JP2012075234A - 温度保護装置、モータ制御装置及び温度保護方法 - Google Patents

温度保護装置、モータ制御装置及び温度保護方法 Download PDF

Info

Publication number
JP2012075234A
JP2012075234A JP2010217307A JP2010217307A JP2012075234A JP 2012075234 A JP2012075234 A JP 2012075234A JP 2010217307 A JP2010217307 A JP 2010217307A JP 2010217307 A JP2010217307 A JP 2010217307A JP 2012075234 A JP2012075234 A JP 2012075234A
Authority
JP
Japan
Prior art keywords
temperature
semiconductor element
overheat
estimated
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010217307A
Other languages
English (en)
Other versions
JP5549505B2 (ja
Inventor
Hiromichi Kawamura
弘道 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2010217307A priority Critical patent/JP5549505B2/ja
Priority to EP11778957.8A priority patent/EP2622739B1/en
Priority to PCT/IB2011/002116 priority patent/WO2012042324A1/en
Priority to US13/816,879 priority patent/US8922152B2/en
Priority to CN201180044721.7A priority patent/CN103109460B/zh
Publication of JP2012075234A publication Critical patent/JP2012075234A/ja
Application granted granted Critical
Publication of JP5549505B2 publication Critical patent/JP5549505B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K3/00Thermometers giving results other than momentary value of temperature
    • G01K3/02Thermometers giving results other than momentary value of temperature giving means values; giving integrated values
    • G01K3/04Thermometers giving results other than momentary value of temperature giving means values; giving integrated values in respect of time
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/68Controlling or determining the temperature of the motor or of the drive based on the temperature of a drive component or a semiconductor component
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0828Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in composite switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K2017/0806Modifications for protecting switching circuit against overcurrent or overvoltage against excessive temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inverter Devices (AREA)
  • Protection Of Static Devices (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

【課題】半導体素子の過熱状態の判定精度を高めつつ、半導体素子を過熱状態から保護することができる温度保護装置を提供する。
【解決手段】半導体素子の温度を検出する温度検出手段と、半導体素子の温度を推定する温度推定手段と、温度検出手段により検出される検出温度と温度推定手段により推定される推定温度とを用いて、半導体素子の過熱状態を判定する過熱状態判定手段と、過熱状態判定手段による判定結果に基づいて、半導体素子を前記過熱状態から保護する過熱保護手段と、を備え、過熱状態判定手段は、検出温度が第1の閾値温度に達した時点の第1の推定温度と、検出温度が第1の閾値温度に達した時点以降に推定される第2の推定温度とを用いて、半導体素子が過熱状態であることを判定する。
【選択図】 図1

