JP2011214732A - Solar heat utilizing waste power generation device and method of operating the same - Google Patents

Solar heat utilizing waste power generation device and method of operating the same Download PDF

Info

Publication number
JP2011214732A
JP2011214732A JP2010080538A JP2010080538A JP2011214732A JP 2011214732 A JP2011214732 A JP 2011214732A JP 2010080538 A JP2010080538 A JP 2010080538A JP 2010080538 A JP2010080538 A JP 2010080538A JP 2011214732 A JP2011214732 A JP 2011214732A
Authority
JP
Japan
Prior art keywords
waste
solar heat
steam
amount
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010080538A
Other languages
Japanese (ja)
Other versions
JP5447096B2 (en
Inventor
Norihito Uetake
規人 植竹
Takeshi Uchiyama
武 内山
Katsuhiro Iwasaki
克博 岩崎
Takeshi Nakayama
剛 中山
Hiroshi Yamamoto
浩 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2010080538A priority Critical patent/JP5447096B2/en
Publication of JP2011214732A publication Critical patent/JP2011214732A/en
Application granted granted Critical
Publication of JP5447096B2 publication Critical patent/JP5447096B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Incineration Of Waste (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solar heat utilizing waste power generation device capable of effectively utilizing waste heat recovery power generation facility capacity of waste power generation facilities, improving power generation efficiency in utilizing solar heat in waste power generation, and smoothing a power generation amount corresponding to variation of solar heat receiving amount due to weather and the like.SOLUTION: This solar heat utilizing waste power generation device includes a waste supply device 5 for supplying waste to an incinerator 1, a radiation boiler 2 producing saturated steam by an exhaust gas from the incinerator 1, a tube bank boiler 3 producing superheated steam by heating the saturated steam produced by the radiation boiler 2, a solar heat collecting device 14 for collecting solar heat, a solar heat receiving device 15 receiving the collected solar heat and further heating the superheated steam produced by the tube bank boiler 3, a steam turbine power generator 16 generating power by the heated superheated steam, and a waste supply amount control device 6 for controlling the waste supply device 5 to adjust the waste supply amount to the incinerator 1 on the basis of the amount of heat for heating the superheated steam by the solar heat receiving device 15, or the like.

Description

本発明は、廃棄物を焼却またはガス化溶融する廃棄物処理炉施設に設ける廃棄物発電装置およびその運転方法に関する。   The present invention relates to a waste power generation apparatus provided in a waste treatment furnace facility that incinerates or gasifies and melts waste, and an operation method thereof.

廃棄物発電設備は、供給する廃棄物の種類によって、廃棄物の燃焼により発生する熱量が変動する(例えば、1200kcal/kg〜2800kcal/kg)ことを考慮して、高カロリー廃棄物に対応した廃熱回収発電設備を備えている。近年は、廃棄物の分別収集が進行し、高カロリーのプラスチックごみが分別され、焼却炉へ供給される廃棄物のカロリーが低下しているため、廃熱回収発電設備能力に相当余裕ができており、換言すれば、廃熱回収発電設備能力が有効に利用されていない。このような事情から、既設の廃棄物発電設備の廃熱回収発電設備能力を有効に活用することが要望されている。さりとて、化石燃料を燃焼して過熱蒸気量を増大させ、発電量を増大させることは、地球温暖化への対応に反するので望ましくない。   Waste power generation facilities are wastes that support high-calorie waste, considering that the amount of heat generated by combustion of waste varies depending on the type of waste supplied (for example, 1200 kcal / kg to 2800 kcal / kg). It has a heat recovery power generation facility. In recent years, separate collection of waste has progressed, high-calorie plastic waste has been separated, and the calories of waste supplied to the incinerator have decreased, so there is a considerable margin in waste heat recovery power generation equipment capacity. In other words, the waste heat recovery power generation facility capacity is not utilized effectively. Under such circumstances, it is demanded to effectively utilize the waste heat recovery power generation facility capacity of the existing waste power generation facility. On the other hand, it is not desirable to burn fossil fuels to increase the amount of superheated steam and increase the amount of power generation because it is against the response to global warming.

廃棄物発電設備の一例として、廃棄物焼却炉にボイラを備え、焼却炉から排出される排ガスの廃熱を回収し該ボイラにて水を加熱して蒸発させて飽和蒸気を生成し、燃焼式過熱器にて該飽和蒸気をさらに加熱して過熱蒸気を生成し、該過熱蒸気を蒸気タービンに供給して発電することが行われている(特許文献1参照)。   As an example of a waste power generation facility, a waste incinerator is equipped with a boiler, the waste heat of exhaust gas discharged from the incinerator is recovered, water is heated and evaporated in the boiler to produce saturated steam, a combustion type The saturated steam is further heated by a superheater to generate superheated steam, and the superheated steam is supplied to a steam turbine to generate electric power (see Patent Document 1).

一方、発電装置の他の形態として、太陽熱を利用した発電装置が用いられることもある。このような太陽熱利用発電装置として、特許文献2に開示されたものが知られている。特許文献2には、太陽熱で液体熱媒体を加熱し、該熱媒体を介して水を加熱蒸発することにより飽和蒸気を生成した後、ガスタービンの駆動に使用された燃焼ガスによって該飽和蒸気をさらに加熱して過熱蒸気を生成し、該過熱蒸気を蒸気タービンに供給して発電を行う発電装置が開示されている。   On the other hand, as another form of the power generation apparatus, a power generation apparatus using solar heat may be used. As such a solar thermal power generation device, one disclosed in Patent Document 2 is known. In Patent Document 2, a liquid heat medium is heated by solar heat, water is evaporated through the heat medium to generate saturated steam, and then the saturated steam is generated by the combustion gas used to drive the gas turbine. Further, there is disclosed a power generation apparatus that generates heat by generating superheated steam by supplying the superheated steam to a steam turbine.

特開平7−035311JP 7-035311 A 特開2008−039367JP2008-039367

しかし、特許文献2の発電装置では、太陽熱で加熱された熱媒体によって水を加熱して飽和蒸気を生成し、燃焼ガスによって該飽和蒸気をさらに加熱して過熱蒸気を生成するので、太陽熱の大部分が水の蒸発潜熱に消費される。この結果、発電に対する太陽熱の寄与が小さくなってしまう。例えば、廃棄物発電施設の発電装置として上記特許文献2の発電装置を適用しても、発電に寄与するのは受熱した太陽熱の10%程度であり、効率が低く望ましくない。   However, in the power generation device of Patent Document 2, water is heated by a heat medium heated by solar heat to generate saturated steam, and the saturated steam is further heated by combustion gas to generate superheated steam. Part is consumed by the latent heat of vaporization of water. As a result, the contribution of solar heat to power generation is reduced. For example, even if the power generation device of Patent Document 2 described above is applied as a power generation device for a waste power generation facility, only about 10% of the received solar heat contributes to power generation, which is not desirable because of low efficiency.

