JP2005063951A - Dispersion solution, conductive film, and conductive composite material containing thin film-shaped particles having skeleton composed of carbon, and manufacturing method thereof - Google Patents

Dispersion solution, conductive film, and conductive composite material containing thin film-shaped particles having skeleton composed of carbon, and manufacturing method thereof Download PDF

Info

Publication number
JP2005063951A
JP2005063951A JP2004213960A JP2004213960A JP2005063951A JP 2005063951 A JP2005063951 A JP 2005063951A JP 2004213960 A JP2004213960 A JP 2004213960A JP 2004213960 A JP2004213960 A JP 2004213960A JP 2005063951 A JP2005063951 A JP 2005063951A
Authority
JP
Japan
Prior art keywords
dispersion
thin film
film
particles
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004213960A
Other languages
Japanese (ja)
Other versions
JP4591666B2 (en
Inventor
Takuya Goto
拓也 後藤
Masahiro Fujiwara
雅大 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2004213960A priority Critical patent/JP4591666B2/en
Publication of JP2005063951A publication Critical patent/JP2005063951A/en
Application granted granted Critical
Publication of JP4591666B2 publication Critical patent/JP4591666B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dispersion solution capable of obtaining high conductivity at a temperature as low as possible without deteriorating a dispersion state of a thin-film shaped particles having a skeleton composed of carbon, by which, a conductive coating film and a conductive composite material including thin film-shaped particles can be manufactured without problem in film forming properties, and to provide a manufactured material and a manufacturing method of the above. <P>SOLUTION: The conductive coating film and the conductive composite material are respectively manufactured by using the dispersion solution containing the thin-film shaped particles containing indispensable components (a) to (c) stated below, or using the dispersion solution formed by adding a component (d) in addition, and by drying/removing a dispersion medium from the these dispersion solution. (a) thin film-shaped particles obtained by oxidizing graphite, dispersible in the liquid having a specific dielectric coefficient of 15 or more, having a skeleton composed of carbon, (b) dispersion medium for dispersing the thin film-shaped particles, (c) compounds having reducing action for the thin film-shaped particles, (d) matrix material. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、炭素からなる骨格を持つ薄膜状粒子を含む分散液、導電性塗膜および導電性複合材料ならびにこれらの製造方法に関する。   The present invention relates to a dispersion containing thin-film particles having a skeleton made of carbon, a conductive coating film, a conductive composite material, and methods for producing them.

(炭素からなる骨格を持つ薄膜状粒子)
黒鉛を酸化して得られ、比誘電率15以上の液体に分散可能である、炭素からなる骨格を持つ薄膜状粒子(以下「薄膜状粒子」ということがある)については、以下のような公知の事項と本発明者らにより開示された事項がある。
(Thin-film particles with carbon skeleton)
Regarding the thin film particles having a skeleton made of carbon (hereinafter sometimes referred to as “thin film particles”) obtained by oxidizing graphite and dispersible in a liquid having a relative dielectric constant of 15 or more, the following publicly known And the matters disclosed by the present inventors.

炭素原子を骨格とする2次元の異方性形状の物質として、黒鉛を酸化して得られる酸化黒鉛がある。この酸化黒鉛は2次元的な基本層が積み重なった多層構造体であり、一般に層数の非常に多いものが知られている。他方、層数の少ない非常に薄いものも作られている(例えば、非特許文献1参照)。本発明者らも先に、そのような酸化黒鉛(層数が1枚の場合は例えば酸化グラフェンと呼ぶことが望ましい(グラフェンは黒鉛の1層分の名称))の薄膜状粒子を高収率で製造する方法を見出すと共に、それを還元して層数の非常に少ない黒鉛(層数が1枚の場合はグラフェンと呼ぶことが望ましい)類似の薄膜状粒子を得た(例えば、特許文献1および2参照)。   As a two-dimensional anisotropic material having a carbon atom as a skeleton, there is graphite oxide obtained by oxidizing graphite. This graphite oxide is a multilayer structure in which two-dimensional basic layers are stacked, and generally has a very large number of layers. On the other hand, a very thin material having a small number of layers is also produced (for example, see Non-Patent Document 1). The inventors of the present invention previously obtained thin film particles of such graphite oxide (in the case where the number of layers is one, for example, graphene oxide is desirable (graphene is the name of one layer of graphite)) in high yield. In addition to finding a method for producing a thin film-like particle similar to graphite having a very small number of layers (preferably called graphene when the number of layers is one) (see, for example, Patent Document 1) And 2).

ここで、酸化黒鉛の基本層は、炭素原子1個分または2個分の厚さの炭素骨格(sp炭素とsp炭素からなり、sp炭素が多い)と、その骨格の両側の面に酸性の水酸基などが結合した構造を持つと考えられている(例えば、非特許文献2および3参照)。炭素骨格の厚さが炭素原子1個分で、その両側の面に水酸基などがあり、層間の水が極めて少ない場合には、基本層の厚さは0.61nmである。また、酸化の程度が高く、よく乾燥された場合、酸化黒鉛に含まれる酸素は40wt%程度である。 Here, the basic layer of graphite oxide is composed of a carbon skeleton having a thickness of one or two carbon atoms (consisting of sp 3 carbon and sp 2 carbon, with many sp 3 carbons), and surfaces on both sides of the skeleton. It is considered to have a structure in which an acidic hydroxyl group or the like is bonded to (see, for example, Non-Patent Documents 2 and 3). When the thickness of the carbon skeleton is one carbon atom, there are hydroxyl groups on both sides of the carbon skeleton, and there is very little water between layers, the thickness of the basic layer is 0.61 nm. Further, when the degree of oxidation is high and well dried, the oxygen contained in the graphite oxide is about 40 wt%.

この酸化黒鉛の薄膜状粒子は、部分的に、または完全に還元されることで、黒鉛類似のsp結合の多い電子状態となり、電気伝導性が高くなることが知られている。還元により電気伝導性を高めた酸化黒鉛は、半導体あるいは導電体として、半導体素子、配線材料、帯電・静電防止用充填剤など幅広い分野に利用可能であり、極めて有用である。 It is known that the graphite oxide thin-film particles are partially or completely reduced to be in an electronic state with many sp 2 bonds similar to graphite and have high electrical conductivity. Graphite oxide having enhanced electrical conductivity by reduction can be used as a semiconductor or conductor in a wide range of fields such as semiconductor elements, wiring materials, charging / antistatic fillers, and is extremely useful.

(薄膜状粒子を含む導電性塗膜)
黒鉛を酸化して得られ、比誘電率15以上の液体に分散可能である、炭素からなる骨格を持つ薄膜状粒子が配合された導電性塗膜の製造方法としては、次のような方法がある。まず、薄膜状粒子の分散液単独あるいは分散液にバインダー・顔料・接着成分・増粘剤などの成分を配合した分散液を基体表面に塗布し、分散媒を除去することで、基体表面に塗膜を製膜する。その後、導電性を得るために、200℃程度以上の温度で加熱し、薄膜状粒子を還元させる。
(Conductive coating containing thin film particles)
As a method for producing a conductive coating film obtained by oxidizing graphite and dispersible in a liquid having a relative dielectric constant of 15 or more and blended with thin film particles having a skeleton made of carbon, the following method is used. is there. First, a thin film-like particle dispersion alone or a dispersion containing a binder, pigment, adhesive component, thickener, etc., is applied to the substrate surface, and the dispersion medium is removed to remove the dispersion medium. A film is formed. Thereafter, in order to obtain conductivity, the thin film particles are reduced by heating at a temperature of about 200 ° C. or higher.

別の方法としては、予め還元し導電性を高めた薄膜状粒子を使い、上記と同様の方法で製膜する、といった方法も可能である。この場合、製膜後に行う還元のための加熱は不要になる。予め薄膜状粒子を還元する方法としては、還元剤を用いる方法が知られている(例えば、特許文献1参照)。   As another method, a method of forming a film by the same method as described above using thin-film particles reduced in advance and having increased conductivity is also possible. In this case, heating for reduction performed after film formation is not necessary. As a method for reducing thin film particles in advance, a method using a reducing agent is known (see, for example, Patent Document 1).

なお、製膜後に還元剤を用いて、薄膜状粒子を還元する方法も考えられるが、製膜後では還元剤が内部まで浸透できないことから、塗膜表面のみしか還元することができない。このため、十分な導電性を得ることは困難であり、導電性塗膜の製造方法としては不適当である。   In addition, although the method of reducing thin film-like particle | grains using a reducing agent after film forming is also considered, since a reducing agent cannot osmose | permeate inside after film forming, only a coating-film surface can be reduced. For this reason, it is difficult to obtain sufficient electrical conductivity, which is inappropriate as a method for producing a conductive coating film.

(薄膜状粒子を含む導電性複合材料)
黒鉛を酸化して得られ、比誘電率15以上の液体に分散可能である、炭素からなる骨格を持つ薄膜状粒子が配合された導電性複合材料の製造方法としては、次のような方法がある。まず、薄膜状粒子の分散液にマトリックスとなる材料(例えば、ポリビニルアルコールなどの水溶性高分子、ポリカーボネートなど)を溶解あるいは分散させて、両者をよく混合する。そして、分散媒を除去することで、薄膜状粒子が配合された複合材料ができる。その後、200℃程度以上の温度で加熱し、薄膜状粒子を還元させることで、複合材料に導電性を与えることができる。以上の方法により、薄膜状粒子が配合された導電性複合材料が製造される。
(Conductive composite material containing thin film particles)
As a method for producing a conductive composite material, which is obtained by oxidizing graphite and is dispersible in a liquid having a relative dielectric constant of 15 or more and blended with thin film particles having a skeleton made of carbon, the following method is used. is there. First, a matrix material (for example, a water-soluble polymer such as polyvinyl alcohol, polycarbonate, etc.) is dissolved or dispersed in a dispersion of thin film particles, and both are mixed well. Then, by removing the dispersion medium, a composite material in which thin film-like particles are blended can be obtained. Thereafter, the composite material can be made conductive by heating at a temperature of about 200 ° C. or more to reduce the thin film particles. By the above method, a conductive composite material in which thin film particles are blended is manufactured.

別の方法としては、予め還元し導電性を高めた薄膜状粒子を使い、上記と同様の方法で製膜する、といった方法も可能である。この場合、複合材料作製後に行う還元のための加熱は不要になる。予め薄膜状粒子を還元する方法としては、還元剤を用いる方法が知られている(例えば、特許文献1参照)。   As another method, a method of forming a film by the same method as described above using thin-film particles reduced in advance and having increased conductivity is also possible. In this case, heating for reduction performed after the composite material is manufactured becomes unnecessary. As a method for reducing thin film particles in advance, a method using a reducing agent is known (see, for example, Patent Document 1).