Description

本発明は、温度保護装置、モータ制御装置及び温度保護方法に関するものである。
インバータ主回路の冷却ファンに設けられ、インバータ主回路のスイッチング素子の温度を検出して検出温度を出力する温度センサと、保護作動指令が入力されるとキャリア信号の周波数を設定周波数よりも下げる第1の温度保護装置と、保護作動指令が入力されるとトルクリミット値を設定値よりも下げる第2の温度保護装置と、当該検出温度が第1の加熱温度を超えると第1の温度保護装置に保護作動指令を送り、当該検出温度が第1の加熱温度より高い第2の加熱温度を超えると第1の温度保護装置及び第2の温度保護装置に保護作動指令を送る、電力変換器の温度保護機構が知られている(特許文献1)。
特開平−121595号公報
しかしながら、当該温度センサをスイッチング素子又は素子の近傍に設け、当該温度センサから検出信号を温度保護装置に送信する場合に、強電系の信号が弱電系の制御部分に送信されるため、ノイズが当該検出信号に混入し、スイッチング素子の温度の検出精度が下がり、スイッチング素子を過熱から防ぐための保護動作が誤って行われる可能性があった。
本発明が解決しようとする課題は、半導体素子の過熱状態の判定精度を高めつつ、半導体素子を過熱状態から保護することができる温度保護装置を提供することである。
本発明は、検出温度が第1の閾値温度に達した時点の第1の推定温度と、検出温度が第1の閾値温度に達した時点以降に推定される第2の推定温度とを用いて、半導体素子が過熱状態であることを判定する、ことによって上記課題を解決する。
本発明によれば、半導体素子の検出温度を用いることで過熱状態の判定精度を維持しつつ、高温領域では推定温度を用いて判定することでノイズの影響を軽減させるため、過熱状態の誤判定を防ぎ、半導体素子を過熱状態から保護することができる、という効果を奏する。
本発明の実施形態に係る温度保護装置のブロック図である。 図1の温度保護装置における、温度検出部の検出温度、温度推定部の推定温度、温度差及び仮想温度の時間に対する温度特性、及び、第1判定信号、切替フラグ、第2判定信号の時間に対する出力特性を示すグラフである。 図1の温度保護装置の制御手順を示すフローチャートである。 本発明の他の実施形態に係る温度保護装置における、温度検出部の検出温度、温度推定部の推定温度、温度差及び仮想温度の時間に対する温度特性、及び、第1判定信号、切替フラグ、第2判定信号、第3判定信号の時間に対する出力特性を示すグラフである。 本発明の他の実施形態に係る温度保護装置の制御手順を示すフローチャートである。
以下、本発明の実施形態を図面に基づいて説明する。
《第1実施形態》
図1は、本発明の実施形態に係る温度保護装置を含む電気自動車用のモータ制御装置を示すブロック図である。詳細な図示は省略するが、本例の電気自動車は、三相交流電力の永久磁石モータ4を走行駆動源として走行する車両であり、モータ4は電気自動車の車軸に結合されている。以下、電気自動車を例に説明するが、ハイブリッド自動車(HEV)にも本発明を適用可能である。
本例の電気自動車は、上述した三相交流モータ4と、モータ4の電源である、バッテリ1と、当該バッテリ1の直流電力を交流電力に変換する半導体モジュール3と、平滑用コンデンサ5と、コントローラ6と、回転子位置センサ7と、電流センサ8と、電圧センサ9と、を備える。
バッテリ1は、半導体モジュール3に電気的に接続されている。バッテリ1には、例えばリチウムイオン電池などの二次電池が搭載されており、直流電力を半導体モジュール3に供給する。
半導体モジュール3は、インバータであり、複数のスイッチング素子(絶縁ゲートバイポーラトランジスタIGBT)Q1〜Q6と、各スイッチング素子Q1〜Q6に並列に接続され、スイッチング素子Q1〜Q6の電流方向とは逆方向に電流が流れる整流素子(ダイオード)D1〜D6とにより形成されるインバータを有し、バッテリ1の直流電力を交流電力に変換して、モータ4に供給する。本例では、2つのスイッチング素子を直列に接続した3対の回路がバッテリ1に並列に接続され、各対のスイッチング素子間とモータ4の三相入力部とがそれぞれ電気的に接続されている。各スイッチング素子Q1〜Q6には、同一の半導体素子が用いられ、例えば、絶縁ゲートパイポーラトランジスタ(IGBT)が用いられる。
図1に示す例でいえば、スイッチング素子Q1とQ2、スイッチング素子Q3とQ4、スイッチング素子Q5とQ6がそれぞれ直列に接続され、スイッチング素子Q1とQ2の間とモータ4のU相、スイッチング素子Q3とQ4の間とモータ4のV相、スイッチング素子Q5とQ6の間とモータ4のW相がそれぞれ接続されている。スイッチング素子Q1、Q3、Q5は、バッテリ1の正極側に電気的に接続されており、スイッチング素子Q2、Q4、Q6は、バッテリ1の負極側に電気的に接続されている。各スイッチング素子Q1〜Q6のオン及びオフの切り換えは、コントローラ6により制御される。
半導体モジュール3は、上記のスイッチング素子Q1〜Q6及びダイオードD1〜D6の他に、温度検出部31〜36と、第1過熱状態判定部37とを備える。温度検出部31〜36は、各スイッチング素子Q1〜Q6の素子上又は素子近傍に設けられ、少なくとも半導体モジュール3内に設けられる。温度検出部31〜36は、例えば、PN接合を有するセンシング素子と定電流回路から構成されるセンサである。温度検出部31〜36は、各スイッチング素子Q1〜Q6の温度を検出する温度センサとして機能する。温度検出部31〜36は、例えば、当該定電流回路からPN接合部分に電流を流し、スイッチング素子Q1〜Q6に応じて変換するPN接合部分の電圧値の変動を読み取ることで、スイッチング素子Q1〜Q6の温度を直接的に検出する。温度検出部31〜36は、各スイッチング素子Q1〜Q6の温度を直接的に検出するセンサであって、後述する温度推定部64と比較して、各スイッチング素子Q1〜Q6の温度変化に対する応答性がよく、応答速度が高い。温度検出部31〜36は、各スイッチング素子Q1〜Q6の温度を検出すると、スイッチング素子Q1〜Q6のそれぞれの検出温度を第1過熱状態判定部37に送信する。なお、温度検出部31〜36は、スイッチング素子Q1〜Q6の温度を検出する素子であれば、上記以外の他の構成であってもよい。
第1過熱状態判定部37は、温度検出部31〜36により検出された、スイッチング素子Q1〜Q6の検出温度を用いて、スイッチング素子Q1〜Q6の状態を判定する。なお、第1過熱状態判定部37の制御内容は後述する。
コンデンサ5は、平滑用のコンデンサである。一般に、スイッチング素子Q1〜Q6のスイッチング周波数は、半導体モジュール3とモータ4との間を流れる相電流の周波数より約5倍高い、1kHz〜100kHz程度に設定される。そして、半導体モジュール3に入力される入力電流(Iin)も当該スイッチング周波数に近い周波数のリプルを含む。さらに電力ケーブル等を含むバッテリ1側のインピーダンス2が大きいため、半導体モジュール3の構成部品に対して脈動する電圧が加わるおそれがある。そのため、本例では、コンデンサ5をインピーダンス2と半導体モジュール3との間に接続することで、電圧の脈動を抑制している。
回転子位置センサ7は、レゾルバやエンコーダなどのセンサであって、モータ4に設けられ、モータ4の回転子の位置を検出することにより、モータ4の回転数を検出し、検出回転数をコントローラ6に出力する。
電流センサ8は、モータ4の各相の相電流を検出し、検出電流をコントローラ6に送信する。電圧センサ9は、バッテリ1から半導体モジュール3に供給される電圧を検出し、検出電圧をコントローラ9に送信する。
コントローラ6は、トルク制御部61と、変換制御部62と、PWM変換器63と、温度推定部64と、過熱状態判定部65と、過熱保護部66とを備える。コントローラ6は、ドライバーの意図に従い車両を走行させるために、ドライバーの加減速要求よって外部から入力されるトルク指令(T)に応じて、スイッチング素子Q1〜Q6のスイッチング信号を生成し、各スイッチング素子Q1〜Q6に送信することで、半導体モジュール3を制御する。
トルク制御部61は、過熱保護部66からの信号に応じてトルク指令(T)に制限をかけることにより、ドライバーからの要求トルクに対してモータ4の発生トルクを下げるように制御し、制限されたトルク指令を変換制御部62に送信する。過熱保護部66からの信号によりトルクの制限をかける必要がない場合には、トルク制御部61は、トルク指令(T)に対して制限をかけることなく、変換制御部62に出力する。
変換制御部62は、トルク制御部61から出力されるトルク指令、電流センサ8により検出される、モータ4の相電流、電圧センサ9により検出される。バッテリ1の電圧に基づいて、各スイッチング素子Q1〜Q6における損失を最小限におさえる最適な指令値を演算し、PWM変換器63に出力する。
PWM変換制御部63は、変換制御部62から出力される指令値に基づいて、各スイッチング素子Q1〜Q6のスイッチング信号のキャリア周波数を設定し、当該キャリア信号をもつスイッチング信号を生成し、スイッチング信号を各スイッチング素子Q1〜Q6のゲート端子に送信する。これにより、PWM変換制御部63が、各スイッチング素子のオン及びオフを制御し、半導体モジュール3はバッテリ1から供給される直流電力を交流電力に変換しモータ4に供給する。また、PWM変換制御部63は、過熱保護部66からの信号に基づき、スイッチング信号のキャリア周波数を制御する。