また、太陽熱は自然エネルギーであるため、天候により受熱量が変化しやすく、太陽熱利用による蒸気発生量が変動する。そのため、太陽熱利用で得られた蒸気を有効に利用するためには、発電量を平滑化することが必要となる。   In addition, since solar heat is natural energy, the amount of heat received is likely to change depending on the weather, and the amount of steam generated by using solar heat varies. Therefore, in order to effectively use the steam obtained by using solar heat, it is necessary to smooth the power generation amount.

本発明は上記の問題に鑑み、廃棄物発電設備の廃熱回収発電設備能力を有効に活用することができ、また、太陽熱を廃棄物発電に利用する際に発電効率を高めることができ、さらに、天候等による太陽熱の受熱量の変動に対応して発電量を平滑化することができる太陽熱利用廃棄物発電装置及びその運転方法を提供することを課題とする。   In view of the above problems, the present invention can effectively utilize the waste heat recovery power generation facility capacity of the waste power generation facility, and can improve the power generation efficiency when using solar heat for waste power generation, Another object of the present invention is to provide a solar heat-generating waste power generation apparatus capable of smoothing the power generation amount in response to fluctuations in the amount of solar heat received due to weather and the like, and an operation method thereof.

廃熱回収蒸気を用いた蒸気タービンによる発電に有効な熱エネルギーについて図4を用いて説明する。図4は、40気圧に加圧された温水が249℃で蒸発して飽和蒸気となった後、さらに加熱されて過熱蒸気状態となる場合における温度とエンタルピーとの関係を示す水−蒸気エンタルピー線図である。   Thermal energy effective for power generation by a steam turbine using waste heat recovery steam will be described with reference to FIG. FIG. 4 shows a water-steam enthalpy line showing the relationship between temperature and enthalpy when hot water pressurized to 40 atm is evaporated at 249 ° C. to become saturated steam and then heated to become superheated steam. FIG.

図4に示されているように、蒸気タービンでの発電に有効な蒸気のエンタルピーは、過熱蒸気部分が主体となっている。これは、蒸気タービンのタービンブレードの強度と耐久性の制約より、湿り蒸気を使うことが困難なためである。ここで、復水器の適用により、図4の加圧条件下における飽和蒸気温度の蒸気エンタルピー部分も一部活用できる。   As shown in FIG. 4, the enthalpy of steam effective for power generation in the steam turbine is mainly the superheated steam portion. This is because it is difficult to use wet steam due to restrictions on the strength and durability of the turbine blade of the steam turbine. Here, by applying the condenser, a part of the steam enthalpy portion of the saturated steam temperature under the pressurizing condition of FIG. 4 can be used.

発電効率向上のため、復水器を設けてタービン出口圧力を低減させ、蒸気の湿り度を低減することにより、より多くの蒸気のエンタルピーを電力に変換できるが、それでも蒸気の保有するエンタルピーのうち電力に変換できるのは、その20%前後である。   In order to improve power generation efficiency, it is possible to convert more steam enthalpy into electricity by installing a condenser to reduce turbine outlet pressure and reducing steam wetness. About 20% can be converted into electric power.

発明者は、廃棄物発電において燃焼炉又はガス化溶融炉からの排ガスによって既に飽和蒸気が発生していることに着目し、該飽和蒸気から過熱蒸気を得る過程及び過熱蒸気量を増大させる過程に太陽熱を活用することにより、従来のような、太陽熱によって飽和蒸気を生成した後に、燃焼ガスによって過熱蒸気を生成して発電する場合よりも、数倍も高い効率で太陽熱の受熱熱量を電力へ変換できることを見出した。   The inventors pay attention to the fact that saturated steam is already generated by exhaust gas from the combustion furnace or gasification melting furnace in waste power generation, and in the process of obtaining superheated steam from the saturated steam and the process of increasing the amount of superheated steam. By using solar heat, the amount of heat received from solar heat is converted into electric power with efficiency several times higher than when generating steam by using saturated heat after generating saturated steam by using solar heat. I found out that I can do it.

この太陽熱の利用による効果は、太陽熱の集熱による熱量を蒸気の直接加熱に利用すること、そして、少なくとも飽和蒸気温度を超える温度の熱供給が可能であることを条件として得られる。   This effect of using solar heat is obtained on the condition that the amount of heat generated by collecting solar heat is used for direct heating of steam, and that heat supply at a temperature exceeding at least the saturated steam temperature is possible.

<第一発明>
本発明に係る太陽熱利用廃棄物発電装置は、廃棄物を焼却またはガス化溶融する廃棄物処理炉施設に設ける廃棄物発電装置であって、廃棄物処理炉へ廃棄物を供給する廃棄物供給装置と、廃棄物処理炉から排出される排ガスから熱回収して蒸気を生成するボイラと、太陽熱を集熱する太陽熱集熱装置と、上記太陽熱集熱装置で集熱された太陽熱を受熱するとともに、受熱した太陽熱との熱交換により、ボイラで生成した蒸気を飽和蒸気温度より高い温度に加熱して過熱蒸気を生成する過熱蒸気生成及びボイラで生成した過熱蒸気をさらに加熱する過熱蒸気加熱のうち少なくとも一つを行う太陽熱受熱装置と、上記太陽熱受熱装置で生成又は加熱された過熱蒸気により発電する蒸気タービン発電装置と、ボイラで生成した蒸気を上記太陽熱受熱装置により加熱する熱量、該太陽熱受熱装置により生成又は増加した過熱蒸気の熱量又は過熱蒸気量、過熱蒸気温度、該太陽熱集熱装置が受光する日射量のうち少なくとも一つに基づき、廃棄物処理炉に供給する廃棄物供給量を調整するように上記廃棄物供給装置を制御する廃棄物供給量制御装置とを備えることを特徴としている。
<First invention>
A waste heat power generation apparatus using solar heat according to the present invention is a waste power generation apparatus provided in a waste treatment furnace facility for incinerating or gasifying and melting waste, and is a waste supply apparatus for supplying waste to a waste treatment furnace And a boiler that recovers heat from the exhaust gas discharged from the waste treatment furnace to generate steam, a solar heat collector that collects solar heat, and receives solar heat collected by the solar heat collector, At least of the superheated steam generation that heats the steam generated in the boiler to a temperature higher than the saturated steam temperature and generates superheated steam by heat exchange with the received solar heat and the superheated steam heating that further heats the superheated steam generated in the boiler A solar heat receiving device that performs one, a steam turbine power generation device that generates electric power using superheated steam generated or heated by the solar heat receiving device, and the solar heat receiving heat generated by a boiler. A waste treatment furnace based on at least one of the amount of heat to be heated by the device, the amount of superheated steam generated or increased by the solar heat receiving device or the amount of superheated steam, the superheated steam temperature, and the amount of solar radiation received by the solar heat collecting device And a waste supply amount control device for controlling the waste supply device so as to adjust a waste supply amount to be supplied to the vehicle.

