JP2004044455A - Temperature stratification resolving system - Google Patents

Temperature stratification resolving system Download PDF

Info

Publication number
JP2004044455A
JP2004044455A JP2002201598A JP2002201598A JP2004044455A JP 2004044455 A JP2004044455 A JP 2004044455A JP 2002201598 A JP2002201598 A JP 2002201598A JP 2002201598 A JP2002201598 A JP 2002201598A JP 2004044455 A JP2004044455 A JP 2004044455A
Authority
JP
Japan
Prior art keywords
water
low
boiling
deep
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002201598A
Other languages
Japanese (ja)
Inventor
Arata Ito
伊藤 新
Seiichi Yokobori
横堀 誠一
Yutaka Takeuchi
武内 豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002201598A priority Critical patent/JP2004044455A/en
Publication of JP2004044455A publication Critical patent/JP2004044455A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To resolve a temperature stratification by circulating a surface layer water and a deep water at closed waters without generating environmental load. <P>SOLUTION: This system comprises: a low boiling point medium power generation system 12 which is arranged inside a floating structural body 2 provided within the closed waters, and circulates a low boiling medium having a boiling point lower than water, to generate power using temperature difference between the surface layer water and the deep water at the closed water; and a surface layer water intake pump 10 and a deep water intake pump 9 which are driven by the power, respectively supply the surface layer water 18 or the deep water 19 to the low boiling point medium power generation system 12, and perform flow back of the surface layer water or the deep water to the closed waters. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、湖、池、沼等の閉鎖水域の表層水と深層水の温度差を利用して発電を行い、深層水を汲み上げて表層水との間に循環流を発生させて閉鎖水域の温度成層の解消を行う温度成層解消システムに関する。
【0002】
【従来の技術】
夏期には、閉鎖水域の表面の水は温度が上昇して軽くなり、温度成層が形成され表層部の水と深層部の水との混合が困難になり、深層部の水は溶存酸素の補給が断たれ、酸欠状態が発生し、魚介類の生息が難しくなり、生物が死滅する恐れがある。
【0003】
このような現象を回避するために特開平11−70396号公報の発明では、「水域のうつろ」を利用してサンライトホールを形成し、水底での光合成作用を促進させて大量の溶存酸素を供給して生態環境や底質環境の保全を図っている。しかしながらヘドロ化が進行している場合にはヘドロ化の解消に対しては効果が小さい。一方、三菱重工技報 Vol.31 No.4 (1994年7月)によると、水域の流動促進を図ることが、有機物負荷の水底への沈積を軽減させる有効な対策であると言われている。
【0004】
また、現実に陸上型海洋温度差発電の100kWパイロットプラントが設置されて実験研究が行われた(火力原子力発電 Vol.32 No.10 1981年10月参照)が、このプラントにおいては、深層水が5〜10℃、表層水25〜30℃であり、発電端出力100kW、送電端出力11.1kW、所内動力88.9kWであった。また、フロンの循環流量に対して深層水取水量および表層水取水量は、19倍の量であった。
【0005】
【発明が解決しようとする課題】
上記のように、閉鎖水域においては、特に夏期に発生する温度成層による深層部の酸欠状態の発生を防ぎ、深層部への過剰な有機物沈積を防ぎ、水域の浄化を行うために、水域の流動促進を行う必要がある。しかし、そのために商用電力や石油等の燃料を消費することは環境負荷を発生するので好ましくない。
【0006】
そこで本発明は、環境負荷を発生することなく閉鎖水域の表層水と深層水を循環させ温度成層を解消することのできる温度成層解消システムを提供することを目的とする。
【0007】
【課題を解決するための手段】
請求項1の発明は、閉鎖水域内に設けられた浮遊構造体内に設けられ、水よりも低い沸点を有する低沸点媒体を循環して前記閉鎖水域の表層水と深層水の温度差を利用して電力を発生する低沸点媒体発電システムと、前記電力によって駆動され、前記表層水あるいは前記深層水を前記低沸点媒体発電システムへ供給するとともに前記閉鎖水域へ還流させる表層水取水ポンプおよび深層水取水ポンプを備えた構成とする。
【0008】
請求項2の発明は、前記低沸点媒体発電システムは、低沸点媒体を加熱する太陽熱加熱装置を備えている構成とする。
請求項3の発明は、前記低沸点媒体発電システムは、低沸点媒体の潜熱を貯蔵する潜熱貯蔵装置を備えている構成とする。
【0009】
請求項4の発明は、前記浮遊構造体は、表層水によって低沸点媒体を加熱する加熱器とタービンと発電機と表層水取水ポンプとを備え水面に設けられた水面浮遊構造体と、深層水によって低沸点媒体蒸気を復液する復液器と加圧ポンプと深層水取水ポンプとを備え深層部に設けられた深層部遊泳構造体とからなる構成とする。
【0010】
請求項5の発明は、前記低沸点媒体発電システムにおいて熱交換を行った表層水および深層水は、それぞれ深層部方向および表層部方向に放出されるようになっている構成とする。
請求項6の発明は、前記低沸点媒体発電システムにおいて熱交換を行った深層水は、一度気中に放出されて閉鎖水域水面に落ちるようになっている構成とする。
【0011】
請求項7の発明は、前記低沸点媒体発電システムにおいて熱交換を行った表層水および深層水を混合して温度成層界面に放出する混合噴出ノズルまたはエジェクターを備えている構成とする。
【0012】
請求項8の発明は、前記混合噴出ノズルまたはエジェクターにおいて温度成層界面に放出される水に空気のマイクロバブルを注入するマイクロバブル発生装置を備えている構成とする。
【0013】
【発明の実施の形態】
図1,2,3を参照して本発明の第1の実施の形態の温度成層解消システムを説明する。本実施の形態の温度成層解消システムは、閉鎖水域の水面1に設けられた浮遊構造体2内に収納された加熱器3、タービン4、発電機5、復液器6、加圧ポンプ7等を備えている。また、浮遊構造体2の外部に配管接続された深層水取水ポンプ9および表層水取水ポンプ10を備えている。
【0014】
加圧ポンプ7の出口は、加熱器3に結合され、加熱器3の出口はタービン4の入口に結合され、タービン4に同軸に発電機5が結合され、タービン4の出口は復液器6の入口に結合され、復液器6の出口は加圧ポンプ7の入口に結合されて、これらは、低沸点媒体であるアンモニアが流れる低沸点媒体発電システム12を構成している。加圧ポンプ7にはモータ8が同軸に結合されている。水底11近くに沈められた深層水取水ポンプ9は、取水配管17で復液器6の水側入口に結合されている。
【0015】
高温の表層水を取水する取水配管16が表層水取水ポンプ10に結合され、表層水取水ポンプ10の出口が加熱器3の水側入口に結合され、加熱器3の水側出口が放水配管14に結合されている。また、低温の深層水を取水する取水配管17が復液器6の水側入口に結合され、復液器6の水側出口が放水配管15に結合されている。
【0016】
低沸点媒体発電システム12は、加熱器3、タービン4、発電機5、復液器6、加圧ポンプ7等で構成され、低沸点媒体のアンモニアが循環する。加熱器3には高温の表層水18が、表層水取水ポンプ10で導入され、熱交換後に閉鎖水域の水面1に放流される。また、低温の深層水19が、深層水取水ポンプ9で取水され、復液器6に導かれて熱交換を行い、閉鎖水域水面1に放流される。
【0017】
以上のような構成とした本発明の第1の実施の形態の温度成層解消システムは、閉鎖水域の高温の表層水18を表層水取水ポンプ10で取水し、低沸点媒体発電システム12の加熱器3に導き、加熱器3において低沸点媒体液と熱交換を行った後、閉鎖水域の表層に放流を行う。低沸点媒体液が加熱器3において高温の表層水18と熱交換を行って生成した低沸点媒体蒸気を、タービン4に導いてこれを駆動し、同軸に結合された発電機5で発電を行う。タービン4の排気蒸気は復液器6に導かれ、深層水取水ポンプ9で取水された低温の深層水19と熱交換を行って復液する。この復液は加圧ポンプ7によって再び加熱器3へ圧送される。
