specific organic ligand, a ligand composed of the following formulas 1 to 4 is more preferable.

Figure 2012228667
Figure 2012228667

(式中、R〜R30 はそれぞれ同一または異なって水素原子、アルキル基、アリール基、アルコキシ基、アミノ基、アミド基、アジド基、アセチルアミノ基、ニトロ基もしくはハロゲン原子を示す。) (In the formula, R 1 to R 30 Are the same or different and each represents a hydrogen atom, an alkyl group, an aryl group, an alkoxy group, an amino group, an amide group, an azide group, an acetylamino group, a nitro group or a halogen atom. )

アルキル基としては、メチル、エチル、n−プロピル、イソプロピル、n−ブチル、イソブチル、sec−ブチル、tert−ブチルなどの直鎖または分枝を有する炭素数1〜4のアルキル基が挙げられる。   Examples of the alkyl group include linear or branched alkyl groups having 1 to 4 carbon atoms such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl and the like.

アリール基としては、フェニル基、ナフチル基などが挙げられる。   Examples of the aryl group include a phenyl group and a naphthyl group.

アルコキシ基としては、メトキシ、エトキシ、n−プロポキシ、イソプロポキシ、n−ブトキシ、イソブトキシ、sec−ブトキシ、tert−ブトキシなどの直鎖または分枝を有する炭素数1〜4のアルコキシ基が挙げられる。   Examples of the alkoxy group include linear or branched alkoxy groups having 1 to 4 carbon atoms such as methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy and tert-butoxy.

ハロゲン原子としては、塩素原子、フッ素原子、臭素原子、ヨウ素原子が挙げられる。   Examples of the halogen atom include a chlorine atom, a fluorine atom, a bromine atom, and an iodine atom.

式1〜4において、置換基の数は、1〜4個、好ましくは1〜3個、より好ましくは1個または2個、特に1個である。   In the formulas 1 to 4, the number of substituents is 1 to 4, preferably 1 to 3, more preferably 1 or 2, particularly 1.

容易に入手可能な式1の有機配位子である、イソフタル酸、5-アジドイソフタル酸、5-メチルイソフタル酸、5-メトキシイソフタル酸が最も好ましい。   Most preferred are the readily available organic ligands of Formula 1, isophthalic acid, 5-azidoisophthalic acid, 5-methylisophthalic acid, and 5-methoxyisophthalic acid.

(多孔性材料)
本発明の金属錯体は、多孔性材料である。多孔性材料は、多数の細孔を有する固体物質であり、細孔の大きさ分布,および細孔形状により特徴づけられる。本発明の金属錯体の細孔の大きさは,金属、有機配位子によって異なり, 2nm以下のものをミクロ孔(micropore),2〜50nmのものをメソ(mesopore), 50nm以上のものをマクロ孔(macropore)と分類される。本発明の金属錯体は、ミクロ孔を有し均一な細孔構造を持つ、多孔性材料である。
(Porous material)
The metal complex of the present invention is a porous material. The porous material is a solid substance having a large number of pores, and is characterized by the pore size distribution and the pore shape. The pore size of the metal complex of the present invention varies depending on the metal and the organic ligand. Micropores with a size of 2 nm or less, mesopores with a size of 2-50 nm, and macros with a size of 50 nm or more are macroscopic. Classified as a macropore. The metal complex of the present invention is a porous material having micropores and a uniform pore structure.

(金属錯体の製造方法)
本発明の金属錯体は、上述の金属元素の金属イオン、有機配位子、溶媒を混合して攪拌させるだけで得られることもあるが、ゼオライト合成と同様オートクレーブなどの耐圧容器に入れ高温・加圧下で反応させてもよい。
(Method for producing metal complex)
The metal complex of the present invention may be obtained simply by mixing and stirring the metal ions, organic ligands, and solvent of the above metal elements, but in a pressure vessel such as an autoclave as in zeolite synthesis, the metal complex is heated and heated. You may make it react under pressure.

金属イオンは、溶媒に溶解可能な金属化合物を反応溶媒に加えることで反応液中に供給できる。このような金属化合物としては金属の硫酸塩、酢酸塩、硝酸塩、塩化物、臭化物、ヨウ化物、過塩素酸塩、水酸化物、具体的には硝酸銅、酢酸銅、過塩素酸銅などが挙げられる。   Metal ions can be supplied into the reaction solution by adding a metal compound that is soluble in the solvent to the reaction solvent. Such metal compounds include metal sulfate, acetate, nitrate, chloride, bromide, iodide, perchlorate, hydroxide, specifically copper nitrate, copper acetate, copper perchlorate, etc. Can be mentioned.

また反応する有機配位子のカルボキシル基は、酸のまま(COOH)でもアルカリ金属塩化(COONa、COOK、COOLiなど)しても良い。混合比は配位子の配位結合基に対し金属カチオンがモル比として1:1程度が好ましく、その比率をどちらかを過剰ないし大過剰に用いてもよい。   The carboxyl group of the organic ligand to be reacted may be acid (COOH) or alkali metal chloride (COONa, COOK, COOLi, etc.). The mixing ratio is preferably about 1: 1 as the molar ratio of the metal cation to the coordination bond group of the ligand, and either of these ratios may be used in excess or large excess.

反応温度は、通常、常温〜300℃の間である。反応温度が余りに高いときには生成物が分解するおそれがあるので、好ましくは、250℃以下である。   The reaction temperature is usually between room temperature and 300 ° C. Since the product may be decomposed when the reaction temperature is too high, the temperature is preferably 250 ° C. or lower.