上記のような方法により薄膜状粒子を含む導電性複合材料が製造されるが、製造された導電性複合材料の導電性は、配合した薄膜状粒子の導電率に影響される。例えば、複合材料の導電率が同一であれば、薄膜状粒子の導電率が高いほど添加率を低く抑えることができる。導電性材料の添加率が低いほど、マトリックスとなる材料の特性に与える影響が少ないことから、できるだけ薄膜状粒子の導電率を高くすることで、添加率を低く抑えた方が望ましい。
特開2002−53313号 公報 特開2003−176116号 公報 N. A. Kotov et al. Ultrathin Graphite Oxide-Polyelectrolyte Composites Prepared by Self-Assembly:Transition Between Conductive and Non-Conductive States, Adv. Mater., 8, 637 (1996) T. Nakajima et al. A NEW STRUCTURE MODEL OF GRAPHITE OXIDE, Carbon, 26, 357 (1988) M. Mermoux et al. FTIR AND 13C NMR STUDY OF GRAPHITE OXIDE, Carbon, 29, 469 (1991)
Although the conductive composite material containing thin film-like particles is manufactured by the method as described above, the conductivity of the manufactured conductive composite material is affected by the conductivity of the blended thin-film particles. For example, if the conductivity of the composite material is the same, the higher the conductivity of the thin film particles, the lower the addition rate. Since the lower the addition ratio of the conductive material, the less the influence on the characteristics of the matrix material is. Therefore, it is desirable to keep the addition ratio low by increasing the conductivity of the thin film particles as much as possible.
JP 2002-53313 A JP 2003-176116 A NA Kotov et al. Ultrathin Graphite Oxide-Polyelectrolyte Composites Prepared by Self-Assembly: Transition Between Conductive and Non-Conductive States, Adv. Mater., 8, 637 (1996) T. Nakajima et al. A NEW STRUCTURE MODEL OF GRAPHITE OXIDE, Carbon, 26, 357 (1988) M. Mermoux et al. FTIR AND 13C NMR STUDY OF GRAPHITE OXIDE, Carbon, 29, 469 (1991)

上記のように、炭素からなる骨格を持つ薄膜状粒子を含む導電性塗膜の製造方法では、200℃程度以上の温度で加熱するか、あるいは、予め還元した薄膜状粒子を使用する必要があった。ところが、200℃程度以上の温度で加熱する方法の場合には、塗膜を塗布する基体、あるいは、塗膜に必要な機能を持たせるために分散液中に配合した成分などの材料の耐熱性が低いと導電性を得るために必要な温度で加熱することができず、十分な導電性を得ることができないといった問題があった。また、予め還元した薄膜状粒子を使用する場合には、還元により分散液中で薄膜状粒子が凝集を起こしてしまい、分散液単独で製膜した場合は、均一に膜を塗布することが困難になり所々に穴が開いてしまう、バインダーなどを併用した場合は、塗膜中で薄膜状粒子がむらになって存在してしまう、といった問題があった。   As described above, in the method for producing a conductive coating film containing thin film particles having a skeleton made of carbon, it is necessary to heat at a temperature of about 200 ° C. or higher, or to use thin film particles previously reduced. It was. However, in the case of a method of heating at a temperature of about 200 ° C. or higher, the heat resistance of a substrate such as a substrate to which the coating film is applied or a material such as a component blended in the dispersion liquid to give the coating film a necessary function. If it is low, there is a problem that heating cannot be performed at a temperature necessary for obtaining conductivity and sufficient conductivity cannot be obtained. In addition, when thin film particles previously reduced are used, the thin film particles aggregate in the dispersion due to the reduction, and it is difficult to uniformly apply the film when the film is formed by the dispersion alone. In other words, when holes are formed in some places, or when a binder or the like is used in combination, the thin film-like particles are unevenly present in the coating film.

一方、上記のように、薄膜状粒子を含む導電性複合材料では、なるべく薄膜状粒子の添加率を低く抑えるためにも、薄膜状粒子の導電率は可能な限り高くすることが望ましい。薄膜状粒子の導電性を得る方法として、加熱還元と還元剤による還元があるが、それぞれ以下のような問題を持っている。加熱還元の場合は、加熱温度が高いほど導電率を高くできるが、複合材料製造後に加熱するため、マトリックス材料の耐熱性によりその温度が制限される。よって、マトリックス材料として耐熱性が低い材料を用いた場合、十分な導電性を得ることが難しい。還元剤を使用した場合は、高い導電性を得ることは可能であるが、分散液中で薄膜状粒子を還元するため、薄膜状粒子が分散液中で凝集をはじめてしまい、製造された複合材料中での薄膜状粒子の分散状態が悪くなる。分散状態が悪いと複合材料の導電率は低くなることから、結果的に添加率が高くなってしまい望ましくない。   On the other hand, as described above, in the conductive composite material including thin film particles, it is desirable that the conductivity of the thin film particles be as high as possible in order to keep the addition rate of the thin film particles as low as possible. Methods for obtaining the conductivity of the thin film particles include heat reduction and reduction with a reducing agent, but each has the following problems. In the case of heat reduction, the higher the heating temperature, the higher the electrical conductivity. However, since heating is performed after the composite material is manufactured, the temperature is limited by the heat resistance of the matrix material. Therefore, when a material having low heat resistance is used as the matrix material, it is difficult to obtain sufficient conductivity. When a reducing agent is used, it is possible to obtain high conductivity. However, since the thin film particles are reduced in the dispersion, the thin film particles start to aggregate in the dispersion, and the manufactured composite material The dispersion state of the thin film-like particles inside deteriorates. If the dispersion state is poor, the electrical conductivity of the composite material becomes low, and as a result, the addition rate becomes high, which is not desirable.

以上のことから、炭素からなる骨格を持つ薄膜状粒子の分散状態を悪化させることなく、できるだけ低い温度で高い導電性が得られ、製膜性に問題がなく該薄膜状粒子を含む導電性塗膜および導電性複合材料を製造できる分散液、製造された材料、ならびにこれらの製造方法が望まれていた。   From the above, high conductivity can be obtained at as low a temperature as possible without deteriorating the dispersion state of the thin film particles having a skeleton made of carbon, and there is no problem in film forming property. Dispersions that can produce membranes and conductive composites, manufactured materials, and methods of manufacturing these have been desired.

本発明者らは、上記目的を達成するため鋭意検討を進めた結果、本発明を完成するに至った。すなわち本発明は以下の通りである。
(1)次の成分(a)〜(c)を必須とする薄膜状粒子を含む分散液:
(a)黒鉛を酸化して得られ、比誘電率15以上の液体に分散可能である、炭素からなる骨格を持つ薄膜状粒子;
(b)該薄膜状粒子を分散させる分散媒;
(c)該薄膜状粒子に対して還元作用のある化合物。
(2)成分(c)が、分散媒を乾燥・除去する過程または分散媒を乾燥・除去した後に薄膜状粒子を還元する作用のある化合物である、上記(1)記載の分散液。
(3)薄膜状粒子が、厚さ0.4nm〜100nmであり、かつ平面方向の大きさ20nm以上である、上記(1)記載の分散液。
(4)さらに、成分(d)としてマトリックス材料を含む、上記(1)記載の分散液。
(5)上記(1)記載の分散液を、基体上に塗布した後、分散媒を乾燥・除去する、薄膜状粒子を含む導電性塗膜の製造方法。
(6)分散媒を乾燥・除去する工程における加熱温度が30℃〜250℃の範囲内である、上記(5)記載の製造方法。
(7)上記(5)記載の方法で製造した導電性塗膜。
(8)上記(7)記載の導電性塗膜を用いる帯電防止性塗膜、電磁遮断性塗膜、または導電性配線。
(9)上記(4)記載の分散液から分散媒を乾燥・除去する、薄膜状粒子を含む導電性複合材料の製造方法。
(10)分散媒を乾燥・除去する工程における加熱温度が30℃〜250℃の範囲内である、上記(9)記載の製造方法。
(11)上記(9)記載の方法で製造した導電性複合材料。
(12)上記(11)記載の導電性複合材料を用いる導電性シート、導電性フィルム、帯電防止性シート、または帯電防止性フィルム。
As a result of diligent investigations to achieve the above object, the present inventors have completed the present invention. That is, the present invention is as follows.
(1) Dispersion liquid containing thin film particles essentially comprising the following components (a) to (c):
(A) Thin film-like particles having a skeleton made of carbon, obtained by oxidizing graphite and dispersible in a liquid having a relative dielectric constant of 15 or higher;
(B) a dispersion medium for dispersing the thin film particles;
(C) A compound having a reducing action on the thin film-like particles.
(2) The dispersion according to (1) above, wherein the component (c) is a compound having a function of drying and removing the dispersion medium or reducing thin film particles after the dispersion medium is dried and removed.
(3) The dispersion according to (1) above, wherein the thin film-like particles have a thickness of 0.4 nm to 100 nm and a size in the planar direction of 20 nm or more.
(4) The dispersion according to (1), further comprising a matrix material as the component (d).
(5) A method for producing a conductive coating film containing thin film particles, wherein the dispersion liquid described in (1) above is applied onto a substrate, and then the dispersion medium is dried and removed.
(6) The production method according to (5), wherein the heating temperature in the step of drying and removing the dispersion medium is in the range of 30 ° C to 250 ° C.
(7) A conductive coating film produced by the method described in (5) above.
(8) An antistatic coating, an electromagnetic shielding coating, or a conductive wiring using the conductive coating described in (7) above.
(9) A method for producing a conductive composite material including thin film particles, wherein the dispersion medium is dried and removed from the dispersion liquid described in (4).
(10) The manufacturing method according to (9) above, wherein the heating temperature in the step of drying and removing the dispersion medium is in the range of 30 ° C to 250 ° C.
(11) A conductive composite material produced by the method described in (9) above.
(12) A conductive sheet, a conductive film, an antistatic sheet, or an antistatic film using the conductive composite material according to (11) above.

本発明による分散液を用いれば、炭素からなる骨格を持つ薄膜状粒子を含む導電性塗膜を製造する上で、基体等の材料の耐熱性に関し選択の幅を広げることが可能となる。また、炭素からなる骨格を持つ薄膜状粒子を含む導電性複合材料を製造する上では、マトリックス材料の耐熱性に関し選択の幅が広がるだけでなく、より低い添加率で高い導電性が得られる。   The use of the dispersion according to the present invention makes it possible to expand the range of choices regarding the heat resistance of a material such as a substrate in producing a conductive coating film containing thin film particles having a skeleton made of carbon. Moreover, in producing a conductive composite material including thin film-like particles having a skeleton made of carbon, not only the choice of the heat resistance of the matrix material is widened but also high conductivity can be obtained at a lower addition rate.

(薄膜状粒子を含む分散液)
本発明の薄膜状粒子を含む分散液は、(a)黒鉛を酸化して得られ、比誘電率15以上の液体に分散可能である、炭素からなる骨格を持つ薄膜状粒子と、(b)該薄膜状粒子を分散させる分散媒と、(c)該薄膜状粒子に対して還元作用のある化合物とを必須成分として含むことを特徴とする。以下、各成分について説明する。
(Dispersion containing thin film particles)
The dispersion containing the thin film-like particles of the present invention includes (a) a thin film-like particle having a skeleton made of carbon, obtained by oxidizing graphite and dispersible in a liquid having a relative dielectric constant of 15 or more, and (b) A dispersion medium for dispersing the thin film particles and (c) a compound having a reducing action on the thin film particles are contained as essential components. Hereinafter, each component will be described.

(a)薄膜状粒子
本発明に用いる黒鉛を酸化して得られる薄膜状粒子(a)としては、公知のBrodie法(硝酸、塩素酸カリウムを使用)、Staudenmaier法(硝酸、硫酸、塩素酸カリウムを使用)、Hummers−Offeman法(硫酸、硝酸ナトリウム、過マンガン酸カリウムを使用)、本発明者らが特開2002−53313号公報および特開2003−176116号公報で開示した方法などによる黒鉛酸化物を利用できる。
(A) Thin Film Particles As thin film particles (a) obtained by oxidizing the graphite used in the present invention, the known Brodie method (using nitric acid and potassium chlorate), Staudenmaier method (nitric acid, sulfuric acid, potassium chlorate) ), Hummers-Offeman method (using sulfuric acid, sodium nitrate, potassium permanganate), graphite oxidation by the methods disclosed by the present inventors in JP-A-2002-53313 and JP-A-2003-176116 You can use things.

例えば、特開2002−53313号公報および特開2003−176116号公報には、以下の方法が開示されている。まず、原料としては、層構造が発達した結晶性の高い黒鉛を用いることが望ましく、より具体的には、粒子内部の最も広い基本層の直径が粒子の直径にほぼ等しく、粒子全体で単一の多層構造を持つ黒鉛が望ましい。このような黒鉛として、例えば、天然黒鉛(特に良質なもの)、キッシュ黒鉛(特に高温で作られたもの)、高配向性熱分解黒鉛が知られている。また、これらの黒鉛の層間を予め広げた膨張黒鉛を原料に用いることもできる。なお、黒鉛中の金属元素などの不純物は、予め約0.5%以下に除去されていることが望ましい。   For example, Japanese Patent Application Laid-Open Nos. 2002-53313 and 2003-176116 disclose the following methods. First, as the raw material, it is desirable to use highly crystalline graphite with a developed layer structure. More specifically, the diameter of the widest basic layer inside the particle is approximately equal to the diameter of the particle, and the entire particle is single. Graphite having a multilayer structure is desirable. As such graphite, for example, natural graphite (particularly good quality), quiche graphite (particularly one made at high temperature), and highly oriented pyrolytic graphite are known. Further, expanded graphite in which the layers of these graphites are expanded in advance can also be used as a raw material. It should be noted that impurities such as metal elements in the graphite are desirably removed in advance to about 0.5% or less.

黒鉛の粒子径は、生成する薄膜状粒子の平面方向の大きさに反映されるため、合成したい薄膜状粒子の大きさで選択すればよい。また、生成する薄膜状粒子の平面方向の形状を例えば正方形のように規定したい場合には、黒鉛原料の段階で予め正方形に切断しておいてもよい。   Since the particle size of graphite is reflected in the size of the thin film-like particles to be generated in the plane direction, the size of the thin film-like particles to be synthesized may be selected. In addition, when it is desired to define the shape of the thin film-like particles to be generated in the planar direction, for example, as a square, it may be cut into a square in advance at the stage of the graphite raw material.