<第二発明>
本発明に係る太陽熱利用廃棄物発電装置の運転方法は、廃棄物を焼却またはガス化溶融する廃棄物処理炉施設に設ける廃棄物発電装置の運転方法であって、廃棄物処理炉へ廃棄物を供給する廃棄物供給工程と、ボイラにて、廃棄物処理炉から排出される排ガスから熱回収して蒸気を生成する蒸気生成工程と、太陽熱を集熱する太陽熱集熱工程と、上記太陽熱集熱工程で集熱された太陽熱を受熱するとともに、受熱した太陽熱との熱交換により、上記蒸気生成工程で生成した蒸気を飽和蒸気温度より高い温度に加熱して過熱蒸気を生成する過熱蒸気生成及び上記蒸気生成工程で生成した過熱蒸気をさらに加熱する過熱蒸気加熱のうち少なくとも一つを行う太陽熱受熱工程と、上記太陽熱受熱工程で生成又は加熱された過熱蒸気により発電する発電工程と、上記太陽熱受熱工程で蒸気を加熱する熱量、該太陽熱受熱工程で生成又は増加した過熱蒸気の熱量又は過熱蒸気量、過熱蒸気温度、該太陽熱集熱工程で受光する日射量のうち少なくとも一つに基づき、上記廃棄物供給工程で廃棄物処理炉に供給する廃棄物供給量を調整するように制御を行う廃棄物供給量制御工程とを備えることを特徴としている。
<Second invention>
A method for operating a solar heat-generated waste power generation apparatus according to the present invention is a method for operating a waste power generation apparatus provided in a waste treatment furnace facility that incinerates or gasifies and melts waste. Waste supply process to be supplied, steam generation process for generating steam by recovering heat from exhaust gas discharged from a waste treatment furnace in a boiler, solar heat collection process for collecting solar heat, and the solar heat collection Superheated steam generation that receives the solar heat collected in the process and heats the steam generated in the steam generation process to a temperature higher than the saturated steam temperature by heat exchange with the received solar heat to generate superheated steam and the above A solar heat receiving process for performing at least one of the superheated steam heating for further heating the superheated steam generated in the steam generating process, and a power generation using the superheated steam generated or heated in the solar heat receiving process. At least one of a process, a heat amount for heating steam in the solar heat receiving step, a heat amount or superheated steam amount generated or increased in the solar heat receiving step, a superheated steam temperature, and a solar radiation amount received in the solar heat collecting step. And a waste supply amount control step for performing control so as to adjust the waste supply amount supplied to the waste treatment furnace in the waste supply step.

第一発明および第二発明では、ボイラで飽和蒸気又は過熱蒸気を生成し、該ボイラで飽和蒸気が生成される場合には過熱蒸気の生成そして加熱に太陽熱を活用し、該ボイラで過熱蒸気が生成される場合には該過熱蒸気の加熱に太陽熱を活用する。このように、太陽熱を過熱蒸気の生成あるいは加熱に活用することにより、該太陽熱の電気変換効率が大幅に高められる。   In the first invention and the second invention, saturated steam or superheated steam is generated in a boiler, and when saturated steam is generated in the boiler, solar heat is used for generation and heating of the superheated steam. When generated, solar heat is used to heat the superheated steam. Thus, by utilizing solar heat for the generation or heating of superheated steam, the electrical conversion efficiency of the solar heat can be greatly increased.

また、太陽熱によって蒸気を加熱する熱量、生成又は増加した過熱蒸気の熱量又は過熱蒸気量、過熱蒸気温度、日射量のうち少なくとも一つに基づいて廃棄物供給量を制御するので、天候等により受熱する太陽熱が変動することに対応して発電量を平滑化することができる。   In addition, the amount of waste supplied is controlled based on at least one of the amount of heat that heats the steam by solar heat, the amount of superheated steam generated or increased, the amount of superheated steam, the temperature of superheated steam, and the amount of solar radiation. The amount of power generation can be smoothed in response to fluctuations in solar heat.

本発明によれば、太陽熱を廃棄物発電に利用する際に発電効率を高めることができ、その結果、廃棄物発電設備の廃熱回収発電設備能力を有効に活用することができ、さらに、受熱する太陽熱が天候等により変動することに対応して発電量を平滑化することができる。   According to the present invention, power generation efficiency can be increased when solar heat is used for waste power generation, and as a result, the waste heat recovery power generation facility capacity of the waste power generation facility can be effectively utilized. The amount of power generation can be smoothed in response to fluctuations in solar heat due to weather and the like.

実施形態における廃棄物処理炉施設の構成を示す図である。It is a figure which shows the structure of the waste processing furnace facility in embodiment. 実施形態での発電量を示す図であり、(A)は太陽熱による発電量、(B)は廃棄物の焼却による発電量、(C)は太陽熱による発電量と廃棄物の焼却による発電量との合計である全体の発電量を示している。It is a figure which shows the electric power generation amount in embodiment, (A) is the electric power generation amount by solar heat, (B) is the electric power generation amount by incineration of waste, (C) is the electric power generation amount by solar heat, and the electric power generation amount by waste incineration. The total power generation amount is the sum of 実施形態における廃棄物供給量制御装置による廃棄物供給量の制御を示すフローチャートである。It is a flowchart which shows control of the waste supply amount by the waste supply amount control apparatus in embodiment. 水温とエンタルピーとの関係を示す水−蒸気エンタルピー線図である。It is a water-steam enthalpy diagram which shows the relationship between water temperature and enthalpy.

以下、添付図面に基づいて本発明に係る太陽熱利用廃棄物発電装置の実施形態を説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a solar thermal power generation apparatus according to the present invention will be described with reference to the accompanying drawings.

