WO2013024888A1 - Separation material, and separation method using said separating material - Google Patents

Separation material, and separation method using said separating material Download PDF

Info

Publication number
WO2013024888A1
WO2013024888A1 PCT/JP2012/070813 JP2012070813W WO2013024888A1 WO 2013024888 A1 WO2013024888 A1 WO 2013024888A1 JP 2012070813 W JP2012070813 W JP 2012070813W WO 2013024888 A1 WO2013024888 A1 WO 2013024888A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal complex
adsorption
separation
ethane
ions
Prior art date
Application number
PCT/JP2012/070813
Other languages
French (fr)
Japanese (ja)
Inventor
康貴 犬伏
知嘉子 池田
圭輔 岸田
賢広 渡邉
Original Assignee
株式会社クラレ
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ, 昭和電工株式会社 filed Critical 株式会社クラレ
Publication of WO2013024888A1 publication Critical patent/WO2013024888A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/22Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing two or more pyridine rings directly linked together, e.g. bipyridyl
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3425Regenerating or reactivating of sorbents or filter aids comprising organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3483Regenerating or reactivating by thermal treatment not covered by groups B01J20/3441 - B01J20/3475, e.g. by heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3491Regenerating or reactivating by pressure treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • B01D2253/204Metal organic frameworks (MOF's)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/108Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/304Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/502Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/55Compounds of silicon, phosphorus, germanium or arsenic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0462Temperature swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the present invention relates to a separation material and separation method for a mixed gas comprising a metal complex. More specifically, a specific dicarboxylic acid compound, at least one metal ion selected from ions of metals belonging to Groups 2 and 7 to 12 of the periodic table, and a specific bidentate capable of bidentate coordination with the metal ion
  • the present invention relates to a separation material for a mixed gas composed of a metal complex composed of an organic ligand and a separation method using the separation material.
  • the separation material of the present invention is carbon dioxide, hydrogen, carbon monoxide, oxygen, nitrogen, hydrocarbon having 1 to 4 carbon atoms, rare gas, hydrogen sulfide, ammonia, sulfur oxide, nitrogen oxide, siloxane, water vapor or organic It is preferable as a separating material for separating a mixed gas containing steam.
  • Activated carbon is a representative example, and is widely used in various industries such as air purification, desulfurization, denitration, and removal of harmful substances by utilizing the excellent adsorption performance of activated carbon.
  • the demand for nitrogen has increased for semiconductor manufacturing processes, etc., and as a method for producing such nitrogen, a method of producing nitrogen from air by pressure swing adsorption method or temperature swing adsorption method using molecular sieve charcoal is used.
  • Molecular sieve charcoal is also applied to various gas separation and purification such as hydrogen purification from methanol cracked gas.
  • porous polymer metal complexes have been developed that can undergo dynamic structural changes due to external stimuli and can adsorb gas in the pores.
  • this new dynamic structure change polymer metal complex is used as a gas adsorbent, a unique phenomenon is observed in which gas adsorption does not adsorb up to a certain pressure, but gas adsorption starts when a certain pressure is exceeded. Yes.
  • a phenomenon has been observed in which the adsorption start pressure varies depending on the type of gas.
  • the polymer metal complex when used as a separation material, it does not simply have a gas adsorption capacity and / or gas storage capacity, but adsorbs only a specific gas contained in the mixed gas, and other gases.
  • the present polymer metal complex is not yet satisfactory, and further improvement in selective gas adsorption ability, that is, separation ability is demanded.
  • a separating material comprising terephthalic acid and a metal complex comprising at least one divalent metal selected from copper, rhodium, chromium, molybdenum, palladium, zinc and tungsten and 4,4′-bipyridyl is disclosed. (See Patent Document 1). However, no mention is made of a metal complex using alkenylene dicarboxylic acid. Moreover, although the adsorption ability of the single component gas is shown in each example, the separation ability for selectively adsorbing the target gas from the mixed gas is not shown.
  • Patent Document 2 and Patent Document 3 Polymer metal comprising alkenylene dicarboxylic acid, at least one divalent metal selected from copper, rhodium, chromium, molybdenum, palladium, zinc and tungsten and an organic ligand capable of bidentate coordination with the metal
  • Patent Document 2 and Patent Document 3 show only the adsorption ability of a single component gas (methane), and no mention is made of the adsorption ability and separation ability of other gases.
  • an object of the present invention is to provide a mixed gas separation material superior to the conventional one and a separation method using the separation material.
  • the type of gas that can be adsorbed / desorbed, the adsorption / desorption start pressure, and the amount of adsorption / desorption differ depending on the size and shape of the pores of the metal complex and the interaction between the ligands constituting the metal complex and gas molecules.
  • the complex In order for the complex to exhibit selective gas adsorption ability, that is, separation ability, it is necessary to select an optimal combination of a ligand and a metal ion constituting the metal complex.
  • the present inventors have intensively studied, and a metal comprising an alkenylene dicarboxylic acid compound having 4 to 20 carbon atoms, at least one metal ion, and an organic ligand (I) capable of bidentate coordination with the metal ion. It has been found that the above object can be achieved by a separating material comprising a complex, and the present invention has been achieved.
  • an alkenylene dicarboxylic acid compound having 4 to 20 carbon atoms, at least one metal ion selected from ions of metals belonging to Groups 2 and 7 to 12 of the periodic table, and the following general formula (I):
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are the same or different and each represents a hydrogen atom, an alkyl group which may have a substituent or a halogen atom. Or R 2 and R 3 , or R 6 and R 7 may be combined to form an alkenylene group which may have a substituent.
  • the separation material according to (1) or (2), wherein the metal ions are copper ions and / or zinc ions.
  • the separator is carbon dioxide, hydrogen, carbon monoxide, oxygen, nitrogen, hydrocarbon having 1 to 4 carbon atoms, rare gas, hydrogen sulfide, ammonia, sulfur oxide, nitrogen oxide, siloxane, water vapor or
  • the separation material according to any one of (1) to (3), which is a separation material for separating a mixed gas containing organic vapor.
  • the mixed gas is methane and carbon dioxide, ethane and carbon dioxide, ethylene and carbon dioxide, hydrogen and carbon dioxide, nitrogen and carbon dioxide, nitrogen and methane, air and methane, methane and ethane, ethane and ethylene, ethylene
  • the separation method according to (6), wherein the separation method includes a step of contacting the metal complex and the mixed gas in a pressure range of 0.01 to 10 MPa.
  • an alkenylene dicarboxylic acid compound having 4 to 20 carbon atoms, at least one metal ion selected from ions of metals belonging to Groups 2 and 7 to 12 of the periodic table, and bidentate to the metal ions. It is possible to provide a mixed gas separating material comprising a metal complex composed of a recognizable organic ligand (I).
  • the separation material of the present invention selectively adsorbs and desorbs various gases and has excellent gas separation performance, carbon dioxide, hydrogen, carbon monoxide, oxygen, nitrogen, hydrocarbons having 1 to 4 carbon atoms, and rare gases , Hydrogen sulfide, ammonia, sulfur oxide, nitrogen oxide, siloxane, water vapor or a mixed gas containing organic vapor can be used as a separating material.
  • a jungle gym skeleton formed by coordination of an organic ligand (I) capable of bidentate coordination at the axial position of a metal ion in a paddle wheel skeleton composed of a carboxylate ion and a metal ion of an alkenylene dicarboxylic acid compound It is a schematic diagram. It is a schematic diagram of a three-dimensional structure in which the jungle gym skeleton is double interpenetrated. It is a schematic diagram of the structural change accompanying adsorption / desorption of the metal complex of this invention.
  • 3 is a crystal structure of the metal complex obtained in Synthesis Example 1.
  • 3 is a powder X-ray diffraction pattern before vacuum drying of the metal complex obtained in Synthesis Example 1.
  • FIG. 3 is a powder X-ray diffraction pattern after vacuum drying of the metal complex obtained in Synthesis Example 1.
  • FIG. 3 is a crystal structure of the metal complex obtained in Synthesis Example 2.
  • 3 is a powder X-ray diffraction pattern before vacuum drying of the metal complex obtained in Synthesis Example 2.
  • FIG. 3 is a powder X-ray diffraction pattern after vacuum drying of the metal complex obtained in Synthesis Example 2.
  • FIG. 3 is a crystal structure of a metal complex obtained in Comparative Synthesis Example 1.
  • 3 is a powder X-ray diffraction pattern before vacuum drying of the metal complex obtained in Comparative Synthesis Example 1.
  • FIG. 3 is a powder X-ray diffraction pattern after vacuum drying of the metal complex obtained in Comparative Synthesis Example 1.
  • FIG. 3 is a powder X-ray diffraction pattern after vacuum drying of the metal complex obtained in Comparative Synthesis Example 2.
  • FIG. It is a crystal structure of the metal complex obtained in Comparative Synthesis Example 3.
  • 3 is a powder X-ray diffraction pattern before vacuum drying of the metal complex obtained in Comparative Synthesis Example 3.
  • FIG. 4 is a powder X-ray diffraction pattern after vacuum drying of the metal complex obtained in Comparative Synthesis Example 3.
  • FIG. It is a crystal structure of the metal complex obtained in Comparative Synthesis Example 4.
  • 4 is a powder X-ray diffraction pattern before vacuum drying of the metal complex obtained in Comparative Synthesis Example 4.
  • FIG. 7 is a powder X-ray diffraction pattern after vacuum drying of the metal complex obtained in Comparative Synthesis Example 4.
  • FIG. 7 is a powder X-ray diffraction pattern before vacuum drying of the metal complex obtained in Comparative Synthesis Example 5.
  • FIG. 7 is a powder X-ray diffraction pattern after vacuum drying of the metal complex obtained in Comparative Synthesis Example 5.
  • FIG. 1 It is the result of having measured the adsorption-desorption isotherm in ethylene and ethane in 273K by the capacitance method about the metal complex obtained by the synthesis example 1.
  • FIG. 2 It is the result of having measured the adsorption-desorption isotherm in ethylene and ethane in 273K by the capacitance method about the metal complex obtained by the synthesis example 2.
  • FIG. 2 It is the result of having measured the adsorption-desorption isotherm in ethylene and ethane in 273K by the capacitance method about the metal complex obtained by the comparative synthesis example 1.
  • FIG. 1 It is the result of having measured the adsorption-desorption isotherm in ethylene and ethane in 273K by the capacitance method about the metal complex obtained by the comparative synthesis example 2.
  • FIG. 2 It is the result of having measured the adsorption-desorption isotherm in ethylene and ethane in 273K by the capacitance method about the metal complex obtained by the comparative synthesis example 3.
  • FIG. 2 It is the result of having measured the adsorption-desorption isotherm in ethylene and ethane in 273K by the capacitance method about the metal complex obtained by the comparative synthesis example 4.
  • the horizontal axis represents the diffraction angle (2 ⁇ ) and the vertical axis represents the diffraction intensity (Intensity) indicated by cps (Counts per Second).
  • the horizontal axis is the equilibrium pressure (Pressure) expressed in MPa
  • the vertical axis is the equilibrium adsorption amount (Amount Adsorbed) expressed in mL (STP) / g.
  • the adsorption amount (ads.) Of the gas for example, carbon dioxide, methane, ethylene, ethane or nitrogen
  • STP standard temperature, standard temperature and pressure
  • the horizontal axis is the gas flow time (Time [min]) in minutes, and the vertical axis is the ratio of outlet gas (Outlet Gas Ratio [%]).
  • the metal complex used in the present invention includes an alkenylene dicarboxylic acid compound having 4 to 20 carbon atoms, at least one metal ion selected from ions of metals belonging to Groups 2 and 7 to 12 of the periodic table, and the metal ion And an organic ligand (I) capable of bidentate coordination.
  • the alkenylene dicarboxylic acid compound used in the present invention preferably has 4 to 20 carbon atoms, more preferably 4 to 10 carbon atoms, and particularly preferably 4 or 5 carbon atoms.
  • maleic acid (4 carbon atoms), fumaric acid (4 carbon atoms), citraconic acid (5 carbon atoms), mesaconic acid (5 carbon atoms), trans, trans-muconic acid (6 carbon atoms), trans-3- Dihydromuconic acid (carbon number 6), 4-carboxycinnamic acid (carbon number 10) and the like can be used, and fumaric acid is more preferable.
  • the metal ion used in the present invention is at least one metal ion selected from ions of metals belonging to Groups 2 and 7-12 of the periodic table.
  • Metal ions belonging to Group 2 of the periodic table are beryllium ions, magnesium ions, calcium ions, strontium ions, barium ions, and radium ions.
  • Metal ions belonging to Group 7 of the periodic table are manganese ions, technetium ions, rhenium ions, and bolium ions.
  • Metal ions belonging to Group 8 of the periodic table are iron ions, ruthenium ions, osmium ions, and hash ions.
  • Metal ions belonging to Group 9 of the periodic table are cobalt ions, rhodium ions, iridium ions, and mitnerium ions.
  • Metal ions belonging to Group 10 of the periodic table are nickel ions, palladium ions, platinum ions, and dermisstatium ions.
  • Metal ions belonging to Group 11 of the periodic table are copper ions, silver ions, gold ions, and roentgenium ions.
  • Metal ions belonging to Group 12 of the periodic table are zinc ions, cadmium ions, mercury ions, and ununbium ions.
  • metal ions belonging to Groups 2 and 7 to 12 of the periodic table used in the present invention include magnesium ions, calcium ions, manganese ions, cobalt ions, nickel ions, copper ions, zinc ions, cadmium ions, and the like. Of these, copper ions and / or zinc ions are preferred.
  • the metal ion is preferably a single metal ion, but may be a mixed metal complex containing two or more metal ions.
  • the metal complex of this invention can also mix and use 2 or more types of metal complexes which consist of a single metal ion.
  • the metal ion may be used in the form of a metal salt.
  • a metal salt for example, magnesium salt, calcium salt, manganese salt, cobalt salt, nickel salt, copper salt, zinc salt, cadmium salt and the like can be used, and among them, copper salt and / or zinc salt are preferable.
  • organic acid salts such as acetates and formates, inorganic acid salts such as sulfates, nitrates, carbonates, hydrochlorides and hydrobromides can be used.
  • the bidentate organic ligand (I) used in the present invention is represented by the following general formula (I):
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are the same or different and each represents a hydrogen atom, an alkyl group which may have a substituent or a halogen atom. Or, R 2 and R 3 , or R 6 and R 7 may be combined to form an alkenylene group which may have a substituent.
  • the alkyl group preferably has 1 to 5 carbon atoms.
  • the alkyl group include a straight or branched alkyl group such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a tert-butyl group, and a pentyl group, Examples of are fluorine atom, chlorine atom, bromine atom and iodine atom.
  • alkyl group may have examples of the substituent that the alkyl group may have include an alkoxy group (methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, tert-butoxy group, etc.
  • Amino group monoalkylamino group (such as methylamino group), dialkylamino group (such as dimethylamino group), formyl group, epoxy group, acyloxy group (acetoxy group, n-propanoyloxy group, n-butanoyloxy) Group, pivaloyloxy group, benzoyloxy group, etc.), alkoxycarbonyl group (methoxycarbonyl group, ethoxycarbonyl group, n-butoxycarbonyl group, etc.), carboxylic acid anhydride group (—CO—O—CO—R group) (R is And an alkyl group having 1 to 5 carbon atoms).
  • the number of substituents on the alkyl group is preferably 1 to 3, more preferably 1.
  • the alkenylene group preferably has 2 carbon atoms.
  • Examples of the organic ligand (I) capable of bidentate coordination include diazapyrene.
  • alkenylene group may have include an alkoxy group (methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, tert-butoxy group, etc.), Amino group, monoalkylamino group (such as methylamino group), dialkylamino group (such as dimethylamino group), formyl group, epoxy group, acyloxy group (acetoxy group, n-propanoyloxy group, n-butanoyloxy group, Pivaloyloxy group, benzoyloxy group, etc.), alkoxycarbonyl group (methoxycarbonyl group, ethoxycarbonyl group, n-butoxycarbonyl group, etc.), carboxylic acid anhydride group (—CO—O—CO—R group) (R is carbon number) And 1 to 5 alkyl groups).
  • alkoxy group methoxy group, ethoxy group, n-propoxy group
  • the bidentate organic ligand (I) for example, 4,4′-bipyridyl, 2,2′-dimethyl-4,4′-bipyridine, diazapyrene and the like can be used. , 4′-bipyridyl is preferred.
  • the “organic ligand capable of bidentate coordination” is defined as a neutral ligand having at least two sites capable of coordinating with a metal ion by a lone pair of electrons.
  • the metal complex of the present invention includes an alkenylene dicarboxylic acid compound having 4 to 20 carbon atoms, at least one metal salt selected from salts of metals belonging to Groups 2 and 7 to 12 of the periodic table, and a metal ion. It can be produced by reacting the bidentate organic ligand (I) in the gas phase, the liquid phase or the solid phase, but for several hours to several days in a solvent under normal pressure. It is preferable to produce by reacting and precipitating. For example, an aqueous solution or organic solvent solution of a metal salt and an aqueous solution or organic solvent solution containing an alkenylene dicarboxylic acid compound and an organic ligand (I) capable of bidentate coordination are mixed and reacted under normal pressure. Can be obtained.
  • the molar concentration of the alkenylene dicarboxylic acid compound in the solvent for producing the metal complex is preferably 0.005 to 5.0 mol / L, and more preferably 0.01 to 2.0 mol / L. Even if the reaction is performed at a concentration lower than this, the desired metal complex can be obtained, but this is not preferable because the yield decreases. If the concentration is higher than this, the solubility is lowered and the reaction does not proceed smoothly.
  • the molar concentration of the metal salt in the solvent for producing the metal complex is preferably 0.005 to 5.0 mol / L, more preferably 0.01 to 2.0 mol / L. Even if the reaction is performed at a concentration lower than this, the desired metal complex can be obtained, but this is not preferable because the yield decreases. Further, at a concentration higher than this, unreacted metal salt remains, and purification of the obtained metal complex becomes difficult.
  • the molar concentration of the bidentate organic ligand (I) in the solvent for producing the metal complex is preferably 0.001 to 5.0 mol / L, more preferably 0.005 to 2.0 mol / L. preferable. Even if the reaction is performed at a concentration lower than this, the desired metal complex can be obtained, but this is not preferable because the yield decreases. If the concentration is higher than this, the solubility is lowered and the reaction does not proceed smoothly.
  • an organic solvent, water, or a mixed solvent thereof can be used.
  • the reaction temperature is preferably 253 to 423K.
  • the completion of the reaction can be confirmed by quantifying the remaining amount of the raw material by gas chromatography or high performance liquid chromatography. After completion of the reaction, the obtained mixed solution is subjected to suction filtration to collect a precipitate, washed with an organic solvent, and then vacuum dried at about 373 K for several hours to obtain the metal complex of the present invention.
  • the metal complex of the present invention does not adsorb gas molecules when solvent molecules are adsorbed. Therefore, when using as a separating material, it is necessary to vacuum-dry the metal complex obtained in advance to remove the solvent molecules in the pores.
  • the metal complex of the present invention obtained as described above is an organic ligand capable of bidentate coordination to the axial position of the metal ion in the paddle wheel skeleton composed of the carboxylate ion and the metal ion of the alkenylene dicarboxylic acid compound (
  • the jungle gym skeleton formed by coordination of I) has a three-dimensional structure in which multiple interpenetrations occur.
  • a schematic diagram of a jungle gym skeleton is shown in FIG. 1, and a schematic diagram of a three-dimensional structure in which the jungle gym skeleton is double-interpenetrated is shown in FIG.
  • the “jungle gym skeleton” means an organic ligand (I) capable of bidentate coordination with an axial position of a metal ion in a paddle wheel skeleton composed of a carboxylate ion and a metal ion of an alkenylene dicarboxylic acid compound. ) Are coordinated and defined as a jungle gym-like three-dimensional structure formed by connecting two-dimensional lattice-like sheets composed of an alkenylene dicarboxylic acid compound and a metal ion.
  • composition ratio of each component constituting the metal complex can be confirmed by, for example, single crystal X-ray structure analysis, powder X-ray crystal structure analysis, or elemental analysis.
  • a structure in which jungle gym skeletons are interpenetrated multiple times is defined as a three-dimensional integrated structure in which a plurality of jungle gym skeletons penetrate each other so as to fill the pores.
  • the metal complex has a three-dimensional structure in which the jungle gym skeleton is double interpenetrated.
  • the metal complex has a structure in which the jungle gym skeleton is interpenetrated multiple times.
  • the structure and size of the pores in the jungle gym skeleton are changed by various external stimuli.
  • the external stimulus include a chemical stimulus such as a substance adsorbed in the pores of the metal complex, or a physical stimulus such as temperature, pressure, and electric field.
  • Examples of the substance adsorbed in the pores of the metal complex include gaseous substances such as carbon dioxide, hydrogen, carbon monoxide, oxygen, nitrogen, hydrocarbons having 1 to 4 carbon atoms, rare gases, ammonia, or water. And liquid substances such as organic compounds that are liquid at normal temperature and pressure.
  • the three-dimensional structure in the metal complex of the present invention can be changed in the synthesized crystal. Changes in pore structure and size due to external stimuli depend on the type of substance to be adsorbed, the adsorption pressure, and the adsorption temperature. That is, in addition to the difference in the interaction between the pore surface and the substance (the strength of the interaction is proportional to the magnitude of the Lennard-Jones potential of the substance), the degree of structural change varies depending on the adsorbed substance, and thus high selectivity is achieved. To express. FIG. 3 shows a schematic diagram of the structural change accompanying the adsorption / desorption.
  • an alkenylene dicarboxylic acid compound is used to control the strength of the interaction between the pore surface and gas molecules, and the bidentate organic ligand (I) represented by the general formula (I)
  • the bidentate organic ligand (I) represented by the general formula (I)
  • the adsorption mechanism is estimated, even if it does not follow the mechanism, it is included in the technical scope of the present invention as long as it satisfies the requirements defined in the present invention.
  • the change in the structure and size of the pores caused by external stimulation of the metal complex can be confirmed, for example, by a change in powder X-ray diffraction pattern, a change in absorption wavelength, or a change in magnetic susceptibility.
  • the metal complex used in the present invention is excellent in the separation performance of various gases, carbon dioxide, hydrogen, carbon monoxide, oxygen, nitrogen, and hydrocarbons having 1 to 4 carbon atoms (methane, ethane, ethylene, acetylene, propane) , Propene, methylacetylene, propadiene, butane, 1-butene, isobutene, etc., noble gases (helium, neon, argon, krypton, xenon, etc.), hydrogen sulfide, ammonia, sulfur oxide, nitrogen oxide, siloxane (hexamethyl) Cyclotrisiloxane, octamethylcyclotetrasiloxane, etc.), and also preferable as a separating material for separating water vapor or organic vapor, etc., especially carbon dioxide in methane, carbon dioxide in ethane, carbon dioxide in ethylene, in hydrogen Carbon dioxide, carbon dioxide in nitrogen, nitrogen in methane, methane in air, Separation of e
  • the organic vapor means a vaporized organic substance that is liquid at normal temperature and pressure.
  • organic substances include alcohols such as methanol and ethanol; amines such as trimethylamine and pyridine; aldehydes such as acetaldehyde; pentane, isoprene, hexane, cyclohexane, heptane, methylcyclohexane, octane, 1-octene, cyclohexane
  • Aliphatic hydrocarbons having 5 to 16 carbon atoms such as octane, cyclooctene, 1,5-cyclooctadiene, 4-vinyl-1-cyclohexene, 1,5,9-cyclododecatriene; benzene, toluene, xylene, etc.
  • Aromatic hydrocarbons ; ketones such as acetone and methyl ethyl
  • the usage form of the separating material in the present invention is not particularly limited.
  • the metal complex may be used as powder, pellets, films, sheets, plates, pipes, tubes, rods, granules, various deformed shapes, fibers, hollow fibers, woven fabrics, knitted fabrics, non-woven fabrics, etc. You may shape
  • the separation method includes a step of bringing the gas into contact with the metal complex of the present invention under conditions where the gas can be adsorbed to the metal complex.
  • the adsorption pressure and the adsorption temperature which are conditions under which the gas can be adsorbed on the metal complex, can be appropriately set according to the type of substance to be adsorbed.
  • the adsorption pressure is preferably from 0.01 to 10 MPa, more preferably from 0.1 to 3.5 MPa.
  • the adsorption temperature is preferably 195K to 343K, and more preferably 273 to 313K.
  • the separation method can be a pressure swing adsorption method or a temperature swing adsorption method.
  • the separation method further includes a step of increasing the pressure from the adsorption pressure to a pressure at which gas can be desorbed from the metal complex.
  • the desorption pressure can be appropriately set according to the type of substance to be adsorbed.
  • the desorption pressure is preferably 0.005 to 2 MPa, more preferably 0.01 to 0.1 MPa.
  • the separation method is a temperature swing adsorption method
  • the separation method further includes a step of raising the temperature from the adsorption temperature to a temperature at which the gas can be desorbed from the metal complex.
  • the desorption temperature can be appropriately set according to the type of substance to be adsorbed.
  • the desorption temperature is preferably 303 to 473K, and more preferably 313 to 373K.
  • the separation method is a pressure swing adsorption method or a temperature swing adsorption method
  • the step of bringing the gas into contact with the metal complex and the step of changing to a pressure or temperature at which the gas can be desorbed from the metal complex are repeated as appropriate. be able to.
  • a pressure-resistant container having an internal volume of 16 mL connected to a cylinder with a stainless tube equipped with a gas flow meter and valves was prepared. The measurement was performed by putting a sample in a pressure vessel, vacuum drying at 423 K and 10 Pa for 6 hours, removing adsorbed water, and then circulating the mixed gas. At this time, the output gas was sampled every 3 minutes and analyzed by gas chromatography to calculate the output gas composition (the composition of the inlet gas was measured in advance using gas chromatography). Details of the analysis conditions are shown below. ⁇ Analysis conditions> Equipment: GC-2014 manufactured by Shimadzu Corporation Column: porapak K 80/100 manufactured by GL Sciences Inc. Column temperature: 343K Carrier gas: helium injection amount: 500 ⁇ L Detector: TCD
  • the deposited metal complex was collected by suction filtration, and then washed with methanol three times. Then, it dried at 373K and 50 Pa for 8 hours, and obtained the target metal complex 6.93g (yield 63%).
  • the powder X-ray diffraction pattern of the obtained metal complex is shown in FIG.
  • the deposited metal complex was collected by suction filtration, and then washed with methanol three times. Then, it dried at 373K and 50 Pa for 8 hours, and obtained the target metal complex 0.457g (yield 20%).
  • the powder X-ray diffraction pattern of the obtained metal complex is shown in FIG.
  • the collected metal complex was collected by suction filtration, and then washed with methanol three times. Then, it dried at 373 K and 50 Pa for 8 hours, and obtained 2.75 g (yield 95%) of the target metal complex.
  • the powder X-ray diffraction pattern of the obtained metal complex is shown in FIG.
  • the deposited metal complex was collected by suction filtration, and then washed with methanol three times. Then, it dried at 373 K and 50 Pa for 8 hours, and obtained the target metal complex 0.62g (yield 11%).
  • the powder X-ray diffraction pattern of the obtained metal complex is shown in FIG.
  • FIG. 19 shows a powder X-ray diffraction pattern of the obtained metal complex.
  • the deposited metal complex was collected by suction filtration, and then washed with methanol three times. Then, it dried at 373 K and 50 Pa for 8 hours, and obtained 1.48 g (yield 97%) of the target metal complex.
  • the powder X-ray diffraction pattern of the obtained metal complex is shown in FIG.
  • Table 1 summarizes the metal complexes obtained in Synthesis Examples 1 and 2 and Comparative Synthesis Examples 1 to 5.
  • Example 1 For the metal complex obtained in Synthesis Example 1, the adsorption and desorption amounts of carbon dioxide and ethane at 273 K were measured by a volumetric method, and an adsorption and desorption isotherm was created. The results are shown in FIG.
  • Example 2 For the metal complex obtained in Synthesis Example 2, the adsorption and desorption amounts of carbon dioxide and ethane at 273 K were measured by the volumetric method, and an adsorption and desorption isotherm was created. The results are shown in FIG.
  • Table 2 summarizes the results of Examples 1 and 2 and Comparative Examples 1 to 3.
  • FIG. 25 and FIG. 26 show that the metal complexes obtained in Synthesis Example 1 and Synthesis Example 2 that satisfy the constituent requirements of the present invention have a pressure in the pressure range of 0 to 1.0 MPa.
  • the carbon dioxide is selectively adsorbed with the increase of the metal oxide, and the selectivity is higher than the metal complexes obtained in Comparative Synthesis Example 1, Comparative Synthesis Example 2 and Comparative Synthesis Example 3 that do not satisfy the constituent requirements of the present invention, and the pressure It is clear that the metal complex of the present invention is excellent as a separation material for ethane and carbon dioxide because carbon dioxide is released as the amount of carbon dioxide decreases.
  • Example 3 For the metal complex obtained in Synthesis Example 1, the adsorption / desorption amount of methane and nitrogen at 273 K was measured by the volume method, and an adsorption / desorption isotherm was prepared. The results are shown in FIG.
  • Example 4 For the metal complex obtained in Synthesis Example 2, the adsorption / desorption amount of methane and nitrogen at 273K was measured by the volume method, and an adsorption / desorption isotherm was prepared. The results are shown in FIG.
  • the metal complexes obtained in Synthesis Example 1 and Synthesis Example 2 that satisfy the constituent requirements of the present invention select methane as the pressure increases in the pressure range of 0 to 1.0 MPa. And the selectivity thereof is higher than that of the metal complex obtained in Comparative Synthesis Example 1 that does not satisfy the constituent requirements of the present invention, and methane is released with a decrease in pressure. It is clear that it is excellent as a separator for methane.
  • Example 5 For the metal complex obtained in Synthesis Example 1, the adsorption and desorption amount of ethylene and ethane at 273 K was measured by the volume method, and an adsorption and desorption isotherm was prepared. The results are shown in FIG.
  • Example 6 For the metal complex obtained in Synthesis Example 2, the adsorption / desorption amount of ethylene and ethane at 273 K was measured by a volumetric method, and an adsorption / desorption isotherm was prepared. The results are shown in FIG.
  • the metal complexes obtained in Synthesis Example 1 and Synthesis Example 2 that satisfy the constituent requirements of the present invention are 0-1.
  • ethylene is selectively adsorbed, and the selectivity in Comparative Synthesis Example 1, Comparative Synthesis Example 2, Comparative Synthesis Example 3, Comparative Synthesis Example 4 and Comparative Synthesis Example 5 does not satisfy the constituent requirements of the present invention.
  • the metal complex of the present invention is excellent as a separator for ethane and ethylene because it is higher than the obtained metal complex and releases ethylene as the pressure decreases.
  • FIG. 37 shows that the metal complex obtained in Synthesis Example 1 that satisfies the constituent requirements of the present invention can preferentially adsorb ethylene and concentrate ethane to 99.5% or more. Therefore, it is clear that the metal complex of the present invention can be used as a separator for ethane and ethylene.
  • Example 8 For the metal complex obtained in Synthesis Example 1, the adsorption / desorption amount of ethylene and ethane at 313K was measured by the volumetric method, and an adsorption / desorption isotherm was prepared. The results are shown in FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pyridine Compounds (AREA)