【0018】
低沸点媒体発電システム12で循環するアンモニアの量を5kg/sとし、表層水18の温度を27℃、深層水19の温度を8℃とし、加熱器3と復液器6の熱交換部の最少温度差が2℃になる構成とした場合、表層水18の取水量を100kg/sとし、深層水19の取水量を266kg/sとすると、表層水取水ポンプ10、深層水取水ポンプ9、加圧ポンプ7等の動力に使用後の発電量は16kWeとなる。深層水19の取水量を最大にしてこの発電量がゼロになるようにしてこのシステムを閉鎖水域温度成層解消にのみ用いるとした場合、深層水19の最大取水量は、469kg/sとなる。
【0019】
本実施の形態の温度成層解消システムによれば、アンモニアを作動媒体とする低沸点媒体発電システム12を用いて閉鎖水域の高温の表層水18と低温の深層水19とで温度差発電を行い、低沸点媒体循環流量の約90倍の深層水を取水して閉鎖水域の表層に放流することができ、閉鎖水域の温度成層を自然エネルギーを利用して解消することができる。なお、低沸点媒体発電システム12において熱交換を行った後の深層水は、水面1の上の気中に放出して、その後水面1に落ちるようにすると、深層水への酸素溶解を速めることができる。
【0020】
つぎに本発明の第2の実施の形態を説明する。この実施の形態の温度成層解消システムにおける低沸点媒体発電システム12aは、図4に示すように、加熱器3、タービン4、発電機5、復液器6、加圧ポンプ7のほかに、太陽熱加熱器21と低沸点媒体液貯蔵槽22を備えている。その他の構成は第1の実施の形態(図1,2,3)と同じである。
【0021】
加熱器3で加熱された低沸点媒体(アンモニア)は、三方弁23によってタービン4に導かれるものと、太陽熱加熱器21に導かれるものに分岐される。太陽熱加熱器21は、太陽熱20を集束させる反射鏡の集束点に低沸点媒体が流れる配管が設置された構成であり、配管表面には熱吸収を良くする表面処理が施されている。また、反射鏡表面はゴミ等の付着が起きにくくするために光触媒が塗布されている。太陽熱加熱器21で低沸点媒体を過熱蒸気にして、タービン4に導いてこれを駆動する。
【0022】
この第2の実施の形態の温度成層解消システムは、前記第1の実施の形態の温度成層解消システムと同様に作用するが、さらに、太陽熱加熱器21で低沸点媒体を蒸気にする場合には加圧ポンプ7の吐出圧力を高くし、また流量も増やして加熱器3で低沸点媒体が蒸発しない条件にし、加熱器3より全ての低沸点媒体が太陽加熱器21に導かれるようにし、太陽加熱器21で蒸発するようにする。太陽熱加熱器21で蒸気を生成しない場合には、加熱器3で蒸発するように加圧ポンプ7の吐出圧力を下げ、流量を減らし、生成した蒸気を全てタービン4に導いて発電を行う。
【0023】
この第2の実施の形態の温度成層解消システムによれば前記第1の実施の形態の温度成層解消システムと同様の効果が得られるが、さらに、太陽熱加熱器21を用いて低沸点媒体蒸気温度を高くすることができ、発電出力を増大することができ、深層部からの取水量を増やすことができるので、温度成層解消を迅速に行うことができる。
【0024】
つぎに本発明の第3の実施の形態を説明する。この実施の形態の温度成層解消システムにおける低沸点媒体発電システム12bは、図5に示すように、加熱器3、タービン4、発電機5、復液器6、加圧ポンプ7および太陽熱加熱器21のほかに、エリスリトール系蓄熱材を用いた潜熱貯蔵装置26、圧力調整弁28、熱交換器29および膨張弁30を備えている。その他の構成は第1の実施の形態(図1,2,3)とほぼ同じである。
【0025】
加圧ポンプ7で加圧された低沸点媒体(アンモニア)液は、分岐されて熱交換器29と圧力調整弁28に導かれる。熱交換器29で熱交換して加熱された低沸点媒体液は、太陽熱加熱器21の加熱部に導かれる。太陽熱加熱器21の加熱部で更に加熱され蒸気となった低沸点媒体は潜熱貯蔵装置26に導かれ、蓄熱材と熱交換をした後に熱交換器29の熱交換部に導かれる。熱交換器29の熱交換部で熱交換を行って冷却された低沸点媒体液は、膨張弁30に導かれて断熱膨張をして、タービン4の出口側に導かれる。
【0026】
一方、圧力調整弁28で減圧された低沸点媒体液は、加熱器3の熱交換部に導かれ表層水18によって加熱される。加熱された低沸点媒体が潜熱貯蔵装置26の熱交換部に導かれ更に加熱されて蒸気になってタービン4に導かれる。
【0027】
この第3の実施の形態の温度成層解消システムは前記第2の実施の形態の温度成層解消システムと同様に作用するが、さらに次のような作用を行う。すなわち、太陽熱で低沸点媒体を加熱できる時には、加圧ポンプ7の吐出圧を高くし、低沸点媒体を熱交換器29にも分岐する。そして熱交換器29で加熱された低沸点媒体を太陽熱加熱器21の熱交換部に導いて高圧の低沸点媒体蒸気を生成する。生成された高圧の低沸点媒体蒸気を潜熱貯蔵装置26に導いて潜熱蓄熱剤に熱を与え、引き続き熱交換器29の熱交換部に導く。熱交換器29の熱交換部で冷却された低沸点媒体液を膨張弁30に導いて断熱膨張させて低温の低沸点媒体としてタービン4の出口側に導く。
【0028】
一方、圧力調整弁28に導かれた低沸点媒体液は、加熱器3の熱交換部に導かれ、高温の表層水18と熱交換を行って加熱され、潜熱貯蔵装置26の熱交換部に導かれて潜熱蓄熱材と熱交換を行ってさらに加熱されて低沸点媒体蒸気を生成する。生成された蒸気をタービン4に導いてこれを駆動して同軸に結合された発電機5で発電を行う。
【0029】
太陽熱で低沸点媒体を加熱できない時には、加圧ポンプ7の吐出圧を低くし、熱交換器29への分岐をせずに低沸点媒体液の全量が、圧力調整弁28を経由して加熱器3の熱交換部に導かれるようにする。加熱器3の熱交換部に導かれた低沸点媒体液は、高温の表層水18と熱交換を行って蒸気となる。この蒸気を潜熱貯蔵装置26の熱交換部に導いて潜熱貯蔵材と熱交換を行って過熱蒸気とし、タービン4に導いて、これを駆動して発電を行う。
【0030】
この第3の実施の形態の温度成層解消システムによれば前記第2の実施の形態の温度成層解消システムと同様の効果が得られるが、さらに、太陽熱加熱器21を用いて生成した低沸点媒体蒸気を潜熱貯蔵装置26に送って蓄熱し、加熱器3で熱交換を行って高温になった低沸点媒体蒸気を潜熱貯蔵装置26に送って過熱蒸気としてからタービン4に送って発電をすることができるため、利用できる太陽熱に変動があっても発生電力の変動を緩和することができる。そのためにほぼ一定の出力で低沸点媒体発電システム12bを運転することができ、温度成層解消をコンスタントに行うことができる。
【0031】
また、太陽熱で加熱された高圧の低沸点媒体液を断熱膨張させて得られる低温の低沸点媒体をタービン4の排気側に導くので、タービン4の出力を増大させることができ、深層水の取水量を増やすことができ、温度成層解消を迅速に行うことができる。
【0032】
つぎに本発明の第4の実施の形態の温度成層解消システムを図6,図7を参照して説明する。本実施の形態の温度成層解消システムは、ケーブル31と配管32,39によって結合された水面浮遊構造体24と深層部浮遊構造体25とから構成されている。
【0033】
水面浮遊構造体24は、タービン4、発電機5、表層水移送装置43等で構成される。表層水移送装置43は、表層水取水ポンプ33、水中モータ34、加熱器3、偏流構造35等で構成され、支持構造41に取付けられている。水中モータ34で表層水取水ポンプ33を駆動し、表層水を加熱器3に導き、熱交換部40で熱交換を行わせて、偏流構造35で流れの向きを深層部方向に向けて表層水移送装置43より放出する。
【0034】
深層部浮遊構造体25は、加圧ポンプ7、深層水移送装置44等で構成される。深層水移送装置44は、深層水取水ポンプ36、水中モータ37、復液器6、偏流構造38等で構成され、支持構造42に取付けられている。水中モータ37で深層水取水ポンプ36を駆動し、深層水を復液器6に導き、熱交換部で熱交換を行わせて、偏流構造38で流れの向きを表層方向に向けて深層水移送装置44より放出する。
水面浮遊構造体24の加熱器3およびタービン4と深層部浮遊構造体25の加圧ポンプ7および復液器6はそれぞれ配管32および配管39で接続されている。
【0035】
この第4の実施の形態の温度成層解消システムは前記第1の実施の形態の温度成層解消システムと同様に作用するが、さらに次のような作用を行う。すなわち、表層水を水平方向に表層水取水ポンプ33で取水し、加熱器3で熱交換を行ったものを深層に向かって放水する。偏流構造35で水底11に向けて放流する場合を図6では示しているが、水平方向に放流してもよい。その場合には、表層水移送装置43を複数用いて水面浮遊構造体24に偶力が発生しないようにする。また、深層水を水平方向に深層水取水ポンプ36で取水し、復液器6で熱交換を行ったものを水面1に向かって放水する。偏流構造38で水面1に向けて放流する場合を図6では示しているが、水平方向に放流してもよい。その場合には、深層水移送装置44を複数用いて深層部浮遊構造体25に偶力が発生しないようにする。
【0036】
この第4の実施の形態の温度成層解消システムは前記第1の実施の形態の温度成層解消システムと同様の効果を生じるが、さらに次のような効果を生じる。すなわち、表層水と深層水を取水するための配管および加熱器3と復液器6等への配管をなくすことができ、取水部の構造を単純な形状にすることができ、工場で一体構造として組み立てることができるために建設費を低く抑えることができる。
【0037】
なお、この第4の実施の形態においては、深層部浮遊構造体25を中性浮力構造としてもよい。その場合にはケーブル31を省略することができるとともに、水面浮遊構造体24と深層部浮遊構造体25の水平方向の位置関係が自由になる。
【0038】
つぎに本発明の第5の実施の形態の温度成層解消システムを図8を参照して説明する。すなわち、加熱器3、タービン4、発電機5、復液器6、加圧ポンプ7等で構成される低沸点媒体発電システム、および表層水取水ポンプ10、深層水取水ポンプ9等を搭載する水面浮遊構造体47を水面1に浮遊させ、この水面浮遊構造体47から温度成層界面46付近に吊り下ろした成層界面遊泳構造体48に、熱交換を行った後の表層水と深層水を混合して温度成層界面46方向に放出する混合噴出ノズル49を搭載した構成である。
【0039】