黒鉛の酸化には、上述のような公知の方法を用いることができるが、特に酸化が進行しやすいことから、Hummers−Offeman法(W.S.Hummerset al.,J.Am.Chem.Soc.,80,1339(1958);米国特許No.2798878(1957))が推奨される。これらの方法においては、酸化剤のイオンが黒鉛の層間に侵入し、層間化合物を生成する。その後、水を加えることで、層間化合物が加水分解されて、酸化黒鉛となる。この場合、黒鉛の粒径10μm当たりで少なくとも30分以上、できれば3時間以上の酸化時間で黒鉛を酸化することが望ましい。   For the oxidation of graphite, the above-mentioned known methods can be used. However, since oxidation is particularly easy to proceed, the Hummers-Offeman method (WS Hummerset al., J. Am. Chem. Soc. 80, 1339 (1958); U.S. Pat. No. 2,798,878 (1957)) is recommended. In these methods, oxidant ions penetrate between graphite layers to form an intercalation compound. Thereafter, by adding water, the intercalation compound is hydrolyzed to become graphite oxide. In this case, it is desirable to oxidize graphite with an oxidation time of at least 30 minutes or more, preferably 3 hours or more per 10 μm of graphite particle diameter.

黒鉛を酸化した後は、反応液中に残存する酸化剤または酸化剤が分解されて生じるイオンやイオン由来の成分を除去して精製する。この精製は、水やアルコールなどによる洗浄で行うことができるが、高純度の水を用いることが望ましい。
また、水による洗浄の前に、硫酸水溶液または硫酸と過酸化水素の混合水溶液で十分に洗浄することが望ましい。具体的な洗浄による精製操作には、デカンテーション、濾過、遠心分離、透析、イオン交換などの公知の手段を用いることができる。精製が進むにつれて精製操作が困難になる場合には、精製効率の比較的高い遠心分離、透析、イオン交換を用いることが望ましく、特に遠心分離を用いることが望ましい。
After the graphite is oxidized, the oxidant remaining in the reaction solution or ions generated by the decomposition of the oxidant and components derived from the ions are removed and purified. This purification can be performed by washing with water or alcohol, but it is desirable to use high-purity water.
Further, it is desirable to thoroughly wash with a sulfuric acid aqueous solution or a mixed aqueous solution of sulfuric acid and hydrogen peroxide before washing with water. For the purification operation by specific washing, known means such as decantation, filtration, centrifugation, dialysis, ion exchange and the like can be used. When the purification operation becomes difficult as purification proceeds, it is desirable to use centrifugal separation, dialysis, and ion exchange, which are relatively high in purification efficiency, and it is particularly desirable to use centrifugal separation.

以上の操作により、酸化黒鉛の多くの粒子内部で層の分離が進む。さらに層の分離を促進したい場合には、分散液への超音波照射や加熱(望ましくは50〜150℃)を行うこともできる。   By the above operation, separation of the layers proceeds inside many particles of graphite oxide. Furthermore, when it is desired to promote the separation of the layers, the dispersion can be irradiated with ultrasonic waves or heated (desirably 50 to 150 ° C.).

本発明に用いる薄膜状粒子としては、以上の方法により得られる黒鉛酸化物を好適に用いることができる。特に、厚さが0.4nm〜100nm、より望ましくは0.4nm〜10nm、さらに望ましくは0.4nm〜5nm、平面方向の大きさが20nm以上、より望ましくは1000nm以上、さらに望ましくは10000nm以上の層数が非常に少ない黒鉛酸化物は、厚さが薄いことで還元が容易であること、他に類似の性状・特性を有する材料が見当たらないことなどから極めて有用である。これらは特開2002−53313号公報および特開2003−176116号公報で開示した方法により製造できる。なお、薄膜状粒子の平面方向の大きさは、用途に応じて適宜選択されるものであり特に限定されるものではないが、通常500μm以下である。   As the thin film particles used in the present invention, graphite oxide obtained by the above method can be suitably used. In particular, the thickness is 0.4 nm to 100 nm, more preferably 0.4 nm to 10 nm, more preferably 0.4 nm to 5 nm, and the planar size is 20 nm or more, more preferably 1000 nm or more, and even more preferably 10,000 nm or more. Graphite oxide having a very small number of layers is extremely useful because it is easy to reduce due to its thin thickness and there are no other materials having similar properties and characteristics. These can be produced by the methods disclosed in JP 2002-53313 A and JP 2003-176116 A. The size in the plane direction of the thin film-like particles is appropriately selected according to the application and is not particularly limited, but is usually 500 μm or less.

薄膜状粒子の厚さおよび大きさは、原子間力顕微鏡、透過型電子顕微鏡観察などにより測定することができる。   The thickness and size of the thin film particles can be measured by observation with an atomic force microscope, a transmission electron microscope, or the like.

薄膜状粒子の含有量は、本発明の薄膜状粒子を含む分散液の全重量に対し、望ましくは0.0001重量%〜20重量%、より望ましくは0.001重量%〜10重量%、さらに望ましくは0.01重量%〜5重量%である。薄膜状粒子がこの範囲で含まれていれば、本発明の分散液を用いて得られる導電性塗膜や導電性複合材料の導電率を十分に高めることができる。これに対し、薄膜状粒子の含有量が少なすぎると導電率が不十分になる場合がある。逆に、薄膜状粒子の含有量が多すぎると、例えばマトリックス材料など、他の成分の特性に影響を与えることがある。   The content of the thin film particles is preferably 0.0001% by weight to 20% by weight, more preferably 0.001% by weight to 10% by weight, more preferably the total weight of the dispersion containing the thin film particles of the present invention. Desirably, it is 0.01 to 5 weight%. If the thin film-like particles are contained in this range, the conductivity of the conductive coating film or conductive composite material obtained using the dispersion of the present invention can be sufficiently increased. On the other hand, if the content of the thin film particles is too small, the electrical conductivity may be insufficient. On the other hand, if the content of the thin film particles is too large, the characteristics of other components such as a matrix material may be affected.

(b)分散媒
本発明に用いる薄膜状粒子を分散させる分散媒(b)は、上記薄膜状粒子(a)を分散させることができるものであれば、特に限定されるものではない。通常、黒鉛酸化物合成終了後の分散液の分散媒は水であるが、この分散媒を、水から、水以外のメタノール、エタノール、アセトン、2−ブタノンなどの比誘電率が15以上の高極性の液体に交換することが可能である。このような水以外の高極性の液体を主な分散媒とするための手段として、元の分散液に含まれる水よりも十分多量の水以外の高極性の液体を加えて希釈する方法、水以外の高極性の液体を加えてから遠心分離とデカンテーションなどで上澄みを除くことを繰り返して水以外の高極性の分散媒に徐々に交換する方法、などがある。
(B) Dispersion medium The dispersion medium (b) for dispersing the thin film particles used in the present invention is not particularly limited as long as the thin film particles (a) can be dispersed. Usually, the dispersion medium of the dispersion liquid after the completion of the synthesis of graphite oxide is water, but this dispersion medium is made of water and has a high relative dielectric constant of 15 or more such as methanol, ethanol, acetone, 2-butanone other than water. It is possible to exchange for a polar liquid. As a means for using such a highly polar liquid other than water as the main dispersion medium, a method of diluting by adding a sufficiently large amount of highly polar liquid other than water contained in the original dispersion, water There is a method in which a high-polarity liquid other than water is added and then the supernatant is removed by centrifugation, decantation, etc., and then gradually replaced with a high-polarity dispersion medium other than water.

また、数種類の液体を適当な割合で混合した液体を分散媒として用いることも可能である。この場合、一部に比誘電率15未満の液体を用いてもよい。なお、比誘電率が15未満であっても、水と任意の割合で相互溶解する化合物(例えば、テトラヒドロフラン、ジオキサンなど)は、分散媒中の割合が50重量%以上でも薄膜状粒子を分散させることが可能であることから、例外的に比誘電率が15未満の液体を主な分散媒とすることができる。   It is also possible to use a liquid obtained by mixing several kinds of liquids at an appropriate ratio as a dispersion medium. In this case, a liquid having a relative dielectric constant of less than 15 may be used in part. Even if the relative dielectric constant is less than 15, a compound (for example, tetrahydrofuran, dioxane, etc.) that mutually dissolves in an arbitrary ratio disperses thin film particles even if the ratio in the dispersion medium is 50% by weight or more. Therefore, a liquid having a relative dielectric constant of less than 15 can be exceptionally used as a main dispersion medium.

(c)薄膜状粒子に対して還元作用のある化合物
本発明に用いる薄膜状粒子に対して還元作用のある化合物(c)としては、各種還元剤が利用可能である。なかでも、分散媒を乾燥・除去する過程または分散媒を乾燥・除去した後に薄膜状粒子を還元する作用のある化合物であることが望ましい。このような化合物(c)としては、例えば、ヨウ化水素酸、ヒドラジン、ホスフィン酸、クエン酸、チオ硫酸ナトリウム、チオ硫酸アンモニウム、次亜リン酸ナトリウム、ポリアクリル酸、L(+)アスコルビン酸などが挙げられる。
ヨウ化水素酸は60℃程度でも分散媒乾燥・除去時に還元作用があり、ヒドラジンは沸点が低く(114℃)分解し易いことから塗膜中に還元剤が残存しないですむ。ホスフィン酸は毒性が低い、などそれぞれ特徴を持っており、用途に応じて最適の化合物を使用できる。
(C) Compound having a reducing action on thin film-like particles Various reducing agents can be used as the compound (c) having a reducing action on the thin film-like particles used in the present invention. Among them, it is desirable that the compound has a function of drying and removing the dispersion medium or a function of reducing the thin film particles after drying and removing the dispersion medium. Examples of such compound (c) include hydroiodic acid, hydrazine, phosphinic acid, citric acid, sodium thiosulfate, ammonium thiosulfate, sodium hypophosphite, polyacrylic acid, L (+) ascorbic acid, and the like. Can be mentioned.
Hydroiodic acid has a reducing action when the dispersion medium is dried and removed even at about 60 ° C., and hydrazine has a low boiling point (114 ° C.) and is easily decomposed, so that no reducing agent remains in the coating film. Phosphinic acid has characteristics such as low toxicity, and the most suitable compound can be used according to the application.

還元剤の添加量としては、使用する還元剤の種類や塗膜の使用目的などに依存して一概に決めることはできないが、およその目安として、薄膜状粒子中の炭素原子のモル数を基準として、還元剤のモル数が1/100以上10倍以下、好ましくは1/10以上2倍以下となるように添加する。理由として、1/100以下では十分な還元効果が得られず、導電性が低くなってしまい望ましくない。また、10倍以上添加すると還元剤自身が導電性を悪化させることから、必要以上に還元剤を添加することは望ましくない。   The amount of reducing agent to be added cannot be determined in general depending on the type of reducing agent used and the purpose of use of the coating film, but as a rough guideline, the number of moles of carbon atoms in the thin film particles is the standard. The reducing agent is added so that the number of moles of the reducing agent is 1/100 or more and 10 or less, preferably 1/10 or more and 2 or less. As a reason, if it is 1/100 or less, a sufficient reduction effect cannot be obtained, and the conductivity becomes low, which is not desirable. Moreover, since the reducing agent itself deteriorates conductivity when added 10 times or more, it is not desirable to add the reducing agent more than necessary.

(d)マトリックス材料
本発明の薄膜状粒子を含む分散液には、さらにマトリックス材料(d)を含むことができる。マトリックス材料(d)としては、ポリビニルアルコール、ポリエチレンオキサイドなどの水溶性高分子、種々の熱可塑性樹脂、熱硬化性樹脂、ポリカーボネートなどのエンジニアリングプラスチック、無機高分子など、目的に応じた材料を自由に選択できる。マトリックス材料中に薄膜状粒子を高分散させるために、マトリックス材料が分散液に溶解できるような分散媒とマトリックス材料の組み合わせを選択することが望ましい。
(D) Matrix material The dispersion containing the thin film-like particles of the present invention may further contain a matrix material (d). As the matrix material (d), materials according to purposes such as water-soluble polymers such as polyvinyl alcohol and polyethylene oxide, various thermoplastic resins, thermosetting resins, engineering plastics such as polycarbonate, and inorganic polymers can be freely used. You can choose. In order to highly disperse the thin film particles in the matrix material, it is desirable to select a combination of the dispersion medium and the matrix material so that the matrix material can be dissolved in the dispersion.