Abstract

Provided is an excellent material for separating a gas mixture, and a separation method that uses the separation material. The objective is solved by a material for separating mixed gas, the material being composed of a metal complex having a multilayered interpenetrating "jungle-gym" structure comprising: an alkenylene dicarboxylic acid compound; at least one metallic ion selected from metallic ions belonging to group 2 and groups 7-12 in the periodic table; and an organic ligand (I) capable of bidentate coordination to a metallic ion and represented by general formula (I) (in the formula, R1-R8 are as defined in the specification).

Description

分離材及び該分離材を用いた分離方法Separation material and separation method using the separation material
 本発明は、金属錯体からなる混合ガスの分離材及び分離方法に関する。さらに詳しくは、特定のジカルボン酸化合物と、周期表の2族及び7~12族に属する金属のイオンから選択される少なくとも1種の金属イオンと、該金属イオンに二座配位可能な特定の有機配位子とからなる金属錯体からなる混合ガスの分離材及び該分離材を用いた分離方法に関する。本発明の分離材は、二酸化炭素、水素、一酸化炭素、酸素、窒素、炭素数1~4の炭化水素、希ガス、硫化水素、アンモニア、硫黄酸化物、窒素酸化物、シロキサン、水蒸気または有機蒸気を含む混合ガスを分離するための分離材として好ましい。 The present invention relates to a separation material and separation method for a mixed gas comprising a metal complex. More specifically, a specific dicarboxylic acid compound, at least one metal ion selected from ions of metals belonging to Groups 2 and 7 to 12 of the periodic table, and a specific bidentate capable of bidentate coordination with the metal ion The present invention relates to a separation material for a mixed gas composed of a metal complex composed of an organic ligand and a separation method using the separation material. The separation material of the present invention is carbon dioxide, hydrogen, carbon monoxide, oxygen, nitrogen, hydrocarbon having 1 to 4 carbon atoms, rare gas, hydrogen sulfide, ammonia, sulfur oxide, nitrogen oxide, siloxane, water vapor or organic It is preferable as a separating material for separating a mixed gas containing steam.
 これまで、脱臭、排ガス処理などの分野で種々の吸着材が開発されている。活性炭はその代表例であり、活性炭の優れた吸着性能を利用して、空気浄化、脱硫、脱硝、有害物質除去など各種工業において広く使用されている。近年は半導体製造プロセスなどへ窒素の需要が増大しており、かかる窒素を製造する方法として、分子ふるい炭を使用して圧力スイング吸着法や温度スイング吸着法により空気から窒素を製造する方法が使用されている。また、分子ふるい炭は、メタノール分解ガスからの水素精製など各種ガス分離精製にも応用されている。 So far, various adsorbents have been developed in fields such as deodorization and exhaust gas treatment. Activated carbon is a representative example, and is widely used in various industries such as air purification, desulfurization, denitration, and removal of harmful substances by utilizing the excellent adsorption performance of activated carbon. In recent years, the demand for nitrogen has increased for semiconductor manufacturing processes, etc., and as a method for producing such nitrogen, a method of producing nitrogen from air by pressure swing adsorption method or temperature swing adsorption method using molecular sieve charcoal is used. Has been. Molecular sieve charcoal is also applied to various gas separation and purification such as hydrogen purification from methanol cracked gas.
 圧力スイング吸着法や温度スイング吸着法により混合ガスを分離する際には、一般に、分離吸着材として分子ふるい炭やゼオライトなどを使用し、その平衡吸着量または吸着速度の差により分離を行っている。しかしながら、平衡吸着量の差によって混合ガスを分離する場合、これまでの吸着材では除去したいガスのみを選択的に吸着することができないため分離係数が小さくなり、装置の大型化は不可避であった。また、吸着速度の差によって混合ガスを分離する場合、ガスの種類によっては除去したいガスのみを吸着できるが、吸着と脱着を交互に行う必要があり、この場合も装置は依然として大型にならざるを得なかった。 When separating mixed gas by pressure swing adsorption method or temperature swing adsorption method, generally, molecular sieve charcoal or zeolite is used as the separation adsorbent, and separation is performed by the difference in the equilibrium adsorption amount or adsorption rate. . However, when separating the mixed gas based on the difference in the amount of equilibrium adsorption, the conventional adsorbents cannot selectively adsorb only the gas to be removed, so the separation factor becomes small, and the size of the apparatus is inevitable. . In addition, when separating the mixed gas based on the difference in adsorption speed, only the gas to be removed can be adsorbed depending on the type of gas, but it is necessary to perform adsorption and desorption alternately, and in this case, the apparatus still has to be large. I didn't get it.
 一方、より優れた吸着性能を与える吸着材として、外部刺激により動的構造変化を生じ、細孔中にガスを吸着できる多孔性高分子金属錯体が開発されている。この新規な動的構造変化高分子金属錯体をガス吸着材として使用した場合、ある一定の圧力まではガスを吸着しないが、ある一定圧を越えるとガス吸着が始まるという特異な現象が観測されている。また、ガスの種類によって吸着開始圧が異なる現象が観測されている。 On the other hand, as an adsorbent that gives better adsorption performance, porous polymer metal complexes have been developed that can undergo dynamic structural changes due to external stimuli and can adsorb gas in the pores. When this new dynamic structure change polymer metal complex is used as a gas adsorbent, a unique phenomenon is observed in which gas adsorption does not adsorb up to a certain pressure, but gas adsorption starts when a certain pressure is exceeded. Yes. In addition, a phenomenon has been observed in which the adsorption start pressure varies depending on the type of gas.
 この現象を、例えば圧力スイング吸着方式のガス分離装置における吸着材に応用した場合、非常に効率良いガス分離が可能となる。また、圧力のスイング幅を狭くすることができ、省エネルギーにも寄与する。さらに、ガス分離装置の小型化にも寄与し得るため、高純度ガスを製品として販売する際のコスト競争力を高めることができることは勿論、自社工場内部で高純度ガスを用いる場合であっても、高純度ガスを必要とする設備に要するコストを削減できるため、結局最終製品の製造コストを削減する効果を有する。 When this phenomenon is applied to, for example, an adsorbent in a pressure swing adsorption type gas separation device, very efficient gas separation is possible. In addition, the pressure swing width can be narrowed, contributing to energy saving. Furthermore, since it can contribute to miniaturization of the gas separation device, it is possible to increase cost competitiveness when selling high-purity gas as a product, of course, even when high-purity gas is used inside its own factory Since the cost required for the equipment that requires high purity gas can be reduced, the manufacturing cost of the final product can be reduced.
 しかしながら、前記高分子金属錯体を分離材として用いる場合には、単純にガス吸着能及び/またはガス吸蔵能を有するだけではなく、混合ガス中に含まれる特定のガスのみを吸着し、その他のガスを吸着しないといった選択的ガス吸着能が要求されるが、現状の高分子金属錯体では未だ満足いくものではなく、さらなる選択的ガス吸着能すなわち分離能の向上が求められている。 However, when the polymer metal complex is used as a separation material, it does not simply have a gas adsorption capacity and / or gas storage capacity, but adsorbs only a specific gas contained in the mixed gas, and other gases. However, the present polymer metal complex is not yet satisfactory, and further improvement in selective gas adsorption ability, that is, separation ability is demanded.
 テレフタル酸と、銅、ロジウム、クロム、モリブデン、パラジウム、亜鉛及びタングステンから選択される少なくとも1種の2価の金属と4,4’-ビピリジルとからなる金属錯体からなる分離材が開示されている(特許文献1参照)。しかしながら、アルケニレンジカルボン酸を用いた金属錯体については何ら言及されていない。また、実施例において単成分のガスの吸着能が各々示されているが、混合ガス中から目的とするガスを選択的に吸着する分離能については示されていない。 A separating material comprising terephthalic acid and a metal complex comprising at least one divalent metal selected from copper, rhodium, chromium, molybdenum, palladium, zinc and tungsten and 4,4′-bipyridyl is disclosed. (See Patent Document 1). However, no mention is made of a metal complex using alkenylene dicarboxylic acid. Moreover, although the adsorption ability of the single component gas is shown in each example, the separation ability for selectively adsorbing the target gas from the mixed gas is not shown.
 アルケニレンジカルボン酸と、銅、ロジウム、クロム、モリブデン、パラジウム、亜鉛及びタングステンから選択される少なくとも1種の2価の金属と該金属に二座配位可能な有機配位子とからなる高分子金属錯体からなるガス吸蔵材、ガス貯蔵方法が開示されている(特許文献2、特許文献3参照)。しかしながら、特許文献2及び特許文献3において示されているのは単成分のガス(メタン)の吸着能のみであり、その他のガスの吸着能及び分離能については一切言及されていない。 Polymer metal comprising alkenylene dicarboxylic acid, at least one divalent metal selected from copper, rhodium, chromium, molybdenum, palladium, zinc and tungsten and an organic ligand capable of bidentate coordination with the metal A gas storage material composed of a complex and a gas storage method are disclosed (see Patent Document 2 and Patent Document 3). However, Patent Document 2 and Patent Document 3 show only the adsorption ability of a single component gas (methane), and no mention is made of the adsorption ability and separation ability of other gases.
特開2003-342260公報JP 2003-342260 A 特開2000-109485公報JP 2000-109485 A 特開2001-348361公報JP 2001-348361 A
 したがって、本発明の目的は、従来よりも優れた混合ガスの分離材及び該分離材を用いた分離方法を提供することにある。 Therefore, an object of the present invention is to provide a mixed gas separation material superior to the conventional one and a separation method using the separation material.
 金属錯体が有する細孔の大きさや形状、金属錯体を構成する配位子とガス分子との相互作用などによって、吸脱着可能なガスの種類、吸脱着開始圧及び吸脱着量が異なるため、金属錯体が選択的ガス吸着能、すなわち分離能を発現させるためには、金属錯体を構成する配位子及び金属イオンの最適な組み合わせを選択する必要がある。本発明者らは鋭意検討し、炭素数4~20のアルケニレンジカルボン酸化合物と、少なくとも1種の金属イオンと、該金属イオンに二座配位可能な有機配位子(I)とからなる金属錯体からなる分離材により、上記目的を達成できることを見出し、本発明に至った。 The type of gas that can be adsorbed / desorbed, the adsorption / desorption start pressure, and the amount of adsorption / desorption differ depending on the size and shape of the pores of the metal complex and the interaction between the ligands constituting the metal complex and gas molecules. In order for the complex to exhibit selective gas adsorption ability, that is, separation ability, it is necessary to select an optimal combination of a ligand and a metal ion constituting the metal complex. The present inventors have intensively studied, and a metal comprising an alkenylene dicarboxylic acid compound having 4 to 20 carbon atoms, at least one metal ion, and an organic ligand (I) capable of bidentate coordination with the metal ion. It has been found that the above object can be achieved by a separating material comprising a complex, and the present invention has been achieved.
 すなわち、本発明によれば、以下のものが提供される。
(1)炭素数4~20のアルケニレンジカルボン酸化合物と、周期表の2族及び7~12族に属する金属のイオンから選択される少なくとも1種の金属イオンと、下記一般式(I);
That is, according to the present invention, the following is provided.
(1) an alkenylene dicarboxylic acid compound having 4 to 20 carbon atoms, at least one metal ion selected from ions of metals belonging to Groups 2 and 7 to 12 of the periodic table, and the following general formula (I):
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式中、R、R、R、R、R、R、R及びRはそれぞれ同一または異なって水素原子、置換基を有していてもよいアルキル基もしくはハロゲン原子であるか、RとR、或いはRとRが一緒になって置換基を有していてもよいアルケニレン基を形成してもよい。)で表される該金属イオンに二座配位可能な有機配位子(I)とからなる金属錯体からなる混合ガスの分離材。
(2)ジャングルジム骨格が多重に相互貫入した構造を有する金属錯体からなる(1)に記載の分離材。
(3)該金属イオンが銅イオン及び/または亜鉛イオンである(1)または(2)に記載の分離材。
(4)該分離材が、二酸化炭素、水素、一酸化炭素、酸素、窒素、炭素数1~4の炭化水素、希ガス、硫化水素、アンモニア、硫黄酸化物、窒素酸化物、シロキサン、水蒸気または有機蒸気を含む混合ガスを分離するための分離材である(1)~(3)のいずれかに記載の分離材。
(5)該混合ガスが、メタンと二酸化炭素、エタンと二酸化炭素、エチレンと二酸化炭素、水素と二酸化炭素、窒素と二酸化炭素、窒素とメタン、空気とメタン、メタンとエタン、エタンとエチレン、エチレンとアセチレン、エタンとプロパン、プロパンとプロペンまたはメタンとエタンとプロパンである(1)~(4)のいずれかに記載の分離材。
(6)(1)~(5)のいずれかに記載の分離材を用いた混合ガスの分離方法。
(7)該分離方法が金属錯体と混合ガスとを0.01~10MPaの圧力範囲で接触させる工程を含む(6)に記載の分離方法。
(8)該分離方法が圧力スイング吸着法または温度スイング吸着法である(6)または(7)に記載の分離方法。
(9)分離材として使用するための、(1)~(3)のいずれかに記載の金属錯体。
(10)(1)~(3)のいずれかに記載の金属錯体の、分離材を製造するための使用。
(Wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are the same or different and each represents a hydrogen atom, an alkyl group which may have a substituent or a halogen atom. Or R 2 and R 3 , or R 6 and R 7 may be combined to form an alkenylene group which may have a substituent. A separator for a mixed gas comprising a metal complex comprising an organic ligand (I) capable of coordination.
(2) The separating material according to (1), comprising a metal complex having a structure in which a jungle gym skeleton is interpenetrated in multiple.
(3) The separation material according to (1) or (2), wherein the metal ions are copper ions and / or zinc ions.
(4) The separator is carbon dioxide, hydrogen, carbon monoxide, oxygen, nitrogen, hydrocarbon having 1 to 4 carbon atoms, rare gas, hydrogen sulfide, ammonia, sulfur oxide, nitrogen oxide, siloxane, water vapor or The separation material according to any one of (1) to (3), which is a separation material for separating a mixed gas containing organic vapor.
(5) The mixed gas is methane and carbon dioxide, ethane and carbon dioxide, ethylene and carbon dioxide, hydrogen and carbon dioxide, nitrogen and carbon dioxide, nitrogen and methane, air and methane, methane and ethane, ethane and ethylene, ethylene The separating material according to any one of (1) to (4), which is acetylene, ethane, propane, propane and propene, or methane, ethane and propane.
(6) A method for separating a mixed gas using the separation material according to any one of (1) to (5).
(7) The separation method according to (6), wherein the separation method includes a step of contacting the metal complex and the mixed gas in a pressure range of 0.01 to 10 MPa.
(8) The separation method according to (6) or (7), wherein the separation method is a pressure swing adsorption method or a temperature swing adsorption method.
(9) The metal complex according to any one of (1) to (3) for use as a separating material.
(10) Use of the metal complex according to any one of (1) to (3) for producing a separating material.
 本発明により、炭素数4~20のアルケニレンジカルボン酸化合物と、周期表の2族及び7~12族に属する金属のイオンから選択される少なくとも1種の金属イオンと、該金属イオンに二座配位可能な有機配位子(I)とからなる金属錯体からなる混合ガスの分離材を提供することができる。 According to the present invention, an alkenylene dicarboxylic acid compound having 4 to 20 carbon atoms, at least one metal ion selected from ions of metals belonging to Groups 2 and 7 to 12 of the periodic table, and bidentate to the metal ions. It is possible to provide a mixed gas separating material comprising a metal complex composed of a recognizable organic ligand (I).
 本発明の分離材は、各種ガスを選択的に吸脱着し、ガス分離性能に優れているので、二酸化炭素、水素、一酸化炭素、酸素、窒素、炭素数1~4の炭化水素、希ガス、硫化水素、アンモニア、硫黄酸化物、窒素酸化物、シロキサン、水蒸気または有機蒸気を含む混合ガスを分離するための分離材として使用することができる。 Since the separation material of the present invention selectively adsorbs and desorbs various gases and has excellent gas separation performance, carbon dioxide, hydrogen, carbon monoxide, oxygen, nitrogen, hydrocarbons having 1 to 4 carbon atoms, and rare gases , Hydrogen sulfide, ammonia, sulfur oxide, nitrogen oxide, siloxane, water vapor or a mixed gas containing organic vapor can be used as a separating material.