金属イオンの濃度としては、1〜1000mmol/L程度、有機配位子の濃度としては、1〜2000mmol/L程度である。   The metal ion concentration is about 1 to 1000 mmol / L, and the organic ligand concentration is about 1 to 2000 mmol / L.

反応時間、反応温度は合成のスケールによって一概には決められないが、低温であるほど長時間を要し、一般に30分〜3週間である。反応を均一溶媒で実施する際は数時間程度で問題ないが、耐圧容器下、不均一条件で反応を実施する場合は長時間、具体的には1週間程度必要とする場合もある。反応圧力は常圧から4MPa程度である。   Although the reaction time and reaction temperature are not generally determined by the scale of synthesis, the lower the temperature, the longer it takes, generally 30 minutes to 3 weeks. When the reaction is carried out with a homogeneous solvent, there is no problem in about several hours. However, when the reaction is carried out under non-uniform conditions under a pressure vessel, it may take a long time, specifically about one week. The reaction pressure is from normal pressure to about 4 MPa.

(助触媒)
金属錯体の合成反応をより促進させるため沸酸、塩酸、蟻酸、酢酸、硝酸など少量の酸や水酸化ナトリウムなどのアルカリを反応溶媒に加えてもよい。酸やアルカリは多量に用いると金属錯体の合成を妨げる為、配位子に対して0.1〜10倍モル、好ましくは1〜5倍モル程度が良い。
(Cocatalyst)
In order to further promote the synthesis reaction of the metal complex, a small amount of acid such as boiling acid, hydrochloric acid, formic acid, acetic acid, nitric acid or alkali such as sodium hydroxide may be added to the reaction solvent. When acid and alkali are used in a large amount, the synthesis of the metal complex is hindered, so that the amount is 0.1 to 10 times mol, preferably about 1 to 5 times mol for the ligand.

(溶媒)
溶媒に関しては水、アセトン、メタノール、エタノール等のアルコール類、アセトニトリル、テトラヒドロフラン、ジオキサン、ジメチルホルムアミド、ジメチルアセトアミド、トルエン、ヘキサン等の有機溶剤のいずれを使用しても良く混合させても良い。溶媒の使用量に関しては特に限定はないものの、重量基準で10〜2000倍程度が反応制御の容易さの点で好ましい。
(solvent)
Regarding the solvent, any of water, alcohols such as acetone, methanol and ethanol, organic solvents such as acetonitrile, tetrahydrofuran, dioxane, dimethylformamide, dimethylacetamide, toluene and hexane may be used or mixed. Although there is no limitation in particular about the usage-amount of a solvent, about 10 to 2000 times on a weight basis is preferable at the point of the ease of reaction control.

(金属錯体の洗浄、単離操作)
反応終了後、沈殿物をろ過、遠心分離することによって、生成物を簡単に単離することができる。生成物単離後は、必要に応じ水や有機溶媒による洗浄を行う。単離された生成物を吸着材として使用するためには、これを速やかに減圧下で加熱することによって、脱溶媒することが特に好ましい。脱溶媒することにより金属錯体が安定化して多孔質構造が維持される傾向にある。その加熱温度は、50〜200℃程度が好適である。なお脱溶媒せずに長時間、例えば数日間放置すると、金属錯体の結晶構造が変わり、比表面積が減少し吸着材、触媒としての性能を損ねる場合があり得る。
(Washing and isolation of metal complexes)
After completion of the reaction, the product can be easily isolated by filtering and centrifuging the precipitate. After isolation of the product, washing with water or an organic solvent is performed as necessary. In order to use the isolated product as an adsorbent, it is particularly preferred to remove the solvent by rapidly heating it under reduced pressure. Desolvation tends to stabilize the metal complex and maintain the porous structure. The heating temperature is preferably about 50 to 200 ° C. In addition, when left for a long period of time without removing the solvent, for example, for several days, the crystal structure of the metal complex changes, the specific surface area decreases, and the performance as an adsorbent or catalyst may be impaired.

(金属錯体の形状)
このような本発明の金属錯体の形状は、特に制限されないが、粒子状或いは膜状であることが好ましい。形状が粒子状の場合、粒子の平均粒径は0.01〜100μmであることが好ましく、膜状の場合、膜厚は0.01〜50μmであることがより好ましく、0.1〜50μmであることが特に好ましい。
(Shape of metal complex)
The shape of the metal complex of the present invention is not particularly limited, but is preferably in the form of particles or a film. When the shape is particulate, the average particle size of the particles is preferably 0.01 to 100 μm. When the shape is membrane, the film thickness is more preferably 0.01 to 50 μm, and preferably 0.1 to 50 μm. It is particularly preferred.

(用途)
本発明の金属錯体は、二酸化炭素、水素、一酸化炭素、酸素、窒素、炭素数1〜4の炭化水素(メタン、エタン、エチレン、アセチレンなど)、希ガス(ヘリウム、ネオン、アルゴン、クリプトン、キセノンなど)、硫化水素、アンモニア、硫黄酸化物(SOなど)、窒素酸化物(NO,NO,N,NOなど)、シロキサン(ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサンなど)、水蒸気または有機蒸気など、特にCOを効率よく分離することができる。本発明の分離材は、特に、製鉄所や石油化学での副生ガス及び石油天然ガス等の改質ガス、部分酸化ガス、石炭タールサンド等の改質ガス、メタノール分解ガス等の主として水素、メタン、窒素、一酸化炭素ガスを含んだ混合ガスから一酸化炭素ガスを圧力スイング吸着法により分離するのに適している。
(Use)
The metal complex of the present invention includes carbon dioxide, hydrogen, carbon monoxide, oxygen, nitrogen, hydrocarbons having 1 to 4 carbon atoms (methane, ethane, ethylene, acetylene, etc.), rare gases (helium, neon, argon, krypton, Xenon etc.), hydrogen sulfide, ammonia, sulfur oxides (SO 2 etc.), nitrogen oxides (NO, NO 2 , N 2 O 4 , N 2 O etc.), siloxanes (hexamethylcyclotrisiloxane, octamethylcyclotetra) In particular, CO can be efficiently separated, such as siloxane, water vapor or organic vapor. The separation material of the present invention is, in particular, reformed gas such as by-product gas and petroleum natural gas in steelworks and petrochemistry, reformed gas such as partially oxidized gas, coal tar sand, mainly hydrogen such as methanol cracked gas, It is suitable for separating carbon monoxide gas from a mixed gas containing methane, nitrogen and carbon monoxide gas by a pressure swing adsorption method.