温度推定部64は、半導体モジュール3の外部に設けられる温度センサにより検出された温度に基づいて、スイッチング素子Q1〜Q6の温度を推定する。温度推定部64は、例えば、半導体モジュール3を冷却する冷却器に設けられた温度センサ(図示しない)の検出値と、電流センサ8の検出電流と、電圧センサ9の検出電圧とから、各スイッチング素子Q1〜Q6の損失を演算し、当該損失から各スイッチング素子Q1〜Q6の温度を演算により推定する。素子の放熱系のモデルは予め設定されているため、各スイッチング素子Q1〜Q6の推定温度は、当該温度センサ、電流センサ8及び電圧センサ9の検出値から演算により算出される。温度推定部64は、温度検出部31〜36と異なり、スイッチング素子Q1〜Q6の温度を間接的に計測する部分であって、スイッチング素子Q1〜Q6の温度を直接、検出していない。そのため、温度推定部64は、スイッチング素子Q1〜Q6の温度変化に対して応答速度が遅い。なお、温度推定部64は、スイッチング素子Q1〜Q6の温度を演算により推定するものであれば、上記以外の構成であってもよい。
第2過熱状態判定部65は、温度推定部64から送信されるスイッチング素子Q1〜Q6の推定温度と、第1過熱状態判定部37から送信される信号のデータとを用いて、スイッチング素子Q1〜Q6の過熱状態を判定する。そして、第2過熱状態判定部65は、当該過熱状態の判定結果を過熱保護部66に送信する。過熱状態とは、スイッチング素子Q1〜Q6の温度が高くなり、スイッチング素子Q1〜Q6に異常が生ずる可能性が高くなる状態を示しており、スイッチング素子Q1〜Q6の定格温度の状態又は当該定格温度を超えた状態を示す。
過熱保護部66は、過熱保護部66から送信される、過熱状態の判定結果に基づいて、トルク制御部61に対して、外部からの入力トルクに制限をかける旨の信号を送信する。また過熱保護部66は、過熱保護部66から送信される、過熱状態の判定結果に基づいて、PWM変換器63に対して、スイッチング素子Q1〜Q6のスイッチング信号のキャリア周波数を下げる旨の信号を送信する。
次に、図1及び図2を用いて、本例の温度保護装置の制御内容を説明する。図2は、温度検出部31〜36により検出される検出温度(T)、温度推定部64により推定される推定温度(T)、温度差(ΔTab)及び仮想温度(T)の時間対する温度特性と、第1判定信号、切替フラグ及び第2判定信号の時間に対する出力特性を示すグラフである。
図2の温度グラフは、時間t1で、スイッチング素子Q1〜Q6に損失が発生し、素子温度が上昇している時の時間推移を表している。なお、検出温度(T)について、温度検出温度31〜36は各スイッチング素子Q1〜Q6のそれぞれ温度を検出するため、それぞれの検出温度が異なる場合があるが、本例では、それぞれの検出温度は僅かなものとして、検出温度(T)として表記している。
温度検出部31〜36は、上記の通り、各スイッチング素子Q1〜Q6の検出温度(T)を検出し、第1過熱状態判定部37に送信する。第1過熱状態判定部37には、スイッチング素子Q1〜Q6の過熱状態を判定するための閾値温度として、第1閾値温度(T)が設定されている。
ところで、温度検出部31〜36から送信される信号に対するノイズの影響について説明する。温度検出部31〜36は、図1に示すように、強電系の半導体モジュール3に設けられており、第1過熱状態判定部37を介して、弱電系のコントローラ6に対して信号を送信する。そのため、温度検出部31〜36は、強電系の信号を弱電系の制御部に送信するため、送信の際にノイズが混入する可能性がある。スイッチング素子Q1〜Q6の温度が低温領域である場合には、スイッチング素子Q1〜Q6に対する負荷が小さいため、例えば、スイッチング素子Q1〜Q6の過熱状態を判定する際に判定時間をかけて当該ノイズによる影響を抑制させることができる。スイッチング素子Q1〜Q6の温度が高温領域である場合には、スイッチング素子Q1〜Q6に対して負荷が大きい状態であるため、判定時間をかけてノイズによる影響を抑制させる間にも、スイッチング素子Q1〜Q6の温度が上昇し、スイッチング素子Q1〜Q6に対する負荷がさらに大きくなってしまう。そのため、高温領域では、ノイズ除去のために判定時間をかけることは、好ましくない。
一方、温度推定部64は、強電系の部分に設けられておらず、弱電系における、ソフトウェア処理を行うことで、スイッチング素子Q1〜Q6の温度を推定するため、上記のような、ノイズによる影響は少ない。
本例は、第1の閾値温度(T)を境界として、第1の閾値温度より低い温度領域では、温度検出部31〜36の検出温度(T)を用いて、スイッチング素子Q1〜Q6の過熱状態を判定し、第1の閾値温度(T)より高い温度領域では、温度推定部64の推定温度(T)を用いて、スイッチング素子Q1〜Q6の過熱状態を判定する。
第1過熱状態判定部37は、温度検出部31〜36の検出温度(T)と第1の閾値温度(T)を比較する。そして、温度検出部31〜36の複数の検出温度(T)のうち、少なくとも一つ検出温度(T)が第1閾値温度(T)より高い場合には、第1過熱状態判定部37は、オン状態の第1判定信号を第2過熱状態判定部65に送信する。一方、検出温度(T)が第1の閾値温度(T)以下である場合には、第1過熱状態判定部37は、オフ状態の第1判定信号を第2過熱状態判定部65に送信する。第1判定信号は、二値信号であって、半導体モジュール3から絶縁された信号配線(図示しない)により送信される。また、第1過熱状態判定部37は、少なくとも一つの検出温度(T)が第1閾値温度(T)より高い状態から、全ての検出温度(T)が第1閾値温度(T)以下の温度になる場合には、第1判定信号をオフ状態にする。
ここで、第1閾値温度(T)は予め設定されている閾値である。例えば、スイッチング素子Q1〜Q6に異常が生じる温度から、モータ5の出力を最大にした場合にスイッチング素子Q1〜Q6が所定時間あたり上昇する温度を引いた温度を、第1閾値温度(T)に設定してもよい。なお、当該所定時間とは後述する時間(tp)に相当する。
第2過熱状態判定部65は、第1過熱状態判定部37から送信される第1判定信号に基づいて、切替フラグをオンにし、温度推定部64の推定温度(Tb)を用いて、スイッチング素子Q1〜Q6の過熱状態を判定する。上記の通り、半導体モジュール3から送信される信号には、ノイズが混入される可能性が高いため、第2過熱状態判定宇65は、所定の時間(t)、第1判定信号がオン状態である場合に、切替フラグをオンにする。第1判定信号にノイズが混入されることにより、オン状態となる時間は短時間に限られているため、第2過熱状態判定部65は、所定の時間(t)の判定時間を設けることにより、ノイズによる誤検知を防ぐことができる。
図2に示すように、時間t2〜時間t3において、第1判定信号は、ノイズによる影響を受け、短時間、オン状態になっている。しかし、オン状態の時間は、所定の時間(t)より短いため、第2過熱状態判定部65は、時間t3の時点で、切替フラグをオンにしない。そして、スイッチング素子Q1〜Q6の検出温度(Ta)が上昇し、検出温度(Ta)が第1閾値温度(T)より高くなると、第1過熱状態判定部37は、第1判定信号をオン状態にする。第2過熱状態判定部65は、オン状態の第1判定信号を受信した時点(t4)から所定の時間(tp)を経過した時点(t5)で、切替フラグをオンにする。また第2過熱状態判定部65は、時間(t4)の時点の推定温度(Tb1)を記憶する。
第2過熱状態判定部65は、切替フラグをオンにすると、検出温度(Ta)が第1閾値温度(T)を越えた時点(t4)の、温度推定部64の推定温度(Tb1)と、時間t4以降に推定される推定温度(Tb)との温度差(ΔTab)を演算する。当該温度差(ΔTab)は、推定温度(Tb1)に対する温度差(ΔTab)を示し、推定温度(Tb1)に対する相対温度である。第2過熱状態判定部65は、切替フラグをオンにすると、温度差(ΔTab)を随時演算している。切替フラグをオンからオフにした後、第2過熱状態判定部65は、再びオンにするまでは、記憶されている推定温度(Tb1)を更新しない。
そして、第2過熱状態判定部65は、温度差(ΔTab)と第2閾値温度(T)とを比較する。ここで、第2閾値温度(T)は予め設定されている温度であって、0(度)より高い温度に設定されている。温度差(ΔTab)が第2閾値温度(T)より高い場合に、第2過熱状態判定部65は、スイッチング素子Q1〜Q6が過熱状態であると判断し、第2判定信号をオン状態にして、当該第2判定信号を過熱保護部66に送信する。
検出温度(Ta)が第1閾値温度(T)を越えた時点(t4)で、スイッチング素子Q1〜Q6の温度が高温領域に入る。さらに、検出温度(Ta)が上昇すると、推定温度(Tb)も、スイッチング素子Q1〜Q6の温度の上昇に伴い上昇する。一方で、高温領域では、上記ノイズ除去のための判定時間を確保しない方がよいため、本例では、時間t4以降に上昇する推定温度(Tb)を用いることで、仮想的にスイッチング素子Q1〜Q6の温度を推定し、過熱状態を判定する。また、第2過熱状態判定部65は、時間t4の時点の推定温度(Tb1)を基準におき、当該基準となる温度に対する、推定温度(Tb)の上昇温度から過熱状態を判定する。そのため、全温度領域で推定温度(Tb)のみを用いて過熱状態を判定する場合と比較して、本例の判定精度は高くなる。
図2に示すように、仮想温度(Tx)は、第1の過熱状態判定部37及び第2の過熱状態判定部37により把握している、スイッチング素子Q1〜Q6の温度を示している。時刻t4以前は検出温度(Ta)と同様に推移し、時刻t4以降は、第1閾値温度(T)に温度差(ΔTab)を加えた温度で推移している。これにより、当該仮想温度(Tx)は、検出温度(Ta)と近似させることができるため、本例の判定精度を高くすることができる。