水面浮遊構造体47においては、加圧ポンプ7の出口が加熱器3に結合され、加熱器3の出口がタービン4の入口に結合され、タービン4の出口が復液器6の入口に結合され、復液器6の出口が加圧ポンプ7の入口に結合されて、低沸点媒体(アンモニア)が流れる低沸点媒体発電システムを構成する。タービン4には同軸に発電機5が結合され、加圧ポンプ7にはモータ8が同軸に結合されている。閉鎖水域の水底11近くに取水配管の取水口が設けられ、深層水19の取水ポンプ9に接続されている。
【0040】
また、温度成層界面46付近に成層界面浮遊構造体48を水面浮遊構造体47よりワイヤー50で吊り下ろし、成層界面浮遊構造体48に混合噴出ノズル49を設け、温度成層界面46方向に混合水を噴出する。水面浮遊構造体47の復液器6および加熱器3は混合噴出ノズル49と伸縮配管51,52で接続されている。
【0041】
図9は第6の実施の形態を示し、図8に示した第5の実施の形態における混合噴出ノズル49の代りにエジェクター54を設け、水面浮遊構造体47の復液器6および加熱器3とエジェクター54の吸引室56および駆動ノズル55をそれぞれ伸縮配管51,52で接続した構成である。
【0042】
図10は本発明の第7の実施の形態を示し、図9に示した第6の実施の形態におけるエジェクター54への配管接続を変えて、水面浮遊構造体47の復液器6および加熱器3とエジェクター54の駆動ノズル55および吸引室56をそれぞれ伸縮配管51,52で接続した構成である。
【0043】
以上のような構成とした本発明の第5,第6,第7の実施の形態の温度成層解消システムにおいては、復液器6に貯溜された低沸点媒体液(アンモニア液)を加圧ポンプ7で加圧して加熱器3に導き、高温の表層水18と熱交換を行って低沸点媒体蒸気(アンモニア蒸気)を生成し、タービン4に導いてこれを駆動し、同軸に結合された発電機5で発電を行う。タービン4の排気蒸気は復液器6に導かれ、深層水取水ポンプ9で取水された水底11付近の低温の深層水19と熱交換を行って復液する。
【0044】
復液器6で熱交換を行って加熱された深層水19は混合噴出ノズル49に導かれる。加熱器3で熱交換を行って冷却された表層水18も混合噴出ノズル49に導かれて、加熱された深層水と混合されて温度成層界面46方向に放出される。
【0045】
混合噴出ノズル49の代りにエジェクター54を備えている場合には、駆動ノズル55に加熱された深層水あるいは冷却された表層水を導き、冷却された表層水あるいは加熱された深層水を吸引混合して温度成層界面46方向に混合水を放出する。温度成層界面46の位置の変化に従い、ワイヤー50の長さを変えて成層界面浮遊構造体48が温度成層界面46に位置するように調整する。
【0046】
低沸点媒体発電システムで循環するアンモニアの量を5kg/sとし、表層水18の温度を27℃、深層水19の温度を8℃とし、加熱器3と復液器6の熱交換部の最少温度差が2℃になる構成とした場合、表層水18の取水量を100kg/sとし、深層水19の取水量を266kg/sとすると、表層水取水ポンプ10、深層水取水ポンプ9、加圧ポンプ7等の動力に使用後の発電量は16kWeとなる。深層水19の取水量を最大にしてこの発電量がゼロになるようにしてこのシステムを閉鎖水域温度成層解消にのみ用いるとした場合、深層水19の最大取水量は、469kg/sとなる。
【0047】
これら第5,第6,第7の実施の形態の温度成層解消システムによれば、アンモニアを作動媒体とする低沸点媒体発電システムを用いて閉鎖水域の表層水と深層水とで温度差発電を行い低沸点媒体循環流量の約90倍の深層水を取水して閉鎖水域の温度成層界面に放流することができ、自然エネルギーを利用して閉鎖水域の温度成層の解消を行うことができる。
【0048】
つぎに本発明の第8の実施の形態を説明する。この実施の形態の温度成層解消システムは、図11に示すように、成層界面浮遊構造体48に大気のマイクロバブル発生装置57を搭載した構成である。
【0049】
マイクロバブル発生装置57を混合噴出ノズル49に接続し、加熱された深層水あるいは冷却された表層水にマイクロバブル大気を注入し、混合流体を温度成層界面46の方向に放出する。
【0050】
この第8の実施の形態の温度成層解消システムによれば、マイクロバブル発生装置57で発生したマイクロバブル大気を混合噴出ノズル49に導いて、加熱された深層水あるいは冷却された表層水と混合させて温度成層界面46の方向に噴出することで温度成層界面を解消するとともに、低酸素になっている深層の水に酸素を補給することができ、水域浄化を行うことができる。
【0051】
なお、前記第6、第7の実施の形態においてエジェクター54の前に第8の実施の形態におけると同様のマイクロバブル発生装置を設けてもよい。
また、上記各実施の形態において、低沸点媒体発電システム12,12a,12bの作動媒体は、アンモニアのほかにアルコールや代替フロンであってもよい。
【0052】
【発明の効果】
本発明によれば、環境負荷を発生することなく閉鎖水域の表層水と深層水を循環させ温度成層を解消することのできる温度成層解消システムを提供することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の温度成層解消システムの縦断面図。
【図2】図1のII−II線に沿う平断面図。
【図3】本発明の第1の実施の形態の温度成層解消システムにおける低沸点媒体発電システムの構成図。
【図4】本発明の第2の実施の形態の温度成層解消システムにおける低沸点媒体発電システムの構成図。
【図5】本発明の第3の実施の形態の温度成層解消システムにおける低沸点媒体発電システムの構成図。
【図6】本発明の第4の実施の形態の温度成層解消システムの縦断面図。
【図7】図6のVII−VII線に沿う平断面図。
【図8】本発明の第5の実施の形態の温度成層解消システムの構成図。
【図9】本発明の第6の実施の形態の温度成層解消システムの構成図。
【図10】本発明の第7の実施の形態の温度成層解消システムの構成図。
【図11】本発明の第8の実施の形態の温度成層解消システムの構成図。
【符号の説明】
1…水面、2…浮遊構造体、3…加熱器、4…タービン、5…発電機、6…復液器、7…加圧ポンプ、8…モータ、9…深層水取水ポンプ、10…表層水取水ポンプ、11…水底、12,12a,12b…低沸点媒体発電システム、13…モータ、14,15…放水配管、16,17…取水配管、18…表層水、19…深層水、20…太陽熱、21…太陽熱加熱器、22…低沸点媒体液貯蔵槽、24…水面浮遊構造体、25…深層部浮遊構造体、26…潜熱貯蔵装置、28…圧力調整弁、29…熱交換器、30…膨張弁、31…ケーブル、32,39…配管、33…表層水取水ポンプ、34,37…水中モータ、35,38…偏流構造、36…深層水取水ポンプ、39…配管、40…熱交換部、41,42…支持構造体、43…表層水移送装置、44…深層水移送装置、46…温度成層界面、47…水面浮遊構造体、48…成層界面浮遊構造体、49…混合噴出ノズル、50…ワイヤー、51,52…伸縮配管、53…取水配管、54…エジェクター、55…駆動ノズル、56…吸引室、57…マイクロバブル発生装置。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention generates power by utilizing the temperature difference between surface water and deep water in closed water areas such as lakes, ponds, and swamps, and pumps deep water to generate a circulating flow between the water and surface water, thereby forming a closed water area. The present invention relates to a thermal stratification eliminating system for eliminating thermal stratification.
[0002]
[Prior art]
In summer, the temperature of the water on the surface of the enclosed water area rises and becomes lighter, a temperature stratification is formed, and it becomes difficult to mix the surface water with the deep water, and the deep water replenishes dissolved oxygen. Is cut off, an oxygen deficiency condition occurs, and the inhabitation of fish and shellfish becomes difficult, and there is a possibility that the organisms may die.
[0003]
In order to avoid such a phenomenon, in the invention of Japanese Patent Application Laid-Open No. H11-70396, a sunlight hole is formed by utilizing the “space in the water” to promote photosynthesis at the bottom of the water and to release a large amount of dissolved oxygen. They are supplied to preserve the ecological and sedimentary environments. However, when sludge formation is progressing, the effect on the resolution of sludge formation is small. On the other hand, Mitsubishi Heavy Industries Technical Report Vol. 31 No. 4 (July 1994), it is said that promoting the flow of water is an effective measure to reduce the accumulation of organic matter load on the water floor.