図1は、本実施形態における廃棄物処理炉施設の構成を示す図である。図1に示されているように、上記廃棄物処理炉施設は、炉床に可動な火格子を有し該火格子上で廃棄物を焼却する焼却炉1と、該焼却炉1へ廃棄物を供給する廃棄物供給装置5と、該廃棄物供給装置5による廃棄物供給量を制御する廃棄物供給量制御装置6と、該焼却炉1の下流側に設置された輻射ボイラ2及び管群ボイラ3を一部に含む後述の太陽熱利用廃棄物発電装置10(以下、単に「発電装置10」という)と、該管群ボイラ3の下流側に設置された排ガス処理装置4とを有している。なお、上記焼却炉1に代えて、ガス化溶融炉が設けられていてもよい。   FIG. 1 is a diagram showing a configuration of a waste treatment furnace facility in the present embodiment. As shown in FIG. 1, the waste treatment furnace facility includes an incinerator 1 having a movable grate on the hearth and incinerating the waste on the grate, and the waste to the incinerator 1. , A waste supply amount control device 6 for controlling the amount of waste supplied by the waste supply device 5, a radiation boiler 2 and a tube group installed downstream of the incinerator 1 A solar heat generation waste power generation apparatus 10 (hereinafter simply referred to as “power generation apparatus 10”) including the boiler 3 in part, and an exhaust gas treatment apparatus 4 installed on the downstream side of the tube group boiler 3. Yes. Instead of the incinerator 1, a gasification melting furnace may be provided.

上記廃棄物供給装置5は、例えば、廃棄物を貯留する廃棄物ピット(図示せず)から廃棄物を掴んで取り出して焼却炉1の廃棄物ホッパ1Aへ投入するクレーンにより構成されている。本実施形態では、該廃棄物供給装置5は、廃棄物を上記廃棄物ピットから取り出した際に該廃棄物の重量を計測するようになっている。   The waste supply device 5 is constituted by, for example, a crane that grabs and takes out a waste from a waste pit (not shown) for storing the waste and puts it into the waste hopper 1A of the incinerator 1. In the present embodiment, the waste supply device 5 measures the weight of the waste when the waste is taken out from the waste pit.

図1に見られるように、発電装置10は、上記輻射ボイラ2及び管群ボイラ3に加え、輻射ボイラ2内に配される蒸発管11と、蒸発管11の下流側に位置し該蒸発管11に接続される蒸気溜り12と、該蒸気溜り12の下流側で管群ボイラ3内に配され該蒸気溜り12に接続される過熱管13と、太陽熱を集熱する太陽熱集熱装置14と、該太陽熱集熱装置14で集熱された太陽熱を受熱するとともに、後述するように、過熱管13からの過熱蒸気をさらに加熱する太陽熱受熱装置15と、該太陽熱受熱装置15で生成された過熱蒸気によって駆動されて発電を行う蒸気タービン発電装置としての蒸気タービン発電機16とを有している。   As shown in FIG. 1, in addition to the radiant boiler 2 and the tube group boiler 3, the power generation apparatus 10 includes an evaporation pipe 11 disposed in the radiant boiler 2 and a downstream side of the evaporation pipe 11. 11, a steam reservoir 12 connected to 11, a superheater pipe 13 arranged in the tube group boiler 3 on the downstream side of the steam reservoir 12 and connected to the steam reservoir 12, and a solar heat collector 14 for collecting solar heat The solar heat collection device 14 receives solar heat collected by the solar heat collection device 14 and, as will be described later, further heats the superheated steam from the superheat pipe 13, and the superheat generated by the solar heat collection device 15. And a steam turbine generator 16 as a steam turbine power generator that generates power by being driven by steam.

上記発電装置10では、輻射ボイラ2において、焼却炉1から排出された排ガスによって蒸発管11内の加圧水が加熱されて飽和蒸気が生成された後、蒸気溜り12において気水分離される。そして、該飽和蒸気は、管群ボイラ3にてさらに過熱されて過熱蒸気となる。一方、上記蒸気溜り12で分離された加圧水は上記輻射ボイラ2へ戻される。上記過熱蒸気は、上記太陽熱受熱装置15にて、さらに加熱された後、蒸気タービン発電機16へ供給され、該蒸気タービン発電機16を駆動することにより発電に寄与する。上記蒸気タービン発電機16を駆動した過熱蒸気は復水器(図示せず)で凝縮されて加圧水に戻り、上記輻射ボイラ2へ送られる。   In the power generation device 10, in the radiation boiler 2, the pressurized water in the evaporation pipe 11 is heated by the exhaust gas discharged from the incinerator 1 to generate saturated steam, and then the steam is separated in the steam reservoir 12. The saturated steam is further superheated by the tube group boiler 3 to become superheated steam. On the other hand, the pressurized water separated by the steam reservoir 12 is returned to the radiation boiler 2. The superheated steam is further heated by the solar heat receiving device 15, then supplied to the steam turbine generator 16, and contributes to power generation by driving the steam turbine generator 16. The superheated steam that drives the steam turbine generator 16 is condensed by a condenser (not shown), returned to pressurized water, and sent to the radiation boiler 2.

上記太陽熱集熱装置14は、図1に見られるように、廃棄物処理炉施設の屋根上に複数設置されている。該太陽熱集熱装置14は、反射鏡と、該反射鏡の方向を太陽の動きに合わせて制御する方向制御装置(図示せず)と、受光した日射量を計測する日射量センサ(図示せず)とを有している。   As shown in FIG. 1, a plurality of the solar heat collectors 14 are installed on the roof of the waste treatment furnace facility. The solar heat collecting device 14 includes a reflecting mirror, a direction control device (not shown) that controls the direction of the reflecting mirror in accordance with the movement of the sun, and a solar radiation sensor (not shown) that measures the amount of received solar radiation. ).

また、太陽熱受熱装置15は、図1に見られるように、管群ボイラ3内に配される過熱管13で生成した過熱蒸気を蒸気タービン発電機16に供給する流路に設置されている。該太陽熱受熱装置15は、過熱蒸気を過熱した際に増加する蒸気量を計測する蒸気量センサ(図示せず)と、該太陽熱受熱装置15における入口側および出口側の両方での蒸気の温度を計測する蒸気温度センサ(図示せず)とを有している。   Moreover, the solar heat receiving device 15 is installed in the flow path which supplies the superheated steam produced | generated with the superheat pipe 13 distribute | arranged in the tube group boiler 3 to the steam turbine generator 16, as FIG. 1 shows. The solar heat receiving device 15 includes a steam amount sensor (not shown) that measures the amount of steam that increases when superheated steam is heated, and the temperature of the steam on both the inlet side and the outlet side of the solar heat receiving device 15. A steam temperature sensor (not shown) for measurement.