また、第2過熱状態判定部65は、温度差(ΔTab)が第2閾値温度(T)より高い状態から第2閾値温度(T)以下の温度になった場合には、第2過熱状態判定部65は、第2判定信号をオフ状態にして、当該第2判定信号を過熱保護部66に送信する。
図2に示すように、時間(t5)以降、第2過熱状態判定部65は、温度差(ΔTab)を演算し、第2閾値温度(T)と比較する。時間(t6)の時点で、温度差(ΔTab)が第2閾値温度(T)より高くなり、第2過熱状態判定部65は、スイッチング素子Q1〜Q6が過熱状態である、と判断し、第2判定信号をオン状体にし、過熱保護部66に送信する。
過熱保護部66は、オン状態の第2判定信号を受信すると、回転子位置センサ7から送信される、モータ4の回転数に応じて、スイッチング素子Q1〜Q6を過熱状態から保護する制御を行う。過熱保護部66には、過熱保護のための制御を切り換えるための閾値回転数が設定されている。そして、回転子位置センサ7により検出された回転数が当該閾値回転数より多い場合には、過熱保護部66は、トルク制御部61に制御信号を送信し、トルク指令(T)に制限をかけ、スイッチング素子Q1〜Q6の負荷を軽減させる。一方、回転子位置センサ7により検出された回転数が当該閾値回転数より少ない場合には、過熱保護部66は、PWM変調器63に制御信号を送信し、スイッチング信号のキャリア周波数に制限をかけ、スイッチング素子Q1〜Q6の負荷を軽減させる。
次に、本例の温度保護装置の制御手順を、図3を用いて説明する。図3は本例の温度保護装置の制御手順を示すフローチャートである。
ステップS1にて、温度検出手段31〜36は、所定のサンプリング周期で、スイッチング素子Q1〜Q6の温度を検出し、第1過熱状態判定部37に検出温度(Ta)を送信する。ステップS2にて、温度推定部64は、所定のサンプリング周期で、スイッチング素子Q1〜Q6の温度を推定し、第2過熱状態判定部65に推定温度(Tb)を送信する。ステップS3にて、第1過熱状態判定部37は、検出温度(Ta)と第1閾値温度(T)とを比較する。
検出温度(Ta)が第1閾値温度(T)より高い場合には、ステップS4にて、第1過熱状態判定部37は、オン状態の第1判定信号を第2過熱状態判定部65に送信する。一方、検出温度(Ta)が第1閾値温度(T)以下の温度である場合には、第1過熱状態判定部37は、ステップS31にて、オフ状態の第1判定信号を第2過熱状態判定部65に送信しつつ、ステップS1に戻る。
ステップS5にて、第2過熱状態判定部65は、ステップS4の第1判定信号に基づいて、検出温度(Ta)が第1閾値温度に達した時点の推定温度(Tb1)を保存する。ステップS6にて、第2過熱状態判定部65は、ステップS4の第1判定信号の受信状態から、第1判定信号のオン状態が、所定時間(tp)、継続したか否かを判定する。第1判定信号のオン状態の経過時間が所定時間(tp)を超える場合には、ステップS7にて、第2過熱状態判定部65は、切替フラグをオンにする。一方、第1判定信号のオン状態の経過時間が所定時間(tp)以下の時間である場合には、ステップS93にて、第2過熱状態判定部65は、切替フラグをオフにし、ステップS1に戻る。
ステップS8にて、第2過熱状態判定部65は、推定温度(Tb)と、ステップS5の推定温度(Tb1)とを用いて、温度差(ΔTab)を演算する。ステップS9にて、第2過熱状態判定部65は、温度差(ΔTab)と第2閾値温度(T)とを比較する。温度差(ΔTab)が第2閾値温度(T)より高い場合には、第2過熱状態判定部65は、第2判定信号をオンにして、過熱保護部66に送信する(ステップS10)。
一方、温度差(ΔTab)が第2閾値温度(T)以下の温度である場合には、ステップS91にて、第2過熱状態判定部65は、第2判定信号をオフにして、過熱保護部66に送信する。そして、ステップS92にて、第2過熱状態判定部65は、推定温度(Tb)と推定温度(Tb1)とを比較する。推定温度(Tb)が推定温度(Tb1)より高い場合には、第2過熱状態判定部65は、スイッチング素子Q1〜Q6の温度が上昇中であると判断し、ステップS1に戻る。一方、推定温度(Tb)が推定温度(Tb1)以下の温度である場合には、スイッチング素子Q1〜Q6の温度は、第1閾値温度(T)より低くなり、第2過熱状態判定部65は、スイッチング素子Q1〜Q6の検出温度(Ta)が低温領域に戻ったと判断し、切替フラグをオフにして(ステップS93)、ステップS1に戻る。
ステップS11にて、過熱保護部66は、ステップS10の第2判定信号に基づき、回転子位置センサ7を用いて、モータ4の回転数を検出する。ステップS12にて、過熱保護部66は、検出した回転数と閾値回転数とを比較する。回転数が閾値回転数より多い場合には、過熱保護部66はトルク制御部61に制御信号を送信し、トルク制御部61は入力されたトルクに制限をかける(ステップS13)。一方、回転数が閾値回転数以下の回転数である場合には、過熱保護部66はPWM変換器63に制御信号を送信し、PWM変換器63はキャリア周波数を低下させる(ステップS14)。これにより、本例は、スイッチング素子Q1〜Q6の過熱状態を判定し、判定結果に基づいて、スイッチング素子Q1〜Q6を過熱状態から保護する。
上記のように、本例は、温度検出部31〜36と、温度推定部64とを備え、第1過熱状態判定部37及び第2過熱状態判定部65により、検出温度(T)が第1閾値温度(T)に達した時点の推定温度(Tb1)と、検出温度(T)が第1閾値温度(T)に達した時点以降に推定される推定温度(T)とを用いて、スイッチング素子Q1〜Q6の過熱状態を判定し、スイッチング素子Q1〜Q6を過熱状態から保護する。これにより、本例は、第1閾値温度(T)より低い低温領域では、検出温度(T)に基づき、スイッチング素子Q1〜Q6の過熱状態を判定するため、実際のスイッチング素子Q1〜Q6の温度と判定に用いる検出温度の乖離を抑えることができ、判定精度を高めることができる。また本例は、第1閾値温度(T)より高い高温領域では、推定温度(Tb1)と推定温度(T)とを用いるため、判定のために用いられる温度を信号により送受信する際に、ノイズが当該信号に混入されることを抑制し、高温領域における誤判定を回避することができる。その結果として、本例は、スイッチング素子Q1〜Q6を過熱状態から適切に保護することができる。
また本例は、推定温度(Tb1)と推定温度(T)との温度差(ΔTab)を算出し、当該温度差(ΔTab)が第2閾値温度(T)を越えた場合に、スイッチング素子Q1〜Q6が過熱状態であると判定する。これにより、高温領域において、推定温度(Tb1)を基準とした相対温度を用いて判断するため、実際のスイッチング素子Q1〜Q6の温度に対して追随した温度データから判定することができ、高温領域においても、過熱状態の判定精度を高めることができる。その結果として、本例は、スイッチング素子Q1〜Q6を過温状態から適切に保護することができる。また、高温状態における過熱状態の誤判定回避と、スイッチング素子Q1〜Q6の過熱保護を精度よく、両立させることができる。
また本例は、モータ4のトルクを制限することで、スイッチング素子Q1〜Q6を過熱状態から保護する。これにより、インバータにおける静寂性を維持しつつ、スイッチング素子Q1〜Q6を過熱状態から適切に保護することができる。なお本例は、回転数に基づいて、モータ4のトルクの制御又はキャリア周波数の制御のいずれか一方を選択し、スイッチング素子Q1〜Q6を過温状態から保護するが、オン状態の第2判定信号の受信した時に、モータ4のトルクに制限をかける制御又はキャリア周波数を低下させる制御のいずれか一方による制御、あるいは、モータ4のトルクに制限をかける制御及びキャリア周波数を低下させる制御を行ってもよい。
また本例は、モータ4の回転数が閾値回転数より少ない場合に、スイッチング信号のキャリア周波数を低下させることで、スイッチング素子Q1〜Q6を過熱状態から保護する。これにより、モータ4の動力性能の悪化を長時間にわたって回避しつつ、スイッチング素子Q1〜Q6を過熱状態から適切に保護することができる。
また本例は、モータ4の回転数が閾値回転数より多い場合には、モータ4のトルクを制限し、モータ4の回転数が閾値回転数より少ない場合には、スイッチング信号のキャリア周波数を低下させることで、スイッチング素子Q1〜Q6を過熱状態から保護する。これにより、広範囲の動作点で、モータ4の動力性能を維持しつつ、スイッチング素子Q1〜Q6を過熱状態から適切に保護することができる。
また本例において、第2過熱状態判定部65は、検出温度(T)が第1閾値温度(T)より高い、第1判定信号のオン状態が、少なくとも時間(tp)の間、継続した場合に、切替フラグをオンにし、推定温度(Tb1)と推定温度(T)とを用いて、スイッチング素子Q1〜Q6の過熱状態を判定する。これにより、本例は、検出温度(T)を送受信する信号に混入されるノイズに基づいて、誤判定することを回避することができる。また本例において、第1閾値温度(T)は、スイッチング素子Q1〜Q6に異常が生じる温度から、モータ4の出力値を最大にした場合にスイッチング素子Q1〜Q6が時間(tp)あたり上昇する温度を引いた温度に設定されている。これにより、スイッチング素子Q1〜Q6が異常温度に達する前に、本例の高温領域において判定することができるため、判定精度を高めつつ、スイッチング素子Q1〜Q6を保護することができる。
