JP2012057142A5 - - Google Patents

Download PDF

Info

Publication number
JP2012057142A5
JP2012057142A5 JP2011097852A JP2011097852A JP2012057142A5 JP 2012057142 A5 JP2012057142 A5 JP 2012057142A5 JP 2011097852 A JP2011097852 A JP 2011097852A JP 2011097852 A JP2011097852 A JP 2011097852A JP 2012057142 A5 JP2012057142 A5 JP 2012057142A5
Authority
JP
Japan
Prior art keywords
metal
resin
linear expansion
thermally expandable
expansion coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011097852A
Other languages
English (en)
Other versions
JP2012057142A (ja
JP5795187B2 (ja
Filing date
Publication date
Priority claimed from JP2011097852A external-priority patent/JP5795187B2/ja
Priority to JP2011097852A priority Critical patent/JP5795187B2/ja
Application filed filed Critical
Priority to US13/205,258 priority patent/US8664316B2/en
Priority to EP11177211A priority patent/EP2418240B1/en
Priority to CN201110228962.9A priority patent/CN102399443B/zh
Publication of JP2012057142A publication Critical patent/JP2012057142A/ja
Priority to US14/152,404 priority patent/US8974729B2/en
Publication of JP2012057142A5 publication Critical patent/JP2012057142A5/ja
Publication of JP5795187B2 publication Critical patent/JP5795187B2/ja
Application granted granted Critical
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (7)

  1. 20℃において正の線膨張係数を有する樹脂と前記樹脂に分散した固形粒子よりなる対熱膨張性樹脂であって、前記固形粒子が下記一般式(1)で表される酸化物を少なくとも含むことを特徴とする対熱膨張性樹脂。
    一般式(1)
    (Bi1−x)NiO
    (MはLa、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Y、Inのうちの少なくとも1種の金属元素である。xは0.02≦x≦0.15の数値を表す。)
  2. 前記正の線膨張係数を有する樹脂がポリベンゾイミダゾール樹脂を含んでいることを特徴とする請求項1に記載の対熱膨張性樹脂。
  3. 20℃において正の線膨張係数を有する金属と前記金属に分散した固形粒子よりなる対熱膨張性金属であって、前記固形粒子が下記一般式(1)で表される酸化物を少なくとも含むことを特徴とする対熱膨張性金属。
    一般式(1)
    (Bi1−x)NiO
    (MはLa、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Y、Inのうちの少なくとも1種の金属元素である。xは0.02≦x≦0.15の数値を表す。)
  4. 前記正の線膨張係数を有する金属の20℃における線膨張係数αが、10×10−6/K以上30×10−6/K以下であることを特徴とする請求項3に記載の対熱膨張性金属。
  5. 前記正の線膨張係数を有する金属がアルミニウムを含んでいることを特徴とする請求項4に記載の対熱膨張性金属。
  6. 請求項1または2に記載の対熱膨張性樹脂を備えた、構造材料、記録材料、電子材料、撮像装置、集光装置、露光装置、光学観察装置、セパレータ、封止材、電解コンデンサ材料、のいずれかの物品。
  7. 請求項3乃至5のいずれか一項に記載の対熱膨張性金属を備えた、
    メタル基板、放熱基板、構造材、有機感光体の基材、スペーサ部材、電極、バネ、液晶製造装置のステージあるいはテーブルのいずれかの物品。
JP2011097852A 2010-08-12 2011-04-26 対熱膨張性樹脂および対熱膨張性金属 Active JP5795187B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011097852A JP5795187B2 (ja) 2010-08-12 2011-04-26 対熱膨張性樹脂および対熱膨張性金属
US13/205,258 US8664316B2 (en) 2010-08-12 2011-08-08 Anti-thermally-expansive resin and anti-thermally-expansive metal
EP11177211A EP2418240B1 (en) 2010-08-12 2011-08-11 Anti-thermally-expansive resin and anti-thermally-expansive metal
CN201110228962.9A CN102399443B (zh) 2010-08-12 2011-08-11 抗热膨胀性树脂和抗热膨胀性金属
US14/152,404 US8974729B2 (en) 2010-08-12 2014-01-10 Anti-thermally-expansive resin and anti-thermally-expansive metal