以下に実施例及び比較例を挙げて、本発明を更に具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to the following examples unless it exceeds the gist.

尚、金属錯体の吸着特性は、以下の装置及び条件にて評価した。
<吸着測定装置>
吸着等温線測定装置 :ベルソープ18(日本ベル(株)製)
空気恒温槽温度 :50℃
吸着温度 :-196℃(窒素)、-192℃(一酸化炭素)、-78℃(二酸化炭素、アセチレン)
初期導入圧力 :0.01kPa
飽和蒸気圧 :101kPa
平衡時間 :500秒
In addition, the adsorption | suction characteristic of the metal complex was evaluated with the following apparatuses and conditions.
<Adsorption measuring device>
Adsorption isotherm measuring device: Bell Soap 18 (made by Nippon Bell Co., Ltd.)
Air temperature chamber temperature: 50 ° C
Adsorption temperature: -196 ° C (nitrogen), -192 ° C (carbon monoxide), -78 ° C (carbon dioxide, acetylene)
Initial introduction pressure: 0.01 kPa
Saturated vapor pressure: 101 kPa
Equilibrium time: 500 seconds

また、ガスクロマトグラフィーに関しては、以下の装置及び条件に示す方法にて実施した。
<ガスクロマトグラフ>
高性能汎用ガスクロマトグラフ :GC-2014(株式会社 島津製作所 製)
キャピラリカラム :RT-Msieve 5A(RESTEK社 製)
カラム温度 :35℃
キャリアガス :He
圧力:76.0kPa
全流量 :37.9mL/min
カラム流量 :1.13mL/min
検出器温度 :50℃
気化室温度 :50℃
In addition, gas chromatography was performed by the method shown in the following apparatus and conditions.
<Gas chromatograph>
High-performance general purpose gas chromatograph: GC-2014 (manufactured by Shimadzu Corporation)
Capillary column: RT-Msieve 5A (manufactured by RESTEK)
Column temperature: 35 ° C
Carrier gas: He
Pressure: 76.0kPa
Total flow rate: 37.9 mL / min
Column flow rate: 1.13 mL / min
Detector temperature: 50 ° C
Vaporization chamber temperature: 50 ° C

<X線単結晶構造解析>
尚、金属錯体の単結晶X線回折の測定は、単結晶X線回折装置を用い、ターゲットにMoを有するX線管球から発生したX線を試料に照射し、試料により回折された回折X線を検出することにより行なった。
<X-ray single crystal structure analysis>
The single-crystal X-ray diffraction of the metal complex is measured by using a single-crystal X-ray diffractometer, irradiating the sample with X-rays generated from an X-ray tube having Mo as a target, and diffracting X-rays diffracted by the sample. This was done by detecting the line.

X線回折装置:極微小結晶用単結晶構造解析装置VariMax(株式会社リガク製)
使用X線:MoKa線(l = 0.71069A)
測定温度:−180℃
結晶サイズ:0.05x0.05x0.05ミリメートル
X-ray diffractometer: VariMax (manufactured by Rigaku Corporation)
X-ray used: MoKa line (l = 0.71069A)
Measurement temperature: -180 ° C
Crystal size: 0.05x0.05x0.05mm

<粉末X線回折測定>
尚、金属錯体の粉末X線回折の測定は、SPring-8において行い、シンクロトロンから発生した高輝度X線を試料に照射し、試料により回折された回折X線を検出することにより行なった。
使用X線:シンクロトロン(l = 1.09910A)
測定温度:−173℃
キャピラリサイズ:内径0.4ミリメートル
<Powder X-ray diffraction measurement>
The powder X-ray diffraction of the metal complex was measured at SPring-8 by irradiating the sample with high-intensity X-rays generated from the synchrotron and detecting the diffracted X-ray diffracted by the sample.
X-ray used: Synchrotron (l = 1.99910A)
Measurement temperature: -173 ° C
Capillary size: 0.4mm inner diameter

<吸着、粉末X線同時測定装置>
尚、金属錯体の吸着および粉末X線同時測定は、以下の装置および条件に示す方法にて実施した。
吸着測定装置
吸着等温線測定装置 :ベルソープ18(日本ベル(株)製)
空気恒温槽温度 :50℃
吸着温度 :-153℃
初期導入圧力 :0.01kPa
平衡時間 :500秒
<Adsorption and powder X-ray simultaneous measurement device>
In addition, adsorption | suction of a metal complex and powder X-ray simultaneous measurement were implemented with the method shown to the following apparatuses and conditions.
Adsorption measuring device Adsorption isotherm measuring device: Bell Soap 18 (made by Nippon Bell Co., Ltd.)
Air temperature chamber temperature: 50 ° C
Adsorption temperature: -153 ° C
Initial introduction pressure: 0.01 kPa
Equilibrium time: 500 seconds