なお、本例は、温度差(ΔTab)と第2閾値温度(T)とを用いて、スイッチング素子Q1〜Q6の過熱状態を判定するが、推定温度(Tb)に応じて第2閾値温度(T)を設定し、検出温度(T)が第1閾値温度(T)に達した時点以降に推定される推定温度(T)が当該第2閾値温度(T)を超えた場合に、スイッチング素子Q1〜Q6が過熱状態である、と判定してもよい。図2を参照し、時間(t4)以降に推定される推定温度(T)の温度上昇は、推定温度(Tb1)より高く設定された第2閾値温度(T)を越えたか否かで、判断することができる。この際、第2閾値温度(T)は、少なくとも推定温度(Tb1)より高く設定すればよいため、本例の第2閾値温度(T)は、検出温度(T)が第1閾値温度(T)に達した時点の推定温度(Tb1)に応じて設定する。これにより、本例は、実際のスイッチング素子Q1〜Q6の温度に対して追随した温度データから判定することができ、高温領域においても、過熱状態の判定精度を高めることができる。その結果として、本例は、スイッチング素子Q1〜Q6を過温状態から適切に保護することができる。また、高温状態における過熱状態の誤判定回避と、スイッチング素子Q1〜Q6の過熱保護を精度よく、両立させることができる。
なお第2閾値温度(T)は、推定温度(Tb1)の大きさに応じて設定してもよい。推定温度(T)の上昇率は、基準となる温度の大きさにより異なる場合がある。そして、本例において、推定温度(T)の上昇開始時の温度は定まっていないため、推定温度(Tb1)の大きさも状況に応じて異なる。そのため、高温領域においてスイッチング素子Q1〜Q6の過熱状態を判定する際の基準となる温度は、必ずしも固定化されないため、推定温度(Tb1)に応じて第2閾値温度(T)を設定することにより、過熱状態の判定精度を高めることができる。
なお本例において、第1過熱状態判定部は、半導体モジュール3内に設けたが、半導体モジュール3の外でもよく、コントローラ9に設けてもよい。
なお本例の温度検出部31〜36が本発明の「温度検出手段」に相当し、温度推定部64が「温度推定手段」に、スイッチング素子Q1〜Q6が「半導体素子」に、過熱保護部66が「過熱保護手段」に、第1過熱状態判定部37及び第2過熱状態判定部65が「過熱状態判定手段」に、スイッチング素子Q1〜Q6と整流素子D1〜D6とにより形成されるインバータが本発明の「インバータ」に相当する。
《第2実施形態》
発明の他の実施形態に係る温度保護装置を、図1、図4及び図5を用いて、説明する。本例では上述した第1実施形態に対して、第2過熱状態判定部65に第3閾値温度(T)を設定し、スイッチング素子Q1〜Q6の過熱状態を二段階で判定している点が異なる。これ以外の構成は上述した第1実施形態と同じであるため、その記載を適宜、援用する。図4は、温度検出部31〜36により検出される検出温度(Ta)、温度推定部64により推定される推定温度(Tb)、温度差(ΔTab)及び仮想温度(Tx)の時間対する温度特性と、第1判定信号、切替フラグ、第2判定信号及び第3判定信号の時間に対する出力特性を示すグラフである。図5は本例の温度保護装置の制御手順を示すフローチャートである。
第2過熱状態判定部65には、第2閾値温度(T)と第3閾値温度(T)とが設定されている。第3閾値温度(T)は、予め設定されている温度であって、第2閾値温度(T)より高く、0(度)より高い温度に設定されている。第2閾値温度(T)及び第3閾値温度(T)は、スイッチング素子Q1〜Q6の過熱状態に応じて、スイッチング素子Q1〜Q6を過熱状態から保護するための制御を切り換えるために、設定されている温度である。
温度差(ΔTab)が第2閾値温度(T)より高い場合には、第2過熱状態判定部65は第2判定信号をオンにして、過熱保護部66に当該第2判定信号を送信する。温度差(ΔTab)が第3閾値温度(T)より高い場合には、第2過熱状態判定部65は第3判定信号をオンにして、過熱保護部66に当該第3判定信号を送信する。過熱保護部66は、オン状態の第2判定信号を受信した場合には、PWM変換器63を制御し、スイッチング素子Q1〜Q6のスイッチング信号のキャリア周波数を低下させる。また過熱保護部66は、オン状態の第3判定信号を受信した場合には、トルク制御部61を制御し、モータ4のトルクに制限をかける。
次に、図4を用いて、時間t1で、スイッチング素子Q1〜Q6に損失が発生し、素子温度が上昇している時の時間推移における、本例の制御を説明する。時間(0)〜時間(t5)までの制御内容は、第1実施形態と同様であるため、説明を省略する。
時間(t6)において、温度差(ΔTab)が第2閾値温度(T)より高くなると、第2過熱状態判定部65は、スイッチング素子Q1〜Q6が過熱状態であると判定し、第2判定信号をオンにし、過熱保護部66へ送信する。過熱保護部66は、PWM変換器63に制御信号を送信し、PWM変換器63を制御する。PWM制御器63は、スイッチング信号のキャリア周波数を低下させる。
さらに、スイッチング素子Q1〜Q6の温度が上昇すると、温度差(ΔTab)が第3閾値温度(T)より高くなった時点(t7)で、第2過熱状態判定部65は、スイッチング素子Q1〜Q6が過熱状態であると判定し、第3判定信号をオンにし、過熱保護部66へ送信する。過熱保護部66は、トルク制御部61に制御信号を送信し、トルク制御部61を制御する。そして、トルク制御部61は、モータ4のトルクに制限をかける。
これにより、温度差(ΔTab)が第2閾値温度(T)より高く第3閾値温度(T)より低い場合には、過熱保護部66は、PWM変換器63を制御しスイッチング信号のキャリア周波数を低下させることにより、スイッチング素子Q1〜Q6を過熱状態から保護する。また、温度差(ΔTab)が第3閾値温度(T)より高い場合には、過熱保護部66は、トルク制御部61を制御し、モータ4のトルクに制限をかけることにより、スイッチング素子Q1〜Q6を過熱状態から保護する。
次に、図5を用いて、本例の温度保護装置の制御手順を説明する。ステップS1〜ステップS10までの制御は、第1実施形態と同様であるため、説明を省略する。
ステップS51にて、第2過熱状態判定部65は、温度差(ΔTab)と第3閾値温度(T)とを比較する。温度差(ΔTab)が第3閾値温度(T)より高い場合には、第3過熱状態判定部65は、第3判定信号をオンにして、過熱保護部66に送信する(ステップS52)。そして、過熱保護部66は、トルク制御部61を制御し、トルクに制限をかける(ステップS53)。
一方、温度差(ΔTab)が第3閾値温度(T)以下の温度である場合には、ステップS54にて、第2過熱状態判定部65は、第3判定信号をオフにして、過熱保護部66に送信する。そして、過熱保護部66は、PWM変換器63を制御し、スイッチング信号のキャリア周波数を低下させる。
上記のように本例は、温度差(ΔTab)が第2閾値温度(T)より高く第3閾値温度(T)より低い場合には、スイッチング素子Q1〜Q6のスイッチング周波数のキャリア周波数を低下させ、温度差(ΔTab)が第3閾値温度(T)より高い場合には、モータ4のトルクを制限する。これにより、本例は、トルクに制限をかける制御より、キャリア周波数を低下させる制御を優先的に適用させることで、モータ4の動力性能が損なわれることを防ぐことができる。また、キャリア周波数を低下させても、モータ4の回転数又はトルク指令値の変化等により、スイッチング素子Q1〜Q6の温度が上昇し続ける状況において、本例はトルクを制限するため、スイッチング素子Q1〜Q6の異常を回避することができる。その結果として、本例は、過熱状態の判定精度高めつつ、スイッチング素子Q1〜Q6を保護することができる。
なお、本例は、温度差(ΔTab)と第2閾値温度(T)及び第3閾値温度(T)とを用いて、スイッチング素子Q1〜Q6の過熱状態を判定するが、推定温度(Tb)に応じて第2閾値温度(T)及び第3閾値温度(T)を設定し、検出温度(T)が第1閾値温度(T)に達した時点以降に推定される推定温度(T)が当該第2閾値温度(T)を超えた場合に、第2過熱状態判定部65は第2判定信号をオンにし、当該推定温度(T)が第3閾値温度(T)を超えた場合に、第2過熱状態判定部65は第3判定信号をオンにしてもよい。これにより、本例は必ずしも温度差(ΔTab)を演算する必要はなく、検出温度(T)が第1閾値温度(T)に達した時点以降に推定される推定温度(T)を用いて、推定温度(T)が、第3の閾値温度(T)より低く、かつ、第2の閾値温度(T)より高い温度である場合に、スイッチング素子Q1〜Q6のスイッチング信号のキャリア周波数を低下させ、第2の推定温度(T)が第3の閾値温度(T)より高い温度である場合に、モータ4のトルクを制限する、制御を行うことができる。
また、第2閾値温度(T)及び第3閾値温度(T)は、推定温度(Tb1)の大きさに応じて設定してもよい。推定温度(T)の上昇率は、基準となる温度の大きさにより異なる場合がある。そして、本例において、推定温度(T)の上昇開始時の温度は定まっていないため、推定温度(Tb1)の大きさも状況に応じて異なる。そのため、高温領域においてスイッチング素子Q1〜Q6の過熱状態を判定する際の基準は、必ずしも固定化されないため、推定温度(Tb1)に応じて及び第3閾値温度(T)を設定することにより、過熱状態の判定精度を高めることができる。
1…バッテリ
2…インピーダンス
3…半導体モジュール
Q1〜Q6…スイッチング素子
D1〜D6…ダイオード
31〜36…温度検出部
37…第1過熱状態判定部
4…モータ
5…コンデンサ
6…コントローラ
61…トルク制御部
62…変換制御部
63…PWM変換部
64…温度推定部
65…第2過熱状態判定部
66…過熱保護部
7…回転子位置センサ
8…電流センサ
9…電圧センサ