[0004]
Also, a 100 kW pilot plant for land-based ocean temperature difference power generation was actually installed for experimental research (see Thermal Nuclear Power Generation, Vol. 32, No. 10, October 1981). The temperature was 5 to 10 ° C., the surface water was 25 to 30 ° C., the output at the power generation end was 100 kW, the output at the transmission end was 11.1 kW, and the in-plant power was 88.9 kW. Further, the deep water intake and the surface water intake were 19 times as large as the circulating flow rate of CFCs.
[0005]
[Problems to be solved by the invention]
As described above, in closed water areas, in particular, to prevent the occurrence of oxygen depletion in the deep part due to thermal stratification occurring in the summer, prevent excessive organic deposition in the deep part, and purify the water area, It is necessary to promote flow. However, consuming fuel such as commercial power or petroleum for that purpose is not preferable because it causes an environmental load.
[0006]
Therefore, an object of the present invention is to provide a thermal stratification eliminating system that can circulate surface water and deep water in a closed water area and eliminate thermal stratification without generating an environmental load.
[0007]
[Means for Solving the Problems]
The invention according to claim 1 uses a temperature difference between the surface water and the deep water in the closed water area by circulating a low-boiling medium provided in a floating structure provided in the closed water area and having a lower boiling point than water. A low-boiling-point medium power generation system that generates electric power, a surface-water intake pump driven by the electric power, and supplies the surface water or the deep-water to the low-boiling-point medium power generation system and returns to the closed water area. A configuration including a pump is adopted.
[0008]
The invention of claim 2 is configured such that the low-boiling-point medium power generation system includes a solar heating device that heats the low-boiling-point medium.
The invention of claim 3 is configured such that the low-boiling-point medium power generation system includes a latent heat storage device that stores the latent heat of the low-boiling point medium.
[0009]
The invention according to claim 4 is characterized in that the floating structure includes a heater for heating a low-boiling medium with surface water, a turbine, a generator, a surface water intake pump, and a water surface floating structure provided on the water surface; , A condensing device for condensing low-boiling-point medium vapor, a pressurizing pump and a deep-water intake pump, and a deep-layer swimming structure provided in the deep layer.
[0010]
According to a fifth aspect of the present invention, the surface water and the deep water that have undergone heat exchange in the low-boiling-point medium power generation system are discharged in a deep part direction and a surface part direction, respectively.
The invention according to claim 6 is configured such that the deep water subjected to heat exchange in the low-boiling-point medium power generation system is once released into the air and falls on a closed water surface.
[0011]
According to a seventh aspect of the present invention, the low-boiling medium power generation system includes a mixing jet nozzle or an ejector that mixes the surface water and the deep water that have exchanged heat with each other and discharges the mixed water to the temperature stratification interface.
[0012]
The invention according to claim 8 is configured to include a microbubble generating device for injecting microbubbles of air into water discharged to the temperature stratification interface in the mixing jet nozzle or the ejector.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
A temperature stratification eliminating system according to a first embodiment of the present invention will be described with reference to FIGS. The thermal stratification eliminating system according to the present embodiment includes a heater 3, a turbine 4, a generator 5, a condenser 6, a pressure pump 7, and the like housed in a floating structure 2 provided on a water surface 1 of a closed water area. It has. Further, a deep water intake pump 9 and a surface water intake pump 10 are connected to the outside of the floating structure 2 by piping.