粉末X線測定装置
粉末X線測定装置 :試料水平型多目的X線回折装置 Ultima IV(株式会社 リガク製)
検出器 :高速1次元X線検出器D/teX Ultra(株式会社 リガク製)
測定温度 :-153℃
2θ掃引速度 :5°/min
測定範囲 :5.2°<2θ<40°
Powder X-ray measuring device Powder X-ray measuring device: Sample horizontal multipurpose X-ray diffractometer Ultima IV (manufactured by Rigaku Corporation)
Detector: High-speed one-dimensional X-ray detector D / teX Ultra (manufactured by Rigaku Corporation)
Measurement temperature: -153 ° C
2θ sweep speed: 5 ° / min
Measurement range: 5.2 ° <2θ <40 °

実施例1
[5-アジドイソフタル酸の合成]
5-アミノイソフタル酸(東京化成(株)製:試薬)5gの2mol/リットル塩酸溶液500mlを0℃に冷却し、亜硝酸ナトリウム(和光純薬社製: 試薬)2gの水溶液50mlを15分間かけて加え、得られた溶液を0℃で15分間撹拌した。得られた黄色溶液にアジ化ナトリウム(和光純薬社製: 試薬)1.9gの水溶液50mlを20分間で加え、0℃で30分撹拌し、室温に戻した後、さらに12時間撹拌を続けた。析出した固体をろ別、水にて洗浄したのち、乾燥させることで、5-アジドイソフタル酸を収率94%で得た。
Example 1
[Synthesis of 5-azidoisophthalic acid]
500 ml of a 2 mol / liter hydrochloric acid solution of 5 g of 5-aminoisophthalic acid (manufactured by Tokyo Chemical Industry Co., Ltd .: reagent) is cooled to 0 ° C., and 50 ml of an aqueous solution of 2 g of sodium nitrite (manufactured by Wako Pure Chemical Industries, Ltd .: reagent) is applied for 15 minutes. The resulting solution was stirred at 0 ° C. for 15 minutes. To the obtained yellow solution, 50 ml of an aqueous solution of 1.9 g of sodium azide (manufactured by Wako Pure Chemical Industries, Ltd .: reagent) was added over 20 minutes, stirred at 0 ° C. for 30 minutes, returned to room temperature, and further stirred for 12 hours. It was. The precipitated solid was separated by filtration, washed with water and then dried to obtain 5-azidoisophthalic acid in a yield of 94%.

[金属錯体の合成1]
硝酸銅3水和物24 mg(0.1 mmol)およびピリジン0.01mLをメタノール2.5mlに溶解させてB液とし、直管に仕込んだ。次いで、C液としてメタノール0.5mlを、上記の直管のB液の上に静かに加えた。そして、aip(5-アジドイソフタル酸)21mg(0.1mmol)をメタノール2mlに溶解させてA液とし、これを上記直管のC液の上に静かに加えた。その後、直管を静置したところ、各液は徐々に混合していき、室温にて2週間放置し、生じた水色結晶を吸引濾過した後、室温にて真空乾燥したところ、目的物である錯体が20mg得られた。
この結晶について単結晶X線回折を行い、構造を解析した結果を図1の( a ) 、( b )に示す。まず、銅イオンとaipがパドルホイール型二核錯体を形成し、aipがそれら二核錯体を連結することで、2次元シート構造を形成していることが分かった。さらにその2次元シート同士が積層し、1次元細孔を形成しており、得られた金属錯体の組成式が、〔Cu(aip)(HO)〕で表されることが判明した。この構造体の乾燥状態の粉末X線回折を解析することにより得られた構造を、図1( c )に示す。乾燥状態においては、カルボキシレートの酸素原子が銅イオンに配位し、1次元チェーン構造を形成していることがわかる。
[Synthesis of Metal Complex 1]
Copper nitrate trihydrate (24 mg, 0.1 mmol) and pyridine (0.01 mL) were dissolved in methanol (2.5 ml) to form solution B, and charged into a straight tube. Next, 0.5 ml of methanol as a C liquid was gently added onto the B liquid in the straight pipe. Then, 21 mg (0.1 mmol) of aip (5-azidoisophthalic acid) was dissolved in 2 ml of methanol to prepare solution A, which was gently added onto the solution C in the straight pipe. After that, when the straight tube was allowed to stand, each solution was gradually mixed, left at room temperature for 2 weeks, and the resulting light blue crystals were filtered by suction and then vacuum dried at room temperature. 20 mg of complex was obtained.
The results of single crystal X-ray diffraction and structural analysis of this crystal are shown in (a) and (b) of FIG. First, it was found that a copper ion and aip formed a paddle wheel type binuclear complex, and aip linked these binuclear complexes to form a two-dimensional sheet structure. Further, the two-dimensional sheets are laminated to form one-dimensional pores, and it has been found that the composition formula of the obtained metal complex is represented by [Cu (aip) (H 2 O)] n . . The structure obtained by analyzing the powder X-ray diffraction in the dry state of this structure is shown in FIG. 1 (c). It can be seen that in the dry state, the oxygen atom of the carboxylate is coordinated to the copper ion to form a one-dimensional chain structure.

[吸着測定]
実施例1で得られた金属錯体について、各種ガス(一酸化炭素、窒素、アセチレン、炭酸ガス(二酸化炭素))の沸点付近温度(一酸化炭素 81K、窒素 77K、 アセチレン 195K、二酸化炭素 195K ) における吸脱着等温線を、定容量法により測定した。その結果を図2に示す。図から明らかなように、一酸化炭素ガスのみを他のガスよりも多量に吸着した。
[Adsorption measurement]
About the metal complex obtained in Example 1, the temperature around the boiling point of various gases (carbon monoxide, nitrogen, acetylene, carbon dioxide (carbon dioxide)) (carbon monoxide 81K, nitrogen 77K, acetylene 195K, carbon dioxide 195K) The adsorption / desorption isotherm was measured by the constant volume method. The result is shown in FIG. As is apparent from the figure, only carbon monoxide gas was adsorbed in a larger amount than other gases.