Claims (9)

  1. 半導体素子の温度を検出する温度検出手段と、
    当該半導体素子の温度を推定する温度推定手段と、
    前記温度検出手段により検出される検出温度と前記温度推定手段により推定される推定温度とを用いて、前記半導体素子の過熱状態を判定する過熱状態判定手段と、
    前記過熱状態判定手段による判定結果に基づいて、前記半導体素子を前記過熱状態から保護する過熱保護手段と、を備え、
    前記過熱状態判定手段は、
    前記検出温度が第1の閾値温度に達した時点の第1の推定温度と、前記検出温度が前記第1の閾値温度に達した時点以降に推定される第2の推定温度とを用いて、前記半導体素子が過熱状態であることを判定する
    ことを特徴とする温度保護装置。
  2. 前記過熱状態判定手段は、
    前記第1の推定温度と前記第2の推定温度との温度差を算出し、
    前記温度差が第2の閾値温度を超えた場合に、前記半導体素子が過熱状態であると判定する
    ことを特徴とする請求項1記載の温度保護装置。
  3. 前記過熱状態判定手段は、
    前記第1の推定温度に応じて第2の閾値温度を設定し、
    前記第2の推定温度が前記第2の閾値温度を超えた場合に、記半導体素子が過熱状態であると判定する
    ことを特徴とする請求項1記載の温度保護装置。
  4. 請求項1〜3のいずれか一項に記載する温度保護装置と、
    前記半導体素子を有するインバータと、
    前記インバータから供給される電力により駆動するモータと、を備えるモータ制御装置であって、
    前記過熱保護手段は、前記モータのトルクを制限することにより、前記半導体素子を前記過熱状態から保護する
    ことを特徴とするモータ制御装置。
  5. 請求項1〜3のいずれか一項に記載する温度保護装置と、
    前記半導体素子を有するインバータと、
    前記インバータから供給される電力により駆動するモータと、
    前記モータの回転数を検出する回転数検出手段と、を備えるモータ制御装置であって、
    前記過熱保護手段は、
    前記回転数検出手段により検出される前記回転数が所定の回転数より少ない場合に、前記半導体素子のスイッチング信号のキャリア周波数を低下させることにより、前記半導体素子を前記過熱状態から保護する
    ことを特徴とするモータ制御装置。
  6. 請求項1〜3のいずれか一項に記載する温度保護装置と、
    前記半導体素子を有するインバータと、
    前記インバータから供給される電力により駆動するモータと、
    前記モータの回転数を検出する回転数検出手段と、を備えるモータ制御装置であって、
    前記過熱保護手段は、
    前記回転数検出手段により検出される前記回転数が所定の回転数より多い場合に、前記モータのトルクを制限することにより、前記半導体素子を前記過熱状態から保護し、
    前記回転数検出手段により検出される前記回転数が所定の回転数より少ない場合に、前記半導体素子のスイッチング信号のキャリア周波数を低下させることにより、前記半導体素子を前記過熱状態から保護する
    ことを特徴とするモータ制御装置。
  7. 請求項1〜3のいずれか一項に記載する温度保護装置と、
    前記半導体素子を有するインバータと、
    前記インバータから供給される電力による駆動するモータと、を備えるモータ制御装置であって、
    前記過熱状態判定手段は、
    前記検出温度が前記第1の閾値温度より高い状態が、所定の時間の間、継続した場合に、前記第1の推定温度と前記第2の推定温度を用いて、前記半導体素子が過熱状態であることを判定し、
    前記第1の閾値温度は、前記半導体素子に異常が生じる温度から、前記モータの出力値を最大にした場合に前記半導体素子が前記所定の時間あたり上昇する温度を引いた温度に設定されている
    ことを特徴とするモータ制御装置。
  8. 請求項1〜3のいずれか一項に記載する温度保護装置と、
    前記半導体素子を有するインバータと、
    前記インバータから供給される電力により駆動するモータと、
    前記モータの回転数を検出する回転数検出手段と、
    を備えるモータ制御装置であって、
    前記過熱保護手段は、
    前記第2の推定温度が、前記第2の閾値温度より高い温度である第3の閾値温度より低く、かつ、前記第2の閾値温度より高い温度である場合に、前記半導体素子のスイッチング信号のキャリア周波数を低下させ、
    前記第2の推定温度が前記第3の閾値温度より高い温度である場合に、前記モータのトルクを制限する
    ことを特徴とするモータ制御装置。
  9. 半導体素子の温度を検出する温度検出工程と
    当該半導体素子の温度を推定する温度推定工程と、
    前記温度検出工程により検出される検出温度と前記温度推定工程により推定される推定温度とを用いて、前記半導体素子の過熱状態を判定する過熱状態判定工程と、
    前記過熱状態判定工程による判定結果に基づいて、前記半導体素子を前記過熱状態から保護する工程と、を含み、
    前記過熱状態判定工程は、
    前記検出温度が第1の閾値温度に達した時点の第1の推定温度を基準として、第2の前記推定温度が第2の閾値温度を超えた場合に、前記半導体素子が過熱状態であると判定する
    ことを特徴とする温度保護方法。
JP2010217307A 2010-09-28 2010-09-28 温度保護装置、モータ制御装置及び温度保護方法 Active JP5549505B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010217307A JP5549505B2 (ja) 2010-09-28 2010-09-28 温度保護装置、モータ制御装置及び温度保護方法
EP11778957.8A EP2622739B1 (en) 2010-09-28 2011-09-12 Temperature protection device
PCT/IB2011/002116 WO2012042324A1 (en) 2010-09-28 2011-09-12 Temperature protection device
US13/816,879 US8922152B2 (en) 2010-09-28 2011-09-12 Temperature protection device
CN201180044721.7A CN103109460B (zh) 2010-09-28 2011-09-12 温度保护装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010217307A JP5549505B2 (ja) 2010-09-28 2010-09-28 温度保護装置、モータ制御装置及び温度保護方法