[0014]
The outlet of the pressure pump 7 is connected to the heater 3, the outlet of the heater 3 is connected to the inlet of the turbine 4, the generator 5 is connected to the turbine 4 coaxially, and the outlet of the turbine 4 is connected to the condenser 6. And an outlet of the condenser 6 is connected to an inlet of the pressurizing pump 7, and these constitute a low-boiling medium power generation system 12 through which ammonia as a low-boiling medium flows. A motor 8 is coaxially coupled to the pressure pump 7. The deep water intake pump 9 submerged near the water bottom 11 is connected to the water-side inlet of the condenser 6 by an intake pipe 17.
[0015]
An intake pipe 16 for taking in high-temperature surface water is connected to the surface water intake pump 10, an outlet of the surface water intake pump 10 is connected to a water-side inlet of the heater 3, and a water-side outlet of the heater 3 is connected to a discharge pipe 14. Is bound to A water intake pipe 17 for taking in low-temperature deep water is connected to the water-side inlet of the condenser 6, and a water-side outlet of the condenser 6 is connected to the water discharge pipe 15.
[0016]
The low-boiling-point medium power generation system 12 includes a heater 3, a turbine 4, a generator 5, a condenser 6, a pressure pump 7, and the like, and circulates ammonia as a low-boiling-point medium. High-temperature surface water 18 is introduced into the heater 3 by the surface water intake pump 10, and discharged to the water surface 1 in the closed water area after heat exchange. Further, low-temperature deep water 19 is taken in by the deep water intake pump 9, guided to the condenser 6, performs heat exchange, and discharged to the closed water surface 1.
[0017]
In the temperature stratification eliminating system according to the first embodiment of the present invention having the above-described configuration, the high-temperature surface water 18 in the closed water area is taken in by the surface water intake pump 10, and the heater of the low-boiling medium power generation system 12 is heated. After performing heat exchange with the low-boiling-point medium liquid in the heater 3, the water is discharged to the surface layer of the closed water area. The low-boiling-point medium liquid generates heat by exchanging heat with the high-temperature surface water 18 in the heater 3, guides the low-boiling-point medium vapor to the turbine 4, drives the turbine 4, and generates electric power by the coaxially coupled generator 5. . The exhaust steam of the turbine 4 is led to the condenser 6 and exchanges heat with the low-temperature deep water 19 taken by the deep water intake pump 9 to be returned. This condensed liquid is again pressure-fed to the heater 3 by the pressure pump 7.
[0018]
The amount of ammonia circulating in the low-boiling-point medium power generation system 12 is set to 5 kg / s, the temperature of the surface water 18 is set to 27 ° C., the temperature of the deep water 19 is set to 8 ° C., and the heat exchange part of the heater 3 and the condenser 6 is changed. When the minimum temperature difference is set to 2 ° C., if the water intake of the surface water 18 is 100 kg / s and the water intake of the deep water 19 is 266 kg / s, the surface water intake pump 10, the deep water intake pump 9, The amount of power generation after use for power of the pressurizing pump 7 and the like is 16 kWe. If the system is used only for eliminating the stratification of the closed water area by maximizing the water intake of the deep water 19 so that the power generation becomes zero, the maximum water intake of the deep water 19 is 469 kg / s.
[0019]
According to the temperature stratification eliminating system of the present embodiment, the temperature difference power generation is performed between the high-temperature surface water 18 and the low-temperature deep water 19 in the closed water area using the low-boiling-point medium power generation system 12 using ammonia as a working medium, It is possible to take in deep water about 90 times the low-boiling-point medium circulation flow rate and discharge it to the surface of the closed water area, and to eliminate temperature stratification in the closed water area using natural energy. The deep water after the heat exchange in the low-boiling medium power generation system 12 is released into the air above the water surface 1 and then falls to the water surface 1 to speed up the dissolution of oxygen into the deep water. Can be.
[0020]
Next, a second embodiment of the present invention will be described. As shown in FIG. 4, the low-boiling-point medium power generation system 12a in the thermal stratification eliminating system according to this embodiment includes, in addition to a heater 3, a turbine 4, a generator 5, a condenser 6, a pressure pump 7, A heater 21 and a low-boiling-point medium liquid storage tank 22 are provided. Other configurations are the same as those of the first embodiment (FIGS. 1, 2, and 3).
[0021]
The low-boiling medium (ammonia) heated by the heater 3 is branched into a medium guided to the turbine 4 by the three-way valve 23 and a medium guided to the solar heater 21. The solar heat heater 21 has a configuration in which a pipe through which a low-boiling medium flows is installed at a focal point of a reflecting mirror that focuses the solar heat 20, and a surface treatment for improving heat absorption is performed on the pipe surface. Further, a photocatalyst is applied to the surface of the reflecting mirror in order to make it difficult for dust and the like to adhere. The low-boiling-point medium is turned into superheated steam by the solar heat heater 21 and guided to the turbine 4 to drive it.
[0022]
The thermal stratification eliminating system according to the second embodiment operates in the same manner as the thermal stratification eliminating system according to the first embodiment. The discharge pressure of the pressurizing pump 7 is increased, and the flow rate is also increased so that the low-boiling-point medium does not evaporate in the heater 3, so that all the low-boiling-point medium is guided from the heater 3 to the solar heater 21. It is made to evaporate in the heater 21. When the steam is not generated by the solar heater 21, the discharge pressure of the pressurizing pump 7 is reduced so that the steam is evaporated by the heater 3, the flow rate is reduced, and all the generated steam is guided to the turbine 4 to generate power.
[0023]
According to the temperature stratification eliminating system of the second embodiment, the same effect as that of the temperature stratification eliminating system of the first embodiment can be obtained. Can be increased, the power generation output can be increased, and the amount of water taken from the deep part can be increased, so that the temperature stratification can be quickly eliminated.
[0024]
Next, a third embodiment of the present invention will be described. As shown in FIG. 5, the low-boiling-point medium power generation system 12b in the thermal stratification eliminating system of this embodiment includes a heater 3, a turbine 4, a generator 5, a condenser 6, a pressure pump 7, and a solar heater 21. In addition, a latent heat storage device 26 using an erythritol-based heat storage material, a pressure regulating valve 28, a heat exchanger 29, and an expansion valve 30 are provided. Other configurations are substantially the same as those of the first embodiment (FIGS. 1, 2, and 3).
[0025]
The low-boiling-point medium (ammonia) liquid pressurized by the pressurizing pump 7 is branched and led to the heat exchanger 29 and the pressure regulating valve 28. The low-boiling-point medium liquid heated by heat exchange in the heat exchanger 29 is guided to the heating unit of the solar heat heater 21. The low-boiling medium, which has been further heated in the heating section of the solar heat heater 21 and turned into steam, is led to the latent heat storage device 26, and after having exchanged heat with the heat storage material, is led to the heat exchange section of the heat exchanger 29. The low-boiling-point medium liquid cooled by performing heat exchange in the heat exchange section of the heat exchanger 29 is guided to the expansion valve 30, adiabatically expanded, and guided to the outlet side of the turbine 4.
[0026]
On the other hand, the low-boiling-point medium liquid depressurized by the pressure adjusting valve 28 is guided to the heat exchange section of the heater 3 and is heated by the surface water 18. The heated low-boiling medium is guided to the heat exchange section of the latent heat storage device 26 and further heated to be steam, which is guided to the turbine 4.