アルケニレンジカルボン酸化合物のカルボキシレートイオンと金属イオンとからなるパドルホイール骨格中の金属イオンのアキシャル位に二座配位可能な有機配位子(I)が配位して形成されるジャングルジム骨格の模式図である。A jungle gym skeleton formed by coordination of an organic ligand (I) capable of bidentate coordination at the axial position of a metal ion in a paddle wheel skeleton composed of a carboxylate ion and a metal ion of an alkenylene dicarboxylic acid compound It is a schematic diagram. ジャングルジム骨格が二重に相互貫入した三次元構造の模式図である。It is a schematic diagram of a three-dimensional structure in which the jungle gym skeleton is double interpenetrated. 本発明の金属錯体の吸脱着に伴う構造変化の模式図である。(Movable:可動:、Jungle-Gym-Type Interpenetrated Framework:相互貫入ジャングルジム型構造、Adsorption:吸着、Desorption:脱着、”Closed ” state:「閉じた」状態、”Open”state:「開いた」状態。)It is a schematic diagram of the structural change accompanying adsorption / desorption of the metal complex of this invention. (Movable: Movable: Jungle-Gym-Type Interpenetrated Framework: Interpenetrating jungle gym type structure, Adsorption: Adsorption, Desorption: Desorption, “Closed” state: “Closed” state, “Open” state: “Open” state .) 合成例1で得た金属錯体の結晶構造である。3 is a crystal structure of the metal complex obtained in Synthesis Example 1. 合成例1で得た金属錯体の真空乾燥前の粉末X線回折パターンである。3 is a powder X-ray diffraction pattern before vacuum drying of the metal complex obtained in Synthesis Example 1. FIG. 合成例1で得た金属錯体の真空乾燥後の粉末X線回折パターンである。3 is a powder X-ray diffraction pattern after vacuum drying of the metal complex obtained in Synthesis Example 1. FIG. 合成例2で得た金属錯体の結晶構造である。3 is a crystal structure of the metal complex obtained in Synthesis Example 2. 合成例2で得た金属錯体の真空乾燥前の粉末X線回折パターンである。3 is a powder X-ray diffraction pattern before vacuum drying of the metal complex obtained in Synthesis Example 2. FIG. 合成例2で得た金属錯体の真空乾燥後の粉末X線回折パターンである。3 is a powder X-ray diffraction pattern after vacuum drying of the metal complex obtained in Synthesis Example 2. FIG. 比較合成例1で得た金属錯体の結晶構造である。3 is a crystal structure of a metal complex obtained in Comparative Synthesis Example 1. 比較合成例1で得た金属錯体の真空乾燥前の粉末X線回折パターンである。3 is a powder X-ray diffraction pattern before vacuum drying of the metal complex obtained in Comparative Synthesis Example 1. FIG. 比較合成例1で得た金属錯体の真空乾燥後の粉末X線回折パターンである。3 is a powder X-ray diffraction pattern after vacuum drying of the metal complex obtained in Comparative Synthesis Example 1. FIG. 比較合成例2で得た金属錯体の真空乾燥後の粉末X線回折パターンである。3 is a powder X-ray diffraction pattern after vacuum drying of the metal complex obtained in Comparative Synthesis Example 2. FIG. 比較合成例3で得た金属錯体の結晶構造である。It is a crystal structure of the metal complex obtained in Comparative Synthesis Example 3. 比較合成例3で得た金属錯体の真空乾燥前の粉末X線回折パターンである。3 is a powder X-ray diffraction pattern before vacuum drying of the metal complex obtained in Comparative Synthesis Example 3. FIG. 比較合成例3で得た金属錯体の真空乾燥後の粉末X線回折パターンである。4 is a powder X-ray diffraction pattern after vacuum drying of the metal complex obtained in Comparative Synthesis Example 3. FIG. 比較合成例4で得た金属錯体の結晶構造である。It is a crystal structure of the metal complex obtained in Comparative Synthesis Example 4. 比較合成例4で得た金属錯体の真空乾燥前の粉末X線回折パターンである。4 is a powder X-ray diffraction pattern before vacuum drying of the metal complex obtained in Comparative Synthesis Example 4. FIG. 比較合成例4で得た金属錯体の真空乾燥後の粉末X線回折パターンである。7 is a powder X-ray diffraction pattern after vacuum drying of the metal complex obtained in Comparative Synthesis Example 4. FIG. 比較合成例5で得た金属錯体の真空乾燥前の粉末X線回折パターンである。7 is a powder X-ray diffraction pattern before vacuum drying of the metal complex obtained in Comparative Synthesis Example 5. FIG. 比較合成例5で得た金属錯体の真空乾燥後の粉末X線回折パターンである。7 is a powder X-ray diffraction pattern after vacuum drying of the metal complex obtained in Comparative Synthesis Example 5. FIG. 合成例1で得た金属錯体について、二酸化炭素及びエタンの273Kにおける吸脱着等温線を容量法により測定した結果である。It is the result of measuring the adsorption / desorption isotherm of carbon dioxide and ethane at 273 K by the volumetric method for the metal complex obtained in Synthesis Example 1. 合成例2で得た金属錯体について、二酸化炭素及びエタンの273Kにおける吸脱着等温線を容量法により測定した結果である。It is the result of having measured the adsorption-desorption isotherm of carbon dioxide and ethane in 273K by the capacitance method about the metal complex obtained by the synthesis example 2. FIG. 比較合成例1で得た金属錯体について、二酸化炭素及びエタンの273Kにおける吸脱着等温線を容量法により測定した結果である。It is the result of measuring the adsorption / desorption isotherm of carbon dioxide and ethane at 273 K by the capacitance method for the metal complex obtained in Comparative Synthesis Example 1. 比較合成例2で得た金属錯体について、二酸化炭素及びエタンの273Kにおける吸脱着等温線を容量法により測定した結果である。It is the result of measuring the adsorption-desorption isotherm of carbon dioxide and ethane at 273 K by the volumetric method for the metal complex obtained in Comparative Synthesis Example 2. 比較合成例3で得た金属錯体について、二酸化炭素及びエタンの273Kにおける吸脱着等温線を容量法により測定した結果である。It is the result of measuring the adsorption / desorption isotherm of carbon dioxide and ethane at 273 K by the capacitance method for the metal complex obtained in Comparative Synthesis Example 3. 合成例1で得た金属錯体について、メタン及び窒素の273Kにおける吸脱着等温線を容量法により測定した結果である。It is the result of having measured the adsorption-desorption isotherm of methane and nitrogen in 273K by the capacitance method about the metal complex obtained by the synthesis example 1. FIG. 合成例2で得た金属錯体について、メタン及び窒素の273Kにおける吸脱着等温線を容量法により測定した結果である。It is the result of having measured the adsorption-desorption isotherm in 273K of methane and nitrogen by the capacitance method about the metal complex obtained by the synthesis example 2. FIG. 比較合成例1で得た金属錯体について、メタン及び窒素の273Kにおける吸脱着等温線を容量法により測定した結果である。It is the result of measuring the adsorption / desorption isotherm of methane and nitrogen at 273 K by the volumetric method for the metal complex obtained in Comparative Synthesis Example 1. 合成例1で得た金属錯体について、エチレン及びエタンの273Kにおける吸脱着等温線を容量法により測定した結果である。It is the result of having measured the adsorption-desorption isotherm in ethylene and ethane in 273K by the capacitance method about the metal complex obtained by the synthesis example 1. FIG. 合成例2で得た金属錯体について、エチレン及びエタンの273Kにおける吸脱着等温線を容量法により測定した結果である。It is the result of having measured the adsorption-desorption isotherm in ethylene and ethane in 273K by the capacitance method about the metal complex obtained by the synthesis example 2. FIG. 比較合成例1で得た金属錯体について、エチレン及びエタンの273Kにおける吸脱着等温線を容量法により測定した結果である。It is the result of having measured the adsorption-desorption isotherm in ethylene and ethane in 273K by the capacitance method about the metal complex obtained by the comparative synthesis example 1. FIG. 比較合成例2で得た金属錯体について、エチレン及びエタンの273Kにおける吸脱着等温線を容量法により測定した結果である。It is the result of having measured the adsorption-desorption isotherm in ethylene and ethane in 273K by the capacitance method about the metal complex obtained by the comparative synthesis example 2. FIG. 比較合成例3で得た金属錯体について、エチレン及びエタンの273Kにおける吸脱着等温線を容量法により測定した結果である。It is the result of having measured the adsorption-desorption isotherm in ethylene and ethane in 273K by the capacitance method about the metal complex obtained by the comparative synthesis example 3. FIG. 比較合成例4で得た金属錯体について、エチレン及びエタンの273Kにおける吸脱着等温線を容量法により測定した結果である。It is the result of having measured the adsorption-desorption isotherm in ethylene and ethane in 273K by the capacitance method about the metal complex obtained by the comparative synthesis example 4. FIG. 比較合成例5で得た金属錯体について、エチレン及びエタンの273Kにおける吸脱着等温線を容量法により測定した結果である。It is the result of having measured the adsorption-desorption isotherm in ethylene and ethane in 273K by the capacitance method about the metal complex obtained by the comparative synthesis example 5. FIG. 合成例1で得た金属錯体について、容量比でエタン:エチレン=46:54からなるエタンとエチレンの混合ガスを用い、298K、0.8MPa、空間速度1.6min-1における破過曲線を測定した結果である。For the metal complex obtained in Synthesis Example 1, a breakthrough curve at 298 K, 0.8 MPa, and a space velocity of 1.6 min −1 was measured using a mixed gas of ethane and ethylene having a volume ratio of ethane: ethylene = 46: 54. It is the result. 合成例1で得た金属錯体について、エチレン及びエタンの313Kにおける吸脱着等温線を容量法により測定した結果である。It is the result of having measured the adsorption-desorption isotherm in ethylene and ethane in 313K by the capacitance method about the metal complex obtained by the synthesis example 1. FIG.
 粉末X線回折パターンの測定結果において、横軸は回折角(2θ)及び縦軸はcps(Counts per Second)で示す回折強度(Intensity)である。 In the measurement result of the powder X-ray diffraction pattern, the horizontal axis represents the diffraction angle (2θ) and the vertical axis represents the diffraction intensity (Intensity) indicated by cps (Counts per Second).
 吸脱着等温線の測定結果において、横軸はMPaで示す平衡圧(Pressure)及び縦軸はmL(STP)/gで示す平衡吸着量(Amount Adsorbed)である。吸脱着等温線の測定結果において、昇圧した際の各圧力におけるガス(例えば二酸化炭素、メタン、エチレン、エタンまたは窒素など)の吸着量(ads.)及び減圧した際の各圧力におけるガスの吸着量(des.)がそれぞれプロットされている。STP(標準状態、Standard Temperature and Pressure)は、温度273.15K及び圧力1bar(10Pa)の状態を示す。 In the measurement results of the adsorption / desorption isotherm, the horizontal axis is the equilibrium pressure (Pressure) expressed in MPa, and the vertical axis is the equilibrium adsorption amount (Amount Adsorbed) expressed in mL (STP) / g. In the measurement results of the adsorption / desorption isotherm, the adsorption amount (ads.) Of the gas (for example, carbon dioxide, methane, ethylene, ethane or nitrogen) at each pressure when the pressure is increased and the adsorption amount of the gas at each pressure when the pressure is reduced (Des.) Are plotted respectively. STP (standard temperature, standard temperature and pressure) indicates a temperature of 273.15 K and a pressure of 1 bar (10 5 Pa).
 破過曲線の測定結果において、横軸は分単位のガスの流通時間(Time[min])であり、縦軸は出口ガスの割合(Outlet Gas Ratio[%])である。 In the measurement result of the breakthrough curve, the horizontal axis is the gas flow time (Time [min]) in minutes, and the vertical axis is the ratio of outlet gas (Outlet Gas Ratio [%]).
 本発明に用いる金属錯体は、炭素数4~20のアルケニレンジカルボン酸化合物と、周期表の2族及び7~12族に属する金属のイオンから選択される少なくとも1種の金属イオンと、該金属イオンに二座配位可能な有機配位子(I)とからなる。 The metal complex used in the present invention includes an alkenylene dicarboxylic acid compound having 4 to 20 carbon atoms, at least one metal ion selected from ions of metals belonging to Groups 2 and 7 to 12 of the periodic table, and the metal ion And an organic ligand (I) capable of bidentate coordination.
 本発明に用いられるアルケニレンジカルボン酸化合物は炭素数4~20であることが好ましく、中でも炭素数4~10がより好ましく、炭素数4及び5が特に好ましい。例えば、マレイン酸(炭素数4)、フマル酸(炭素数4)、シトラコン酸(炭素数5)、メサコン酸(炭素数5)、trans,trans-ムコン酸(炭素数6)、trans-3-ジヒドロムコン酸(炭素数6)、4-カルボキシケイ皮酸(炭素数10)などを使用することができ、中でもフマル酸がより好ましい。 The alkenylene dicarboxylic acid compound used in the present invention preferably has 4 to 20 carbon atoms, more preferably 4 to 10 carbon atoms, and particularly preferably 4 or 5 carbon atoms. For example, maleic acid (4 carbon atoms), fumaric acid (4 carbon atoms), citraconic acid (5 carbon atoms), mesaconic acid (5 carbon atoms), trans, trans-muconic acid (6 carbon atoms), trans-3- Dihydromuconic acid (carbon number 6), 4-carboxycinnamic acid (carbon number 10) and the like can be used, and fumaric acid is more preferable.
 本発明に用いられる金属イオンは、周期表の2族及び7~12族に属する金属のイオンから選択される少なくとも1種の金属イオンである。周期表2族に属する金属のイオンとはベリリウムイオン、マグネシウムイオン、カルシウムイオン、ストロンチウムイオン、バリウムイオン及びラジウムイオンである。周期表7族に属する金属のイオンとは、マンガンイオン、テクネチウムイオン、レニウムイオン及びボーリウムイオンである。周期表8族に属する金属のイオンとは、鉄イオン、ルテニウムイオン、オスミウムイオン及びハッシウムイオンである。周期表9族に属する金属のイオンとは、コバルトイオン、ロジウムイオン、イリジウムイオン及びマイトネリウムイオンである。周期表10族に属する金属のイオンとは、ニッケルイオン、パラジウムイオン、白金イオン及びダームスタチウムイオンである。周期表11族に属する金属のイオンとは、銅イオン、銀イオン、金イオン及びレントゲニウムイオンである。周期表12族に属する金属のイオンとは、亜鉛イオン、カドミウムイオン、水銀イオン及びウンウンビウムイオンである。本発明に用いられる周期表の2族及び7~12族に属する金属イオンとしては、例えば、マグネシウムイオン、カルシウムイオン、マンガンイオン、コバルトイオン、ニッケルイオン、銅イオン、亜鉛イオン、カドミウムイオンなどを使用することができ、中でも銅イオン及び/または亜鉛イオンが好ましい。金属イオンは、単一の金属イオンを使用することが好ましいが、2種以上の金属イオンを含む混合金属錯体であってもよい。また、本発明の金属錯体は、単一の金属イオンからなる金属錯体を2種以上混合して使用することもできる。 The metal ion used in the present invention is at least one metal ion selected from ions of metals belonging to Groups 2 and 7-12 of the periodic table. Metal ions belonging to Group 2 of the periodic table are beryllium ions, magnesium ions, calcium ions, strontium ions, barium ions, and radium ions. Metal ions belonging to Group 7 of the periodic table are manganese ions, technetium ions, rhenium ions, and bolium ions. Metal ions belonging to Group 8 of the periodic table are iron ions, ruthenium ions, osmium ions, and hash ions. Metal ions belonging to Group 9 of the periodic table are cobalt ions, rhodium ions, iridium ions, and mitnerium ions. Metal ions belonging to Group 10 of the periodic table are nickel ions, palladium ions, platinum ions, and dermisstatium ions. Metal ions belonging to Group 11 of the periodic table are copper ions, silver ions, gold ions, and roentgenium ions. Metal ions belonging to Group 12 of the periodic table are zinc ions, cadmium ions, mercury ions, and ununbium ions. Examples of metal ions belonging to Groups 2 and 7 to 12 of the periodic table used in the present invention include magnesium ions, calcium ions, manganese ions, cobalt ions, nickel ions, copper ions, zinc ions, cadmium ions, and the like. Of these, copper ions and / or zinc ions are preferred. The metal ion is preferably a single metal ion, but may be a mixed metal complex containing two or more metal ions. Moreover, the metal complex of this invention can also mix and use 2 or more types of metal complexes which consist of a single metal ion.
 該金属イオンは金属塩の形で用いてもよい。金属塩としては、例えば、マグネシウム塩、カルシウム塩、マンガン塩、コバルト塩、ニッケル塩、銅塩、亜鉛塩、カドミウム塩などを使用することができ、中でも銅塩及び/または亜鉛塩が好ましい。また、これらの金属塩としては、酢酸塩、ギ酸塩などの有機酸塩、硫酸塩、硝酸塩、炭酸塩、塩酸塩、臭化水素酸塩などの無機酸塩を使用することができる。 The metal ion may be used in the form of a metal salt. As the metal salt, for example, magnesium salt, calcium salt, manganese salt, cobalt salt, nickel salt, copper salt, zinc salt, cadmium salt and the like can be used, and among them, copper salt and / or zinc salt are preferable. Further, as these metal salts, organic acid salts such as acetates and formates, inorganic acid salts such as sulfates, nitrates, carbonates, hydrochlorides and hydrobromides can be used.
 本発明に用いられる二座配位可能な有機配位子(I)は下記一般式(I); The bidentate organic ligand (I) used in the present invention is represented by the following general formula (I):
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
で表される。式中、R、R、R、R、R、R、R及びRはそれぞれ同一または異なって水素原子、置換基を有していてもよいアルキル基もしくはハロゲン原子であるか、RとR、或いはRとRが一緒になって置換基を有していてもよいアルケニレン基を形成してもよい。 It is represented by In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are the same or different and each represents a hydrogen atom, an alkyl group which may have a substituent or a halogen atom. Or, R 2 and R 3 , or R 6 and R 7 may be combined to form an alkenylene group which may have a substituent.
 上記R、R、R、R、R、R、R及びRを構成することのできる置換基の内、アルキル基の炭素原子数は1~5が好ましい。アルキル基の例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、ペンチル基などの直鎖または分岐を有するアルキル基が、ハロゲン原子の例としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が、それぞれ挙げられる。また、該アルキル基が有していてもよい置換基の例としては、アルコキシ基(メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基,n-ブトキシ基、イソブトキシ基、tert-ブトキシ基など)、アミノ基、モノアルキルアミノ基(メチルアミノ基など)、ジアルキルアミノ基(ジメチルアミノ基など)、ホルミル基、エポキシ基、アシロキシ基(アセトキシ基、n-プロパノイルオキシ基、n-ブタノイルオキシ基、ピバロイルオキシ基、ベンゾイルオキシ基など)、アルコキシカルボニル基(メトキシカルボニル基、エトキシカルボニル基、n-ブトキシカルボニル基など)、カルボン酸無水物基(-CO-O-CO-R基)(Rは炭素数1~5のアルキル基である)などが挙げられる。アルキル基の置換基の数は、1~3個が好ましく、1個がより好ましい。 Of the substituents that can constitute R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 , the alkyl group preferably has 1 to 5 carbon atoms. Examples of the alkyl group include a straight or branched alkyl group such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a tert-butyl group, and a pentyl group, Examples of are fluorine atom, chlorine atom, bromine atom and iodine atom. Examples of the substituent that the alkyl group may have include an alkoxy group (methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, tert-butoxy group, etc. ), Amino group, monoalkylamino group (such as methylamino group), dialkylamino group (such as dimethylamino group), formyl group, epoxy group, acyloxy group (acetoxy group, n-propanoyloxy group, n-butanoyloxy) Group, pivaloyloxy group, benzoyloxy group, etc.), alkoxycarbonyl group (methoxycarbonyl group, ethoxycarbonyl group, n-butoxycarbonyl group, etc.), carboxylic acid anhydride group (—CO—O—CO—R group) (R is And an alkyl group having 1 to 5 carbon atoms). The number of substituents on the alkyl group is preferably 1 to 3, more preferably 1.
 上記アルケニレン基の炭素数は、2が好ましい。アルケニレン基の炭素数が2の場合、RとR、或いはRとRはそれらが結合している炭素原子と一緒になって6員環(ベンゼン環)を構成する。このような二座配位可能な有機配位子(I)の例としては、ジアザピレンが挙げられる。 The alkenylene group preferably has 2 carbon atoms. When the alkenylene group has 2 carbon atoms, R 2 and R 3 , or R 6 and R 7 together with the carbon atom to which they are bonded form a 6-membered ring (benzene ring). Examples of the organic ligand (I) capable of bidentate coordination include diazapyrene.