Publications (2)

Publication Number Publication Date
JP2012075234A true JP2012075234A (ja) 2012-04-12
JP5549505B2 JP5549505B2 (ja) 2014-07-16

Family

ID=44906222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010217307A Active JP5549505B2 (ja) 2010-09-28 2010-09-28 温度保護装置、モータ制御装置及び温度保護方法

Country Status (5)

Country Link
US (1) US8922152B2 (ja)
EP (1) EP2622739B1 (ja)
JP (1) JP5549505B2 (ja)
CN (1) CN103109460B (ja)
WO (1) WO2012042324A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157357A1 (ja) * 2012-04-16 2013-10-24 三菱重工オートモーティブサーマルシステムズ株式会社 熱媒体加熱装置およびそれを備えた車両用空調装置
CN103378777A (zh) * 2012-04-20 2013-10-30 广东高标电子科技有限公司 一种电动车及其电机控制器的温度保护方法、装置
WO2014091852A1 (ja) * 2012-12-12 2014-06-19 富士電機株式会社 半導体チップ温度推定装置及び過熱保護装置
JP6099724B1 (ja) * 2015-11-10 2017-03-22 三菱電機株式会社 電動機制御装置
JP2017529825A (ja) * 2014-09-24 2017-10-05 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh 回路装置の駆動方法
WO2022224535A1 (ja) * 2021-04-20 2022-10-27 日立Astemo株式会社 電子制御システム及び電子制御装置
US11575371B2 (en) 2020-08-25 2023-02-07 Fuji Electric Co., Ltd. Semiconductor device

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5942500B2 (ja) * 2012-03-14 2016-06-29 日立工機株式会社 電動工具
GB201206925D0 (en) * 2012-04-20 2012-06-06 Trw Ltd Electric motor control
GB201302407D0 (en) * 2013-02-12 2013-03-27 Rolls Royce Plc A thermal controller
JP6161917B2 (ja) * 2013-02-21 2017-07-12 三菱重工オートモーティブサーマルシステムズ株式会社 車両用クーリングファン用制御システム及びその制御方法
CN103427670B (zh) * 2013-09-06 2016-04-20 海信(山东)空调有限公司 一种智能功率模块的温度控制方法及变频设备
JP5880519B2 (ja) * 2013-10-21 2016-03-09 トヨタ自動車株式会社 車載電子装置
JP5907236B2 (ja) * 2013-12-11 2016-04-26 株式会社デンソー 温度検出装置
JP6301240B2 (ja) * 2014-02-07 2018-03-28 本田技研工業株式会社 車両用バッテリ充電装置
CN104852356B (zh) * 2014-02-17 2018-09-21 伊顿公司 电动机的控制保护装置
CN104880262A (zh) * 2014-02-28 2015-09-02 鸿富锦精密工业(武汉)有限公司 电源过热指示***
CN104236746B (zh) * 2014-04-30 2016-10-26 苏州新代数控设备有限公司 用于马达的温度监控装置及监控方法
CN105329105B (zh) * 2014-07-30 2018-01-23 比亚迪股份有限公司 电机控制器及用于其的igbt的过温保护方法、装置
KR101646346B1 (ko) * 2014-09-23 2016-08-05 현대자동차주식회사 모터 제어 장치 및 방법
JP6256292B2 (ja) * 2014-10-22 2018-01-10 株式会社デンソー 温度保護装置
US9654002B2 (en) * 2014-10-23 2017-05-16 Qualcomm Incorporated Circuits and methods providing dead time adjustment at a synchronous buck converter
JP6312584B2 (ja) * 2014-12-05 2018-04-18 山洋電気株式会社 モータ制御装置
JP6450184B2 (ja) * 2014-12-24 2019-01-09 エイブリック株式会社 過熱検出回路及び半導体装置
JP6341101B2 (ja) * 2015-01-15 2018-06-13 ブラザー工業株式会社 電気機器
JP6408938B2 (ja) * 2015-03-06 2018-10-17 日立オートモティブシステムズ株式会社 インバータの故障診断装置及び故障診断方法
CN104777854A (zh) * 2015-04-16 2015-07-15 福州瑞芯微电子有限公司 一种半导体器件的温度控制方法
WO2016185601A1 (ja) * 2015-05-21 2016-11-24 日産自動車株式会社 モータ制御装置とモータ制御方法
JP6387911B2 (ja) * 2015-06-30 2018-09-12 株式会社デンソー 電子装置
CN107810596B (zh) * 2015-07-10 2020-07-28 株式会社日立产机*** 电力转换装置及其温度降低方法
JP6504030B2 (ja) * 2015-11-13 2019-04-24 株式会社デンソー 回転電機制御装置
JP6623829B2 (ja) 2016-02-24 2019-12-25 株式会社デンソー 過熱保護装置
EP4056321A1 (en) 2016-02-25 2022-09-14 Milwaukee Electric Tool Corporation Power tool including an output position sensor
JP6465848B2 (ja) * 2016-09-21 2019-02-06 キヤノン株式会社 モータ制御装置、シート搬送装置及び画像形成装置
CN106788358B (zh) * 2017-01-12 2020-10-09 佛山市顺德区美的电热电器制造有限公司 Igbt过热保护方法、装置及电器设备
US10819217B2 (en) * 2017-03-03 2020-10-27 Mitsubishi Electric Corporation Power conversion device and communication method
EP3593591A4 (en) * 2017-05-09 2020-01-15 Phillips and Temro Industries Inc. HEATING DEVICE CONTROL SYSTEM
CN110945777B (zh) * 2017-07-28 2023-10-10 日产自动车株式会社 仪器保护装置及仪器保护方法
JP6915501B2 (ja) * 2017-11-08 2021-08-04 トヨタ自動車株式会社 車両の制御装置
JP6962455B2 (ja) * 2018-04-11 2021-11-05 日産自動車株式会社 機器保護装置及び機器保護方法
KR102126879B1 (ko) * 2018-05-09 2020-06-25 엘에스일렉트릭(주) 인버터 제어방법
JP6941280B2 (ja) 2018-06-26 2021-09-29 株式会社オートネットワーク技術研究所 車載用の温度検出回路
US10742149B1 (en) * 2019-04-22 2020-08-11 General Electric Company System and method for reactive power control of a wind turbine by varying switching frequency of rotor side converter
JP6847158B2 (ja) * 2019-05-31 2021-03-24 三菱電機株式会社 電力変換装置
EP3820262A1 (en) * 2019-11-07 2021-05-12 ABB Schweiz AG A method for detecting a disturbance in a liquid cooling arrangement for an electric apparatus
CN111121452B (zh) * 2020-01-09 2020-09-18 永康市利高工具厂 一种基于导体半导体互相切换的加热器
DE102021208548A1 (de) 2021-08-06 2023-02-09 Zf Friedrichshafen Ag Verfahren zur Ansteuerung eines topologischen Halbleiterschalters für eine Leistungselektronik in einem Fahrzeug