廃棄物供給量制御装置6は、蒸気タービン発電機16へ供給される蒸気量を一定に維持すべく、廃棄物供給装置5によって供給される廃棄物供給量を制御する。該廃棄物供給量制御装置6による制御は、廃棄物発熱量および太陽熱受熱量に基づいて行われる。また、上記廃棄物供給量の制御は、例えば、廃棄物の供給速度を増減させることにより行われる。   The waste supply amount control device 6 controls the waste supply amount supplied by the waste supply device 5 so as to keep the amount of steam supplied to the steam turbine generator 16 constant. The control by the waste supply amount control device 6 is performed based on the waste heat generation amount and the solar heat reception amount. The waste supply amount is controlled by increasing or decreasing the waste supply rate, for example.

廃棄物供給量やその他の各種運転条件を補正しない限り、廃棄物の焼却によって得られる発電量は一定である一方で、太陽熱によって得られる発電量は天候に応じて変動する。太陽熱による発電量が変動する結果、廃棄物焼却による発電量と太陽熱による発電量との合計値である全体の発電量も変動する。   Unless the amount of waste supply and other various operating conditions are corrected, the amount of power generated by incineration of waste is constant, while the amount of power generated by solar heat varies according to the weather. As a result of fluctuations in the amount of power generated by solar heat, the total amount of power generated, which is the sum of the amount of power generated by waste incineration and the amount of power generated by solar heat, also fluctuates.

図2は、本実施形態で得られる発電量を示す図であり、(A)は太陽熱による発電量、(B)は廃棄物の焼却による発電量、(C)は太陽熱による発電量と廃棄物の焼却による発電量との合計である全体の発電量を示している。   FIG. 2 is a diagram showing the power generation amount obtained in this embodiment, where (A) is the amount of power generated by solar heat, (B) is the amount of power generated by incineration of waste, and (C) is the amount of power generated by solar heat and waste. The total power generation amount is the sum of the power generation amount due to incineration.

本実施形態に係る発電装置10は、同図に示されているように、太陽熱による発電量が増加したときには、その分、廃棄物焼却による発電量を減少させ、太陽熱による発電量が減少したときには、その分、廃棄物焼却による発電量を増加させることにより、全体としての発電量を平滑化するものである。   As shown in the figure, when the power generation amount by solar heat increases, the power generation device 10 according to the present embodiment decreases the power generation amount by waste incineration, and when the power generation amount by solar heat decreases. Therefore, by increasing the power generation amount by waste incineration, the power generation amount as a whole is smoothed.

本実施形態では、廃棄物供給量制御装置6は、生成される蒸気量を所定の目標値で維持するように廃棄物供給量の制御を行う。すなわち、太陽熱による蒸気量が増加したときには、その分、廃棄物焼却による蒸気量を減少させるように、また、太陽熱による蒸気量が減少したときには、その分、廃棄物焼却による蒸気量を増加させるように、廃棄物供給量制御装置6が廃棄物供給量を制御する。   In the present embodiment, the waste supply amount control device 6 controls the waste supply amount so as to maintain the generated steam amount at a predetermined target value. That is, when the amount of steam due to solar heat increases, the amount of steam due to waste incineration is reduced accordingly, and when the amount of steam due to solar heat decreases, the amount of steam due to waste incineration is increased accordingly. In addition, the waste supply amount control device 6 controls the waste supply amount.

以下、廃棄物供給量制御装置6による廃棄物供給量の制御について説明する。図3は、本実施形態における廃棄物供給量制御装置6による廃棄物供給量の制御を示すフローチャートである。本実施形態では、廃棄物供給量制御装置6において、目標とする発電量を得るために蒸気タービン発電機16に供給されるべき蒸気量が設定蒸気量として予め設定されている(S1a)。図3において、設定蒸気量は「B」として示されている。   Hereinafter, control of the waste supply amount by the waste supply amount control device 6 will be described. FIG. 3 is a flowchart showing the control of the waste supply amount by the waste supply amount control device 6 in the present embodiment. In the present embodiment, in the waste supply amount control device 6, the amount of steam to be supplied to the steam turbine generator 16 in order to obtain the target power generation amount is preset as the set steam amount (S1a). In FIG. 3, the set steam amount is indicated as “B”.

まず、廃棄物供給装置5が廃棄物の供給重量を計測する(S1b)。次に、廃棄物供給量制御装置6が、計測された廃棄物の供給重量に基づいて、該廃棄物の供給重量に対応する廃棄物発熱量を算出する(S2b)。また、太陽熱集熱装置14の日射量センサによって日射量が計測され、太陽熱受熱装置15の蒸気量センサによって蒸気量が計測され、該太陽熱受熱装置15の蒸気温度センサによって蒸気温度が計測される(S1c)。次に、廃棄物供給量制御装置6が、計測された日射量に基づいて、あるいは計測された蒸気量および蒸気温度に基づいて、太陽熱の受熱量を算出する(S2c)。   First, the waste supply device 5 measures the supply weight of waste (S1b). Next, the waste supply amount control device 6 calculates a waste heat generation amount corresponding to the waste supply weight based on the measured waste supply weight (S2b). Moreover, the solar radiation amount is measured by the solar radiation amount sensor of the solar heat collecting device 14, the vapor amount is measured by the vapor amount sensor of the solar thermal heat receiving device 15, and the vapor temperature is measured by the vapor temperature sensor of the solar thermal heat receiving device 15 ( S1c). Next, the waste supply amount control device 6 calculates the amount of solar heat received based on the measured amount of solar radiation or based on the measured amount of steam and steam (S2c).

日射量から太陽熱の受熱量を算出する場合には、例えば以下の式(1)が用いられる。   When calculating the amount of solar heat received from the amount of solar radiation, for example, the following equation (1) is used.

上記式(1)において、補正係数Cは、太陽熱集熱装置14が受光した太陽光の太陽熱量に対する、蒸気に伝わった熱量の割合を表わす補正係数である。具体的には、補正係数Cは、反射鏡の反射効率に集熱部の集熱効率(蒸気に伝わる熱量の割合)を乗じて算出される。また、配管経路で逃げる熱量を無視できない場合には、更に、配管の熱輸送効率を乗じて補正係数Cを算出する場合もある。 In the above formula (1), the correction coefficient C 2 is for solar amount of sunlight solar heat collector 14 is received, a correction coefficient representing the ratio of the amount of heat transferred to the steam. Specifically, the correction coefficient C 2 is calculated by multiplying the heat collection efficiency of the heat collector to the reflection efficiency of the reflector (the ratio of amount of heat transferred to the steam). When it is not negligible the amount of heat escaping through a pipe path further, in some cases to calculate the correction factor C 2 by multiplying the heat transfer efficiency of the pipeline.

また、蒸気量および蒸気温度から太陽熱の受熱量を算出する場合には、例えば以下の式(2)が用いられる。   Further, when calculating the amount of solar heat received from the amount of steam and the temperature of steam, for example, the following equation (2) is used.