[0027]
The thermal stratification eliminating system according to the third embodiment operates similarly to the thermal stratification eliminating system according to the second embodiment, but further performs the following operation. That is, when the low-boiling medium can be heated by solar heat, the discharge pressure of the pressure pump 7 is increased, and the low-boiling medium is also branched to the heat exchanger 29. Then, the low boiling medium heated by the heat exchanger 29 is guided to the heat exchange section of the solar heater 21 to generate high-pressure low boiling medium vapor. The generated high-pressure low-boiling-point medium vapor is guided to the latent heat storage device 26 to give heat to the latent heat storage agent, and then to the heat exchanger of the heat exchanger 29. The low-boiling-point medium liquid cooled in the heat exchange section of the heat exchanger 29 is guided to the expansion valve 30 and adiabatically expanded, and is guided to the outlet side of the turbine 4 as a low-temperature low-boiling medium.
[0028]
On the other hand, the low-boiling-point medium liquid guided to the pressure regulating valve 28 is guided to the heat exchange section of the heater 3, is heated by exchanging heat with the high-temperature surface water 18, and is heated by the heat exchange section of the latent heat storage device 26. It is guided and exchanges heat with the latent heat storage material, and is further heated to generate a low-boiling-point medium vapor. The generated steam is guided to the turbine 4 and driven to generate electric power by the coaxially coupled generator 5.
[0029]
When the low-boiling medium cannot be heated by solar heat, the discharge pressure of the pressurizing pump 7 is reduced, and the entire amount of the low-boiling medium liquid is supplied via the pressure regulating valve 28 without branching to the heat exchanger 29. 3 to the heat exchange section. The low-boiling-point medium liquid guided to the heat exchange section of the heater 3 exchanges heat with the high-temperature surface water 18 to become steam. This steam is led to the heat exchange section of the latent heat storage device 26 to perform heat exchange with the latent heat storage material to produce superheated steam, which is then led to the turbine 4 and driven to generate power.
[0030]
According to the temperature stratification eliminating system of the third embodiment, the same effects as those of the temperature stratification eliminating system of the second embodiment can be obtained, but the low-boiling-point medium generated by using the solar heater 21 can be obtained. Sending the steam to the latent heat storage device 26 to store heat, performing heat exchange in the heater 3, sending the low-boiling-point medium steam that has become hot to the latent heat storage device 26, turning it into superheated steam, and then sending it to the turbine 4 to generate power. Therefore, even if the available solar heat fluctuates, the fluctuation of the generated power can be reduced. Therefore, the low-boiling-point medium power generation system 12b can be operated at a substantially constant output, and the temperature stratification can be constantly eliminated.
[0031]
In addition, since the low-temperature low-boiling medium obtained by adiabatically expanding the high-pressure low-boiling medium liquid heated by solar heat is guided to the exhaust side of the turbine 4, the output of the turbine 4 can be increased, and deep water can be withdrawn. The amount can be increased, and temperature stratification can be eliminated quickly.
[0032]
Next, a temperature stratification eliminating system according to a fourth embodiment of the present invention will be described with reference to FIGS. The thermal stratification eliminating system according to the present embodiment includes a water surface floating structure 24 and a deep part floating structure 25 connected by a cable 31 and pipes 32 and 39.
[0033]
The water surface floating structure 24 includes a turbine 4, a generator 5, a surface water transfer device 43, and the like. The surface water transfer device 43 includes a surface water intake pump 33, a submersible motor 34, a heater 3, a drift structure 35, and the like, and is attached to the support structure 41. The surface water intake pump 33 is driven by the underwater motor 34, the surface water is guided to the heater 3, the heat is exchanged by the heat exchange unit 40, and the flow is directed to the deep part by the drift structure 35. It is discharged from the transfer device 43.
[0034]
The deep part floating structure 25 includes the pressurizing pump 7, the deep water transfer device 44, and the like. The deep water transfer device 44 includes a deep water intake pump 36, a submersible motor 37, a condenser 6, a drift structure 38, and the like, and is attached to the support structure 42. The deep water intake pump 36 is driven by the underwater motor 37, the deep water is guided to the condenser 6, heat exchange is performed in the heat exchange unit, and the flow of the deep water is directed to the surface direction by the drift structure 38. Released from the device 44.
The heater 3 and the turbine 4 of the water surface floating structure 24 and the pressurizing pump 7 and the condenser 6 of the deep floating structure 25 are connected by pipes 32 and 39, respectively.
[0035]
The thermal stratification eliminating system according to the fourth embodiment operates similarly to the thermal stratification eliminating system according to the first embodiment, but further performs the following operation. In other words, the surface water is taken in the horizontal direction by the surface water intake pump 33, and the water subjected to heat exchange by the heater 3 is discharged toward the deep layer. Although the case where the water is discharged toward the water bottom 11 by the drift structure 35 is shown in FIG. 6, the water may be discharged in the horizontal direction. In this case, a couple is prevented from being generated in the water surface floating structure 24 by using a plurality of surface water transfer devices 43. Deep water is taken in the horizontal direction by the deep water intake pump 36, and the water that has undergone heat exchange in the condenser 6 is discharged toward the water surface 1. Although the case where the water is discharged toward the water surface 1 by the drift structure 38 is shown in FIG. 6, the water may be discharged in the horizontal direction. In that case, a couple is prevented from being generated in the deep part floating structure 25 by using a plurality of deep water transfer devices 44.
[0036]
The thermal stratification eliminating system according to the fourth embodiment has the same effects as the thermal stratification eliminating system according to the first embodiment, but also has the following advantages. That is, it is possible to eliminate the piping for taking in the surface water and the deep water and the piping to the heater 3 and the condenser 6 and the like. As a result, construction costs can be kept low.
[0037]
In the fourth embodiment, the deep floating structure 25 may have a neutral buoyancy structure. In that case, the cable 31 can be omitted, and the horizontal positional relationship between the water surface floating structure 24 and the deep portion floating structure 25 becomes free.
[0038]
Next, a temperature stratification eliminating system according to a fifth embodiment of the present invention will be described with reference to FIG. That is, a low-boiling-point medium power generation system including a heater 3, a turbine 4, a generator 5, a condenser 6, a pressure pump 7, and the like, and a water surface on which a surface water intake pump 10, a deep water intake pump 9, and the like are mounted. The floating structure 47 is floated on the water surface 1, and the surface water and the deep water after the heat exchange are mixed with the stratified interface swimming structure 48 suspended near the temperature stratified interface 46 from the water surface floating structure 47. And a mixing jet nozzle 49 for discharging in the direction of the temperature stratification interface 46.
[0039]
In the water surface floating structure 47, the outlet of the pressure pump 7 is connected to the heater 3, the outlet of the heater 3 is connected to the inlet of the turbine 4, and the outlet of the turbine 4 is connected to the inlet of the condenser 6. The outlet of the condenser 6 is connected to the inlet of the pressurizing pump 7 to constitute a low-boiling medium power generation system through which a low-boiling medium (ammonia) flows. A generator 5 is coaxially connected to the turbine 4, and a motor 8 is coaxially connected to the pressurizing pump 7. An intake port of an intake pipe is provided near the water bottom 11 in the closed water area, and is connected to the intake pump 9 for the deep water 19.
[0040]
Further, the stratified interface floating structure 48 is hung from the water surface floating structure 47 by the wire 50 near the temperature stratified interface 46, and a mixing jet nozzle 49 is provided in the stratified interface floating structure 48, and mixed water is supplied in the direction of the temperature stratified interface 46. Gushing. The liquid condenser 6 and the heater 3 of the water surface floating structure 47 are connected to the mixing jet nozzle 49 by telescopic pipes 51 and 52.
[0041]
FIG. 9 shows a sixth embodiment, in which an ejector 54 is provided instead of the mixing jet nozzle 49 in the fifth embodiment shown in FIG. 8, and the liquid condenser 6 and the heater 3 of the water surface floating structure 47 are provided. And a suction chamber 56 and a drive nozzle 55 of an ejector 54 are connected by telescopic pipes 51 and 52, respectively.