 該アルケニレン基が有していてもよい置換基の例としては、アルコキシ基(メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基,n-ブトキシ基、イソブトキシ基、tert-ブトキシ基など)、アミノ基、モノアルキルアミノ基(メチルアミノ基など)、ジアルキルアミノ基(ジメチルアミノ基など)、ホルミル基、エポキシ基、アシロキシ基(アセトキシ基、n-プロパノイルオキシ基、n-ブタノイルオキシ基、ピバロイルオキシ基、ベンゾイルオキシ基など)、アルコキシカルボニル基(メトキシカルボニル基、エトキシカルボニル基、n-ブトキシカルボニル基など)、カルボン酸無水物基(-CO-O-CO-R基)(Rは炭素数1~5のアルキル基である)などが挙げられる。 Examples of the substituent that the alkenylene group may have include an alkoxy group (methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, tert-butoxy group, etc.), Amino group, monoalkylamino group (such as methylamino group), dialkylamino group (such as dimethylamino group), formyl group, epoxy group, acyloxy group (acetoxy group, n-propanoyloxy group, n-butanoyloxy group, Pivaloyloxy group, benzoyloxy group, etc.), alkoxycarbonyl group (methoxycarbonyl group, ethoxycarbonyl group, n-butoxycarbonyl group, etc.), carboxylic acid anhydride group (—CO—O—CO—R group) (R is carbon number) And 1 to 5 alkyl groups).
 二座配位可能な有機配位子(I)としては、例えば、4,4’-ビピリジル、2,2’-ジメチル-4,4’-ビピリジン、ジアザピレンなどを使用することができ、中でも4,4’-ビピリジルが好ましい。本明細書において、「二座配位可能な有機配位子」とは、非共有電子対で金属イオンに対して配位できる部位を少なくとも2箇所持つ中性配位子と定義する。 As the bidentate organic ligand (I), for example, 4,4′-bipyridyl, 2,2′-dimethyl-4,4′-bipyridine, diazapyrene and the like can be used. , 4′-bipyridyl is preferred. In this specification, the “organic ligand capable of bidentate coordination” is defined as a neutral ligand having at least two sites capable of coordinating with a metal ion by a lone pair of electrons.
 本発明の金属錯体は、炭素数4~20のアルケニレンジカルボン酸化合物と、周期表の2族及び7~12族に属する金属の塩から選択される少なくとも1種の金属塩と、該金属イオンに二座配位可能な有機配位子(I)とを、気相、液相または固相のいずれかで反応させることで製造することができるが、常圧下、溶媒中で数時間から数日間反応させ、析出させて製造することが好ましい。例えば、金属塩の水溶液または有機溶媒溶液と、アルケニレンジカルボン酸化合物及び二座配位可能な有機配位子(I)を含有する水溶液または有機溶媒溶液とを、常圧下で混合して反応させることにより得ることができる。 The metal complex of the present invention includes an alkenylene dicarboxylic acid compound having 4 to 20 carbon atoms, at least one metal salt selected from salts of metals belonging to Groups 2 and 7 to 12 of the periodic table, and a metal ion. It can be produced by reacting the bidentate organic ligand (I) in the gas phase, the liquid phase or the solid phase, but for several hours to several days in a solvent under normal pressure. It is preferable to produce by reacting and precipitating. For example, an aqueous solution or organic solvent solution of a metal salt and an aqueous solution or organic solvent solution containing an alkenylene dicarboxylic acid compound and an organic ligand (I) capable of bidentate coordination are mixed and reacted under normal pressure. Can be obtained.
 金属錯体を製造するときのアルケニレンジカルボン酸化合物と二座配位可能な有機配位子(I)との混合比率は、アルケニレンジカルボン酸化合物:二座配位可能な有機配位子(I)=1:5~8:1のモル比の範囲内が好ましく、1:3~6:1のモル比の範囲内がより好ましい。これ以外の範囲で反応を行っても目的とする金属錯体は得られるが、収率が低下し、副反応も増えるために好ましくない。 The mixing ratio of the alkenylene dicarboxylic acid compound to the bidentate organic ligand (I) when producing the metal complex is as follows: alkenylene dicarboxylic acid compound: bidentate organic ligand (I) = The molar ratio is preferably in the range of 1: 5 to 8: 1, and more preferably in the range of 1: 3 to 6: 1. Even if the reaction is carried out in a range other than this, the desired metal complex can be obtained, but this is not preferable because the yield is lowered and the side reaction is also increased.
 金属錯体を製造するときの金属塩と二座配位可能な有機配位子(I)の混合比率は、金属塩:二座配位可能な有機配位子(I)=3:1~1:3のモル比の範囲内が好ましく、2:1~1:2のモル比の範囲内がより好ましい。これ以外の範囲では目的とする金属錯体の収率が低下し、また、未反応の原料が残留して得られた金属錯体の精製が困難になる。 The mixing ratio of the metal salt to the bidentate organic ligand (I) in the production of the metal complex is as follows: metal salt: bidentate organic ligand (I) = 3: 1 to 1 Is preferably in the range of a molar ratio of 3: 3, and more preferably in the range of a molar ratio of 2: 1 to 1: 2. In other ranges, the yield of the target metal complex decreases, and purification of the metal complex obtained by leaving unreacted raw materials becomes difficult.
 金属錯体を製造するための溶媒におけるアルケニレンジカルボン酸化合物のモル濃度は、0.005~5.0mol/Lが好ましく、0.01~2.0mol/Lがより好ましい。これより低い濃度で反応を行っても目的とする金属錯体は得られるが、収率が低下するため好ましくない。また、これより高い濃度では溶解性が低下し、反応が円滑に進行しない。 The molar concentration of the alkenylene dicarboxylic acid compound in the solvent for producing the metal complex is preferably 0.005 to 5.0 mol / L, and more preferably 0.01 to 2.0 mol / L. Even if the reaction is performed at a concentration lower than this, the desired metal complex can be obtained, but this is not preferable because the yield decreases. If the concentration is higher than this, the solubility is lowered and the reaction does not proceed smoothly.
 金属錯体を製造するための溶媒における金属塩のモル濃度は、0.005~5.0mol/Lが好ましく、0.01~2.0mol/Lがより好ましい。これより低い濃度で反応を行っても目的とする金属錯体は得られるが、収率が低下するため好ましくない。また、これより高い濃度では未反応の金属塩が残留し、得られた金属錯体の精製が困難になる。 The molar concentration of the metal salt in the solvent for producing the metal complex is preferably 0.005 to 5.0 mol / L, more preferably 0.01 to 2.0 mol / L. Even if the reaction is performed at a concentration lower than this, the desired metal complex can be obtained, but this is not preferable because the yield decreases. Further, at a concentration higher than this, unreacted metal salt remains, and purification of the obtained metal complex becomes difficult.
 金属錯体を製造するための溶媒における二座配位可能な有機配位子(I)のモル濃度は、0.001~5.0mol/Lが好ましく、0.005~2.0mol/Lがより好ましい。これより低い濃度で反応を行っても目的とする金属錯体は得られるが、収率が低下するため好ましくない。また、これより高い濃度では溶解性が低下し、反応が円滑に進行しない。 The molar concentration of the bidentate organic ligand (I) in the solvent for producing the metal complex is preferably 0.001 to 5.0 mol / L, more preferably 0.005 to 2.0 mol / L. preferable. Even if the reaction is performed at a concentration lower than this, the desired metal complex can be obtained, but this is not preferable because the yield decreases. If the concentration is higher than this, the solubility is lowered and the reaction does not proceed smoothly.
 金属錯体の製造に用いる溶媒としては、有機溶媒、水またはそれらの混合溶媒を使用することができる。具体的には、メタノール、エタノール、プロパノール、ジエチルエーテル、ジメトキシエタン、テトラヒドロフラン、ヘキサン、シクロヘキサン、ヘプタン、ベンゼン、トルエン、塩化メチレン、クロロホルム、アセトン、酢酸エチル、アセトニトリル、N,N-ジメチルホルムアミド、水またはこれらの混合溶媒を使用することができる。反応温度としては、253~423Kが好ましい。 As the solvent used for the production of the metal complex, an organic solvent, water, or a mixed solvent thereof can be used. Specifically, methanol, ethanol, propanol, diethyl ether, dimethoxyethane, tetrahydrofuran, hexane, cyclohexane, heptane, benzene, toluene, methylene chloride, chloroform, acetone, ethyl acetate, acetonitrile, N, N-dimethylformamide, water or These mixed solvents can be used. The reaction temperature is preferably 253 to 423K.
 反応が終了したことはガスクロマトグラフィーまたは高速液体クロマトグラフィーにより原料の残存量を定量することにより確認することができる。反応終了後、得られた混合液を吸引濾過に付して沈殿物を集め、有機溶媒による洗浄後、373K程度で数時間真空乾燥することにより、本発明の金属錯体を得ることができる。 The completion of the reaction can be confirmed by quantifying the remaining amount of the raw material by gas chromatography or high performance liquid chromatography. After completion of the reaction, the obtained mixed solution is subjected to suction filtration to collect a precipitate, washed with an organic solvent, and then vacuum dried at about 373 K for several hours to obtain the metal complex of the present invention.
 本発明の金属錯体は、溶媒分子が吸着した状態ではガス分子を吸着しない。そのため、分離材として用いる際には、予め得られた金属錯体について真空乾燥を行い、細孔内の溶媒分子を取り除くことが必要である。 The metal complex of the present invention does not adsorb gas molecules when solvent molecules are adsorbed. Therefore, when using as a separating material, it is necessary to vacuum-dry the metal complex obtained in advance to remove the solvent molecules in the pores.
 以上のようにして得られる本発明の金属錯体は、アルケニレンジカルボン酸化合物のカルボキシレートイオンと金属イオンとからなるパドルホイール骨格中の金属イオンのアキシャル位に二座配位可能な有機配位子(I)が配位して形成されるジャングルジム骨格が多重に相互貫入した三次元構造を有する。ジャングルジム骨格の模式図を図1に、ジャングルジム骨格が二重に相互貫入した三次元構造の模式図を図2に示す。 The metal complex of the present invention obtained as described above is an organic ligand capable of bidentate coordination to the axial position of the metal ion in the paddle wheel skeleton composed of the carboxylate ion and the metal ion of the alkenylene dicarboxylic acid compound ( The jungle gym skeleton formed by coordination of I) has a three-dimensional structure in which multiple interpenetrations occur. A schematic diagram of a jungle gym skeleton is shown in FIG. 1, and a schematic diagram of a three-dimensional structure in which the jungle gym skeleton is double-interpenetrated is shown in FIG.
 本明細書において、「ジャングルジム骨格」とは、アルケニレンジカルボン酸化合物のカルボキシレートイオンと金属イオンとからなるパドルホイール骨格中の金属イオンのアキシャル位に二座配位可能な有機配位子(I)が配位し、アルケニレンジカルボン酸化合物と金属イオンとからなる二次元格子状シート間を連結することで形成されるジャングルジム様の三次元構造と定義する。この定義を満足する一つの態様として、該ジャングルジム骨格を構成する各成分の組成比が、アルケニルジカルボン酸化合物:金属イオン:二座配位可能な有機配位子(I)=2:2:1である場合が挙げられる。 In the present specification, the “jungle gym skeleton” means an organic ligand (I) capable of bidentate coordination with an axial position of a metal ion in a paddle wheel skeleton composed of a carboxylate ion and a metal ion of an alkenylene dicarboxylic acid compound. ) Are coordinated and defined as a jungle gym-like three-dimensional structure formed by connecting two-dimensional lattice-like sheets composed of an alkenylene dicarboxylic acid compound and a metal ion. As one embodiment satisfying this definition, the composition ratio of each component constituting the jungle gym skeleton is: alkenyldicarboxylic acid compound: metal ion: organic ligand (I) capable of bidentate coordination = 2: 2: 1 may be mentioned.
 金属錯体を構成する各成分の組成比は、例えば、単結晶X線構造解析、粉末X線結晶構造解析または元素分析などにより確認できる。 The composition ratio of each component constituting the metal complex can be confirmed by, for example, single crystal X-ray structure analysis, powder X-ray crystal structure analysis, or elemental analysis.
 本明細書において、「ジャングルジム骨格が多重に相互貫入した構造」とは、複数のジャングルジム骨格が互いの細孔を埋める形で貫入し合った三次元集積構造と定義する。本発明の金属錯体の好ましい態様の一つにおいて、金属錯体は、ジャングルジム骨格が二重に相互貫入した三次元構造を有する。 In this specification, “a structure in which jungle gym skeletons are interpenetrated multiple times” is defined as a three-dimensional integrated structure in which a plurality of jungle gym skeletons penetrate each other so as to fill the pores. In one of the preferable embodiments of the metal complex of the present invention, the metal complex has a three-dimensional structure in which the jungle gym skeleton is double interpenetrated.
 金属錯体が、ジャングルジム骨格が多重に相互貫入した構造を有することは、例えば、単結晶X線構造解析または粉末X線結晶構造解析などにより確認できる。 It can be confirmed, for example, by single crystal X-ray structure analysis or powder X-ray crystal structure analysis that the metal complex has a structure in which the jungle gym skeleton is interpenetrated multiple times.
 本発明の金属錯体は、種々の外部刺激によりジャングルジム骨格における細孔の構造や大きさが変化する。外部刺激としては、金属錯体の細孔内に物質が吸着されるなどの化学的刺激、或いは温度、圧力、電場などの物理的刺激などが挙げられる。 In the metal complex of the present invention, the structure and size of the pores in the jungle gym skeleton are changed by various external stimuli. Examples of the external stimulus include a chemical stimulus such as a substance adsorbed in the pores of the metal complex, or a physical stimulus such as temperature, pressure, and electric field.
 金属錯体の細孔内に吸着される物質としては、例えば、二酸化炭素、水素、一酸化炭素、酸素、窒素、炭素数1~4の炭化水素、希ガス、アンモニアなどのガス状物質、或いは水、常温常圧で液体である有機化合物などの液体状物質が挙げられる。 Examples of the substance adsorbed in the pores of the metal complex include gaseous substances such as carbon dioxide, hydrogen, carbon monoxide, oxygen, nitrogen, hydrocarbons having 1 to 4 carbon atoms, rare gases, ammonia, or water. And liquid substances such as organic compounds that are liquid at normal temperature and pressure.
 本発明の金属錯体における三次元構造は、合成後の結晶においても変化できる。外部刺激による細孔の構造や大きさの変化は、吸着される物質の種類、吸着圧力、吸着温度に依存する。すなわち、細孔表面と物質の相互作用の差に加え(相互作用の強さは物質のLennard-Jonesポテンシャルの大きさに比例)、吸着する物質により構造変化の程度が異なるため、高い選択性が発現する。吸脱着に伴う構造変化の模式図を図3に示す。本発明では、アルケニレンジカルボン酸化合物を用いて細孔表面とガス分子との相互作用の強さを制御し、一般式(I)で表される二座配位可能な有機配位子(I)を用いて細孔径を制御することで、高いガス分離性能が発現する。吸着された物質が脱着した後は、元の構造に戻るので、細孔の大きさも元に戻る。 The three-dimensional structure in the metal complex of the present invention can be changed in the synthesized crystal. Changes in pore structure and size due to external stimuli depend on the type of substance to be adsorbed, the adsorption pressure, and the adsorption temperature. That is, in addition to the difference in the interaction between the pore surface and the substance (the strength of the interaction is proportional to the magnitude of the Lennard-Jones potential of the substance), the degree of structural change varies depending on the adsorbed substance, and thus high selectivity is achieved. To express. FIG. 3 shows a schematic diagram of the structural change accompanying the adsorption / desorption. In the present invention, an alkenylene dicarboxylic acid compound is used to control the strength of the interaction between the pore surface and gas molecules, and the bidentate organic ligand (I) represented by the general formula (I) By controlling the pore diameter using, high gas separation performance is manifested. After the adsorbed substance is desorbed, it returns to its original structure, so the pore size also returns.
 前記の吸着メカニズムは推定ではあるが、例え前記メカニズムに従っていない場合でも、本発明で規定する要件を満足するのであれば、本発明の技術的範囲に包含される。 Although the adsorption mechanism is estimated, even if it does not follow the mechanism, it is included in the technical scope of the present invention as long as it satisfies the requirements defined in the present invention.
 金属錯体が外部刺激により細孔の構造や大きさが変化することは、例えば、粉末X線回折パターンの変化、吸収波長の変化または磁化率の変化などにより確認できる。 The change in the structure and size of the pores caused by external stimulation of the metal complex can be confirmed, for example, by a change in powder X-ray diffraction pattern, a change in absorption wavelength, or a change in magnetic susceptibility.
 本発明に用いる金属錯体は、各種ガスの分離性能に優れているので、二酸化炭素、水素、一酸化炭素、酸素、窒素、炭素数1~4の炭化水素(メタン、エタン、エチレン、アセチレン、プロパン、プロペン、メチルアセチレン、プロパジエン、ブタン、1-ブテン、イソブテンなど)、希ガス(ヘリウム、ネオン、アルゴン、クリプトン、キセノンなど)、硫化水素、アンモニア、硫黄酸化物、窒素酸化物、シロキサン(ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサンなど)、水蒸気または有機蒸気などを分離するための分離材としても好ましく、特に、メタン中の二酸化炭素、エタン中の二酸化炭素、エチレン中の二酸化炭素、水素中の二酸化炭素、窒素中の二酸化炭素、メタン中の窒素、空気中のメタン、メタン中のエタン、エタン中のエチレン、エチレン中のアセチレン、エタン中のプロパン、プロパン中のプロペンまたはメタン中のエタンとプロパンまたは空気中のメタンなどを、圧力スイング吸着法や温度スイング吸着法により分離するのに適している。有機蒸気とは、常温、常圧で液体状の有機物質の気化ガスを意味する。このような有機物質としては、メタノール、エタノールなどのアルコール類;トリメチルアミン、ピリジンなどのアミン類;アセトアルデヒドなどのアルデヒド類;ペンタン、イソプレン、ヘキサン、シクロヘキサン、ヘプタン、メチルシクロヘキサン、オクタン、1-オクテン、シクロオクタン、シクロオクテン、1,5-シクロオクタジエン、4-ビニル-1-シクロヘキセン、1,5,9-シクロドデカトリエンなどの炭素数5~16の脂肪族炭化水素;ベンゼン、トルエン、キシレンなどの芳香族炭化水素;アセトン、メチルエチルケトンなどのケトン類;酢酸メチル、酢酸エチルなどのエステル類;塩化メチル、クロロホルムなどのハロゲン化炭化水素などが挙げられる。 Since the metal complex used in the present invention is excellent in the separation performance of various gases, carbon dioxide, hydrogen, carbon monoxide, oxygen, nitrogen, and hydrocarbons having 1 to 4 carbon atoms (methane, ethane, ethylene, acetylene, propane) , Propene, methylacetylene, propadiene, butane, 1-butene, isobutene, etc., noble gases (helium, neon, argon, krypton, xenon, etc.), hydrogen sulfide, ammonia, sulfur oxide, nitrogen oxide, siloxane (hexamethyl) Cyclotrisiloxane, octamethylcyclotetrasiloxane, etc.), and also preferable as a separating material for separating water vapor or organic vapor, etc., especially carbon dioxide in methane, carbon dioxide in ethane, carbon dioxide in ethylene, in hydrogen Carbon dioxide, carbon dioxide in nitrogen, nitrogen in methane, methane in air, Separation of ethane in ethane, ethylene in ethane, acetylene in ethylene, propane in ethane, propene in propane, ethane in methane and methane in propane or air, etc. by pressure swing adsorption method or temperature swing adsorption method Suitable for doing. The organic vapor means a vaporized organic substance that is liquid at normal temperature and pressure. Examples of such organic substances include alcohols such as methanol and ethanol; amines such as trimethylamine and pyridine; aldehydes such as acetaldehyde; pentane, isoprene, hexane, cyclohexane, heptane, methylcyclohexane, octane, 1-octene, cyclohexane Aliphatic hydrocarbons having 5 to 16 carbon atoms such as octane, cyclooctene, 1,5-cyclooctadiene, 4-vinyl-1-cyclohexene, 1,5,9-cyclododecatriene; benzene, toluene, xylene, etc. Aromatic hydrocarbons; ketones such as acetone and methyl ethyl ketone; esters such as methyl acetate and ethyl acetate; halogenated hydrocarbons such as methyl chloride and chloroform.