実施例2.
[金属錯体の合成2]
硝酸銅3水和物24 mg(0.1 mmol)およびピリジン0.01mLをメタノール2.5mlに溶解させてB液とし、直管に仕込んだ。次いで、C液としてメタノール0.5mlを、上記の直管のB液の上に静かに加えた。そして、mip(5-メチルイソフタル酸)18mg(0.1mmol)をメタノール2mlに溶解させてA液とし、これを上記直管のC液の上に静かに加えた。その後、直管を静置したところ、各液は徐々に混合していき、室温にて2週間放置し、生じた水色結晶を吸引濾過した後、室温にて真空乾燥したところ、目的物である錯体、組成式が、〔Cu(mip)(HO)〕で表されるものが22mg得られた。
Example 2
[Synthesis of Metal Complex 2]
Copper nitrate trihydrate (24 mg, 0.1 mmol) and pyridine (0.01 mL) were dissolved in methanol (2.5 ml) to form solution B, and charged into a straight tube. Next, 0.5 ml of methanol as a C liquid was gently added onto the B liquid in the straight pipe. Then, 18 mg (0.1 mmol) of mip (5-methylisophthalic acid) was dissolved in 2 ml of methanol to prepare a solution A, which was gently added onto the solution C in the straight pipe. After that, when the straight tube was allowed to stand, each solution was gradually mixed, left at room temperature for 2 weeks, and the resulting light blue crystals were filtered by suction and then vacuum dried at room temperature. 22 mg of a complex whose composition formula is represented by [Cu (mip) (H 2 O)] n was obtained.

実施例3.
[金属錯体の合成3]
硝酸銅3水和物24 mg(0.1 mmol)およびピリジン0.01mLをメタノール2.5mlに溶解させてB液とし、直管に仕込んだ。次いで、C液としてメタノール0.5mlを、上記の直管のB液の上に静かに加えた。そして、moip(5-メトキシイソフタル酸)20mg(0.1mmol)をメタノール2mlに溶解させてA液とし、これを上記直管のC液の上に静かに加えた。その後、直管を静置したところ、各液は徐々に混合していき、室温にて2週間放置し、生じた水色結晶を吸引濾過した後、室温にて真空乾燥したところ、目的物である錯体、組成式が、〔Cu(moip)(HO)〕で表されるものが24mg得られた。
Example 3
[Synthesis of Metal Complex 3]
Copper nitrate trihydrate (24 mg, 0.1 mmol) and pyridine (0.01 mL) were dissolved in methanol (2.5 ml) to form solution B, and charged into a straight tube. Next, 0.5 ml of methanol as a C liquid was gently added onto the B liquid in the straight pipe. Then, 20 mg (0.1 mmol) of moip (5-methoxyisophthalic acid) was dissolved in 2 ml of methanol to prepare solution A, which was gently added onto the solution C in the straight pipe. After that, when the straight tube was allowed to stand, each solution was gradually mixed, left at room temperature for 2 weeks, and the resulting light blue crystals were filtered by suction and then vacuum dried at room temperature. 24 mg of a complex whose composition formula is represented by [Cu (moip) (H 2 O)] n was obtained.

実施例4.
[金属錯体の合成4]
硝酸銅3水和物24 mg(0.1 mmol)およびピリジン0.01mLをメタノール2.5mlに溶解させてB液とし、直管に仕込んだ。次いで、C液としてメタノール0.5mlを、上記の直管のB液の上に静かに加えた。そして、ipa(イソフタル酸)17mg(0.1mmol)をメタノール2mlに溶解させてA液とし、これを上記直管のC液の上に静かに加えた。その後、直管を静置したところ、各液は徐々に混合していき、室温にて2週間放置し、生じた水色結晶を吸引濾過した後、室温にて真空乾燥したところ、目的物である錯体、組成式が、〔Cu(ipa)(HO)〕で表されるものが11mg得られた。
Example 4
[Synthesis of Metal Complex 4]
Copper nitrate trihydrate (24 mg, 0.1 mmol) and pyridine (0.01 mL) were dissolved in methanol (2.5 ml) to form solution B, and charged into a straight tube. Next, 0.5 ml of methanol as a C liquid was gently added onto the B liquid in the straight pipe. Then, 17 mg (0.1 mmol) of ipa (isophthalic acid) was dissolved in 2 ml of methanol to prepare a solution A, which was gently added onto the solution C in the straight pipe. After that, when the straight tube was allowed to stand, each solution was gradually mixed, left at room temperature for 2 weeks, and the resulting light blue crystals were filtered by suction and then vacuum dried at room temperature. 11 mg of a complex whose composition formula is represented by [Cu (ipa) (H 2 O)] n was obtained.

実施例2〜4の金属錯体も実施例1の金属錯体と同様、一酸化炭素ガスのみを他のガスよりも多量に吸着した。また置換基を変えることで、一酸化炭素ガスの吸着の開始圧力に変化が見られた。その結果を図3に示す。これにより吸着の開始点は置換基により制御可能であることも判明した。 Similarly to the metal complex of Example 1, the metal complexes of Examples 2 to 4 adsorbed only carbon monoxide gas in a larger amount than the other gases. Moreover, the change in the starting pressure of carbon monoxide gas adsorption was observed by changing the substituent. The result is shown in FIG. This also revealed that the starting point of adsorption can be controlled by a substituent.