上記式(2)において、補正係数C3は、蒸気エンタルピー演算用定数であり、水から水蒸気への蒸発潜熱を表している。また、補正係数C4は、蒸気エンタルピー演算用定数の温度依存項であり、比エンタルピーを表している。 In the above formula (2), the correction coefficient C 3 is a steam enthalpy calculation constants, represents the latent heat of vaporization to steam from the water. The correction coefficient C 4 is a temperature-dependent term of the constant for calculating the vapor enthalpy and represents the specific enthalpy.

次に、廃棄物供給量制御装置6は、算出された廃棄物発熱量と太陽熱受熱量に基づいて、廃棄物焼却による燃焼熱および太陽熱の両方によって得られる蒸気量を算出する(S3)。以下、算出された蒸気量を「計算蒸気量」といい、図3において「A」として示す。廃棄物供給量制御装置6は、予め設定されている上記設定蒸気量を計算蒸気量から減じて(図2における「A−B」)、両者の差分(図3における「C」)を算出する(S4)。   Next, the waste supply amount control device 6 calculates the amount of steam obtained by both combustion heat and solar heat from waste incineration based on the calculated waste heat generation amount and solar heat reception amount (S3). Hereinafter, the calculated steam amount is referred to as “calculated steam amount”, and is indicated as “A” in FIG. The waste supply amount control device 6 subtracts the preset steam amount set in advance from the calculated steam amount (“AB” in FIG. 2), and calculates the difference between them (“C” in FIG. 3). (S4).

計算蒸気量と設定蒸気量との差Cが、所定の下限閾値Z1以上かつ所定の上限閾値Z2以下の場合(Z1≦C≦Z2)、廃棄物供給量制御装置6は、廃棄物供給量を補正しない。したがって、そのまま廃棄物供給装置5による廃棄物の供給が継続される(S5a)。   When the difference C between the calculated steam amount and the set steam amount is not less than the predetermined lower limit threshold Z1 and not more than the predetermined upper limit threshold Z2 (Z1 ≦ C ≦ Z2), the waste supply amount control device 6 determines the waste supply amount. Do not correct. Therefore, the waste supply by the waste supply device 5 is continued as it is (S5a).

計算蒸気量と設定蒸気量の差Cが上限閾値Z2よりも大きい場合(Z2<C)、廃棄物供給量制御装置6は、廃棄物供給量を減少させるように廃棄物供給装置5を制御する(S5b)。また、計算蒸気量と設定蒸気量の差Cが下限閾値Z1よりも小さい場合(C<Z1)、廃棄物供給量制御装置6は、廃棄物供給量を増加させるように廃棄物供給装置5を制御する(S5c)。   When the difference C between the calculated steam amount and the set steam amount is larger than the upper limit threshold Z2 (Z2 <C), the waste supply amount control device 6 controls the waste supply device 5 so as to decrease the waste supply amount. (S5b). When the difference C between the calculated steam amount and the set steam amount is smaller than the lower limit threshold Z1 (C <Z1), the waste supply amount control device 6 sets the waste supply device 5 to increase the waste supply amount. Control (S5c).

本実施形態では、天候等によって太陽熱の受熱量が変化した場合であっても、該太陽熱によって得られる蒸気量の変化に対応させて廃棄物供給量を増減することにより、太陽熱による蒸気量と廃棄物焼却による蒸気量との合計の蒸気量を常に一定に維持できる。この結果、天候等の変動に対応させて発電量を平滑化することができる。   In the present embodiment, even if the amount of solar heat received changes due to weather or the like, the amount of waste due to the solar heat and the disposal are increased by increasing or decreasing the waste supply amount in response to the change in the amount of steam obtained by the solar heat. The total amount of steam with the amount of steam from incineration can always be kept constant. As a result, the power generation amount can be smoothed in response to fluctuations in the weather and the like.

本実施形態では、焼却炉1からの排ガスによって飽和蒸気そして過熱蒸気を生成し、太陽熱によって該過熱蒸気を加熱する。このように、過熱蒸気の加熱にのみ太陽熱を活用することにより、該太陽熱の電気変換効率が大幅に高められ、廃棄物発電設備の廃熱回収発電設備能力を有効に活用することができる。   In the present embodiment, saturated steam and superheated steam are generated by the exhaust gas from the incinerator 1, and the superheated steam is heated by solar heat. Thus, by utilizing solar heat only for heating the superheated steam, the electrical conversion efficiency of the solar heat can be greatly increased, and the waste heat recovery power generation facility capability of the waste power generation facility can be effectively utilized.

また、本実施形態では、太陽熱受熱装置15が、管群ボイラ3内に配される過熱管13で生成した過熱蒸気を蒸気タービン発電機16に供給する流路に設置されており、太陽熱を高温過熱蒸気の生成に確実に活用できるので、発電効率をさらに高めることができる。   Moreover, in this embodiment, the solar heat receiving device 15 is installed in the flow path which supplies the superheated steam produced | generated by the superheat pipe 13 distribute | arranged in the tube group boiler 3 to the steam turbine generator 16, and solar heat is made into high temperature. Since it can be reliably used for the generation of superheated steam, the power generation efficiency can be further increased.

また、集熱を効率的に行うことにより、例えば、従来の廃棄物発電による排ガスからの熱回収では、排ガス中の有害物によるボイラ管腐食の制約から実現できない400℃を超える温度の熱供給や、さらに高い500℃を超える高温熱供給が可能となる。   Also, by efficiently collecting heat, for example, heat recovery from exhaust gas by conventional waste power generation, heat supply at a temperature exceeding 400 ° C., which cannot be realized due to boiler tube corrosion restrictions due to harmful substances in the exhaust gas, Further, high-temperature heat supply exceeding 500 ° C. becomes possible.

また、本実施形態では、熱媒体を用いないので、該熱媒体のための設備を設ける必要がなくなるので、その分、設備を小型化でき、コストの増大を抑制できる。   Further, in the present embodiment, since no heat medium is used, it is not necessary to provide equipment for the heat medium. Therefore, the equipment can be reduced in size, and an increase in cost can be suppressed.

本実施形態では、廃棄物供給量制御装置によって、廃棄物の供給量が制御されることとしたが、これに代えてあるいはこれに加えて、廃棄物処理炉の廃棄物ホッパから燃焼室内へ廃棄物を押し出す給塵機の運転速度、焼却炉の火格子の動作速度、該焼却炉内に供給される燃焼空気量、その他の運転基準値が制御されることとしてもよい。   In the present embodiment, the waste supply amount is controlled by the waste supply amount control device, but instead of or in addition to this, the waste is disposed from the waste hopper of the waste treatment furnace into the combustion chamber. The operation speed of the dust feeder that pushes out the object, the operation speed of the grate of the incinerator, the amount of combustion air supplied into the incinerator, and other operation reference values may be controlled.