 本発明における分離材の使用形態は特に限定されない。例えば、金属錯体を粉末のまま用いてもよいし、ペレット、フィルム、シート、プレート、パイプ、チューブ、棒状体、粒状体、各種異形成形体、繊維、中空糸、織布、編布及び不織布などに成形して用いてもよい。 The usage form of the separating material in the present invention is not particularly limited. For example, the metal complex may be used as powder, pellets, films, sheets, plates, pipes, tubes, rods, granules, various deformed shapes, fibers, hollow fibers, woven fabrics, knitted fabrics, non-woven fabrics, etc. You may shape | mold and use.
 分離方法は、ガスが金属錯体に吸着できる条件でガスと本発明の金属錯体とを接触させる工程を含む。ガスが金属錯体に吸着できる条件である吸着圧力及び吸着温度は、吸着される物質の種類に応じて適宜設定することができる。例えば、吸着圧力は0.01~10MPaが好ましく、0.1~3.5MPaがより好ましい。また、吸着温度は195K~343Kが好ましく、273~313Kがより好ましい。 The separation method includes a step of bringing the gas into contact with the metal complex of the present invention under conditions where the gas can be adsorbed to the metal complex. The adsorption pressure and the adsorption temperature, which are conditions under which the gas can be adsorbed on the metal complex, can be appropriately set according to the type of substance to be adsorbed. For example, the adsorption pressure is preferably from 0.01 to 10 MPa, more preferably from 0.1 to 3.5 MPa. Further, the adsorption temperature is preferably 195K to 343K, and more preferably 273 to 313K.
 分離方法は、圧力スイング吸着法または温度スイング吸着法とすることができる。分離方法が圧力スイング吸着法である場合は、分離方法はさらに、圧力を、吸着圧力からガスを金属錯体から脱着させることができる圧力まで昇圧させる工程を含む。脱着圧力は、吸着される物質の種類に応じて適宜設定することができる。例えば、脱着圧力は0.005~2MPaが好ましく、0.01~0.1MPaがより好ましい。分離方法が温度スイング吸着法である場合は、分離方法はさらに、温度を、吸着温度からガスを金属錯体から脱着させることができる温度まで昇温させる工程を含む。脱着温度は、吸着される物質の種類に応じて適宜設定することができる。例えば、脱着温度は303~473Kが好ましく、313~373Kがより好ましい。 The separation method can be a pressure swing adsorption method or a temperature swing adsorption method. When the separation method is a pressure swing adsorption method, the separation method further includes a step of increasing the pressure from the adsorption pressure to a pressure at which gas can be desorbed from the metal complex. The desorption pressure can be appropriately set according to the type of substance to be adsorbed. For example, the desorption pressure is preferably 0.005 to 2 MPa, more preferably 0.01 to 0.1 MPa. When the separation method is a temperature swing adsorption method, the separation method further includes a step of raising the temperature from the adsorption temperature to a temperature at which the gas can be desorbed from the metal complex. The desorption temperature can be appropriately set according to the type of substance to be adsorbed. For example, the desorption temperature is preferably 303 to 473K, and more preferably 313 to 373K.
 分離方法は、圧力スイング吸着法または温度スイング吸着法である場合、ガスと金属錯体とを接触させる工程と、ガスを金属錯体から脱着させることができる圧力または温度まで変化させる工程とを、適宜繰り返すことができる。 When the separation method is a pressure swing adsorption method or a temperature swing adsorption method, the step of bringing the gas into contact with the metal complex and the step of changing to a pressure or temperature at which the gas can be desorbed from the metal complex are repeated as appropriate. be able to.
 以下、本発明を実施例によって具体的に説明するが、本発明はこれらに限定されるものではない。以下の実施例および比較例における分析および評価は次のようにして行った。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto. Analysis and evaluation in the following examples and comparative examples were performed as follows.
(1)単結晶X線結晶構造解析
 得られた単結晶をゴニオヘッドにマウントし、単結晶X線回折装置を用いて測定した。分析条件の詳細を以下に示す。
<分析条件>
装置:ブルカー・エイエックスエス株式会社製SMART APEX II Ultra
X線源:MoKα(λ=0.71073Å) 50kV 24mA
集光ミラー:Helios
検出器:CCDコリメータ:Φ0.42mm
解析ソフト:SHELXTL
(1) Single crystal X-ray crystal structure analysis The obtained single crystal was mounted on a gonio head and measured using a single crystal X-ray diffractometer. Details of the analysis conditions are shown below.
<Analysis conditions>
Apparatus: SMART APEX II Ultra manufactured by Bruker AXS Co., Ltd.
X-ray source: MoKα (λ = 0.10773Å) 50 kV 24 mA
Condenser mirror: Helios
Detector: CCD collimator: Φ0.42mm
Analysis software: SHELXTL
(2)粉末X線回折パターンの測定
 X線回折装置を用いて、回折角(2θ)=5~50°の範囲を走査速度1°/分で走査し、対称反射法で測定した。分析条件の詳細を以下に示す。
<分析条件>
装置:株式会社リガク製RINT2400
X線源:CuKα(λ=1.5418Å)40kV 200mA
ゴニオメーター:縦型ゴニオメーター
検出器:シンチレーションカウンター
ステップ幅:0.02°
スリット:発散スリット=0.5°
     受光スリット=0.15mm
     散乱スリット=0.5°
(2) Measurement of powder X-ray diffraction pattern Using an X-ray diffractometer, the range of diffraction angle (2θ) = 5 to 50 ° was scanned at a scanning speed of 1 ° / min and measured by a symmetric reflection method. Details of the analysis conditions are shown below.
<Analysis conditions>
Apparatus: RINT2400 manufactured by Rigaku Corporation
X-ray source: CuKα (λ = 1.5418Å) 40 kV 200 mA
Goniometer: Vertical goniometer Detector: Scintillation counter Step width: 0.02 °
Slit: Divergent slit = 0.5 °
Receiving slit = 0.15mm
Scattering slit = 0.5 °
(3)吸脱着等温線の作成
 高圧ガス吸着装置を用いて容量法(JIS Z8831-2に準拠)によりガス吸着量の測定を行い、吸脱着等温線を作成した。このとき、測定に先立って試料を373K、50Paで10時間乾燥し、吸着水などを除去した。分析条件の詳細を以下に示す。
<分析条件>
装置:日本ベル株式会社製BELSORP-HP平衡待ち時間:500秒
(3) Preparation of adsorption / desorption isotherm The gas adsorption amount was measured by a capacity method (based on JIS Z8831-2) using a high-pressure gas adsorption apparatus, and an adsorption / desorption isotherm was prepared. At this time, prior to the measurement, the sample was dried at 373 K and 50 Pa for 10 hours to remove adsorbed water and the like. Details of the analysis conditions are shown below.
<Analysis conditions>
Apparatus: BELSORP-HP balance waiting time: 500 seconds manufactured by Bell Japan
(4)破過曲線の測定
 ガス流量計とバルブ類を備えたステンレスチューブでボンベと接続した内容積16mLの耐圧容器を用意した。測定は、耐圧容器に試料を入れ、423K、10Paで6時間真空乾燥し、吸着水などを除去した後に、混合ガスを流通させることで行った。このとき、出ロガスを3分おきにサンプリングし、ガスクロマトグラフィーで分析することで出ロガスの組成を算出した(入口ガスの組成はあらかじめガスクロマトグラフィーを用いて測定)。分析条件の詳細を以下に示す。
<分析条件>
装置:株式会社島津製作所製GC-2014
カラム:ジーエルサイエンス株式会社製porapak K 80/100
カラム温度:343K
キャリアガス:ヘリウム
注入量:500μL
検出器:TCD
(4) Measurement of breakthrough curve A pressure-resistant container having an internal volume of 16 mL connected to a cylinder with a stainless tube equipped with a gas flow meter and valves was prepared. The measurement was performed by putting a sample in a pressure vessel, vacuum drying at 423 K and 10 Pa for 6 hours, removing adsorbed water, and then circulating the mixed gas. At this time, the output gas was sampled every 3 minutes and analyzed by gas chromatography to calculate the output gas composition (the composition of the inlet gas was measured in advance using gas chromatography). Details of the analysis conditions are shown below.
<Analysis conditions>
Equipment: GC-2014 manufactured by Shimadzu Corporation
Column: porapak K 80/100 manufactured by GL Sciences Inc.
Column temperature: 343K
Carrier gas: helium injection amount: 500 μL
Detector: TCD
<合成例1>
 窒素雰囲気下、硝酸亜鉛六水和物12.6g(43mmol)、フマル酸4.94g(43mmol)及び4,4’-ビピリジル3.32g(21mmol)をN,N-ジメチルホルムアミド500mLに溶解させ、393Kで24時間攪拌した。析出した金属錯体について単結晶X線構造解析を行った結果を以下に示す。また、結晶構造を図4に示す。図4より、本錯体は亜鉛イオン:フマル酸:4,4’-ビピリジル=2:2:1からなるジャングルジム骨格が二重に相互貫入した三次元構造を形成していることが分かる。得られた金属錯体の粉末X線回折パターンを図5に示す。
Monoclinic(C2/m)
a=13.4458(17)Å
b=11.5837(15)Å
c=14.0404(18)Å
α=90.00°
β=105.407(2)°
γ=90.00°
V=2108.2(5)Å
Z=4
R=0.0740
wR=0.1793
<Synthesis Example 1>
Under a nitrogen atmosphere, 12.6 g (43 mmol) of zinc nitrate hexahydrate, 4.94 g (43 mmol) of fumaric acid and 3.32 g (21 mmol) of 4,4′-bipyridyl were dissolved in 500 mL of N, N-dimethylformamide. Stir at 393 K for 24 hours. The results of single crystal X-ray structural analysis of the deposited metal complex are shown below. The crystal structure is shown in FIG. FIG. 4 shows that this complex forms a three-dimensional structure in which a jungle gym skeleton composed of zinc ions: fumaric acid: 4,4′-bipyridyl = 2: 2: 1 is double interpenetrated. FIG. 5 shows a powder X-ray diffraction pattern of the obtained metal complex.
Monoclinic (C2 / m)
a = 13.4458 (17) Å
b = 11.5837 (15) Å
c = 14.0404 (18) Å
α = 90.00 °
β = 105.407 (2) °
γ = 90.00 °
V = 2108.2 (5) Å 3
Z = 4
R = 0.0740
wR = 0.1793
 析出した金属錯体を吸引濾過により回収した後、メタノールで3回洗浄した。続いて、373K、50Paで8時間乾燥し、目的の金属錯体6.93g(収率63%)を得た。得られた金属錯体の粉末X線回折パターンを図6に示す。 The deposited metal complex was collected by suction filtration, and then washed with methanol three times. Then, it dried at 373K and 50 Pa for 8 hours, and obtained the target metal complex 6.93g (yield 63%). The powder X-ray diffraction pattern of the obtained metal complex is shown in FIG.
<合成例2>
 窒素雰囲気下、硝酸銅三水和物2.16g(8.9mmol)、フマル酸1.04g(8.9mmol)及び4,4’-ビピリジル0.698g(4.5mmol)を水780mLに溶解させ、393Kで24時間攪拌した。析出した金属錯体について単結晶X線構造解析を行った結果を以下に示す。また、結晶構造を図7に示す。図7より、本錯体は銅イオン:フマル酸:4,4’-ビピリジル=2:2:1からなるジャングルジム骨格が二重に相互貫入した三次元構造を形成していることが分かる。得られた金属錯体の粉末X線回折パターンを図8に示す。
Orthorhombic(Pnna)
a=23.275(5)Å
b=12.580(3)Å
c=14.073(3)Å
α=90.00°
β=90.00°
γ=90.00°
V=4120.6(14)Å
Z=8
R=0.0307
wR=0.0894
<Synthesis Example 2>
Under a nitrogen atmosphere, 2.16 g (8.9 mmol) of copper nitrate trihydrate, 1.04 g (8.9 mmol) of fumaric acid and 0.698 g (4.5 mmol) of 4,4′-bipyridyl were dissolved in 780 mL of water. , And stirred at 393 K for 24 hours. The results of single crystal X-ray structural analysis of the deposited metal complex are shown below. The crystal structure is shown in FIG. FIG. 7 shows that this complex forms a three-dimensional structure in which a jungle gym skeleton composed of copper ion: fumaric acid: 4,4′-bipyridyl = 2: 2: 1 is double interpenetrated. The powder X-ray diffraction pattern of the obtained metal complex is shown in FIG.
Orthohombic (Pnna)
a = 23.275 (5) Å
b = 12.580 (3) Å
c = 14.073 (3) Å
α = 90.00 °
β = 90.00 °
γ = 90.00 °
V = 4120.6 (14) Å 3
Z = 8
R = 0.0307
wR = 0.0894
 析出した金属錯体を吸引濾過により回収した後、メタノールで3回洗浄した。続いて、373K、50Paで8時間乾燥し、目的の金属錯体0.457g(収率20%)を得た。得られた金属錯体の粉末X線回折パターンを図9に示す。 The deposited metal complex was collected by suction filtration, and then washed with methanol three times. Then, it dried at 373K and 50 Pa for 8 hours, and obtained the target metal complex 0.457g (yield 20%). The powder X-ray diffraction pattern of the obtained metal complex is shown in FIG.
<比較合成例1>
 窒素雰囲気下、硝酸亜鉛六水和物2.81g(9.5mmol)、テレフタル酸1.57g(9.5mmol)及び4,4’-ビピリジル0.739g(4.7mmol)を容量比でN,N-ジメチルホルムアミド:エタノール=1:1からなるN,N-ジメチルホルムアミドとエタノールの混合溶媒800mLに溶解させ、363Kで48時間攪拌した。析出した金属錯体について単結晶X線構造解析を行った結果を以下に示す。また、結晶構造を図10に示す。図10より、本錯体は亜鉛イオン:テレフタル酸:4,4’-ビピリジル=2:2:1からなるジャングルジム骨格が二重に相互貫入した三次元構造を形成していることが分かる。得られた金属錯体の粉末X線回折パターンを図11に示す。
Triclinic(P-1)
a=10.880(3)Å
b=10.918(3)Å
c=14.122(4)Å
α=89.335(16)°
β=89.171(17)°
γ=78.380(16)°
V=1643.0(8)Å
Z=2
R=0.0655
wR=0.1697
<Comparative Synthesis Example 1>
In a nitrogen atmosphere, zinc nitrate hexahydrate (2.81 g, 9.5 mmol), terephthalic acid (1.57 g, 9.5 mmol) and 4,4′-bipyridyl (0.739 g, 4.7 mmol) were mixed in a volume ratio of N, It was dissolved in 800 mL of a mixed solvent of N, N-dimethylformamide and ethanol consisting of N-dimethylformamide: ethanol = 1: 1 and stirred at 363 K for 48 hours. The results of single crystal X-ray structural analysis of the deposited metal complex are shown below. The crystal structure is shown in FIG. FIG. 10 shows that this complex forms a three-dimensional structure in which a jungle gym skeleton composed of zinc ions: terephthalic acid: 4,4′-bipyridyl = 2: 2: 1 is double interpenetrated. The powder X-ray diffraction pattern of the obtained metal complex is shown in FIG.
Triclinic (P-1)
a = 10.880 (3) Å
b = 10.918 (3) Å
c = 14.122 (4) Å
α = 89.335 (16) °
β = 89.171 (17) °
γ = 78.380 (16) °
V = 1643.0 (8) Å 3
Z = 2
R = 0.0655
wR = 0.1697
 析出した金属錯体を吸引濾過により回収した後、メタノールで3回洗浄を行った。続いて、373K、50Paで8時間乾燥し、目的の金属錯体2.75g(収率95%)を得た。得られた金属錯体の粉末X線回折パターンを図12に示す。 The collected metal complex was collected by suction filtration, and then washed with methanol three times. Then, it dried at 373 K and 50 Pa for 8 hours, and obtained 2.75 g (yield 95%) of the target metal complex. The powder X-ray diffraction pattern of the obtained metal complex is shown in FIG.
<比較合成例2>
 窒素雰囲気下、硝酸亜鉛六水和物4.37g(15mmol)、コハク酸1.74g(15mmol)及び4,4’-ビピリジル1.16g(7.4mmol)をN,N-ジメチルホルムアミド600mLに溶解させ、393Kで24時間攪拌した。析出した金属錯体を吸引濾過により回収した後、メタノールで3回洗浄した。続いて、373K、50Paで8時間乾燥し、目的の金属錯体2.16g(収率56%)を得た。得られた金属錯体の粉末X線回折パターンを図13に示す。
<Comparative Synthesis Example 2>
In a nitrogen atmosphere, 4.37 g (15 mmol) of zinc nitrate hexahydrate, 1.74 g (15 mmol) of succinic acid and 1.16 g (7.4 mmol) of 4,4′-bipyridyl were dissolved in 600 mL of N, N-dimethylformamide. And stirred at 393 K for 24 hours. The precipitated metal complex was collected by suction filtration and then washed with methanol three times. Then, it dried at 373 K and 50 Pa for 8 hours, and obtained the target metal complex 2.16g (yield 56%). FIG. 13 shows a powder X-ray diffraction pattern of the obtained metal complex.
<比較合成例3>
 窒素雰囲気下、硝酸銅三水和物6.11 g(25mmol)、フマル酸2.95g(25mmol)及びピラジン1.05 g(13mmol)を水250 mLに溶解させ、373Kで24時間攪拌した。析出した金属錯体について単結晶X線構造解析を行った結果を以下に示す。また、結晶構造を図14に示す。図14より、本錯体は銅イオン:フマル酸:ピラジン=2:2:1からなるジャングルジム骨格が二重に相互貫入した三次元構造を形成していることが分かる。得られた金属錯体の粉末X線回折パターンを図15に示す。
Monoclinic(C2)
a=9.7192(19)Å
b=11.769(2)Å
c=7.2656(15)Å
α=90.00°
β=119.02(3)°
γ=90.00°
V=726.8(3)Å
Z=4
R=0.0528
wR=0.1382
<Comparative Synthesis Example 3>
Under a nitrogen atmosphere, 6.11 g (25 mmol) of copper nitrate trihydrate, 2.95 g (25 mmol) of fumaric acid and 1.05 g (13 mmol) of pyrazine were dissolved in 250 mL of water and stirred at 373 K for 24 hours. The results of single crystal X-ray structural analysis of the deposited metal complex are shown below. The crystal structure is shown in FIG. FIG. 14 shows that this complex forms a three-dimensional structure in which a jungle gym skeleton composed of copper ion: fumaric acid: pyrazine = 2: 2: 1 is double interpenetrated. FIG. 15 shows a powder X-ray diffraction pattern of the obtained metal complex.
Monoclinic (C2)
a = 9.7192 (19) Å
b = 11.769 (2) Å
c = 7.2656 (15) Å
α = 90.00 °
β = 119.02 (3) °
γ = 90.00 °
V = 726.8 (3) 3 3
Z = 4
R = 0.0528
wR = 0.1382
 析出した金属錯体を吸引濾過により回収した後、メタノールで3回洗浄した。続いて、373K、50Paで8時間乾燥し、目的の金属錯体0.62g(収率11%)を得た。得られた金属錯体の粉末X線回折パターンを図16に示す。 The deposited metal complex was collected by suction filtration, and then washed with methanol three times. Then, it dried at 373 K and 50 Pa for 8 hours, and obtained the target metal complex 0.62g (yield 11%). The powder X-ray diffraction pattern of the obtained metal complex is shown in FIG.
<比較合成例4>
 窒素雰囲気下、硝酸亜鉛六水和物8.02g(27mmol)、フマル酸3.13g(27mmol)及び1,2-ビス(4-ピリジル)エタン2.48g(14mmol)をN,N-ジメチルホルムアミド1100mLに溶解させ、393Kで24時間攪拌した。析出した結晶の一部を取出し、単結晶X線構造解析を行った結果を以下に示す。また、結晶構造を図17に示す。図17より、本錯体は亜鉛イオン:フマル酸:1,2-ビス(4-ピリジル)エタン=2:2:1からなるジャングルジム骨格が二重に相互貫入した三次元構造を形成していることが分かる。得られた金属錯体の粉末X線回折パターンを図18に示す。
Monoclinic(P21/c)
a=16.107(12)Å
b=8.905(7)Å