マトリックス材料(d)の含有量は、使用目的などにより大きく異なるものではあるが、本発明の薄膜状粒子を含む分散液の全重量に対し、望ましくは0.01重量%〜99重量%、より望ましくは0.1重量%〜90重量%である。なお、本発明の薄膜状粒子を含む分散液には、本発明の目的を損なわない範囲で、例えば、顔料、染料、接着成分、バインダー、増粘剤、老化防止剤、充填材、ワックス、軟化剤、硬化剤、紫外線吸収剤、紫外線安定剤、難燃剤、表面調整剤、帯電防止剤などの特定の機能を付与する成分を含むこともできる。   The content of the matrix material (d) varies greatly depending on the purpose of use and the like, but is preferably 0.01% by weight to 99% by weight with respect to the total weight of the dispersion containing the thin film-like particles of the present invention. Desirably, it is 0.1 to 90% by weight. The dispersion containing the thin film-like particles of the present invention is, for example, a pigment, a dye, an adhesive component, a binder, a thickener, an anti-aging agent, a filler, a wax, and a softening, as long as the object of the present invention is not impaired. A component imparting specific functions such as an agent, a curing agent, an ultraviolet absorber, an ultraviolet stabilizer, a flame retardant, a surface conditioner, and an antistatic agent can also be included.

(導電性塗膜の製造方法)
導電性塗膜の製造方法としては、(a)、(b)および(c)を必須成分とする薄膜状粒子の分散液を、基体上に塗布した後、該分散媒を乾燥・除去することで行う。この方法においては、予め薄膜状粒子を還元するのではなく、還元前の薄膜状粒子と還元剤を同時に添加した状態(薄膜状粒子がほとんど還元されていない状態)で製膜していることから、製膜前の還元とは異なり、分散液中で薄膜状粒子が凝集して製膜性が悪化するなどの問題が起きない。しかも驚いたことに、製膜後に200℃程度の加熱を行うことなく、より低温で高い導電率が得られる。
(Method for producing conductive coating film)
As a method for producing a conductive coating film, a dispersion of thin film particles containing (a), (b) and (c) as essential components is applied on a substrate, and then the dispersion medium is dried and removed. To do. In this method, since the thin film-like particles are not reduced in advance, the film is formed in a state in which the thin film-like particles before reduction and the reducing agent are added simultaneously (a state in which the thin-film particles are hardly reduced). Unlike the reduction before film formation, there is no problem that the film-formability deteriorates due to aggregation of thin film particles in the dispersion. Moreover, surprisingly, high conductivity can be obtained at a lower temperature without heating at about 200 ° C. after film formation.

例えばクエン酸、チオ硫酸ナトリウム、次亜リン酸ナトリウム、ホスフィン酸などの還元剤においては、分散液の状態ではほとんど薄膜状粒子を還元しないため、還元剤を分散液に入れた状態で数日間放置しても、薄膜状粒子の分散状態は変わらず、製膜性も問題がない。ところが、製膜後溶媒を除去・乾燥する段階、あるいは乾燥後に140℃程度で加熱した段階で還元がはじまり、10分程度加熱しただけで十分高い導電率が得られる。また、ヨウ化水素酸を使用した場合、60℃で乾燥させただけでも十分高い導電性を得ることができる。分散液の状態ではなく、分散媒を除去・乾燥した段階、あるいはその後に還元剤が機能する理由は今の所不明であるが、この特殊な効果のために、製膜性を悪化させることがなく、低い温度で高い導電性を得ることが可能である。   For example, with reducing agents such as citric acid, sodium thiosulfate, sodium hypophosphite, and phosphinic acid, the thin film particles are hardly reduced in the state of the dispersion. Therefore, the reducing agent is left in the dispersion for several days. Even so, the dispersion state of the thin film-like particles is not changed, and the film forming property is not problematic. However, the reduction starts at the stage of removing and drying the solvent after film formation, or at the stage of heating at about 140 ° C. after drying, and a sufficiently high conductivity can be obtained only by heating for about 10 minutes. Further, when hydroiodic acid is used, sufficiently high conductivity can be obtained only by drying at 60 ° C. The reason why the reducing agent functions at the stage where the dispersion medium is removed and dried, or after that, not in the state of the dispersion, is unknown for now, but because of this special effect, the film-forming property may be deteriorated. In addition, high conductivity can be obtained at a low temperature.

分散液を基体上に塗布する方法は特に限定されるものではなく、例えばスピンコータ法、バーコータ法、ロールコータ法など一般に公知の方法を用いることができる。また、分散媒を乾燥・除去する方法も特に限定されなく、一般に公知の方法により行うことができる。   The method for applying the dispersion onto the substrate is not particularly limited, and generally known methods such as a spin coater method, a bar coater method, and a roll coater method can be used. Further, the method for drying and removing the dispersion medium is not particularly limited, and can be generally performed by a known method.

分散媒を乾燥・除去する工程または乾燥・除去した後における加熱温度は、望ましくは30℃〜250℃、より望ましくは35℃〜225℃、さらに望ましくは40℃〜200℃である。   The heating temperature after drying / removing the dispersion medium or after drying / removing is desirably 30 ° C. to 250 ° C., more desirably 35 ° C. to 225 ° C., and further desirably 40 ° C. to 200 ° C.

本発明の薄膜状粒子を含む分散液を用いれば、上記の温度範囲でも薄膜状粒子の還元を十分に行うことができる。この温度が高すぎると、耐熱性の低い基体の特性に影響を与える場合があり、逆に低すぎると所望の導電率が得られない場合がある。上述の製造方法によれば、10−13S/cm〜10S/cmといった範囲の導電率を有する導電性塗膜を容易に製造することができる。 If the dispersion containing the thin film-like particles of the present invention is used, the thin film-like particles can be sufficiently reduced even in the above temperature range. If this temperature is too high, the characteristics of the substrate having low heat resistance may be affected. Conversely, if it is too low, the desired conductivity may not be obtained. According to the manufacturing method described above, it is possible to easily manufacture a conductive coating film having a conductivity in the range of 10 −13 S / cm to 10 6 S / cm.

このようにして製造される本発明の導電性塗膜は、耐熱性の低い基体に塗布する場合にも、薄膜状粒子の添加率を低く抑えつつ、高い導電率を得ることができる。本発明の導電性塗膜は、例えば、帯電防止性塗膜、電磁遮蔽性塗膜、導電性配線などの種々の用途に好適に用いられる。   Even when the conductive coating film of the present invention produced in this way is applied to a substrate having low heat resistance, high conductivity can be obtained while keeping the addition rate of thin film particles low. The conductive coating film of the present invention is suitably used for various applications such as an antistatic coating film, an electromagnetic shielding coating film, and conductive wiring.

本発明による製造方法で作られた導電性塗膜、帯電防止性塗膜、電磁遮蔽性塗膜、導電性配線などは、使用する材料や製膜する基体などに耐熱性の低い材料を使用することができ、極めて有用である。   For the conductive coating film, antistatic coating film, electromagnetic shielding coating film, conductive wiring, etc. produced by the production method according to the present invention, a material having low heat resistance is used for the material to be used or the substrate to be formed. Can be extremely useful.

(導電性複合材料の製造方法)
導電性複合材料の製造方法としては、(a)、(b)および(c)、さらに(d)としてマトリックス材料を必須成分とする薄膜状粒子の分散液から該分散媒を乾燥・除去することで行う。この導電性複合材料の製造方法においては、予め薄膜状粒子を還元するのではなく、還元前の薄膜状粒子と還元剤を同時に添加した状態(薄膜状粒子がほとんど還元されていない状態)で複合材料を製造していることから、複合材料製造前に薄膜状粒子を還元する場合とは異なり、分散液中で薄膜状粒子が凝集して複合材料中での分散性が悪化するなどの問題が起きない。しかも複合材料製造後に200℃程度の加熱を行うことなく、高い導電率が得られ、その導電率は通常の加熱還元で得られる導電率よりも高い。
(Method for producing conductive composite material)
As a method for producing a conductive composite material, (a), (b) and (c), and (d), drying and removing the dispersion medium from a dispersion of thin film particles containing a matrix material as an essential component. To do. In this method for producing a conductive composite material, the thin-film particles are not reduced in advance, but are combined in a state in which the thin-film particles before reduction and the reducing agent are added at the same time (the thin-film particles are hardly reduced). Since the material is manufactured, unlike the case of reducing the thin film particles before manufacturing the composite material, there is a problem that the dispersibility in the composite material deteriorates due to the aggregation of the thin film particles in the dispersion. I don't get up. In addition, high conductivity is obtained without heating at about 200 ° C. after the composite material is manufactured, and the conductivity is higher than that obtained by normal heat reduction.

例えばクエン酸、チオ硫酸ナトリウム、次亜リン酸ナトリウム、ホスフィン酸などの還元剤においては、分散液の状態ではほとんど薄膜状粒子を還元しないため、還元剤を分散液に入れた状態で数日間放置しても、薄膜状粒子の分散状態は変わらず、複合材料を製造しても複合材料中での分散状態を悪化させることがない。ところが、分散媒を除去・乾燥する段階、あるいは乾燥後に140℃程度で加熱した段階で還元がはじまり、15分程度加熱しただけで十分高い導電率が得られる。その導電率は、還元剤を加えない系で200℃の加熱還元処理した時よりも高い。また、ヨウ化水素酸を使用した場合、60℃で乾燥させただけでも十分高い導電性を得ることができる。分散液の状態ではなく、分散媒を除去・乾燥した段階、あるいはその後に還元剤が機能する理由は今の所不明であるが、この特殊な効果のために、分散性を悪化させることがなく、低い温度で高い導電性を得ることができる。   For example, with reducing agents such as citric acid, sodium thiosulfate, sodium hypophosphite, and phosphinic acid, the thin film particles are hardly reduced in the state of the dispersion. Therefore, the reducing agent is left in the dispersion for several days. However, the dispersion state of the thin film-like particles does not change, and even if the composite material is manufactured, the dispersion state in the composite material is not deteriorated. However, the reduction starts at the stage of removing and drying the dispersion medium, or the stage of heating at about 140 ° C. after drying, and a sufficiently high conductivity can be obtained only by heating for about 15 minutes. The electrical conductivity is higher than when heat reduction treatment at 200 ° C. is performed in a system in which no reducing agent is added. Further, when hydroiodic acid is used, sufficiently high conductivity can be obtained only by drying at 60 ° C. The reason why the reducing agent functions at the stage where the dispersion medium is removed and dried, or after that, is not in the state of the dispersion, but the reason why the reducing agent functions now is unknown, but because of this special effect, the dispersibility is not deteriorated. High conductivity can be obtained at a low temperature.

分散媒を乾燥・除去する工程または乾燥・除去した後における加熱温度は、望ましくは30℃〜250℃、より望ましくは35℃〜225℃、さらに望ましくは40℃〜200℃である。本発明によれば、上記の温度範囲でも薄膜状粒子の還元を十分に行うことができるので、導電性複合材料の導電率を十分に高めることができる。この温度が高すぎると、マトリックス材料の耐熱性が低い場合にその特性に影響を与える場合があり、逆に低すぎると所望の導電率が得られない場合がある。   The heating temperature after drying / removing the dispersion medium or after drying / removing is desirably 30 ° C. to 250 ° C., more desirably 35 ° C. to 225 ° C., and further desirably 40 ° C. to 200 ° C. According to the present invention, since the thin film-like particles can be sufficiently reduced even in the above temperature range, the conductivity of the conductive composite material can be sufficiently increased. If this temperature is too high, the characteristics of the matrix material may be affected when the heat resistance of the matrix material is low, and conversely, if it is too low, the desired conductivity may not be obtained.

上述の製造方法によれば、10−13S/cm〜10S/cmといった範囲の導電率を有する導電性複合材料を容易に製造することができる。このようにして得られる本発明の導電性複合材料は、導電性シート、導電性フィルム、帯電防止性シート、帯電防止性フィルムなどの種々の用途に好適に用いられる。 According to the manufacturing method described above, a conductive composite material having a conductivity in the range of 10 −13 S / cm to 10 6 S / cm can be easily manufactured. The conductive composite material of the present invention thus obtained is suitably used for various applications such as a conductive sheet, a conductive film, an antistatic sheet, and an antistatic film.