本実施形態では、太陽熱を過熱蒸気の加熱に活用したが、これに代えて、該太陽熱を過熱蒸気の生成および加熱の両方に活用してもよい。すなわち、太陽熱受熱装置へ飽和蒸気を供給して、太陽熱によって該飽和蒸気を過熱することにより、過熱蒸気を生成し、さらには該過熱蒸気を加熱することができる。   In the present embodiment, solar heat is used for heating the superheated steam. Alternatively, the solar heat may be used for both generation and heating of the superheated steam. That is, by supplying saturated steam to a solar heat receiving device and heating the saturated steam by solar heat, it is possible to generate superheated steam and further heat the superheated steam.

本発明は、廃棄物発電において太陽熱の受熱量の変動に対応して廃棄物の供給量を制御するものであるが、太陽熱の受熱量の変動に対応して燃料の供給量を制御するという本発明の技術思想は、石炭火力発電、ガスタービンコジェネレーションシステム等の水その他の液体を蒸発させ、さらに加熱して過熱蒸気を生成し、その過熱蒸気をタービンに供給して発電する装置に適用することが可能であり、これによって、効率的に太陽熱を活用することができる。   The present invention controls waste supply amount in response to fluctuations in the amount of solar heat received in waste power generation, but controls the fuel supply amount in response to fluctuations in the amount of solar heat reception. The technical idea of the invention is to be applied to a device that evaporates water and other liquids such as coal-fired power generation and gas turbine cogeneration system, further heats to generate superheated steam, supplies the superheated steam to the turbine, and generates electricity. It is possible to use solar heat efficiently.

1 焼却炉(廃棄物処理炉)
2 輻射ボイラ
3 管群ボイラ
5 廃棄物供給装置
6 廃棄物供給量制御装置
10 発電装置(太陽熱利用廃棄物発電装置)
14 太陽熱集熱装置
15 太陽熱受熱装置
16 蒸気タービン発電機(蒸気タービン発電装置)
1 Incinerator (waste treatment furnace)
2 Radiation boiler 3 Tube group boiler 5 Waste supply device 6 Waste supply amount control device 10 Power generation device (solar thermal waste generation device)
14 Solar thermal collector 15 Solar thermal receiver 16 Steam turbine generator (steam turbine generator)

Claims (2)

廃棄物を焼却またはガス化溶融する廃棄物処理炉施設に設ける廃棄物発電装置であって、
廃棄物処理炉へ廃棄物を供給する廃棄物供給装置と、
廃棄物処理炉から排出される排ガスから熱回収して蒸気を生成するボイラと、
太陽熱を集熱する太陽熱集熱装置と、
上記太陽熱集熱装置で集熱された太陽熱を受熱するとともに、受熱した太陽熱との熱交換により、ボイラで生成した蒸気を飽和蒸気温度より高い温度に加熱して過熱蒸気を生成する過熱蒸気生成及びボイラで生成した過熱蒸気をさらに加熱する過熱蒸気加熱のうち少なくとも一つを行う太陽熱受熱装置と、
上記太陽熱受熱装置で生成又は加熱された過熱蒸気により発電する蒸気タービン発電装置と、
ボイラで生成した蒸気を上記太陽熱受熱装置により加熱する熱量、該太陽熱受熱装置により生成又は増加した過熱蒸気の熱量又は過熱蒸気量、過熱蒸気温度、該太陽熱集熱装置が受光する日射量のうち少なくとも一つに基づき、廃棄物処理炉に供給する廃棄物供給量を調整するように上記廃棄物供給装置を制御する廃棄物供給量制御装置と、
を備えることを特徴とする太陽熱利用廃棄物発電装置。
A waste power generation apparatus installed in a waste treatment furnace facility for incineration or gasification melting of waste,
A waste supply device for supplying waste to a waste treatment furnace;
A boiler that generates steam by recovering heat from the exhaust gas discharged from the waste treatment furnace;
A solar heat collector for collecting solar heat;
Superheated steam generation that receives the solar heat collected by the solar heat collector and heats the steam generated by the boiler to a temperature higher than the saturated steam temperature by heat exchange with the received solar heat, and generates superheated steam. A solar heat receiving device that performs at least one of the superheated steam heating for further heating the superheated steam generated in the boiler;
A steam turbine power generator that generates electric power with superheated steam generated or heated by the solar heat receiving device;
At least of the amount of heat for heating the steam generated by the boiler by the solar heat receiving device, the amount of heat or superheated steam generated or increased by the solar heat receiving device, the temperature of the superheated steam, and the amount of solar radiation received by the solar heat collecting device A waste supply amount control device for controlling the waste supply device so as to adjust the waste supply amount supplied to the waste treatment furnace, based on one;
A waste heat power generation apparatus using solar heat.
廃棄物を焼却またはガス化溶融する廃棄物処理炉施設に設ける廃棄物発電装置の運転方法であって、
廃棄物処理炉へ廃棄物を供給する廃棄物供給工程と、
ボイラにて、廃棄物処理炉から排出される排ガスから熱回収して蒸気を生成する蒸気生成工程と、
太陽熱を集熱する太陽熱集熱工程と、
上記太陽熱集熱工程で集熱された太陽熱を受熱するとともに、受熱した太陽熱との熱交換により、上記蒸気生成工程で生成した蒸気を飽和蒸気温度より高い温度に加熱して過熱蒸気を生成する過熱蒸気生成及び上記蒸気生成工程で生成した過熱蒸気をさらに加熱する過熱蒸気加熱のうち少なくとも一つを行う太陽熱受熱工程と、
上記太陽熱受熱工程で生成又は加熱された過熱蒸気により発電する発電工程と、
上記太陽熱受熱工程で蒸気を加熱する熱量、該太陽熱受熱工程で生成又は増加した過熱蒸気の熱量又は過熱蒸気量、過熱蒸気温度、該太陽熱集熱工程で受光する日射量のうち少なくとも一つに基づき、上記廃棄物供給工程で廃棄物処理炉に供給する廃棄物供給量を調整するように制御を行う廃棄物供給量制御工程と、
を備えることを特徴とする太陽熱利用廃棄物発電装置の運転方法。
An operation method of a waste power generation apparatus provided in a waste treatment furnace facility for incinerating or gasifying and melting waste,
A waste supply process for supplying waste to a waste treatment furnace;
In the boiler, a steam generation process for generating steam by recovering heat from the exhaust gas discharged from the waste treatment furnace,
A solar heat collecting process for collecting solar heat;
Superheat that receives the solar heat collected in the solar heat collecting process and heats the steam generated in the steam generating process to a temperature higher than the saturated steam temperature by heat exchange with the received solar heat to generate superheated steam. A solar heat receiving step for performing at least one of steam generation and superheated steam heating for further heating the superheated steam generated in the steam generation step;
A power generation step of generating power with superheated steam generated or heated in the solar heat receiving step;
Based on at least one of the amount of heat for heating the steam in the solar heat receiving step, the amount of superheated steam generated or increased in the solar heat receiving step or the amount of superheated steam, the superheated steam temperature, and the amount of solar radiation received in the solar heat collecting step. A waste supply amount control step for performing control so as to adjust the waste supply amount supplied to the waste treatment furnace in the waste supply step;
A method for operating a solar heat-generated waste power generation apparatus.
JP2010080538A 2010-03-31 2010-03-31 Solar thermal waste power generation apparatus and operation method thereof Active JP5447096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010080538A JP5447096B2 (en) 2010-03-31 2010-03-31 Solar thermal waste power generation apparatus and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010080538A JP5447096B2 (en) 2010-03-31 2010-03-31 Solar thermal waste power generation apparatus and operation method thereof