c=17.582(13)Å
α=90.00°
β=104.938(7)°
γ=90.00°
V=2436(3)Å
Z=4
R=0.0908
wR=0.2937
<Comparative Synthesis Example 4>
Under a nitrogen atmosphere, 8.02 g (27 mmol) of zinc nitrate hexahydrate, 3.13 g (27 mmol) of fumaric acid and 2.48 g (14 mmol) of 1,2-bis (4-pyridyl) ethane were mixed with N, N-dimethylformamide. Dissolve in 1100 mL and stir at 393 K for 24 hours. The results of taking out part of the precipitated crystals and conducting single crystal X-ray structural analysis are shown below. The crystal structure is shown in FIG. From FIG. 17, this complex forms a three-dimensional structure in which a jungle gym skeleton composed of zinc ion: fumaric acid: 1,2-bis (4-pyridyl) ethane = 2: 2: 1 is double interpenetrated. I understand that. The powder X-ray diffraction pattern of the obtained metal complex is shown in FIG.
Monoclinic (P21 / c)
a = 16.107 (12) Å
b = 8.905 (7) Å
c = 17.582 (13) Å
α = 90.00 °
β = 104.938 (7) °
γ = 90.00 °
V = 2436 (3) 3 3
Z = 4
R = 0.0908
wR = 0.2937
 析出した金属錯体を吸引濾過により回収した後、メタノールで3回洗浄した。続いて、373K、50Paで8時間乾燥し、目的の金属錯体4.85g(収率66%)を得た。得られた金属錯体の粉末X線回折パターンを図19に示す。 The deposited metal complex was collected by suction filtration, and then washed with methanol three times. Then, it dried at 373 K and 50 Pa for 8 hours, and obtained 4.85 g (yield 66%) of the target metal complex. FIG. 19 shows a powder X-ray diffraction pattern of the obtained metal complex.
<比較合成例5>
 窒素雰囲気下、硫酸銅五水和物1.25g(5.0mmol)をメタノール40mLに溶解させた溶液に、テレフタル酸0.831g(5.0mmol)とギ酸8mL(212mmol)をメタノール800mLに溶解させた溶液を加え、313Kで72時間攪拌した。その後、4,4’-ビピリジル0.391g(2.5mmol)をトルエン50mLに溶解させた溶液を加え、433Kで72時間攪拌した。得られた金属錯体の粉末X線回折パターンを図20に示す。図11と図20の比較から。粉末X線回折パターンが同じであるので、比較合成例1で得られた金属錯体と同様に銅イオン:テレフタル酸:4,4’-ビピリジル=2:2:1からなるジャングルジム骨格が二重に相互貫入した三次元構造を形成していることが分かる。
<Comparative Synthesis Example 5>
Under a nitrogen atmosphere, 0.831 g (5.0 mmol) of terephthalic acid and 8 mL (212 mmol) of formic acid were dissolved in 800 mL of methanol in a solution of 1.25 g (5.0 mmol) of copper sulfate pentahydrate in 40 mL of methanol. The solution was added and stirred at 313 K for 72 hours. Thereafter, a solution prepared by dissolving 0.391 g (2.5 mmol) of 4,4′-bipyridyl in 50 mL of toluene was added, and the mixture was stirred at 433 K for 72 hours. The powder X-ray diffraction pattern of the obtained metal complex is shown in FIG. From a comparison of FIG. 11 and FIG. Since the powder X-ray diffraction patterns are the same, the jungle gym skeleton composed of copper ion: terephthalic acid: 4,4′-bipyridyl = 2: 2: 1 is doubled as in the metal complex obtained in Comparative Synthesis Example 1. It can be seen that a three-dimensional structure that interpenetrates is formed.
 析出した金属錯体を吸引濾過により回収した後、メタノールで3回洗浄した。続いて、373K、50Paで8時間乾燥し、目的の金属錯体1.48g(収率97%)を得た。得られた金属錯体の粉末X線回折パターンを図21に示す。 The deposited metal complex was collected by suction filtration, and then washed with methanol three times. Then, it dried at 373 K and 50 Pa for 8 hours, and obtained 1.48 g (yield 97%) of the target metal complex. The powder X-ray diffraction pattern of the obtained metal complex is shown in FIG.
 合成例1、2及び比較合成例1~5で得られた金属錯体について、表1にまとめて示す。 Table 1 summarizes the metal complexes obtained in Synthesis Examples 1 and 2 and Comparative Synthesis Examples 1 to 5.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
<実施例1>
 合成例1で得た金属錯体について、273Kにおける二酸化炭素とエタンの吸脱着量を容量法により測定し、吸脱着等温線を作成した。結果を図22に示す。
<Example 1>
For the metal complex obtained in Synthesis Example 1, the adsorption and desorption amounts of carbon dioxide and ethane at 273 K were measured by a volumetric method, and an adsorption and desorption isotherm was created. The results are shown in FIG.
<実施例2>
 合成例2で得た金属錯体について、273Kにおける二酸化炭素とエタンの吸脱着量を容量法により測定し、吸脱着等温線を作成した。結果を図23に示す。
<Example 2>
For the metal complex obtained in Synthesis Example 2, the adsorption and desorption amounts of carbon dioxide and ethane at 273 K were measured by the volumetric method, and an adsorption and desorption isotherm was created. The results are shown in FIG.
<比較例1>
 比較合成例1で得た金属錯体について、273Kにおける二酸化炭素とエタンの吸脱着量を容量法により測定し、吸脱着等温線を作成した。結果を図24に示す。
<Comparative Example 1>
For the metal complex obtained in Comparative Synthesis Example 1, the adsorption and desorption amounts of carbon dioxide and ethane at 273 K were measured by a volume method, and an adsorption and desorption isotherm was created. The results are shown in FIG.
<比較例2>
 比較合成例2で得た金属錯体について、273Kにおける二酸化炭素とエタンの吸脱着量を容量法により測定し、吸脱着等温線を作成した。結果を図25に示す。
<Comparative example 2>
For the metal complex obtained in Comparative Synthesis Example 2, the adsorption and desorption amounts of carbon dioxide and ethane at 273 K were measured by the volume method, and an adsorption and desorption isotherm was created. The results are shown in FIG.
<比較例3>
 比較合成例3で得た金属錯体について、273Kにおける二酸化炭素とエタンの吸脱着量を容量法により測定し、吸脱着等温線を作成した。結果を図26に示す。
<Comparative Example 3>
For the metal complex obtained in Comparative Synthesis Example 3, the adsorption and desorption amounts of carbon dioxide and ethane at 273 K were measured by a volume method, and an adsorption and desorption isotherm was created. The results are shown in FIG.
 実施例1、2及び比較例1~3の結果について、表2にまとめて示す。 Table 2 summarizes the results of Examples 1 and 2 and Comparative Examples 1 to 3.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 図22及び図23と、図24、図25及び図26との比較より、本発明の構成要件を満たす合成例1及び合成例2で得た金属錯体は0~1.0MPaの圧力範囲において圧力の増加と共に二酸化炭素を選択的に吸着し、その選択性は本発明の構成要件を満たさない比較合成例1、比較合成例2及び比較合成例3で得た金属錯体よりも高く、また、圧力の減少と共に二酸化炭素を放出するので、本発明の金属錯体がエタンと二酸化炭素の分離材として優れていることは明らかである。 22 and FIG. 23 and FIG. 24, FIG. 25 and FIG. 26 show that the metal complexes obtained in Synthesis Example 1 and Synthesis Example 2 that satisfy the constituent requirements of the present invention have a pressure in the pressure range of 0 to 1.0 MPa. The carbon dioxide is selectively adsorbed with the increase of the metal oxide, and the selectivity is higher than the metal complexes obtained in Comparative Synthesis Example 1, Comparative Synthesis Example 2 and Comparative Synthesis Example 3 that do not satisfy the constituent requirements of the present invention, and the pressure It is clear that the metal complex of the present invention is excellent as a separation material for ethane and carbon dioxide because carbon dioxide is released as the amount of carbon dioxide decreases.
<実施例3>
 合成例1で得た金属錯体について、273Kにおけるメタンと窒素の吸脱着量を容量法により測定し、吸脱着等温線を作成した。結果を図27に示す。
<Example 3>
For the metal complex obtained in Synthesis Example 1, the adsorption / desorption amount of methane and nitrogen at 273 K was measured by the volume method, and an adsorption / desorption isotherm was prepared. The results are shown in FIG.
<実施例4>
 合成例2で得た金属錯体について、273Kにおけるメタンと窒素の吸脱着量を容量法により測定し、吸脱着等温線を作成した。結果を図28に示す。
<Example 4>
For the metal complex obtained in Synthesis Example 2, the adsorption / desorption amount of methane and nitrogen at 273K was measured by the volume method, and an adsorption / desorption isotherm was prepared. The results are shown in FIG.
<比較例4>
 比較合成例1で得た金属錯体について、273Kにおけるメタンと窒素の吸脱着量を容量法により測定し、吸脱着等温線を作成した。結果を図29に示す。
<Comparative Example 4>
For the metal complex obtained in Comparative Synthesis Example 1, the adsorption and desorption amount of methane and nitrogen at 273 K was measured by the volume method, and an adsorption and desorption isotherm was created. The results are shown in FIG.
 実施例3、4及び比較例4の結果について、表3にまとめて示す。 Table 3 summarizes the results of Examples 3 and 4 and Comparative Example 4.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 図27及び図28と、図29との比較より、本発明の構成要件を満たす合成例1及び合成例2で得た金属錯体は0~1.0MPaの圧力範囲において圧力の増加と共にメタンを選択的に吸着し、その選択性は本発明の構成要件を満たさない比較合成例1で得た金属錯体よりも高く、また、圧力の減少と共にメタンを放出するので、本発明の金属錯体が窒素とメタンの分離材として優れていることは明らかである。 From comparison between FIG. 27 and FIG. 28 and FIG. 29, the metal complexes obtained in Synthesis Example 1 and Synthesis Example 2 that satisfy the constituent requirements of the present invention select methane as the pressure increases in the pressure range of 0 to 1.0 MPa. And the selectivity thereof is higher than that of the metal complex obtained in Comparative Synthesis Example 1 that does not satisfy the constituent requirements of the present invention, and methane is released with a decrease in pressure. It is clear that it is excellent as a separator for methane.
<実施例5>
 合成例1で得た金属錯体について、273Kにおけるエチレンとエタンの吸脱着量を容量法により測定し、吸脱着等温線を作成した。結果を図30に示す。
<Example 5>
For the metal complex obtained in Synthesis Example 1, the adsorption and desorption amount of ethylene and ethane at 273 K was measured by the volume method, and an adsorption and desorption isotherm was prepared. The results are shown in FIG.
<実施例6>
 合成例2で得た金属錯体について、273Kにおけるエチレンとエタンの吸脱着量を容量法により測定し、吸脱着等温線を作成した。結果を図31に示す。
<Example 6>
For the metal complex obtained in Synthesis Example 2, the adsorption / desorption amount of ethylene and ethane at 273 K was measured by a volumetric method, and an adsorption / desorption isotherm was prepared. The results are shown in FIG.
<比較例5>
 比較合成例1で得た金属錯体について、273Kにおけるエチレンとエタンの吸脱着量を容量法により測定し、吸脱着等温線を作成した。結果を図32に示す。
<Comparative Example 5>
For the metal complex obtained in Comparative Synthesis Example 1, the adsorption / desorption amount of ethylene and ethane at 273K was measured by the volume method, and an adsorption / desorption isotherm was prepared. The results are shown in FIG.
<比較例6>
 比較合成例2で得た金属錯体について、273Kにおけるエチレンとエタンの吸脱着量を容量法により測定し、吸脱着等温線を作成した。結果を図33に示す。
<Comparative Example 6>
For the metal complex obtained in Comparative Synthesis Example 2, the adsorption / desorption amount of ethylene and ethane at 273K was measured by the volume method, and an adsorption / desorption isotherm was prepared. The results are shown in FIG.
<比較例7>
 比較合成例3で得た金属錯体について、273Kにおけるエチレンとエタンの吸脱着量を容量法により測定し、吸脱着等温線を作成した。結果を図34に示す。
<Comparative Example 7>
For the metal complex obtained in Comparative Synthesis Example 3, the adsorption / desorption amount of ethylene and ethane at 273 K was measured by the volume method, and an adsorption / desorption isotherm was prepared. The results are shown in FIG.
<比較例8>
 比較合成例4で得た金属錯体について、273Kにおけるエチレンとエタンの吸脱着量を容量法により測定し、吸脱着等温線を作成した。結果を図35に示す。
<Comparative Example 8>
For the metal complex obtained in Comparative Synthesis Example 4, the adsorption / desorption amount of ethylene and ethane at 273 K was measured by a volumetric method, and an adsorption / desorption isotherm was prepared. The results are shown in FIG.
<比較例9>
 比較合成例5で得た金属錯体について、273Kにおけるエチレンとエタンの吸脱着量を容量法により測定し、吸脱着等温線を作成した。結果を図36に示す。
<Comparative Example 9>
For the metal complex obtained in Comparative Synthesis Example 5, the adsorption / desorption amount of ethylene and ethane at 273K was measured by the volume method, and an adsorption / desorption isotherm was prepared. The results are shown in FIG.
 実施例5、6及び比較例5~9の結果について、表4にまとめて示す。 Table 4 summarizes the results of Examples 5 and 6 and Comparative Examples 5 to 9.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 図30及び図31と、図32、図33、図34、図35及び図36との比較より、本発明の構成要件を満たす合成例1及び合成例2で得た金属錯体は0~1.0MPaの圧力範囲においてエチレンを選択的に吸着し、その選択性は本発明の構成要件を満たさない比較合成例1、比較合成例2、比較合成例3、比較合成例4及び比較合成例5で得た金属錯体よりも高く、また、圧力の減少と共にエチレンを放出するので、本発明の金属錯体がエタンとエチレンの分離材として優れていることは明らかである。 30 and FIG. 31, and FIG. 32, FIG. 33, FIG. 34, FIG. 35, and FIG. 36, the metal complexes obtained in Synthesis Example 1 and Synthesis Example 2 that satisfy the constituent requirements of the present invention are 0-1. In the pressure range of 0 MPa, ethylene is selectively adsorbed, and the selectivity in Comparative Synthesis Example 1, Comparative Synthesis Example 2, Comparative Synthesis Example 3, Comparative Synthesis Example 4 and Comparative Synthesis Example 5 does not satisfy the constituent requirements of the present invention. It is clear that the metal complex of the present invention is excellent as a separator for ethane and ethylene because it is higher than the obtained metal complex and releases ethylene as the pressure decreases.
<実施例7>
 合成例1で得た金属錯体について、容量比でエタン:エチレン=46:54からなるエタンとエチレンの混合ガスを用い、298K、0.8MPa、空間速度1.6min-1における破過曲線の測定を行い、ガス分離性能を評価した。結果を図37に示す。
<Example 7>
Measurement of breakthrough curve at 298 K, 0.8 MPa, space velocity 1.6 min −1 for the metal complex obtained in Synthesis Example 1 using a mixed gas of ethane and ethylene having a volume ratio of ethane: ethylene = 46: 54 The gas separation performance was evaluated. The results are shown in FIG.
 図37より、本発明の構成要件を満たす合成例1で得た金属錯体はエチレンを優先的に吸着し、エタンを99.5%以上にまで濃縮することができることがわかる。従って、本発明の金属錯体がエタンとエチレンの分離材として使用できることは明らかである。 FIG. 37 shows that the metal complex obtained in Synthesis Example 1 that satisfies the constituent requirements of the present invention can preferentially adsorb ethylene and concentrate ethane to 99.5% or more. Therefore, it is clear that the metal complex of the present invention can be used as a separator for ethane and ethylene.
<実施例8>
 合成例1で得た金属錯体について、313Kにおけるエチレンとエタンの吸脱着量を容量法により測定し、吸脱着等温線を作成した。結果を図38に示す。
<Example 8>
For the metal complex obtained in Synthesis Example 1, the adsorption / desorption amount of ethylene and ethane at 313K was measured by the volumetric method, and an adsorption / desorption isotherm was prepared. The results are shown in FIG.
 図30と、図38との比較より、本発明の構成要件を満たす合成例1で得た金属錯体の吸着開始圧力は温度に依存し、制御可能であることが分かる。この特徴を利用することにより、従来の分離材を用いる場合に比べて、温度スイング吸着法において分離度の向上が可能であることは明らかである。 30 and FIG. 38, it can be seen that the adsorption start pressure of the metal complex obtained in Synthesis Example 1 that satisfies the constituent requirements of the present invention depends on the temperature and can be controlled. By utilizing this feature, it is apparent that the degree of separation can be improved in the temperature swing adsorption method as compared with the case of using a conventional separation material.
 実施例1~8及び比較例1~9の結果より、本発明の構成要件を満たす合成例1及び2で得た金属錯体は、同じくジャングルジム骨格が二重に相互貫入した三次元構造を有するが本発明の構成要件を満たさない比較合成例1、3~5で得た金属錯体、及びジカルボン酸がアルケニレンジカルボン酸ではない比較合成例2で得た金属錯体に比べ、各種ガスの分離材として優れていることは明らかである。このような差が生じる理由は必ずしも定かではないが、本発明の金属錯体を構成する炭素数4~20のアルケニレンジカルボン酸化合物と、周期表の2族及び7~12族に属する金属のイオンから選択される少なくとも1種の金属イオンと、前記一般式(I)で表される有機配位子(I)との組み合わせが最適であり、ガス分子と細孔表面との相互作用が大きくなるため、優れたガス分離性能を発現するためであると考えられる。 From the results of Examples 1 to 8 and Comparative Examples 1 to 9, the metal complexes obtained in Synthesis Examples 1 and 2 that satisfy the constituent requirements of the present invention have the same three-dimensional structure in which the jungle gym skeleton is double interpenetrated. Compared to the metal complex obtained in Comparative Synthesis Examples 1 and 3 to 5 that do not satisfy the constituent requirements of the present invention, and the metal complex obtained in Comparative Synthesis Example 2 where the dicarboxylic acid is not alkenylene dicarboxylic acid, It is clear that it is excellent. The reason why such a difference occurs is not necessarily clear, but it is based on the alkenylene dicarboxylic acid compound having 4 to 20 carbon atoms constituting the metal complex of the present invention and ions of metals belonging to Groups 2 and 7 to 12 of the periodic table. The combination of the selected at least one metal ion and the organic ligand (I) represented by the general formula (I) is optimal, and the interaction between the gas molecule and the pore surface is increased. It is considered that this is because excellent gas separation performance is exhibited.