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010180886 2010-08-12
JP2010180886 2010-08-12
JP2011097852A JP5795187B2 (ja) 2010-08-12 2011-04-26 対熱膨張性樹脂および対熱膨張性金属

Publications (3)

Publication Number Publication Date
JP2012057142A JP2012057142A (ja) 2012-03-22
JP2012057142A5 true JP2012057142A5 (ja) 2014-06-19
JP5795187B2 JP5795187B2 (ja) 2015-10-14

Family

ID=44645548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011097852A Active JP5795187B2 (ja) 2010-08-12 2011-04-26 対熱膨張性樹脂および対熱膨張性金属

Country Status (4)

Country Link
US (2) US8664316B2 (ja)
EP (1) EP2418240B1 (ja)
JP (1) JP5795187B2 (ja)
CN (1) CN102399443B (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5781824B2 (ja) * 2010-08-12 2015-09-24 キヤノン株式会社 熱膨張抑制部材および対熱膨張性部材
JPWO2014010197A1 (ja) * 2012-07-11 2016-06-20 スカイワークス・パナソニック フィルターソリューションズ ジャパン株式会社 電子部品
CN103982868B (zh) * 2014-04-30 2018-09-07 合肥京东方显示光源有限公司 一种自缓冲元件及其制备方法、背光模组、显示装置
DE102015100863B4 (de) * 2015-01-21 2022-03-03 Infineon Technologies Ag Verfahren zur Handhabung eines Produktsubstrats und ein verklebtes Substratsystem
JP6546483B2 (ja) * 2015-08-31 2019-07-17 地方独立行政法人神奈川県立産業技術総合研究所 負熱膨張性材料の製造方法
JP6555473B2 (ja) * 2015-08-31 2019-08-07 国立大学法人東京工業大学 負熱膨張性材料、及び複合体
JP6619641B2 (ja) 2015-12-14 2019-12-11 株式会社小糸製作所 光源ユニット、及び、それを用いた灯具
US10567508B2 (en) * 2017-04-28 2020-02-18 Facebook, Inc. Media file upload awareness for online systems
RU2676537C1 (ru) * 2017-09-06 2019-01-09 Дмитрий Александрович Серебренников Композитный материал с инварными свойствами
US11342129B2 (en) * 2018-06-21 2022-05-24 KYOCERA AVX Components Corporation Solid electrolytic capacitor with stable electrical properties at high temperatures
JP7351477B2 (ja) 2019-07-23 2023-09-27 国立大学法人東京工業大学 樹脂組成物およびその樹脂成形体

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4999336A (en) * 1983-12-13 1991-03-12 Scm Metal Products, Inc. Dispersion strengthened metal composites
JPS61175035A (ja) * 1985-01-31 1986-08-06 株式会社日立製作所 樹脂と無機材料との複合体
US5694503A (en) 1996-09-09 1997-12-02 Lucent Technologies Inc. Article comprising a temperature compensated optical fiber refractive index grating
US6132676A (en) * 1997-06-30 2000-10-17 Massachusetts Institute Of Technology Minimal thermal expansion, high thermal conductivity metal-ceramic matrix composite
US20050191515A1 (en) 2000-07-20 2005-09-01 Shipley Company, L.L.C. Very low thermal expansion composite
US6518609B1 (en) 2000-08-31 2003-02-11 University Of Maryland Niobium or vanadium substituted strontium titanate barrier intermediate a silicon underlayer and a functional metal oxide film
MXPA03010716A (es) 2001-05-24 2004-05-27 Fry Metals Inc Material de interfaz termico y configuracion disparadora de calor.
JP2007521639A (ja) 2001-05-24 2007-08-02 フライズ メタルズ インコーポレイテッド 熱界面材と半田予備成型品
US7105235B2 (en) * 2002-05-17 2006-09-12 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Natural Resources Isotropic zero CTE reinforced composite materials
DE602004027152D1 (de) 2003-10-08 2010-06-24 Nat Inst Of Advanced Ind Scien Ischen umwandlungsmaterials
JP4446064B2 (ja) 2004-07-07 2010-04-07 独立行政法人産業技術総合研究所 熱電変換素子及び熱電変換モジュール
EP1790705A4 (en) 2004-07-30 2013-05-01 Riken HEAT DETECTION INHIBITOR, ZERO HEAT DETERGENT, NEGATIVE THERMAL INSULATION SUBSTANCE, METHOD OF INHIBITING HEAT INSULATION AND METHOD FOR PRODUCING A THERMAL INSULATION INHIBITOR
US20070135550A1 (en) * 2005-12-14 2007-06-14 Nirupama Chakrapani Negative thermal expansion material filler for low CTE composites
JP2008260892A (ja) * 2007-04-13 2008-10-30 Sekisui Chem Co Ltd 電子部品用接着剤
JP2010021429A (ja) 2008-07-11 2010-01-28 Murata Mfg Co Ltd 電子機器およびその製造方法
JP2010029990A (ja) * 2008-07-29 2010-02-12 National Institute Of Advanced Industrial & Technology 負熱膨張率材料および該負熱膨張率材料を含む複合材料
JP5781824B2 (ja) 2010-08-12 2015-09-24 キヤノン株式会社 熱膨張抑制部材および対熱膨張性部材