Publications (2)

Publication Number Publication Date
JP2011214732A true JP2011214732A (en) 2011-10-27
JP5447096B2 JP5447096B2 (en) 2014-03-19

Family

ID=44944664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010080538A Active JP5447096B2 (en) 2010-03-31 2010-03-31 Solar thermal waste power generation apparatus and operation method thereof

Country Status (1)

Country Link
JP (1) JP5447096B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015052427A (en) * 2013-09-06 2015-03-19 株式会社東芝 Steam turbine plant
CN104454409A (en) * 2014-12-01 2015-03-25 浙江大学 Solar-assisted reheat overheating thermal power generation system and emission reduction dilatation method
CN106642141A (en) * 2016-12-29 2017-05-10 陶煜民 Multifunctional electricity generating station
CN107388601A (en) * 2016-05-17 2017-11-24 高金龙 Middle low-temperature solar energy heating power application system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105276556B (en) * 2015-11-12 2017-09-05 上海揽鑫节能科技有限公司 A kind of solar energy steam boiler system produced for jelly

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5685650A (en) * 1979-12-12 1981-07-11 Shoichi Haga Boiler with light collector
JPH04219470A (en) * 1990-12-19 1992-08-10 Mitsubishi Heavy Ind Ltd Solar thermal power generating device
JPH0735311A (en) * 1993-07-19 1995-02-07 Kubota Corp Combustion type superheater
JP2000514149A (en) * 1996-05-31 2000-10-24 エレクトリック パワー リサーチ インスチテュート インコーポレイテッド Hybrid power generation system using solar heat and fuel combustion
JP2004044455A (en) * 2002-07-10 2004-02-12 Toshiba Corp Temperature stratification resolving system
JP2006300466A (en) * 2005-04-25 2006-11-02 Kobe Steel Ltd Control method and device, and program for incinerator
JP2008039367A (en) * 2006-08-10 2008-02-21 Kawasaki Heavy Ind Ltd Solar thermal power generation facility and heat medium supply facility

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5685650A (en) * 1979-12-12 1981-07-11 Shoichi Haga Boiler with light collector
JPH04219470A (en) * 1990-12-19 1992-08-10 Mitsubishi Heavy Ind Ltd Solar thermal power generating device
JPH0735311A (en) * 1993-07-19 1995-02-07 Kubota Corp Combustion type superheater
JP2000514149A (en) * 1996-05-31 2000-10-24 エレクトリック パワー リサーチ インスチテュート インコーポレイテッド Hybrid power generation system using solar heat and fuel combustion
JP2004044455A (en) * 2002-07-10 2004-02-12 Toshiba Corp Temperature stratification resolving system
JP2006300466A (en) * 2005-04-25 2006-11-02 Kobe Steel Ltd Control method and device, and program for incinerator
JP2008039367A (en) * 2006-08-10 2008-02-21 Kawasaki Heavy Ind Ltd Solar thermal power generation facility and heat medium supply facility

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015052427A (en) * 2013-09-06 2015-03-19 株式会社東芝 Steam turbine plant
CN104454409A (en) * 2014-12-01 2015-03-25 浙江大学 Solar-assisted reheat overheating thermal power generation system and emission reduction dilatation method
CN107388601A (en) * 2016-05-17 2017-11-24 高金龙 Middle low-temperature solar energy heating power application system
CN106642141A (en) * 2016-12-29 2017-05-10 陶煜民 Multifunctional electricity generating station

Also Published As

Publication number Publication date
JP5447096B2 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
JP6038448B2 (en) Solar thermal combined power generation system and solar thermal combined power generation method
JP6340473B2 (en) Solar and biomass energy integrated power generation optimization combined system
JP5602306B2 (en) Solar boiler and solar power plant using the same
JP2011169186A (en) Waste power generator utilizing solar heat
WO2012042639A1 (en) Combined cycle power generation plant utilzing solar heat
JP5447096B2 (en) Solar thermal waste power generation apparatus and operation method thereof
JP2011117447A (en) Power generation system using solar energy
JP6230344B2 (en) Steam turbine plant
WO2007073008A2 (en) Heat medium supply facility, composite solar heat electricity generation facility, and method of controlling the facilities
CN105804872B (en) Steam-recycling formula gas turbine electrical generation process and device based on solar energy and waste heat recovery
CN103670554B (en) Power generation and heat supply device
JP2011169187A (en) Waste power generation device utilizing solar heat
CN100543275C (en) Power generation device by using residual heat and exhaust gas from converter
WO2013098945A1 (en) Solar thermal power generation apparatus
CN114909193B (en) Thermal power generating unit flexible operation system based on fused salt heat storage
Khan et al. Techno-economic and exergo-economic evaluation of a novel solar integrated waste-to-energy power plant
JP5534427B2 (en) Solar thermal power generation system
KR101140126B1 (en) Hybrid of solar thermal power plant and fossil fuel boiler
CN104454409B (en) A kind of solar energy auxiliary reheating overheat heat power generating system and emission reduction expansion method
JPH11218005A (en) Combined power generation system utilizing waster as fuel
JP2013011252A (en) Power plant and its operating method
US20140216032A1 (en) Solar direct steam generation power plant combined with heat storage unit
CN105247208B (en) Solar thermal collector factory with storage heater
US20150007567A1 (en) Plant and method for increasing the efficiency of electric energy production
US20150082792A1 (en) Solar and renewable/waste energy powered turbine with two stage heating and graphite body heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131216

R150 Certificate of patent or registration of utility model

Ref document number: 5447096

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350