Claims (10)

  1.  炭素数4~20のアルケニレンジカルボン酸化合物と、周期表の2族及び7~12族に属する金属のイオンから選択される少なくとも1種の金属イオンと、下記一般式(I);
    Figure JPOXMLDOC01-appb-C000001
    (式中、R、R、R、R、R、R、R及びRはそれぞれ同一または異なって水素原子、置換基を有していてもよいアルキル基もしくはハロゲン原子であるか、RとR、或いはRとRが一緒になって置換基を有していてもよいアルケニレン基を形成してもよい。)で表される該金属イオンに二座配位可能な有機配位子(I)とからなる金属錯体からなる混合ガスの分離材。
    An alkenylene dicarboxylic acid compound having 4 to 20 carbon atoms, at least one metal ion selected from ions of metals belonging to Groups 2 and 7 to 12 of the periodic table, and the following general formula (I):
    Figure JPOXMLDOC01-appb-C000001
    (Wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are the same or different and each represents a hydrogen atom, an alkyl group which may have a substituent or a halogen atom. Or R 2 and R 3 , or R 6 and R 7 may be combined to form an alkenylene group which may have a substituent. A separator for a mixed gas comprising a metal complex comprising an organic ligand (I) capable of coordination.
  2.  ジャングルジム骨格が多重に相互貫入した構造を有する金属錯体からなる請求項1に記載の分離材。 The separation material according to claim 1, comprising a metal complex having a structure in which a jungle gym skeleton has multiple interpenetrations.
  3.  該金属イオンが銅イオン及び/または亜鉛イオンである請求項1または2に記載の分離材。 The separation material according to claim 1 or 2, wherein the metal ions are copper ions and / or zinc ions.
  4.  該分離材が、二酸化炭素、水素、一酸化炭素、酸素、窒素、炭素数1~4の炭化水素、希ガス、硫化水素、アンモニア、硫黄酸化物、窒素酸化物、シロキサン、水蒸気または有機蒸気を含む混合ガスを分離するための分離材である請求項1~3のいずれかに記載の分離材。 The separator is carbon dioxide, hydrogen, carbon monoxide, oxygen, nitrogen, hydrocarbon having 1 to 4 carbon atoms, rare gas, hydrogen sulfide, ammonia, sulfur oxide, nitrogen oxide, siloxane, water vapor or organic vapor. The separation material according to any one of claims 1 to 3, which is a separation material for separating a mixed gas contained therein.
  5.  該混合ガスが、メタンと二酸化炭素、エタンと二酸化炭素、エチレンと二酸化炭素、水素と二酸化炭素、窒素と二酸化炭素、窒素とメタン、空気とメタン、メタンとエタン、エタンとエチレン、エチレンとアセチレン、エタンとプロパン、プロパンとプロペンまたはメタンとエタンとプロパンである請求項1~4のいずれかに記載の分離材。 The mixed gas is methane and carbon dioxide, ethane and carbon dioxide, ethylene and carbon dioxide, hydrogen and carbon dioxide, nitrogen and carbon dioxide, nitrogen and methane, air and methane, methane and ethane, ethane and ethylene, ethylene and acetylene, The separation material according to any one of claims 1 to 4, which is ethane and propane, propane and propene, or methane, ethane and propane.
  6.  請求項1~5のいずれかに記載の分離材を用いた混合ガスの分離方法。 A method for separating a mixed gas using the separation material according to any one of claims 1 to 5.
  7.  該分離方法が金属錯体と混合ガスとを0.01~10MPaの圧力範囲で接触させる工程を含む請求項6に記載の分離方法。 The separation method according to claim 6, wherein the separation method comprises a step of contacting the metal complex and the mixed gas in a pressure range of 0.01 to 10 MPa.
  8.  該分離方法が圧力スイング吸着法または温度スイング吸着法である請求項6または7に記載の分離方法。 The separation method according to claim 6 or 7, wherein the separation method is a pressure swing adsorption method or a temperature swing adsorption method.
  9.  分離材として使用するための、請求項1~3のいずれかに記載の金属錯体。 The metal complex according to any one of claims 1 to 3, for use as a separating material.
  10.  請求項1~3のいずれかに記載の金属錯体の、分離材を製造するための使用。 Use of the metal complex according to any one of claims 1 to 3 for producing a separating material.
PCT/JP2012/070813 2011-08-17 2012-08-16 Separation material, and separation method using said separating material WO2013024888A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-178503 2011-08-17
JP2011178503 2011-08-17