比較例1.
多孔性材料としてよく知られる活性炭を120℃、真空下で減圧乾燥することにより、結晶水及び付着水を除去した後、実施例1.と同様に一酸化炭素及び窒素の沸点における吸脱着等温線を、定容量法により測定した。その結果を図4に示す。細孔を有するだけではガス吸着量に差は生じないことがわかる。
Comparative Example 1
The activated carbon, which is well known as a porous material, is dried under reduced pressure at 120 ° C. under vacuum to remove crystal water and adhering water. Similarly, the adsorption and desorption isotherms at the boiling points of carbon monoxide and nitrogen were measured by the constant volume method. The result is shown in FIG. It can be seen that there is no difference in the amount of gas adsorption only by having pores.

比較例2.
トリメシン酸及び銅金属からなる金属錯体(Basolite C300(HKUST-1))は配位不飽和金属部位を有する金属錯体として知られている。120℃、真空下で減圧乾燥することにより、結晶水及び付着水を除去した後、実施例1.と同様に一酸化炭素及び窒素の沸点における吸脱着等温線を、定容量法により測定した。その結果を図5に示す。細孔及び配位不飽和金属部位を有してもガス吸着量に差は生じないことがわかる。
Comparative Example 2
A metal complex composed of trimesic acid and copper metal (Basolite C300 (HKUST-1)) is known as a metal complex having a coordinated unsaturated metal moiety. After removing crystal water and adhering water by drying under reduced pressure at 120 ° C. under vacuum, Example 1. Similarly, the adsorption and desorption isotherms at the boiling points of carbon monoxide and nitrogen were measured by the constant volume method. The result is shown in FIG. It can be seen that there is no difference in the amount of gas adsorption even if it has pores and coordination unsaturated metal sites.

一酸化炭素ガスのみを多量に吸着する原因の解明の為、強力な放射光実験が可能であるSPring−8にて、一酸化炭素ガス吸着下での実施例1の粉末回折を行った。解析により得られた一酸化炭素ガス吸着下での金属錯体の構造を、図6に示す。図6中の( a ) 、( b ) 、( c ) は、金属錯体の単位構造、集積構造及び単位細孔構造を示す。これにより銅イオンに一酸化炭素が配位した構造であることがわかる。   In order to elucidate the cause of adsorbing only a large amount of carbon monoxide gas, the powder diffraction of Example 1 under carbon monoxide gas adsorption was performed at SPring-8, which allows powerful synchrotron radiation experiments. The structure of the metal complex under carbon monoxide gas adsorption obtained by the analysis is shown in FIG. (A), (b), (c) in FIG. 6 shows the unit structure, integrated structure, and unit pore structure of the metal complex. This shows that the structure is such that carbon monoxide is coordinated to copper ions.

吸着、粉末X線同時測定装置により一酸化炭素吸着下での粉末X線構造をモニターした結果を図7に示す。これによるとC点から一酸化炭素の吸着により構造変化が誘起され、G点では図6の結晶構造へと変化したことがわかった。また、その吸脱着は可逆的であり、脱着により図1の乾燥状態の結晶構造へと戻る(J点)こともわかった。   FIG. 7 shows the results of monitoring the powder X-ray structure under carbon monoxide adsorption using a simultaneous adsorption and powder X-ray measurement apparatus. According to this, it was found that the structural change was induced from the C point by the adsorption of carbon monoxide and changed to the crystal structure of FIG. 6 at the G point. It was also found that the adsorption / desorption is reversible and returns to the dry crystal structure of FIG. 1 by desorption (point J).

本発明の金属錯体が一酸化炭素ガスのみを選択的に多量に吸着する理由をまとめると、乾燥状態ではカルボキシレートの酸素原子により連結された銅イオン1次元チェーン構造が、一酸化炭素の吸着により構造変化を誘起され、一酸化炭素が配位した構造へと変化し、細孔構造が変化することが原因であることがわかった。(図8)   To summarize the reason why the metal complex of the present invention selectively adsorbs only a large amount of carbon monoxide gas, in a dry state, the copper ion one-dimensional chain structure linked by the oxygen atom of the carboxylate is formed by the adsorption of carbon monoxide. It was found that the structural change was induced to change to a structure in which carbon monoxide was coordinated, and the pore structure was changed. (Fig. 8)

最後に本発明の金属錯体を用いた、一酸化炭素及び窒素の混合ガス中から一酸化炭素ガスのみを選択的に分離した結果を示す。実施例1の金属錯体を入れたサンプルを一酸化炭素/窒素混合ガス(50%/50%)気流下で室温から81Kまで冷却した。吸着されていないガスを排気した後、室温まで温度を上げ、サンプルに吸着したガスを放出させ、そのガスをガスクロマトグラフィーにより分析した。その結果を図9に示す。吸着ガスの一酸化炭素/窒素の混合比は、85%/15%であり、混合ガス中の一酸化炭素ガスを簡易に濃縮できることも判明した。   Finally, the result of selectively separating only the carbon monoxide gas from the mixed gas of carbon monoxide and nitrogen using the metal complex of the present invention is shown. The sample containing the metal complex of Example 1 was cooled from room temperature to 81K under a carbon monoxide / nitrogen mixed gas (50% / 50%) stream. After exhausting the non-adsorbed gas, the temperature was raised to room temperature, the gas adsorbed on the sample was released, and the gas was analyzed by gas chromatography. The result is shown in FIG. The mixing ratio of carbon monoxide / nitrogen in the adsorbed gas was 85% / 15%, and it was also found that the carbon monoxide gas in the mixed gas can be easily concentrated.