Similar Documents

Publication Publication Date Title
JP2012057142A5 (ja)
JP2012056830A5 (ja)
Ye et al. Giant electrocaloric effect in BaZr0. 2Ti0. 8O3 thick film
Amrillah et al. Flexible multiferroic bulk heterojunction with giant magnetoelectric coupling via van der Waals epitaxy
Moya et al. Caloric materials for cooling and heating
Crossley et al. New developments in caloric materials for cooling applications
Kumar et al. Prospects and challenges of the electrocaloric phenomenon in ferroelectric ceramics
Ožbolt et al. Electrocaloric refrigeration: thermodynamics, state of the art and future perspectives
Aprea et al. Solid-state refrigeration: A comparison of the energy performances of caloric materials operating in an active caloric regenerator
Zhao et al. Energy-Storage Properties and Electrocaloric Effect of Pb (1–3 x/2) La x Zr0. 85Ti0. 15O3 Antiferroelectric Thick Films
Zhang et al. Toward Wearable Cooling Devices: Highly Flexible Electrocaloric Ba0. 67 Sr0. 33 TiO3 Nanowire Arrays.
Xie et al. Flexible thermoelectric nanogenerator based on the MoS2/graphene nanocomposite and its application for a self-powered temperature sensor
Ožbolt et al. Electrocaloric vs. magnetocaloric energy conversion
Ishiwata et al. High-pressure hydrothermal crystal growth and multiferroic properties of a perovskite YMnO3
Valant et al. Electrocaloric temperature change constrained by the dielectric strength
Li et al. The coexistence of the negative and positive electrocaloric effect in ferroelectric thin films for solid-state refrigeration
Liu et al. Effective polarization of ferroelectric materials by using a triboelectric nanogenerator to scavenge wind energy
Greco et al. Electrocaloric cooling: A review of the thermodynamic cycles, materials, models, and devices
Jian et al. Enhanced Electrocaloric Effect in Sr2+-Modified Lead-Free BaZr x Ti1–x O3 Ceramics
Khan et al. Ab initio investigations of structural, elastic, electronic and optical properties of the fluoroperovskite TIXF3 (X= Ca, Cd, Hg, and Mg) compounds
Tlili et al. Theoretical investigation of the magnetocaloric effect of La0. 7 (Ba, sr) 0.3 MnO3 compound at room temperature with a second-order magnetic phase transition
Lu et al. Electrical field dependence of electrocaloric effect in relaxor ferroelectrics
Chen et al. Large electrocaloric effect in La-doped 0.88 Pb (Mg1/3Nb2/3) O3-0.12 PbTiO3 relaxor ferroelectric ceramics
Yao et al. Evolution of the tetragonal to rhombohedral transition in (1− x)(Bi1/2Na1/2) TiO3− xBaTiO3 (x≤ 7%)
Jung et al. Energy harvester using PZT nanotubes fabricated by template-assisted method