[0042]
FIG. 10 shows a seventh embodiment of the present invention, in which the pipe connection to the ejector 54 in the sixth embodiment shown in FIG. 3 and a driving nozzle 55 and a suction chamber 56 of the ejector 54 are connected by telescopic pipes 51 and 52, respectively.
[0043]
In the temperature stratification eliminating system according to the fifth, sixth, and seventh embodiments of the present invention having the above-described configuration, the low-boiling-point medium liquid (ammonia liquid) stored in the condenser 6 is pumped by the pressure pump. The steam is pressurized at 7 and led to the heater 3 to exchange heat with the high-temperature surface water 18 to produce low-boiling-point medium vapor (ammonia vapor), which is guided to the turbine 4 to drive it and generate power coaxially coupled. The generator 5 generates power. The exhaust steam of the turbine 4 is guided to the condenser 6 and exchanges heat with the low-temperature deep water 19 near the water bottom 11 taken in by the deep water intake pump 9 to return the liquid.
[0044]
The deep water 19 heated by heat exchange in the condenser 6 is guided to the mixing jet nozzle 49. The surface water 18 cooled by heat exchange in the heater 3 is also guided to the mixing jet nozzle 49, mixed with the heated deep water, and discharged toward the temperature stratification interface 46.
[0045]
When the ejector 54 is provided instead of the mixing jet nozzle 49, the heated deep water or the cooled surface water is guided to the drive nozzle 55, and the cooled surface water or the heated deep water is suction-mixed. To release the mixed water in the direction of the temperature stratification interface 46. In accordance with the change in the position of the temperature stratified interface 46, the length of the wire 50 is changed so that the stratified interface floating structure 48 is positioned at the temperature stratified interface 46.
[0046]
The amount of ammonia circulating in the low-boiling-point medium power generation system is set to 5 kg / s, the temperature of the surface water 18 is set to 27 ° C., the temperature of the deep water 19 is set to 8 ° C., and the minimum heat exchange part of the heater 3 and the condenser 6 is performed. If the temperature difference is set to 2 ° C., the surface water intake rate is 100 kg / s, and the deep water 19 intake rate is 266 kg / s, and the surface water intake pump 10, the deep water intake pump 9, The amount of power generation after use for power of the pressure pump 7 and the like is 16 kWe. If the system is used only for eliminating the stratification of the closed water area by maximizing the water intake of the deep water 19 so that the power generation becomes zero, the maximum water intake of the deep water 19 is 469 kg / s.
[0047]
According to the temperature stratification eliminating system of the fifth, sixth, and seventh embodiments, the temperature difference power generation is performed between the surface water and the deep water in the closed water area by using the low-boiling-point medium power generation system using ammonia as a working medium. By doing so, it is possible to take in deep water about 90 times the low-boiling-point medium circulation flow rate and discharge it to the temperature-stratified interface in the closed water area, and to eliminate temperature stratification in the closed water area using natural energy.
[0048]
Next, an eighth embodiment of the present invention will be described. As shown in FIG. 11, the thermal stratification eliminating system according to this embodiment has a configuration in which an atmospheric microbubble generator 57 is mounted on a stratified interface floating structure 48.
[0049]
The microbubble generator 57 is connected to the mixing jet nozzle 49, the microbubble atmosphere is injected into the heated deep water or the cooled surface water, and the mixed fluid is discharged in the direction of the temperature stratification interface 46.
[0050]
According to the temperature stratification eliminating system of the eighth embodiment, the microbubble atmosphere generated by the microbubble generator 57 is guided to the mixing jet nozzle 49 to be mixed with the heated deep water or cooled surface water. By jetting in the direction of the temperature stratification interface 46, the temperature stratification interface can be eliminated, and oxygen can be supplied to the low-depth deep water, thereby purifying the water area.
[0051]
In the sixth and seventh embodiments, a microbubble generator similar to that in the eighth embodiment may be provided before the ejector 54.
In each of the above embodiments, the working medium of the low-boiling-point medium power generation systems 12, 12a, and 12b may be alcohol or chlorofluorocarbon instead of ammonia.
[0052]
【The invention's effect】
Advantageous Effects of Invention According to the present invention, it is possible to provide a thermal stratification elimination system that can circulate surface water and deep water in a closed water area and eliminate thermal stratification without generating an environmental load.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a thermal stratification eliminating system according to a first embodiment of the present invention.
FIG. 2 is a plan sectional view taken along the line II-II in FIG.
FIG. 3 is a configuration diagram of a low-boiling-point medium power generation system in the thermal stratification eliminating system according to the first embodiment of the present invention.
FIG. 4 is a configuration diagram of a low-boiling-point medium power generation system in a thermal stratification eliminating system according to a second embodiment of the present invention.
FIG. 5 is a configuration diagram of a low-boiling-point medium power generation system in a thermal stratification eliminating system according to a third embodiment of the present invention.
FIG. 6 is a longitudinal sectional view of a temperature stratification eliminating system according to a fourth embodiment of the present invention.
FIG. 7 is a plan sectional view taken along the line VII-VII in FIG. 6;
FIG. 8 is a configuration diagram of a temperature stratification eliminating system according to a fifth embodiment of the present invention.
FIG. 9 is a configuration diagram of a temperature stratification eliminating system according to a sixth embodiment of the present invention.
FIG. 10 is a configuration diagram of a temperature stratification eliminating system according to a seventh embodiment of the present invention.
FIG. 11 is a configuration diagram of a temperature stratification eliminating system according to an eighth embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Water surface, 2 ... Floating structure, 3 ... Heater, 4 ... Turbine, 5 ... Generator, 6 ... Condenser, 7 ... Pressurizing pump, 8 ... Motor, 9 ... Deep water intake pump, 10 ... Surface layer Water intake pump, 11: water bottom, 12, 12a, 12b: low-boiling medium power generation system, 13: motor, 14, 15: water discharge pipe, 16, 17: water intake pipe, 18: surface water, 19: deep water, 20 ... Solar heat, 21: Solar heat heater, 22: Low boiling point medium liquid storage tank, 24: Water surface floating structure, 25: Deep floating structure, 26: Latent heat storage device, 28: Pressure regulating valve, 29: Heat exchanger, Reference numeral 30: expansion valve, 31: cable, 32, 39: piping, 33: surface water intake pump, 34, 37: submersible motor, 35, 38: drift structure, 36: deep water intake pump, 39: piping, 40: heat Replacement parts, 41, 42 ... support structure, 43 ... surface water transfer equipment 44, deep water transfer device, 46, temperature stratified interface, 47, water surface floating structure, 48, stratified interface floating structure, 49, mixing jet nozzle, 50, wire, 51, 52, telescopic piping, 53, water intake piping , 54: ejector, 55: drive nozzle, 56: suction chamber, 57: microbubble generator.