この特徴を利用することにより、従来の分離材を用いる場合に比べて、分離性能の高いガス分離が可能である。特に、種々の成分を含む混合ガスから一酸化炭素ガスのみを圧力スイング吸着法を用いて選択的に分離できる分離材を提供することができる。   By utilizing this feature, it is possible to perform gas separation with high separation performance as compared with the case of using a conventional separation material. In particular, it is possible to provide a separation material that can selectively separate only carbon monoxide gas from a mixed gas containing various components using a pressure swing adsorption method.

Claims (7)

金属イオンと該金属イオンに配位可能な有機配位子とが繰り返し単位を構成する金属錯体であって、吸着されるガスの種類、吸着圧力または吸着温度により、吸着されるガスを高選択的に吸着することを特徴とする金属錯体。 A metal complex in which a metal ion and an organic ligand capable of coordinating with the metal ion constitute a repeating unit, and the gas to be adsorbed is highly selective depending on the type of adsorbed gas, the adsorption pressure or the adsorption temperature. A metal complex characterized in that it is adsorbed on a metal. 前記金属錯体が、一般式
Figure 2012228667
〔式中、MはCu2+、Zn2+、Ru2+、Rh2+、Mo2+、Cr2+から選択される2価の金属イオンであり、Rは2個のCOOH基がメタ位の位置関係にある2価の芳香族基を示す。〕
で表される2核金属クラスター構造を有することを特徴とする金属錯体。
The metal complex has the general formula
Figure 2012228667
[In the formula, M is a divalent metal ion selected from Cu 2+ , Zn 2+ , Ru 2+ , Rh 2+ , Mo 2+ , and Cr 2+ , and R is in a positional relationship between two COOH groups in the meta position. A divalent aromatic group is shown. ]
The metal complex characterized by having the binuclear metal cluster structure represented by these.
前記有機配位子が、以下の式1〜式4のいずれかで表される化合物であることを特徴とする請求項1又は2に記載の金属錯体:
Figure 2012228667
(式中、R〜R30 はそれぞれ同一または異なって水素原子、アルキル基、アリール基、アルコキシ基、アミノ基(NH)、アミド基(CONH)、アジド基(N),アセチルアミノ基、ニトロ基もしくはハロゲン原子を示す。)
The metal complex according to claim 1 or 2, wherein the organic ligand is a compound represented by any one of the following formulas 1 to 4.
Figure 2012228667
(In the formula, R 1 to R 30 Are the same or different and each represents a hydrogen atom, alkyl group, aryl group, alkoxy group, amino group (NH 2 ), amide group (CONH 2 ), azide group (N 3 ), acetylamino group, nitro group or halogen atom. . )
前記有機配位子が、イソフタル酸、5−アジドイソフタル酸、5−メチルイソフタル酸または5−メトキシイソフタル酸であることを特徴とする請求項1〜3のいずれかに記載の金属錯体。   The metal complex according to any one of claims 1 to 3, wherein the organic ligand is isophthalic acid, 5-azidoisophthalic acid, 5-methylisophthalic acid or 5-methoxyisophthalic acid. 前記金属イオンが、Cu2+からなることを特徴とする請求項1〜4のいずれかに記載の金属錯体。 The metal complex according to claim 1, wherein the metal ion is made of Cu 2+ . 請求項1〜5のいずれかに記載の金属錯体を含む分離材。   The separating material containing the metal complex in any one of Claims 1-5. 一酸化炭素若しくは一酸化窒素を分離することを特徴とする請求項6に記載のガス分離材。 The gas separation material according to claim 6, wherein carbon monoxide or nitrogen monoxide is separated.
JP2011099043A 2011-04-27 2011-04-27 Metal complex and separation material comprising the same Active JP5705010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011099043A JP5705010B2 (en) 2011-04-27 2011-04-27 Metal complex and separation material comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011099043A JP5705010B2 (en) 2011-04-27 2011-04-27 Metal complex and separation material comprising the same

Publications (2)

Publication Number Publication Date
JP2012228667A true JP2012228667A (en) 2012-11-22
JP5705010B2 JP5705010B2 (en) 2015-04-22

Family

ID=47430689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011099043A Active JP5705010B2 (en) 2011-04-27 2011-04-27 Metal complex and separation material comprising the same

Country Status (1)

Country Link
JP (1) JP5705010B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014166969A (en) * 2013-02-28 2014-09-11 Nippon Steel & Sumitomo Metal Porous polymer metal complex, gas adsorbent, gas separation apparatus and gas storage apparatus using the same
JP2014166970A (en) * 2013-02-28 2014-09-11 Nippon Steel & Sumitomo Metal Fluorine atom-containing porous polymer complex, gas adsorbent using the same, gas separation apparatus and gas storage apparatus
JP2015077594A (en) * 2013-09-12 2015-04-23 パナソニックIpマネジメント株式会社 Method of causing carbon dioxide to be adsorbed by porous metal organic-backbone material, method of cooling porous metal organic-backbone material, method of obtaining aldehyde by using porous metal organic-backbone material and method of warming porous metal organic-backbone material
JP2015117203A (en) * 2013-12-18 2015-06-25 新日鐵住金株式会社 Coordination polymer complex containing fluorine, gas adsorbent, gas separation apparatus and gas storage apparatus using the same
KR101554325B1 (en) 2014-02-10 2015-09-18 한국과학기술원 Method for Separating MethaneNitrogen Using Nanoporous materials
WO2017029868A1 (en) * 2015-08-17 2017-02-23 ダイキン工業株式会社 Method for separating halogenated unsaturated carbon compound
JP2017057439A (en) * 2015-09-14 2017-03-23 新日鐵住金株式会社 Method of manufacturing metal-porous polymer metal complex composite material, and metal-porous polymer metal complex composite material
US9630164B2 (en) 2012-11-02 2017-04-25 Nippon Steel & Sumitomo Metal Corporation Porous polymer metal complex, gas adsorbent, and gas separation device and gas storage device using same
JP2017087101A (en) * 2015-11-04 2017-05-25 新日鐵住金株式会社 Gas separator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000202283A (en) * 1999-01-14 2000-07-25 Toyota Central Res & Dev Lab Inc Gas adsorbent and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000202283A (en) * 1999-01-14 2000-07-25 Toyota Central Res & Dev Lab Inc Gas adsorbent and its production