本発明による製造方法で作られた導電性シート、導電性フィルム、帯電防止性シート、帯電防止性フィルムなどは、耐熱性の低い材料を使用しても高い導電率を得ることが可能であるだけでなく、薄膜状粒子の導電率が高いことからその添加率を低く抑えることができるため、極めて有用である。   The conductive sheet, conductive film, antistatic sheet, antistatic film, etc. made by the production method according to the present invention can only obtain high conductivity even when a material having low heat resistance is used. In addition, since the conductivity of the thin film-like particles is high, the addition rate can be kept low, which is extremely useful.

以下、実施例を用いて本発明をさらに詳しく説明するが、本発明はこれによって限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in more detail using an Example, this invention is not limited by this.

実施例1
天然黒鉛(純度99.97wt%以上)10gを、硝酸ナトリウム(純度99%)7.5g、硫酸(純度96%)621g、過マンガン酸カリウム(純度99%)45gからなる混合液中に入れ、約20℃で5日間、緩やかに撹拌しながら放置した。得られた高粘度の液を、5wt%硫酸水溶液1000cmに約1時間で撹拌しながら加えて、さらに2時間撹拌した。得られた液に過酸化水素(30wt%水溶液)30gを加えて、2時間撹拌した。
この液を、3wt%硫酸/0.5wt%過酸化水素の混合水溶液を用いた遠心分離と水を用いた遠心分離で精製して、薄膜状粒子の水分散液を得た。液の一部の乾燥前後の重量変化から、液中の薄膜状粒子の濃度は0.5wt%であった。また、40℃で真空乾燥させた薄膜状粒子の元素分析で、酸素は約42wt%、水素は約2wt%であった。以下、この分散液を分散液Aとよぶ。
分散液A 1gに対してヨウ化水素酸(57wt%水溶液)を70mg加えた分散液を調製した。調製した分散液を、コロナ放電処理により表面を親水化したポリカーボネート樹脂基板(ガラス転移点 150℃)上に滴下した。60℃、30分間の条件で分散媒を乾燥・除去した。2端子法で抵抗を測定し、塗膜の導電率を算出したところ、塗膜の導電率は84(S/cm)であった。
Example 1
10 g of natural graphite (purity 99.97 wt% or more) is put in a mixed liquid consisting of 7.5 g of sodium nitrate (purity 99%), 621 g of sulfuric acid (purity 96%), 45 g of potassium permanganate (purity 99%), The mixture was left for 5 days at about 20 ° C. with gentle stirring. The obtained high-viscosity liquid was added to 1000 cm 3 of 5 wt% aqueous sulfuric acid solution with stirring for about 1 hour, and further stirred for 2 hours. Hydrogen peroxide (30 wt% aqueous solution) 30g was added to the obtained liquid, and it stirred for 2 hours.
This liquid was purified by centrifugal separation using a mixed aqueous solution of 3 wt% sulfuric acid / 0.5 wt% hydrogen peroxide and centrifugal separation using water to obtain an aqueous dispersion of thin film particles. From the weight change before and after drying a part of the liquid, the concentration of the thin-film particles in the liquid was 0.5 wt%. Further, elemental analysis of the thin film-like particles vacuum-dried at 40 ° C. revealed that oxygen was about 42 wt% and hydrogen was about 2 wt%. Hereinafter, this dispersion is referred to as Dispersion A.
A dispersion was prepared by adding 70 mg of hydroiodic acid (57 wt% aqueous solution) to 1 g of dispersion A. The prepared dispersion was dropped onto a polycarbonate resin substrate (glass transition point 150 ° C.) whose surface was hydrophilized by corona discharge treatment. The dispersion medium was dried and removed at 60 ° C. for 30 minutes. When the resistance was measured by the two-terminal method and the conductivity of the coating film was calculated, the conductivity of the coating film was 84 (S / cm).

実施例2
分散液A 1gに対してL(+)アスコルビン酸を50mg加えた分散液を調製した。調製した分散液を、コロナ放電処理により表面を親水化したポリカーボネート樹脂基板(ガラス転移点 150℃)上に滴下した。70℃、10分間の条件で分散媒を乾燥・除去した。2端子法で抵抗を測定し、塗膜の導電率を算出したところ、塗膜の導電率は0.1(S/cm)であった。
Example 2
A dispersion was prepared by adding 50 mg of L (+) ascorbic acid to 1 g of dispersion A. The prepared dispersion was dropped onto a polycarbonate resin substrate (glass transition point 150 ° C.) whose surface was hydrophilized by corona discharge treatment. The dispersion medium was dried and removed at 70 ° C. for 10 minutes. When the resistance was measured by the two-terminal method and the conductivity of the coating film was calculated, the conductivity of the coating film was 0.1 (S / cm).

実施例3
分散液A 1gに対してL(+)アスコルビン酸を50mg加えた分散液を調製した。調製した分散液を、コロナ放電処理により表面を親水化したポリカーボネート樹脂基板(ガラス転移点 150℃)上に滴下した。70℃、10分間の条件で分散媒を乾燥・除去した後、140℃で10分間加熱処理を行った。2端子法で抵抗を測定し、塗膜の導電率を算出したところ、塗膜の導電率は1(S/cm)であった。
Example 3
A dispersion was prepared by adding 50 mg of L (+) ascorbic acid to 1 g of dispersion A. The prepared dispersion was dropped onto a polycarbonate resin substrate (glass transition point 150 ° C.) whose surface was hydrophilized by corona discharge treatment. After the dispersion medium was dried and removed at 70 ° C. for 10 minutes, a heat treatment was performed at 140 ° C. for 10 minutes. When the resistance was measured by the two-terminal method and the conductivity of the coating film was calculated, the conductivity of the coating film was 1 (S / cm).

実施例4
分散液A 3gに対してヒドラジンを40mg加えた分散液を調製した。調製した分散液を、コロナ放電処理により表面を親水化したポリカーボネート樹脂基板(ガラス転移点 150℃)上に滴下した。70℃、10分間の条件で分散媒を乾燥・除去した後、130℃で10分間加熱処理を行った。2端子法で抵抗を測定し、塗膜の導電率を算出したところ、塗膜の導電率は56(S/cm)であった。
Example 4
A dispersion in which 40 mg of hydrazine was added to 3 g of dispersion A was prepared. The prepared dispersion was dropped onto a polycarbonate resin substrate (glass transition point 150 ° C.) whose surface was hydrophilized by corona discharge treatment. The dispersion medium was dried and removed at 70 ° C. for 10 minutes, and then heat treatment was performed at 130 ° C. for 10 minutes. When the resistance was measured by the two-terminal method and the conductivity of the coating film was calculated, the conductivity of the coating film was 56 (S / cm).

実施例5
分散液A 3gに対してクエン酸を180mg加えた分散液を調製した。調製した分散液を、コロナ放電処理により表面を親水化したポリカーボネート樹脂基板(ガラス転移点 150℃)上に滴下した。70℃、10分間の条件で分散媒を乾燥・除去した後、140℃で10分間加熱処理を行った。2端子法で抵抗を測定し、塗膜の導電率を算出したところ、塗膜の導電率は0.5(S/cm)であった。
Example 5
A dispersion in which 180 mg of citric acid was added to 3 g of dispersion A was prepared. The prepared dispersion was dropped onto a polycarbonate resin substrate (glass transition point 150 ° C.) whose surface was hydrophilized by corona discharge treatment. After the dispersion medium was dried and removed at 70 ° C. for 10 minutes, a heat treatment was performed at 140 ° C. for 10 minutes. When the resistance was measured by the two-terminal method and the conductivity of the coating film was calculated, the conductivity of the coating film was 0.5 (S / cm).

実施例6
分散液A 2gに対してチオ硫酸ナトリウムを150mg加えた分散液を調製した。調製した分散液を、コロナ放電処理により表面を親水化したポリカーボネート樹脂基板(ガラス転移点 150℃)上に滴下した。70℃、10分間の条件で分散媒を乾燥・除去した後、140℃で10分間加熱処理を行った。2端子法で抵抗を測定し、塗膜の導電率を算出したところ、塗膜の導電率は0.4(S/cm)であった。
Example 6
A dispersion was prepared by adding 150 mg of sodium thiosulfate to 2 g of dispersion A. The prepared dispersion was dropped onto a polycarbonate resin substrate (glass transition point 150 ° C.) whose surface was hydrophilized by corona discharge treatment. After the dispersion medium was dried and removed at 70 ° C. for 10 minutes, a heat treatment was performed at 140 ° C. for 10 minutes. When the resistance was measured by the two-terminal method and the conductivity of the coating film was calculated, the conductivity of the coating film was 0.4 (S / cm).

実施例7
分散液A 3gに対してチオ硫酸アンモニウムを150mg加えた分散液を調製した。調製した分散液を、コロナ放電処理により表面を親水化したポリカーボネート樹脂基板(ガラス転移点 150℃)上に滴下した。70℃、10分間の条件で分散媒を乾燥・除去した後、140℃で10分間加熱処理を行った。2端子法で抵抗を測定し、塗膜の導電率を算出したところ、塗膜の導電率は5(S/cm)であった。水洗処理により表面のチオ硫酸アンモニウムを洗浄したところ、導電率は15(S/cm)となった。
Example 7
A dispersion was prepared by adding 150 mg of ammonium thiosulfate to 3 g of dispersion A. The prepared dispersion was dropped onto a polycarbonate resin substrate (glass transition point 150 ° C.) whose surface was hydrophilized by corona discharge treatment. After the dispersion medium was dried and removed at 70 ° C. for 10 minutes, a heat treatment was performed at 140 ° C. for 10 minutes. When the resistance was measured by the two-terminal method and the conductivity of the coating film was calculated, the conductivity of the coating film was 5 (S / cm). When the ammonium thiosulfate on the surface was washed by washing with water, the conductivity was 15 (S / cm).

実施例8
分散液A 3gに対して次亜リン酸ナトリウムを120mg加えた分散液を調製した。調製した分散液を、コロナ放電処理により表面を親水化したポリカーボネート樹脂基板(ガラス転移点 150℃)上に滴下した。70℃、10分間の条件で分散媒を乾燥・除去した後、140℃で10分間加熱処理を行った。2端子法で抵抗を測定し、塗膜の導電率を算出したところ、塗膜の導電率は0.5(S/cm)であった。水洗処理により表面の次亜リン酸ナトリウムを洗浄したところ、導電率は47(S/cm)となった。
Example 8
A dispersion was prepared by adding 120 mg of sodium hypophosphite to 3 g of dispersion A. The prepared dispersion was dropped onto a polycarbonate resin substrate (glass transition point 150 ° C.) whose surface was hydrophilized by corona discharge treatment. After the dispersion medium was dried and removed at 70 ° C. for 10 minutes, a heat treatment was performed at 140 ° C. for 10 minutes. When the resistance was measured by the two-terminal method and the conductivity of the coating film was calculated, the conductivity of the coating film was 0.5 (S / cm). When the surface sodium hypophosphite was washed by washing with water, the conductivity was 47 (S / cm).

実施例9
分散液A 3gに対してホスフィン酸(30wt%水溶液)を30mg加えた分散液を調製した。調製した分散液を、コロナ放電処理により表面を親水化したポリカーボネート樹脂基板(ガラス転移点 150℃)上に滴下した。70℃、10分間の条件で分散媒を乾燥・除去した後、140℃で10分間加熱処理を行った。2端子法で抵抗を測定し、塗膜の導電率を算出したところ、塗膜の導電率は86(S/cm)であった。
Example 9
A dispersion was prepared by adding 30 mg of phosphinic acid (30 wt% aqueous solution) to 3 g of dispersion A. The prepared dispersion was dropped onto a polycarbonate resin substrate (glass transition point 150 ° C.) whose surface was hydrophilized by corona discharge treatment. After the dispersion medium was dried and removed at 70 ° C. for 10 minutes, a heat treatment was performed at 140 ° C. for 10 minutes. When the resistance was measured by the two-terminal method and the conductivity of the coating film was calculated, the conductivity of the coating film was 86 (S / cm).