Publications (1)

Publication Number Publication Date
WO2013024888A1 true WO2013024888A1 (en) 2013-02-21

Family

ID=47715204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070813 WO2013024888A1 (en) 2011-08-17 2012-08-16 Separation material, and separation method using said separating material

Country Status (2)

Country Link
JP (1) JPWO2013024888A1 (en)
WO (1) WO2013024888A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103193701A (en) * 2013-03-14 2013-07-10 淮海工学院 Functional ligand and preparation method thereof
JP2014088341A (en) * 2012-10-30 2014-05-15 Showa Denko Kk Separation method of 1,3-butadiene and separation membrane
CN110862549A (en) * 2019-04-04 2020-03-06 云南农业大学 Three-dimensional metal-organic framework crystal material based on fumaric acid and 4,4' -bipyridine and preparation method thereof
CN114292409A (en) * 2021-12-08 2022-04-08 西北大学 Metal organic framework material with ethane and methane adsorption separation function and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000109485A (en) * 1998-10-05 2000-04-18 Osaka Gas Co Ltd New three-dimensional type organometallic complex and gas-adsorptive material
JP2003342260A (en) * 2002-05-23 2003-12-03 Osaka Gas Co Ltd Three-dimensional metal complex, adsorbing material and separating material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000109485A (en) * 1998-10-05 2000-04-18 Osaka Gas Co Ltd New three-dimensional type organometallic complex and gas-adsorptive material
JP2003342260A (en) * 2002-05-23 2003-12-03 Osaka Gas Co Ltd Three-dimensional metal complex, adsorbing material and separating material

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEN, B. ET AL.: "Rationally Designed Micropores within a Metal-Oragnic Framework for Selective Sorption of Gas Molecules", INORG. CHEM., vol. 46, 2007, pages 1233 - 1236 *
MA, B. ET AL.: "Microporous Pillard Paddle-Wheel Frameworks Based on Mixed-Lig and Coordination of Zinc Ions", INORG. CHEM., vol. 44, 2005, pages 4912 - 4914 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014088341A (en) * 2012-10-30 2014-05-15 Showa Denko Kk Separation method of 1,3-butadiene and separation membrane
CN103193701A (en) * 2013-03-14 2013-07-10 淮海工学院 Functional ligand and preparation method thereof
CN110862549A (en) * 2019-04-04 2020-03-06 云南农业大学 Three-dimensional metal-organic framework crystal material based on fumaric acid and 4,4' -bipyridine and preparation method thereof
CN114292409A (en) * 2021-12-08 2022-04-08 西北大学 Metal organic framework material with ethane and methane adsorption separation function and preparation method thereof
CN114292409B (en) * 2021-12-08 2022-12-06 西北大学 Metal organic framework material with ethane and methane adsorption separation function and preparation method thereof

Also Published As

Publication number Publication date
JPWO2013024888A1 (en) 2015-03-05

Similar Documents

Publication Publication Date Title
JP5677131B2 (en) Metal complex, and occlusion material and separation material comprising the same
WO2011105521A1 (en) Metal complex, and adsorbent, occlusion material and separator material made from same
JP6270720B2 (en) Metal complex, adsorbent, occlusion material and separation material comprising the same
JP5574669B2 (en) Metal complex and separation material comprising the same
WO2013024761A1 (en) Metal complex and adsorbent material, storage material, and separating material comprising same
JP5506283B2 (en) Metal complex and method for producing the same
JP5787665B2 (en) Metal complex, adsorbent, occlusion material and separation material comprising the same
JP5649342B2 (en) Metal complex and method for producing the same
JP5478120B2 (en) Metal complex and method for producing the same
JP2012031161A (en) Metal complex, and occlusion material and separating material consisting of the same
JP5725784B2 (en) Metal complex and separation material comprising the same
JP2012193122A (en) Metal complex and separation material consisting thereof
JP5478121B2 (en) Metal complex and method for producing the same
WO2013024888A1 (en) Separation material, and separation method using said separating material
JP2012232928A (en) Metal complex, and adsorbent and separation material comprising the same
JP5677132B2 (en) Metal complex and method for producing the same
JP2011195575A (en) Metal complex and production method thereof
JP5730078B2 (en) Separation method of hydrocarbon-based mixed gas
JP2012184197A (en) Metal complex and adsorbent, occlusion material, and separation material consisting of the same
JP5832197B2 (en) Metal complex, and occlusion material and separation material comprising the same
JP2013040126A (en) Metal complex and adsorbing material comprising the same
JP2012056946A (en) Metal complex, and adsorbing material, storage material and separation material composed thereof
JP2013040130A (en) Metal complex, and adsorbing material, occluding material and separating material each comprising the same
JP2012232929A (en) Metal complex, and adsorbing material and separation material comprising the same
JP5649480B2 (en) Metal complex, adsorbent, occlusion material and separation material comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12823293

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013529033

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12823293

Country of ref document: EP

Kind code of ref document: A1