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014036380; Zou, R.-Q., et al: 'Probing the Lewis Acid Sites and CO Catalytic Oxidation Activity of the Porous Metal-Organic Polymer' J. Am. Chem. Soc. Vol.129, No.27, 20070619, pp.8402-8403 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9630164B2 (en) 2012-11-02 2017-04-25 Nippon Steel & Sumitomo Metal Corporation Porous polymer metal complex, gas adsorbent, and gas separation device and gas storage device using same
JP2014166970A (en) * 2013-02-28 2014-09-11 Nippon Steel & Sumitomo Metal Fluorine atom-containing porous polymer complex, gas adsorbent using the same, gas separation apparatus and gas storage apparatus
JP2014166969A (en) * 2013-02-28 2014-09-11 Nippon Steel & Sumitomo Metal Porous polymer metal complex, gas adsorbent, gas separation apparatus and gas storage apparatus using the same
JP2015077594A (en) * 2013-09-12 2015-04-23 パナソニックIpマネジメント株式会社 Method of causing carbon dioxide to be adsorbed by porous metal organic-backbone material, method of cooling porous metal organic-backbone material, method of obtaining aldehyde by using porous metal organic-backbone material and method of warming porous metal organic-backbone material
US9309264B2 (en) 2013-09-12 2016-04-12 Panasonic Intellectual Property Management Co., Ltd. Method for adsorbing carbon dioxide onto porous metal-organic framework materials, method for cooling porous metal-organic framework materials, method for obtaining aldehyde using porous metal-organic framework materials, and method for warming porous metal-organic framework materials
JP2015117203A (en) * 2013-12-18 2015-06-25 新日鐵住金株式会社 Coordination polymer complex containing fluorine, gas adsorbent, gas separation apparatus and gas storage apparatus using the same
KR101554325B1 (en) 2014-02-10 2015-09-18 한국과학기술원 Method for Separating MethaneNitrogen Using Nanoporous materials
WO2017029868A1 (en) * 2015-08-17 2017-02-23 ダイキン工業株式会社 Method for separating halogenated unsaturated carbon compound
JPWO2017029868A1 (en) * 2015-08-17 2018-07-05 ダイキン工業株式会社 Method for separating halogenated unsaturated carbon compound
US10654775B2 (en) 2015-08-17 2020-05-19 Daikin Industries, Ltd. Separation method for halogenated unsaturated carbon compound
US11053180B2 (en) 2015-08-17 2021-07-06 Daikin Industries, Ltd. Separation method for halogenated unsaturated carbon compound
JP6997986B2 (en) 2015-08-17 2022-01-18 ダイキン工業株式会社 Separation method of halogenated unsaturated carbon compound
JP2017057439A (en) * 2015-09-14 2017-03-23 新日鐵住金株式会社 Method of manufacturing metal-porous polymer metal complex composite material, and metal-porous polymer metal complex composite material
JP2017087101A (en) * 2015-11-04 2017-05-25 新日鐵住金株式会社 Gas separator

Also Published As

Publication number Publication date
JP5705010B2 (en) 2015-04-22

Similar Documents

Publication Publication Date Title
JP5705010B2 (en) Metal complex and separation material comprising the same
JP5574669B2 (en) Metal complex and separation material comprising the same
EP2540708A1 (en) Metal complex, and adsorbent, occlusion material and separator material made from same
JP5506283B2 (en) Metal complex and method for producing the same
JP5478120B2 (en) Metal complex and method for producing the same
JP6278964B2 (en) Metal complex, adsorbent, separating material and method for separating 1,3-butadiene
JP2010180202A (en) Metal complex and method for producing the same
JP5677131B2 (en) Metal complex, and occlusion material and separation material comprising the same
JP5725784B2 (en) Metal complex and separation material comprising the same
JP2009096723A (en) Porous metal complex, method for producing the same and gas occluding material containing porous metal complex
JP2012031161A (en) Metal complex, and occlusion material and separating material consisting of the same
JP5478121B2 (en) Metal complex and method for producing the same
JP2012193122A (en) Metal complex and separation material consisting thereof
JP2011051949A (en) Metal complex and method for producing the same
JP2013216622A (en) Metal complex, method for producing the same, and adsorbent
JP5955135B2 (en) Gas separation material containing metal complex of oxocarbonic acid and method for separating hydrocarbon gas
JP2012232928A (en) Metal complex, and adsorbent and separation material comprising the same
JP5730078B2 (en) Separation method of hydrocarbon-based mixed gas
JP5677132B2 (en) Metal complex and method for producing the same
WO2013024888A1 (en) Separation material, and separation method using said separating material
JP2013063960A (en) Method for separating hydrocarbon-based mixed gas
JP2013040126A (en) Metal complex and adsorbing material comprising the same
JP5832197B2 (en) Metal complex, and occlusion material and separation material comprising the same
JP2012232929A (en) Metal complex, and adsorbing material and separation material comprising the same
JP2012184197A (en) Metal complex and adsorbent, occlusion material, and separation material consisting of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20141024

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20141029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150224

R150 Certificate of patent or registration of utility model

Ref document number: 5705010

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250