実施例10
分散液A 3gに対してホスフィン酸(30wt%水溶液)を30mgおよびポリアクリル酸(平均分子量 約5000)を30mg加えた分散液を調製した。調製した分散液を、コロナ放電処理により表面を親水化したポリカーボネート樹脂基板(ガラス転移点 150℃)上に滴下した。70℃、10分間の条件で分散媒を乾燥・除去した後、140℃で15分間加熱処理を行った。2端子法で抵抗を測定し、塗膜の導電率を算出したところ、塗膜の導電率は2(S/cm)であった。水洗処理により表面のホスフィン酸を洗浄したところ、導電率は6(S/cm)となった。
Example 10
A dispersion was prepared by adding 30 mg of phosphinic acid (30 wt% aqueous solution) and 30 mg of polyacrylic acid (average molecular weight of about 5000) to 3 g of dispersion A. The prepared dispersion was dropped onto a polycarbonate resin substrate (glass transition point 150 ° C.) whose surface was hydrophilized by corona discharge treatment. The dispersion medium was dried and removed at 70 ° C. for 10 minutes, and then heat treatment was performed at 140 ° C. for 15 minutes. When the resistance was measured by the two-terminal method and the conductivity of the coating film was calculated, the conductivity of the coating film was 2 (S / cm). When the phosphinic acid on the surface was washed by washing with water, the conductivity was 6 (S / cm).

実施例11
分散液A 3gに対してホスフィン酸(30wt%水溶液)を30mgおよびアクリル塗料((株)タミヤ,タミヤカラー)を100mg加えた分散液を調製した。調製した分散液をポリカーボネート樹脂基板(ガラス転移点 150℃)上に滴下した。70℃、10分間の条件で分散媒を乾燥・除去した後、140℃で15分間加熱処理を行った。2端子法で抵抗を測定し、塗膜の導電率を算出したところ、塗膜の導電率は1(S/cm)であった。
Example 11
A dispersion was prepared by adding 30 mg of phosphinic acid (30 wt% aqueous solution) and 100 mg of acrylic paint (Tamiya Co., Ltd., Tamiya Color) to 3 g of dispersion A. The prepared dispersion was dropped onto a polycarbonate resin substrate (glass transition point 150 ° C.). The dispersion medium was dried and removed at 70 ° C. for 10 minutes, and then heat treatment was performed at 140 ° C. for 15 minutes. When the resistance was measured by the two-terminal method and the conductivity of the coating film was calculated, the conductivity of the coating film was 1 (S / cm).

実施例12
分散液Aをテトラヒドロフラン(THF)で10倍希釈し、遠心分離してから上澄みを除去した。再度、THFで10倍希釈し、遠心分離してから上澄みを除去した。その結果得られた、薄膜状粒子のTHF分散液を分散液Bとした。液の一部の乾燥前後の重量変化から、液中の薄膜状粒子の濃度は1wt%であった。
分散液B 20gに対してホスフィン酸(30wt%水溶液)を0.1g加えた分散液を調製した。調製した分散液に0.8gのポリカーボネート樹脂を加え、均一になるまでよく混合し、この液をポリカーボネート樹脂基板上に滴下した。70℃、10分間の条件で分散媒を乾燥・除去した後、140℃で15分間加熱処理を行った。2端子法で抵抗を測定し、塗膜の導電率を算出したところ、塗膜の導電率は、1(S/cm)であった。
Example 12
Dispersion A was diluted 10-fold with tetrahydrofuran (THF), centrifuged, and the supernatant was removed. Again, it was diluted 10 times with THF and centrifuged, and then the supernatant was removed. The resulting dispersion of thin film particles in THF was designated as dispersion B. From the change in weight of the liquid before and after drying, the concentration of the thin film-like particles in the liquid was 1 wt%.
A dispersion was prepared by adding 0.1 g of phosphinic acid (30 wt% aqueous solution) to 20 g of dispersion B. 0.8 g of polycarbonate resin was added to the prepared dispersion, mixed well until uniform, and this liquid was dropped onto a polycarbonate resin substrate. The dispersion medium was dried and removed at 70 ° C. for 10 minutes, and then heat treatment was performed at 140 ° C. for 15 minutes. When the resistance was measured by the two-terminal method and the conductivity of the coating film was calculated, the conductivity of the coating film was 1 (S / cm).

実施例13
分散液A 3gに対してホスフィン酸(30wt%水溶液)を30mgおよびポリアクリル酸(平均分子量 約5000)を600mg加えた分散液を作製した。作製した分散液を、コロナ放電処理により表面を親水化したポリカーボネート樹脂基板(ガラス転移点 150℃)上に塗布した。塗布はバーコーターを使用して行った。70℃、10分間の条件で分散媒を乾燥・除去した後、140℃で15分間加熱処理を行った。得られた膜の導電率を調べた所、膜の導電率は2×10−4(S/cm)であった。なお、導電率はJIS−K6911に準じた方法で測定した表面抵抗率と塗膜の厚みをもとに算出した。フィルム断面をウルトラミクロトームで切り出し、透過型電子顕微鏡(TEM)による観察を行った結果、薄膜状粒子の厚みは10nm以下であった。
Example 13
A dispersion was prepared by adding 30 mg of phosphinic acid (30 wt% aqueous solution) and 600 mg of polyacrylic acid (average molecular weight of about 5000) to 3 g of dispersion A. The prepared dispersion was applied onto a polycarbonate resin substrate (glass transition point 150 ° C.) whose surface was hydrophilized by corona discharge treatment. Application was performed using a bar coater. The dispersion medium was dried and removed at 70 ° C. for 10 minutes, and then heat treatment was performed at 140 ° C. for 15 minutes. When the electrical conductivity of the obtained film was examined, the electrical conductivity of the film was 2 × 10 −4 (S / cm). In addition, electrical conductivity was computed based on the surface resistivity measured by the method according to JIS-K6911, and the thickness of a coating film. The cross section of the film was cut out with an ultramicrotome and observed with a transmission electron microscope (TEM). As a result, the thickness of the thin film-like particles was 10 nm or less.

実施例14
天然黒鉛の代わりに人造黒鉛を使用した以外は実施例1と同様にして薄膜状粒子の水分散液を作製し、この分散液を分散液Cとした。液の一部を乾燥前後の重量変化から、液中の薄膜状粒子の濃度は3wt%であった。
分散液C 0.5gに対して、水を2.5gとホスフィン酸(30wt%水溶液)を30mgおよびポリアクリル酸(平均分子量 約5000)を600mgに加えた分散液を作製した。作製した分散液を、コロナ放電処理により表面を親水化したポリカーボネート樹脂基板(ガラス転移点 150℃)表面を塗布した。塗布はバーコーターを使用して行った。70℃、10分間の条件で分散媒を乾燥・除去した後、140℃で15分間加熱処理を行った。得られた膜の導電率を調べた所、膜の導電率は2×10−8(S/cm)であった。なお、導電率はJIS−K6911に準じた方法で測定した表面抵抗率と塗膜の厚みをもとに算出した。フィルム断面をウルトラミクロトームで切り出し、透過型電子顕微鏡(TEM)による観察を行った結果、薄膜状粒子の厚みは200nm程度であった。ポリアクリル酸中の薄膜状粒子の添加量は実施例13と同じであるにも拘らず、薄膜状粒子の厚さが厚いために塗膜の導電率は実施例13よりも悪くなっていた。
Example 14
An aqueous dispersion of thin film particles was prepared in the same manner as in Example 1 except that artificial graphite was used instead of natural graphite, and this dispersion was designated as Dispersion C. From the weight change before and after drying a part of the liquid, the concentration of the thin film-like particles in the liquid was 3 wt%.
A dispersion was prepared by adding 2.5 g of water, 30 mg of phosphinic acid (30 wt% aqueous solution) and 600 mg of polyacrylic acid (average molecular weight of about 5000) to 0.5 g of dispersion C. The prepared dispersion was coated on the surface of a polycarbonate resin substrate (glass transition point 150 ° C.) whose surface was hydrophilized by corona discharge treatment. Application was performed using a bar coater. The dispersion medium was dried and removed at 70 ° C. for 10 minutes, and then heat treatment was performed at 140 ° C. for 15 minutes. When the conductivity of the obtained film was examined, the conductivity of the film was 2 × 10 −8 (S / cm). In addition, electrical conductivity was computed based on the surface resistivity measured by the method according to JIS-K6911, and the thickness of a coating film. The cross section of the film was cut out with an ultramicrotome and observed with a transmission electron microscope (TEM). As a result, the thickness of the thin film-like particles was about 200 nm. Although the addition amount of the thin film-like particles in the polyacrylic acid was the same as that in Example 13, the conductivity of the coating film was worse than that in Example 13 because the thin film-like particles were thick.

比較例1
分散液Aを、コロナ放電処理により表面を親水化したポリカーボネート樹脂基板(ガラス転移点 150℃)上に滴下した。70℃、10分間の条件で分散媒を乾燥・除去した後、140℃で30分間加熱処理を行った。2端子法で抵抗を測定し、塗膜の導電率を算出したところ、塗膜の導電率は10−5(S/cm)以下であった。
Comparative Example 1
Dispersion A was dropped onto a polycarbonate resin substrate (glass transition point 150 ° C.) whose surface was hydrophilized by corona discharge treatment. After drying and removing the dispersion medium at 70 ° C. for 10 minutes, a heat treatment was performed at 140 ° C. for 30 minutes. When the resistance was measured by the two-terminal method and the conductivity of the coating film was calculated, the conductivity of the coating film was 10 −5 (S / cm) or less.

比較例2
分散液A 3gに対してポリアクリル酸(平均分子量 約5000)を600mg加えた分散液を作製した。作製した分散液を、コロナ放電処理により表面を親水化したポリカーボネート樹脂基板(ガラス転移点 150℃)上に塗布した。塗布はバーコーターを使用して行った。70℃、10分間の条件で分散媒を乾燥・除去した後、140℃で15分間加熱処理を行った。得られた膜の導電率を調べた所、膜の導電率は1×10−10(S/cm)以下であった。なお、導電率はJIS−K6911に準じた方法で測定した表面抵抗率と塗膜の厚みをもとに算出した。
Comparative Example 2
A dispersion was prepared by adding 600 mg of polyacrylic acid (average molecular weight of about 5000) to 3 g of dispersion A. The prepared dispersion was applied on a polycarbonate resin substrate (glass transition point 150 ° C.) whose surface was hydrophilized by corona discharge treatment. Application was performed using a bar coater. The dispersion medium was dried and removed at 70 ° C. for 10 minutes, and then heat treatment was performed at 140 ° C. for 15 minutes. When the electrical conductivity of the obtained film was examined, the electrical conductivity of the film was 1 × 10 −10 (S / cm) or less. In addition, electrical conductivity was computed based on the surface resistivity measured by the method according to JIS-K6911, and the thickness of a coating film.

実施例15
分散液A 40gに対してヨウ化水素酸(57wt%水溶液)を2.8g加えた分散液を調製した。調製した分散液に0.8gのポリビニルアルコールを加え、均一になるまでよく混合した。60℃,60分間の条件で分散媒を乾燥・除去し、フィルムを作製した。2端子法で抵抗を測定し、フィルムの導電率を算出したところ、フィルムの導電率は2(S/cm)であった。
Example 15
A dispersion was prepared by adding 2.8 g of hydroiodic acid (57 wt% aqueous solution) to 40 g of dispersion A. 0.8 g of polyvinyl alcohol was added to the prepared dispersion and mixed well until uniform. The dispersion medium was dried and removed under conditions of 60 ° C. for 60 minutes to produce a film. When the resistance was measured by the two-terminal method and the conductivity of the film was calculated, the conductivity of the film was 2 (S / cm).

実施例16
分散液A 40gに対してホスフィン酸(30wt%水溶液)を0.4g加えた分散液を調製した。調製した分散液に0.8gのポリビニルアルコールを加え、均一になるまでよく混合した。70℃、10分間の条件で分散媒を乾燥・除去しフィルムを作製した。その後、140℃で15分間加熱処理を行った。2端子法で抵抗を測定し、フィルムの導電率を算出したところ、フィルムの導電率は3(S/cm)であった。
Example 16
A dispersion was prepared by adding 0.4 g of phosphinic acid (30 wt% aqueous solution) to 40 g of dispersion A. 0.8 g of polyvinyl alcohol was added to the prepared dispersion and mixed well until uniform. The dispersion medium was dried and removed at 70 ° C. for 10 minutes to produce a film. Thereafter, heat treatment was performed at 140 ° C. for 15 minutes. When the resistance was measured by the two-terminal method and the conductivity of the film was calculated, the conductivity of the film was 3 (S / cm).