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0778941A (ja) * 1993-06-30 1995-03-20 Mitsubishi Electric Corp 半導体集積回路における過熱保護回路
JPH0970195A (ja) * 1995-08-31 1997-03-11 Toyota Motor Corp モータの制御装置
JPH09121595A (ja) * 1995-10-27 1997-05-06 Meidensha Corp 電力変換器の温度保護機構
JPH11215687A (ja) * 1998-01-26 1999-08-06 Nissan Motor Co Ltd 電気自動車の過負荷防止装置
JP2000324893A (ja) * 1999-05-11 2000-11-24 Mitsubishi Electric Corp 電動機制御装置
JP2004208450A (ja) * 2002-12-26 2004-07-22 Sanden Corp モータ制御装置
JP2008005615A (ja) * 2006-06-22 2008-01-10 Nissan Motor Co Ltd 電動車両のモータ出力制御装置
JP2008131722A (ja) * 2006-11-20 2008-06-05 Nippon Reliance Kk パワー素子過熱保護装置
JP2009210282A (ja) * 2008-02-29 2009-09-17 Nissan Motor Co Ltd 温度測定装置および温度測定方法並びに温度測定装置の異常検出方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3668708B2 (ja) * 2001-10-22 2005-07-06 株式会社日立製作所 故障検知システム
JP2007082036A (ja) * 2005-09-16 2007-03-29 Rohm Co Ltd 半導体集積回路装置、電源装置、電気機器
EP1928083A4 (en) * 2005-09-21 2010-09-15 Mitsubishi Electric Corp DETECTION SYSTEM FOR EXCESSIVE TEMPERATURE OF A MOTOR CONTROLLER
CN101089500A (zh) * 2006-06-16 2007-12-19 乐金电子(天津)电器有限公司 复式空调及其控制方法
CN101419476B (zh) * 2007-10-26 2011-05-04 上海华虹Nec电子有限公司 湿法槽式机台液体槽中液体温度的检知监控***
US8203315B2 (en) * 2008-09-30 2012-06-19 Infineon Technologies Ag System and method for temperature based control of a power semiconductor circuit

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0778941A (ja) * 1993-06-30 1995-03-20 Mitsubishi Electric Corp 半導体集積回路における過熱保護回路
JPH0970195A (ja) * 1995-08-31 1997-03-11 Toyota Motor Corp モータの制御装置
JPH09121595A (ja) * 1995-10-27 1997-05-06 Meidensha Corp 電力変換器の温度保護機構
JPH11215687A (ja) * 1998-01-26 1999-08-06 Nissan Motor Co Ltd 電気自動車の過負荷防止装置
US6114828A (en) * 1998-01-26 2000-09-05 Nissan Motor Co., Ltd. Apparatus and method for preventing overload on switching device in inverter circuit for motor applicable to electric vehicle
JP2000324893A (ja) * 1999-05-11 2000-11-24 Mitsubishi Electric Corp 電動機制御装置
US6268986B1 (en) * 1999-05-11 2001-07-31 Mitsubishi Denki Kabushiki Kaisha Motor control unit
JP2004208450A (ja) * 2002-12-26 2004-07-22 Sanden Corp モータ制御装置
JP2008005615A (ja) * 2006-06-22 2008-01-10 Nissan Motor Co Ltd 電動車両のモータ出力制御装置
JP2008131722A (ja) * 2006-11-20 2008-06-05 Nippon Reliance Kk パワー素子過熱保護装置
JP2009210282A (ja) * 2008-02-29 2009-09-17 Nissan Motor Co Ltd 温度測定装置および温度測定方法並びに温度測定装置の異常検出方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157357A1 (ja) * 2012-04-16 2013-10-24 三菱重工オートモーティブサーマルシステムズ株式会社 熱媒体加熱装置およびそれを備えた車両用空調装置
CN103378777A (zh) * 2012-04-20 2013-10-30 广东高标电子科技有限公司 一种电动车及其电机控制器的温度保护方法、装置
WO2014091852A1 (ja) * 2012-12-12 2014-06-19 富士電機株式会社 半導体チップ温度推定装置及び過熱保護装置
JP5880734B2 (ja) * 2012-12-12 2016-03-09 富士電機株式会社 半導体チップ温度推定装置及び過熱保護装置
US10156482B2 (en) 2012-12-12 2018-12-18 Fuji Electric Co., Ltd. Semiconductor chip temperature estimation device and overheat protection device
JP2017529825A (ja) * 2014-09-24 2017-10-05 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh 回路装置の駆動方法
US10651780B2 (en) 2014-09-24 2020-05-12 Robert Bosch Gmbh Method for operating a circuit assembly
JP6099724B1 (ja) * 2015-11-10 2017-03-22 三菱電機株式会社 電動機制御装置
JP2017093131A (ja) * 2015-11-10 2017-05-25 三菱電機株式会社 電動機制御装置
US11575371B2 (en) 2020-08-25 2023-02-07 Fuji Electric Co., Ltd. Semiconductor device
WO2022224535A1 (ja) * 2021-04-20 2022-10-27 日立Astemo株式会社 電子制御システム及び電子制御装置

Also Published As

Publication number Publication date
CN103109460A (zh) 2013-05-15
CN103109460B (zh) 2015-12-16
US8922152B2 (en) 2014-12-30
US20130147407A1 (en) 2013-06-13
EP2622739B1 (en) 2017-11-08
JP5549505B2 (ja) 2014-07-16
WO2012042324A1 (en) 2012-04-05
EP2622739A1 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
JP5549505B2 (ja) 温度保護装置、モータ制御装置及び温度保護方法
US10608576B2 (en) Motor control apparatus
JP5274236B2 (ja) 3相インバータの電源回路保護装置
JP4093678B2 (ja) 電動機制御装置
JP3695023B2 (ja) 電気自動車の過負荷防止装置
US8477518B2 (en) Device for driving inverter
US8736234B2 (en) Power converter control apparatus
US11025157B2 (en) Control circuit, electric driving system, inverter system and method for controlling thereof
WO2018051719A1 (ja) インバータ装置及びそれを備えた車両用電動圧縮機
US9692351B2 (en) Protective device for vehicle inverter
JP2013207973A (ja) 同期モータの駆動装置、および、これを用いた送風装置
JP6277114B2 (ja) 電力変換装置
JP2002302359A (ja) エレベータの制御装置
CN110556793B (zh) 实时igbt过载保护方法
US11711014B2 (en) Electric-power conversion apparatus
JP2020141457A (ja) 電力変換装置および電力変換装置の温度検出方法
JP4967868B2 (ja) ハイブリッド車両用駆動装置及び制御方法
US20220385207A1 (en) Inverter device for driving electric motor and control method thereof
US20240146182A1 (en) Electric-power conversion apparatus
JPH07125938A (ja) エレベータの制御装置
JP7313416B2 (ja) 電力変換装置
KR102273830B1 (ko) Igbt 온도 측정 소자를 이용한 모터 구속 판단 방법
WO2022009601A1 (ja) モータ制御装置およびモータ制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140505

R151 Written notification of patent or utility model registration

Ref document number: 5549505

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151