Claims (8)

閉鎖水域内に設けられた浮遊構造体内に設けられ、水よりも低い沸点を有する低沸点媒体を循環して前記閉鎖水域の表層水と深層水の温度差を利用して電力を発生する低沸点媒体発電システムと、前記電力によって駆動され、前記表層水あるいは前記深層水を前記低沸点媒体発電システムへ供給するとともに前記閉鎖水域へ還流させる表層水取水ポンプおよび深層水取水ポンプを備えたことを特徴とする温度成層解消システム。A low-boiling point provided in a floating structure provided in a closed water area and circulating a low-boiling medium having a lower boiling point than water to generate electric power by utilizing a temperature difference between surface water and deep water in the closed water area A medium power generation system, and a surface water intake pump and a deep water intake pump that are driven by the electric power and supply the surface water or the deep water to the low-boiling medium power generation system and return to the closed water area. Temperature stratification elimination system. 前記低沸点媒体発電システムは、低沸点媒体を加熱する太陽熱加熱装置を備えていることを特徴とする請求項1記載の温度成層解消システム。The thermal stratification elimination system according to claim 1, wherein the low-boiling medium power generation system includes a solar heating device that heats the low-boiling medium. 前記低沸点媒体発電システムは、低沸点媒体の潜熱を貯蔵する潜熱貯蔵装置を備えていることを特徴とする請求項1記載の温度成層解消システム。The system according to claim 1, wherein the low-boiling medium power generation system includes a latent heat storage device that stores latent heat of the low-boiling medium. 前記浮遊構造体は、表層水によって低沸点媒体を加熱する加熱器とタービンと発電機と表層水取水ポンプとを備え水面に設けられた水面浮遊構造体と、深層水によって低沸点媒体蒸気を復液する復液器と加圧ポンプと深層水取水ポンプとを備え深層部に設けられた深層部遊泳構造体とからなることを特徴とする請求項1記載の温度成層解消システム。The floating structure is provided with a heater for heating a low-boiling medium by surface water, a turbine, a generator, and a surface water intake pump, and is provided on a water surface, and a low-boiling medium vapor is recovered by deep water. The thermal stratification elimination system according to claim 1, comprising a deep swimming structure provided with a liquid condenser, a pressure pump, and a deep water intake pump provided in the deep part. 前記低沸点媒体発電システムにおいて熱交換を行った表層水および深層水は、それぞれ深層部方向および表層部方向に放出されるようになっていることを特徴とする請求項1記載の温度成層解消システム。2. The thermal stratification elimination system according to claim 1, wherein the surface water and the deep water that have undergone heat exchange in the low-boiling-point medium power generation system are discharged in a deep portion direction and a surface portion direction, respectively. . 前記低沸点媒体発電システムにおいて熱交換を行った深層水は、一度気中に放出されて閉鎖水域水面に落ちるようになっていることを特徴とする請求項1記載の温度成層解消システム。2. The thermal stratification eliminating system according to claim 1, wherein the deep water that has undergone heat exchange in the low-boiling-point medium power generation system is once released into the air and falls on a closed water surface. 3. 前記低沸点媒体発電システムにおいて熱交換を行った表層水および深層水を混合して温度成層界面に放出する混合噴出ノズルまたはエジェクターを備えていることを特徴とする請求項1記載の温度成層解消システム。2. The thermal stratification elimination system according to claim 1, further comprising a mixing jet nozzle or an ejector that mixes surface water and deep water that have undergone heat exchange in the low-boiling-point medium power generation system and discharges the mixed water to a thermal stratification interface. . 前記混合噴出ノズルまたはエジェクターにおいて温度成層界面に放出される水に空気のマイクロバブルを注入するマイクロバブル発生装置を備えていることを特徴とする請求項7記載の温度成層解消システム。8. The thermal stratification eliminating system according to claim 7, further comprising a micro-bubble generator for injecting micro-bubbles of air into water discharged to a thermal stratification interface in the mixing jet nozzle or the ejector.
JP2002201598A 2002-07-10 2002-07-10 Temperature stratification resolving system Withdrawn JP2004044455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002201598A JP2004044455A (en) 2002-07-10 2002-07-10 Temperature stratification resolving system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002201598A JP2004044455A (en) 2002-07-10 2002-07-10 Temperature stratification resolving system

Publications (1)

Publication Number Publication Date
JP2004044455A true JP2004044455A (en) 2004-02-12

Family

ID=31708086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002201598A Withdrawn JP2004044455A (en) 2002-07-10 2002-07-10 Temperature stratification resolving system

Country Status (1)

Country Link
JP (1) JP2004044455A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004249248A (en) * 2003-02-21 2004-09-09 Yokogawa Electric Corp Water cleaning system
JP2011513641A (en) * 2008-03-05 2011-04-28 ベニック,ニコラス,エイ. Liquid displacer engine
JP2011194354A (en) * 2010-03-23 2011-10-06 Satoru Takamori Apparatus for improving quality of water in dam lake, river or lake
JP2011214732A (en) * 2010-03-31 2011-10-27 Jfe Engineering Corp Solar heat utilizing waste power generation device and method of operating the same
JP5067746B1 (en) * 2012-02-02 2012-11-07 岡本 應守 Siphon type binary power generator
JP2013242070A (en) * 2012-05-18 2013-12-05 Toshiba Corp Steam generation system
KR101390170B1 (en) 2011-10-20 2014-04-29 김훈철 Ocean thermal energy conversion using Perpetual salt spring principle
JP2014125990A (en) * 2012-12-27 2014-07-07 Mitsubishi Heavy Ind Ltd Binary power generation system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004249248A (en) * 2003-02-21 2004-09-09 Yokogawa Electric Corp Water cleaning system
JP4518235B2 (en) * 2003-02-21 2010-08-04 横河電機株式会社 Water purification system
JP2011513641A (en) * 2008-03-05 2011-04-28 ベニック,ニコラス,エイ. Liquid displacer engine
JP2011194354A (en) * 2010-03-23 2011-10-06 Satoru Takamori Apparatus for improving quality of water in dam lake, river or lake
JP2011214732A (en) * 2010-03-31 2011-10-27 Jfe Engineering Corp Solar heat utilizing waste power generation device and method of operating the same
KR101390170B1 (en) 2011-10-20 2014-04-29 김훈철 Ocean thermal energy conversion using Perpetual salt spring principle
JP5067746B1 (en) * 2012-02-02 2012-11-07 岡本 應守 Siphon type binary power generator
JP2013242070A (en) * 2012-05-18 2013-12-05 Toshiba Corp Steam generation system
JP2014125990A (en) * 2012-12-27 2014-07-07 Mitsubishi Heavy Ind Ltd Binary power generation system

Similar Documents

Publication Publication Date Title
JP6596518B2 (en) Ocean thermal energy conversion power plant
CN103890389B (en) Ocean thermal energy conversion power plant
JP6362538B2 (en) Heat transfer between fluids
EP0649985B1 (en) Thermal power generator
CN103154511A (en) Industrial ocean thermal energy conversion processes
US9470111B2 (en) Air independent propulsion and power generation system based on exothermic reaction sourced thermal cycle
JP2004044455A (en) Temperature stratification resolving system
Ahmed et al. A review on application of renewable energy for desalination technologies with emphasis on concentrated solar power
KR20110030044A (en) The generating method and apparatus of fresh water
KR20130040320A (en) Fresh water generating equipment for vessels by using waste heat
US10550008B2 (en) Low energy fluid purification system
KR20100023449A (en) The ship possessing a power generator by temperature difference
KR101335608B1 (en) Fresh water generating system
US20140124356A1 (en) Process for solar thermal energy production
US8881499B2 (en) Under water hydrogen and oxygen powered hydraulic impulse engine
JPH0816475B2 (en) Temperature difference power generation method and device, and temperature difference power generation / marine organism aquaculture combined device
CN201087140Y (en) Plate-type sea water desalination water producing machine with steam heating unit
US20190360472A1 (en) Energy generating station
US20190186474A1 (en) Floating device comprising an interchangeable insert passing through a float and associated electrical production system
RU191945U1 (en) Romanov&#39;s marine direct-flow steam engine
KR102343778B1 (en) Micro bubble generator and River water purification system using the same
KR20240034798A (en) Eco-friendly ship propulsion system
KR20160011350A (en) WaterJet high speed propulsion system with self electricity generation
KR101400023B1 (en) Apparatus for Recycling Waste Heat for offshore Structure
KR20110063935A (en) Energy saving ship with power generation system using orc

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051004