実施例17
分散液B 20gに対してホスフィン酸(30wt%水溶液)を0.4g加えた分散液を調製した。調製した分散液に0.8gのポリカーボネート樹脂を加え、均一になるまでよく混合した。70℃、10分間の条件で分散媒を乾燥・除去しフィルムを作製した。その後、140℃で15分間加熱処理を行った。2端子法で抵抗を測定し、フィルムの導電率を算出したところ、フィルムの導電率は1(S/cm)であった。
樹脂のガラス転移点以下の加熱温度であったため、加熱後にもフィルムの形状は維持されていた。
Example 17
A dispersion was prepared by adding 0.4 g of phosphinic acid (30 wt% aqueous solution) to 20 g of dispersion B. 0.8 g of polycarbonate resin was added to the prepared dispersion and mixed well until uniform. The dispersion medium was dried and removed at 70 ° C. for 10 minutes to produce a film. Thereafter, heat treatment was performed at 140 ° C. for 15 minutes. When the resistance was measured by the two-terminal method and the conductivity of the film was calculated, the conductivity of the film was 1 (S / cm).
Since the heating temperature was below the glass transition point of the resin, the shape of the film was maintained after heating.

実施例18
分散液B 20gに対してホスフィン酸(30wt%水溶液)を0.4g加えた分散液を作製した。作製した分散液に5gのポリカーボネート樹脂を加え、均一になるまでよく混合した。70℃、10分間の条件で分散媒を乾燥・除去し、フィルムを作製した。その後、140℃で15分間加熱処理を行った。加熱処理を行ったフィルムの導電率は1×10−5(S/cm)であった。なお、導電率はJIS−K6911に準じた方法で測定した体積抵抗率をもとに算出した。フィルム断面をウルトラミクロトームで切り出し、透過型電子顕微鏡(TEM)による観察を行った結果、薄膜状粒子の厚みは50nmであった。
Example 18
A dispersion was prepared by adding 0.4 g of phosphinic acid (30 wt% aqueous solution) to 20 g of dispersion B. 5 g of polycarbonate resin was added to the prepared dispersion and mixed well until uniform. The dispersion medium was dried and removed at 70 ° C. for 10 minutes to produce a film. Thereafter, heat treatment was performed at 140 ° C. for 15 minutes. The conductivity of the heat-treated film was 1 × 10 −5 (S / cm). The conductivity was calculated based on the volume resistivity measured by a method according to JIS-K6911. The cross section of the film was cut out with an ultramicrotome and observed with a transmission electron microscope (TEM). As a result, the thickness of the thin film-like particles was 50 nm.

実施例19
分散液Cをテトラヒドロキシフラン(THF)溶液で10倍希釈し、遠心分離により上澄みを除去した。再度、THF溶液で10倍希釈し、遠心分離により上澄みを除去した。その結果得られた、薄膜状粒子の分散液を分散液Dとした。液の一部の乾燥前後の重量変化から、液中の薄膜状粒子の濃度は1wt%であった。
分散液D 20gに対してホスフィン酸(30wt%水溶液)を0.4g加えた分散液を作製した。作製した分散液に5gのポリカーボネート樹脂を加え、均一になるまでよく混合した。70℃、10分間の条件で分散媒を乾燥・除去し、フィルムを作製した。その後、140℃で15分間加熱処理を行った。加熱処理を行ったフィルムの導電率は1×10−9(S/cm)であった。なお、導電率はJIS−K6911に準じた方法で測定した体積抵抗率をもとに算出した。フィルム断面をウルトラミクロトームで切り出し、透過型電子顕微鏡(TEM)による観察を行った結果、薄膜状粒子の厚みは200nm程度であった。フィルム中の薄膜状粒子の添加量は実施例18と同じであるにも拘わらず、薄膜状粒子の厚みは厚いためにフィルムの導電率は実施例18よりも悪くなっていた。
Example 19
Dispersion C was diluted 10-fold with a tetrahydroxyfuran (THF) solution, and the supernatant was removed by centrifugation. Again, it was diluted 10 times with a THF solution, and the supernatant was removed by centrifugation. The resulting dispersion of thin film particles was designated as dispersion D. From the change in weight of the liquid before and after drying, the concentration of the thin film-like particles in the liquid was 1 wt%.
A dispersion was prepared by adding 0.4 g of phosphinic acid (30 wt% aqueous solution) to 20 g of dispersion D. 5 g of polycarbonate resin was added to the prepared dispersion and mixed well until uniform. The dispersion medium was dried and removed at 70 ° C. for 10 minutes to produce a film. Thereafter, heat treatment was performed at 140 ° C. for 15 minutes. The conductivity of the heat-treated film was 1 × 10 −9 (S / cm). The conductivity was calculated based on the volume resistivity measured by a method according to JIS-K6911. The cross section of the film was cut out with an ultramicrotome and observed with a transmission electron microscope (TEM). As a result, the thickness of the thin film-like particles was about 200 nm. Although the addition amount of the thin film-like particles in the film was the same as that in Example 18, the film conductivity was worse than that in Example 18 because the thickness of the thin film particles was thick.

比較例3
ヨウ化水素酸を加えない以外は実施例15と同様にして、薄膜状粒子が配合されたポリビニルアルコールのフィルムを作製した。2端子法で抵抗を測定し、フィルムの導電率を算出したところ、フィルムの導電率は10−8(S/cm)以下であった。
Comparative Example 3
A polyvinyl alcohol film in which thin film-like particles were blended was produced in the same manner as in Example 15 except that hydroiodic acid was not added. When the resistance was measured by the two-terminal method and the conductivity of the film was calculated, the conductivity of the film was 10 −8 (S / cm) or less.

比較例4
ホスフィン酸を加えない以外は実施例17と同様にして、薄膜状粒子が配合されたポリカーボネート樹脂のフィルムを作製した。その後、200℃で60分間加熱処理を行った。加熱処理を行ったフィルムの導電率は0.04(S/cm)であった。なお、導電率はJIS−K6911に準じた方法で測定した体積抵抗率をもとに算出した。実施例17に比べて、加熱温度を高くし、処理時間を長くしたが、得られたフィルムの導電率は実施例17よりも低かった。
また、樹脂のガラス転移点を越える温度まで加熱したため、フィルムに変形が確認された。
Comparative Example 4
A polycarbonate resin film containing thin film particles was prepared in the same manner as in Example 17 except that phosphinic acid was not added. Thereafter, heat treatment was performed at 200 ° C. for 60 minutes. The conductivity of the heat-treated film was 0.04 (S / cm). The conductivity was calculated based on the volume resistivity measured by a method according to JIS-K6911. Compared with Example 17, the heating temperature was increased and the treatment time was lengthened, but the conductivity of the obtained film was lower than that of Example 17.
Moreover, since it heated to the temperature exceeding the glass transition point of resin, a deformation | transformation was confirmed to the film.

Claims (12)

次の成分(a)〜(c)を必須とする薄膜状粒子を含む分散液:
(a)黒鉛を酸化して得られ、比誘電率15以上の液体に分散可能である、炭素からなる骨格を持つ薄膜状粒子;
(b)該薄膜状粒子を分散させる分散媒;
(c)該薄膜状粒子に対して還元作用のある化合物。
Dispersion containing thin film-like particles essentially comprising the following components (a) to (c):
(A) Thin film-like particles having a skeleton made of carbon, obtained by oxidizing graphite and dispersible in a liquid having a relative dielectric constant of 15 or higher;
(B) a dispersion medium for dispersing the thin film particles;
(C) A compound having a reducing action on the thin film-like particles.
成分(c)が、分散媒を乾燥・除去する過程または分散媒を乾燥・除去した後に薄膜状粒子を還元する作用のある化合物である、請求項1記載の分散液。   The dispersion liquid according to claim 1, wherein the component (c) is a compound having a function of drying and removing the dispersion medium or reducing the thin film-like particles after the dispersion medium is dried and removed. 薄膜状粒子が、厚さ0.4nm〜100nmであり、かつ平面方向の大きさ20nm以上である、請求項1記載の分散液。   The dispersion liquid according to claim 1, wherein the thin film-like particles have a thickness of 0.4 nm to 100 nm and a size in a plane direction of 20 nm or more. さらに、成分(d)としてマトリックス材料を含む、請求項1記載の分散液。   The dispersion of claim 1, further comprising a matrix material as component (d). 請求項1記載の分散液を基体上に塗布した後、分散媒を乾燥・除去する、薄膜状粒子を含む導電性塗膜の製造方法。   A method for producing a conductive coating film containing thin film particles, wherein the dispersion liquid according to claim 1 is applied onto a substrate, and then the dispersion medium is dried and removed. 分散媒を乾燥・除去する工程における加熱温度が30℃〜250℃の範囲内である、請求項5記載の製造方法。   The manufacturing method of Claim 5 whose heating temperature in the process of drying and removing a dispersion medium exists in the range of 30 to 250 degreeC. 請求項5記載の方法で製造した導電性塗膜。   The electroconductive coating film manufactured by the method of Claim 5. 請求項7記載の導電性塗膜を用いる帯電防止性塗膜、電磁遮断性塗膜、または導電性配線。   An antistatic coating film, an electromagnetic shielding coating film, or a conductive wiring using the conductive coating film according to claim 7. 請求項4記載の分散液から分散媒を乾燥・除去する、薄膜状粒子を含む導電性複合材料の製造方法。   The manufacturing method of the electroconductive composite material containing thin film-like particle | grains which dries and removes a dispersion medium from the dispersion liquid of Claim 4. 分散媒を乾燥・除去する工程における加熱温度が30℃〜250℃の範囲内である、請求項9記載の製造方法。   The manufacturing method of Claim 9 whose heating temperature in the process of drying and removing a dispersion medium exists in the range of 30 to 250 degreeC. 請求項9記載の方法で製造した導電性複合材料。   A conductive composite material produced by the method according to claim 9. 請求項11記載の導電性複合材料を用いる導電性シート、導電性フィルム、帯電防止性シート、または帯電防止性フィルム。   A conductive sheet, a conductive film, an antistatic sheet, or an antistatic film using the conductive composite material according to claim 11.
JP2004213960A 2003-07-23 2004-07-22 Dispersion liquid containing thin-film particles having a skeleton made of carbon, conductive coating film, conductive composite material, and production method thereof Expired - Fee Related JP4591666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004213960A JP4591666B2 (en) 2003-07-23 2004-07-22 Dispersion liquid containing thin-film particles having a skeleton made of carbon, conductive coating film, conductive composite material, and production method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003278181 2003-07-23
JP2003280232 2003-07-25
JP2004213960A JP4591666B2 (en) 2003-07-23 2004-07-22 Dispersion liquid containing thin-film particles having a skeleton made of carbon, conductive coating film, conductive composite material, and production method thereof

Publications (2)

Publication Number Publication Date
JP2005063951A true JP2005063951A (en) 2005-03-10
JP4591666B2 JP4591666B2 (en) 2010-12-01

Family

ID=34381763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004213960A Expired - Fee Related JP4591666B2 (en) 2003-07-23 2004-07-22 Dispersion liquid containing thin-film particles having a skeleton made of carbon, conductive coating film, conductive composite material, and production method thereof

Country Status (1)

Country Link
JP (1) JP4591666B2 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008201635A (en) * 2007-02-21 2008-09-04 Hokkaido Univ Method for forming micro-carbon monomolecular film, surface coating method and coated object
JP2009259716A (en) * 2008-04-18 2009-11-05 Mitsubishi Gas Chem Co Inc Conductor and its method for manufacturing
JP2010102829A (en) * 2008-10-21 2010-05-06 Mitsubishi Gas Chemical Co Inc Evaluation method of liquid containing graphite oxide particle, manufacturing method of liquid containing graphite oxide particle, and manufacturing method of conductor using the evaluation method
JP2010123280A (en) * 2008-11-17 2010-06-03 Mitsubishi Gas Chemical Co Inc Method of manufacturing conductor
US20100144904A1 (en) * 2008-12-04 2010-06-10 Tyco Electronics Corporation Graphene and graphene oxide aerogels
JP2011500488A (en) * 2007-10-19 2011-01-06 ユニバーシティー オブ ウロンゴング Method for producing graphene
KR20110016287A (en) * 2009-08-11 2011-02-17 고양미 Coating method with colloidal graphine oxides
JP2011079700A (en) * 2009-10-07 2011-04-21 Mitsubishi Gas Chemical Co Inc Method for producing graphite oxide particle-containing liquid
JP2011079701A (en) * 2009-10-07 2011-04-21 Mitsubishi Gas Chemical Co Inc Method for producing purified graphite oxide particle-containing liquid
WO2011074125A1 (en) * 2009-12-18 2011-06-23 国立大学法人 北海道大学 Graphene oxide sheet, article containing grapheme-containing substance produced by reducing the graphene oxide sheet, and process for production of the graphene oxide sheet
JP2011144060A (en) * 2010-01-13 2011-07-28 Sekisui Chem Co Ltd Method for producing dispersion liquid of flaked graphite, method for producing flaked graphite and method for producing composite material
JP2011144071A (en) * 2010-01-14 2011-07-28 Sekisui Chem Co Ltd Method for manufacturing thinly exfoliated graphite dispersion, thinly exfoliated graphite dispersion and method for manufacturing thin film
JP2011184264A (en) * 2010-03-10 2011-09-22 Sekisui Chem Co Ltd Method for producing dispersion of flaked graphite, dispersion of flaked graphite, and method for producing thin film
KR101084975B1 (en) 2009-06-19 2011-11-23 한국과학기술원 A method for manufacturing graphene film, graphene film manufuctured by the same, electrode material comprising the same
JP2012527396A (en) * 2009-05-22 2012-11-08 ウィリアム・マーシュ・ライス・ユニバーシティ Highly oxidized graphene oxides and methods for their production
JP2013035966A (en) * 2011-08-09 2013-02-21 Mitsubishi Gas Chemical Co Inc Electroconductive coating
JP2013533189A (en) * 2010-05-18 2013-08-22 国家納米科学中心 Graphene-based conductive material and method for preparing the same
KR101312220B1 (en) 2011-02-18 2013-09-27 성균관대학교산학협력단 Method for Coating Substrate with Graphene Oxide and Method of Manufacuring Substrate coated Reduced Graphene Oxide
CN103531306A (en) * 2013-10-18 2014-01-22 武汉大学 Graphite conducting film as well as preparation method and application of graphite conducting film
JP2014062042A (en) * 2013-11-08 2014-04-10 Mitsubishi Gas Chemical Co Inc Method for producing purified graphite oxide particle-containing liquid
JP2016060646A (en) * 2014-09-12 2016-04-25 国立大学法人静岡大学 Graphene film production method, graphene film, and laminate using it
CN105960276A (en) * 2013-12-10 2016-09-21 南卡罗来纳大学 Ultrathin, graphene-based membranes for water treatment and methods of their formation and use
WO2017033375A1 (en) * 2015-08-24 2017-03-02 パナソニックIpマネジメント株式会社 Electrically conductive coating composition, electrically conductive material, method for producing electrically conductive coating composition, and method for producing electrically conductive material
WO2020166056A1 (en) * 2019-02-15 2020-08-20 誠之 島田 Coating agent, thin film, substrate with thin film, and method for producing thin film
JP2021001113A (en) * 2020-09-15 2021-01-07 株式会社日本触媒 Method for producing reduced graphite oxide
JP2021175706A (en) * 2011-06-24 2021-11-04 株式会社半導体エネルギー研究所 Graphene

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002053313A (en) * 2000-08-09 2002-02-19 Mitsubishi Gas Chem Co Inc Thin-filmy particle having skeleton consisting of carbon
JP2003176116A (en) * 2001-12-07 2003-06-24 Mitsubishi Gas Chem Co Inc Large, thin film particle consisting of carbon
JP2003238131A (en) * 2002-02-08 2003-08-27 Mitsubishi Gas Chem Co Inc Random aggregate of thin particle with carbon skeletal structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002053313A (en) * 2000-08-09 2002-02-19 Mitsubishi Gas Chem Co Inc Thin-filmy particle having skeleton consisting of carbon
JP2003176116A (en) * 2001-12-07 2003-06-24 Mitsubishi Gas Chem Co Inc Large, thin film particle consisting of carbon
JP2003238131A (en) * 2002-02-08 2003-08-27 Mitsubishi Gas Chem Co Inc Random aggregate of thin particle with carbon skeletal structure

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008201635A (en) * 2007-02-21 2008-09-04 Hokkaido Univ Method for forming micro-carbon monomolecular film, surface coating method and coated object
JP2011500488A (en) * 2007-10-19 2011-01-06 ユニバーシティー オブ ウロンゴング Method for producing graphene
JP2009259716A (en) * 2008-04-18 2009-11-05 Mitsubishi Gas Chem Co Inc Conductor and its method for manufacturing
JP2010102829A (en) * 2008-10-21 2010-05-06 Mitsubishi Gas Chemical Co Inc Evaluation method of liquid containing graphite oxide particle, manufacturing method of liquid containing graphite oxide particle, and manufacturing method of conductor using the evaluation method
JP2010123280A (en) * 2008-11-17 2010-06-03 Mitsubishi Gas Chemical Co Inc Method of manufacturing conductor
JP2012510950A (en) * 2008-12-04 2012-05-17 タイコ・エレクトロニクス・コーポレイション Graphene aerogels and graphene oxide aerogels
US20100144904A1 (en) * 2008-12-04 2010-06-10 Tyco Electronics Corporation Graphene and graphene oxide aerogels
US8871821B2 (en) 2008-12-04 2014-10-28 Tyco Electronics Corporation Graphene and graphene oxide aerogels
JP2012527396A (en) * 2009-05-22 2012-11-08 ウィリアム・マーシュ・ライス・ユニバーシティ Highly oxidized graphene oxides and methods for their production
US9428394B2 (en) 2009-05-22 2016-08-30 William Marsh Rice University Highly oxidized graphene oxide and methods for production thereof
KR101084975B1 (en) 2009-06-19 2011-11-23 한국과학기술원 A method for manufacturing graphene film, graphene film manufuctured by the same, electrode material comprising the same
KR20110016287A (en) * 2009-08-11 2011-02-17 고양미 Coating method with colloidal graphine oxides
KR101635835B1 (en) * 2009-08-11 2016-07-05 한국세라믹기술원 Coating method with colloidal graphine oxides
JP2011079700A (en) * 2009-10-07 2011-04-21 Mitsubishi Gas Chemical Co Inc Method for producing graphite oxide particle-containing liquid
JP2011079701A (en) * 2009-10-07 2011-04-21 Mitsubishi Gas Chemical Co Inc Method for producing purified graphite oxide particle-containing liquid
JP5633821B2 (en) * 2009-12-18 2014-12-03 国立大学法人北海道大学 Graphene oxide sheet, article containing graphene-containing material obtained by reducing the same, and method for producing the same
WO2011074125A1 (en) * 2009-12-18 2011-06-23 国立大学法人 北海道大学 Graphene oxide sheet, article containing grapheme-containing substance produced by reducing the graphene oxide sheet, and process for production of the graphene oxide sheet
US9327985B2 (en) 2009-12-18 2016-05-03 National University Corporation Hokkaido University Graphene oxide sheet, article containing graphene-containing substance produced by reducing the graphene oxide sheet, and process for production of the graphene oxide sheet
JP2011144060A (en) * 2010-01-13 2011-07-28 Sekisui Chem Co Ltd Method for producing dispersion liquid of flaked graphite, method for producing flaked graphite and method for producing composite material
JP2011144071A (en) * 2010-01-14 2011-07-28 Sekisui Chem Co Ltd Method for manufacturing thinly exfoliated graphite dispersion, thinly exfoliated graphite dispersion and method for manufacturing thin film
JP2011184264A (en) * 2010-03-10 2011-09-22 Sekisui Chem Co Ltd Method for producing dispersion of flaked graphite, dispersion of flaked graphite, and method for producing thin film
JP2013533189A (en) * 2010-05-18 2013-08-22 国家納米科学中心 Graphene-based conductive material and method for preparing the same
KR101312220B1 (en) 2011-02-18 2013-09-27 성균관대학교산학협력단 Method for Coating Substrate with Graphene Oxide and Method of Manufacuring Substrate coated Reduced Graphene Oxide
JP2021175706A (en) * 2011-06-24 2021-11-04 株式会社半導体エネルギー研究所 Graphene
JP7274537B2 (en) 2011-06-24 2023-05-16 株式会社半導体エネルギー研究所 Manufacturing method of negative electrode
JP2013035966A (en) * 2011-08-09 2013-02-21 Mitsubishi Gas Chemical Co Inc Electroconductive coating
CN103531306A (en) * 2013-10-18 2014-01-22 武汉大学 Graphite conducting film as well as preparation method and application of graphite conducting film
JP2014062042A (en) * 2013-11-08 2014-04-10 Mitsubishi Gas Chemical Co Inc Method for producing purified graphite oxide particle-containing liquid
CN105960276A (en) * 2013-12-10 2016-09-21 南卡罗来纳大学 Ultrathin, graphene-based membranes for water treatment and methods of their formation and use
JP2017500195A (en) * 2013-12-10 2017-01-05 ユニバーシティー オブ サウス カロライナ Ultra-thin graphene-based films for water treatment and their formation and use
JP2016060646A (en) * 2014-09-12 2016-04-25 国立大学法人静岡大学 Graphene film production method, graphene film, and laminate using it
WO2017033375A1 (en) * 2015-08-24 2017-03-02 パナソニックIpマネジメント株式会社 Electrically conductive coating composition, electrically conductive material, method for producing electrically conductive coating composition, and method for producing electrically conductive material
JPWO2017033375A1 (en) * 2015-08-24 2018-05-24 パナソニックIpマネジメント株式会社 Conductive paint composition, conductive material, process for producing conductive paint composition, process for producing conductive material
JPWO2020166056A1 (en) * 2019-02-15 2021-09-30 島田 誠之 Coating agents, thin films, substrates with thin films, and methods for manufacturing thin films
WO2020166056A1 (en) * 2019-02-15 2020-08-20 誠之 島田 Coating agent, thin film, substrate with thin film, and method for producing thin film
JP7121149B2 (en) 2019-02-15 2022-08-17 島田 誠之 Coating agent, thin film, substrate with thin film, and method for producing thin film
JP2021001113A (en) * 2020-09-15 2021-01-07 株式会社日本触媒 Method for producing reduced graphite oxide
JP7012132B2 (en) 2020-09-15 2022-01-27 株式会社日本触媒 Method for producing reduced graphite oxide

Also Published As

Publication number Publication date
JP4591666B2 (en) 2010-12-01

Similar Documents

Publication Publication Date Title
JP4591666B2 (en) Dispersion liquid containing thin-film particles having a skeleton made of carbon, conductive coating film, conductive composite material, and production method thereof
US8080179B2 (en) Dispersion comprising thin particles having a skeleton consisting of carbons, electroconductive coating film, electroconductive composite material, and a process for producing them
KR101666478B1 (en) Preparation method of graphene and dispersed composition of graphene
KR101118497B1 (en) Single-walled carbon nanotube dispersion liquid and method for producing single-walled carbon nanotube dispersion liquid
JP5272641B2 (en) Method for evaluating graphite oxide particle-containing liquid, method for producing graphite oxide particle-containing liquid using the same, and method for producing conductor
CN102712779A (en) Graphene dispersion and graphene-ionic liquid polymer compound material
JP4678152B2 (en) Dispersion of thin film particles with a carbon skeleton
JP2013035966A (en) Electroconductive coating
KR20160071939A (en) Partially oxidized graphene and method for preparation thereof
CN107163686B (en) Preparation method and application of graphene composite conductive ink
CN105968777B (en) A kind of antistatic composite nano materials film and preparation method thereof
Lu et al. In‐situ thermal reduction and effective reinforcement of graphene nanosheet/poly (ethylene glycol)/poly (lactic acid) nanocomposites
JP2012153590A (en) Aggregate, and dispersion liquid made by dispersing the aggregate in solvent
KR20170050631A (en) Method for preparation of magnetic iron oxide-graphene complex
CN111620329A (en) Modified graphene, method for producing same, modified graphene-resin composite, modified graphene sheet, and modified graphene dispersion
KR20160067322A (en) Manufacturing method of reduced graphene oxide, reduced graphene oxide, manufacturing method of barrier film using the reduced graphene oxide and barrier film
JP2009259716A (en) Conductor and its method for manufacturing
JP7056101B2 (en) Manufacturing method of reduced graphene
JP7449110B2 (en) Modified graphene, method for producing modified graphene, modified graphene resin composite, modified graphene sheet, and modified graphene dispersion
US7381352B2 (en) Dispersion of thin particles having a skeleton consisting of carbons
JP2004091251A (en) Method for reducing thin-film particle having framework comprising carbon
JP6241586B2 (en) Method for producing carbon nanofiber and method for producing dispersion and composition thereof
US20210162456A1 (en) Aligned boron nitride nanotube films
JP5278739B2 (en) Manufacturing method of conductor
JP6979196B2 (en) Method for exfoliating layered mineral powder and method for producing layered nanoplate complex

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees