JP2005048089A - Conductive polymer material - Google Patents

Conductive polymer material Download PDF

Info

Publication number
JP2005048089A
JP2005048089A JP2003282556A JP2003282556A JP2005048089A JP 2005048089 A JP2005048089 A JP 2005048089A JP 2003282556 A JP2003282556 A JP 2003282556A JP 2003282556 A JP2003282556 A JP 2003282556A JP 2005048089 A JP2005048089 A JP 2005048089A
Authority
JP
Japan
Prior art keywords
polymer material
particles
thin film
conductive polymer
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003282556A
Other languages
Japanese (ja)
Inventor
Takuya Goto
拓也 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2003282556A priority Critical patent/JP2005048089A/en
Publication of JP2005048089A publication Critical patent/JP2005048089A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive polymer material imparting high conductivity at a low addition level, allowing easy high-concentration dispersion in a polymer material, and containing a conductive material requiring no dopant. <P>SOLUTION: The material uses, as a conductive material, thin-film particles which have a carbon skeleton, are obtained by oxidization of graphite and can be dispersed in a liquid of a dielectric constant ≥15. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、炭素からなる骨格を持つ薄膜状粒子を含有してなる導電性高分子材料に関する。   The present invention relates to a conductive polymer material containing thin film particles having a skeleton made of carbon.

導電性高分子材料としては、高分子材料に導電材料、必要に応じてバインダー・顔料・接着成分・増粘剤などの材料を含有させたものが一般に知られている。高分子材料としては、一般に知られている多くの有機高分子や無機高分子(例えばゾル−ゲル法で作製可能であるもの)が使用可能である。これらの高分子材料は単独で用いるだけではなく、複数の高分子の混合物でもよい。導電材料としては、金属粒子や金属短繊維、ポリアニリンなどの導電性ポリマー、カーボンブラックなどの炭素系粉末、界面活性剤を用いたもの、およびこれらの成分と高分子化合物を組み合わせたものなどが知られている。また、最近では異方性が高い炭素材料として、カーボンナノチューブが知られている(例えば、非特許文献1参照)。   As the conductive polymer material, generally known is a polymer material containing a conductive material and, if necessary, a material such as a binder, a pigment, an adhesive component, or a thickener. As the polymer material, many generally known organic polymers and inorganic polymers (for example, those that can be produced by a sol-gel method) can be used. These polymer materials are not only used alone, but may be a mixture of a plurality of polymers. Known conductive materials include metal particles, short metal fibers, conductive polymers such as polyaniline, carbon powders such as carbon black, those using surfactants, and combinations of these components with polymer compounds. It has been. Recently, carbon nanotubes are known as carbon materials having high anisotropy (see, for example, Non-Patent Document 1).

これらの材料のうち、金属粒子や金属短繊維は密度が高く、導電性高分子材料を溶液状態などで用いる場合に、高分子材料と分離しやすい傾向がある。導電性高分子は一般にその導電性を高めるために強酸性のドーパントが加えられており、それを使用した場合に製造設備の錆発生といった問題がある。界面活性剤を使用した場合は、帯電防止能が周囲の環境や水分の影響を受け変化しやすい。特に界面活性剤により低下した表面抵抗が、低湿度下では大幅に増大して、所望の帯電防止能が得られなくなる欠点がある。カーボンブラックは、十分な導電性を得るために20重量%以上の添加率が必要となり、透明性が無く、強度などの物性が低下し、さらに、成形性が悪くなるなどの欠点がある。カーボンナノチューブは、形状異方性が高いことから、低分率の添加で高い導電性を与えるが、高い導電性を得るためには樹脂中で高分散させる必要があり、カーボンナノチューブのような超微粒子を樹脂中に高分散させることは容易ではない、といった問題がある。導電性高分子材料の具体的用途としては、各種帯電防止用途(帯電防止用塗料、帯電防止性シート、帯電防止性フィルムなど)、電子線リソグラフィー時の導電性レジスト、EMIシールド、導電性接着剤、磁気ディスク、写真フィルム、ICトレイ、転写ベルト、熱転写シートなどが挙げられる。   Among these materials, metal particles and metal short fibers have a high density and tend to be easily separated from the polymer material when the conductive polymer material is used in a solution state or the like. In general, a conductive polymer is added with a strongly acidic dopant in order to increase its conductivity, and when it is used, there is a problem that rust is generated in a production facility. When a surfactant is used, the antistatic ability tends to change due to the influence of the surrounding environment and moisture. In particular, the surface resistance lowered by the surfactant is greatly increased under low humidity, and the desired antistatic ability cannot be obtained. Carbon black requires an addition rate of 20% by weight or more in order to obtain sufficient electrical conductivity, has no transparency, has poor physical properties such as strength, and further has poor moldability. Since carbon nanotubes have high shape anisotropy, high conductivity is given by addition of a low fraction. However, in order to obtain high conductivity, it is necessary to highly disperse in the resin. There is a problem that it is not easy to highly disperse the fine particles in the resin. Specific applications of conductive polymer materials include various antistatic applications (antistatic coatings, antistatic sheets, antistatic films, etc.), conductive resists during electron beam lithography, EMI shields, and conductive adhesives. And magnetic disks, photographic films, IC trays, transfer belts, thermal transfer sheets, and the like.

(炭素からなる骨格を持つ薄膜状粒子)
ところで、本発明に用いる、黒鉛を酸化して得られ、比誘電率15以上の液体に分散可能である、炭素からなる骨格を持つ薄膜状粒子については、以下のような公知の事項と本発明者らにより開示された事項がある。
炭素原子を骨格とする2次元の異方性形状の物質として、黒鉛を酸化して得られる酸化黒鉛がある。この酸化黒鉛は2次元的な基本層が積み重なった多層構造体であり、一般に層数の非常に多いものが知られている。さらに、層数の少ない非常に薄いものも作られており(例えば、非特許文献2参照)、本発明者らも先に、そのような酸化黒鉛(層数が1枚の場合は例えば酸化グラフェンと呼ぶことが望ましい(グラフェンは黒鉛の1層分の名称))の薄膜状粒子を高収率で製造する方法を見出すと共に、それを還元して層数の非常に少ない黒鉛(層数が1枚の場合はグラフェンと呼ぶことが望ましい)類似の薄膜状粒子を得た(特許文献1、特許文献2参照)。
(Thin-film particles with carbon skeleton)
By the way, as for the thin film-like particles having a skeleton made of carbon, which are obtained by oxidizing graphite and can be dispersed in a liquid having a relative dielectric constant of 15 or more, the following known matters and the present invention are used. There are matters disclosed by the authors.
As a two-dimensional anisotropic material having a carbon atom as a skeleton, there is graphite oxide obtained by oxidizing graphite. This graphite oxide is a multilayer structure in which two-dimensional basic layers are stacked, and generally has a very large number of layers. Furthermore, a very thin layer having a small number of layers has also been made (see, for example, Non-Patent Document 2), and the inventors of the present invention have previously described such graphite oxide (for example, graphene oxide when the number of layers is one). (Graphene is a name for one layer of graphite)) and found a method for producing a high-yield thin film-like particle, and reduced it to reduce the number of graphite (the number of layers is 1). In the case of a sheet, it is desirable to call it graphene). A similar thin film-like particle was obtained (see Patent Document 1 and Patent Document 2).

ここで、酸化黒鉛の基本層は、炭素原子1個分または2個分の厚さの炭素骨格(sp3炭素とsp2炭素からなり、sp3炭素が多い)と、その骨格の両側の面に酸性の水酸基などが結合した構造を持つと考えられている(例えば、非特許文献3、非特許文献4参照)。炭素骨格の厚さが炭素原子1個分で、その両側の面に水酸基などがあり、層間の水が極めて少ない場合には、基本層の厚さは0.61nmである。また、酸化の程度が高く、よく乾燥された場合、酸化黒鉛に含まれる酸素は40wt%程度である。この酸化黒鉛の薄膜状粒子は、部分的に、または完全に還元されることで、黒鉛類似のsp2結合の多い電子状態となり、電気伝導性が高くなることが知られている。
特開2002−53313号公報 特開2003−176116号公報 中條 澄,「ポリマー系ナノコンポジットの現状と将来」,プラスチック,Vol.53,No.7,46(2002) N. A. Kotov et al., "Ultrathin Graphite Oxide-Polyelectrolyte Composites Prepared by Self-Assembly:Transition Between Conductive and Non-Conductive States", Adv. Mater., 8, 637 (1996) T. Nakajima et al., "A NEW STRUCTURE MODEL OF GRAPHITE OXIDE", Carbon, 26, 357 (1988) M. Mermoux et al., "FTIR AND 13C NMR STUDY OF GRAPHITE OXIDE", Carbon, 29, 469 (1991)
Here, the basic layer of graphite oxide consists of a carbon skeleton with a thickness of one or two carbon atoms (consisting of sp 3 carbon and sp 2 carbon, with a lot of sp 3 carbon), and both sides of the skeleton. It is considered to have a structure in which an acidic hydroxyl group is bonded to (see, for example, Non-Patent Document 3 and Non-Patent Document 4). When the thickness of the carbon skeleton is one carbon atom, there are hydroxyl groups on both sides of the carbon skeleton, and there is very little water between layers, the thickness of the basic layer is 0.61 nm. Further, when the degree of oxidation is high and well dried, the oxygen contained in the graphite oxide is about 40 wt%. It is known that the graphite oxide thin-film particles are partially or completely reduced to be in an electronic state with many sp 2 bonds similar to graphite and have high electrical conductivity.
JP 2002-53313 A JP 2003-176116 A Jun Nakajo, “Present and Future of Polymer Nanocomposites”, Plastics, Vol. 53, No. 7, 46 (2002) NA Kotov et al., "Ultrathin Graphite Oxide-Polyelectrolyte Composites Prepared by Self-Assembly: Transition Between Conductive and Non-Conductive States", Adv. Mater., 8, 637 (1996) T. Nakajima et al., "A NEW STRUCTURE MODEL OF GRAPHITE OXIDE", Carbon, 26, 357 (1988) M. Mermoux et al., "FTIR AND 13C NMR STUDY OF GRAPHITE OXIDE", Carbon, 29, 469 (1991)

上記のように、導電性高分子材料に含有させる導電材料としては、金属粒子や金属短繊維、導電性高分子、界面活性剤、カーボンブラックなどの炭素系粉末、カーボンナノチューブなどの形状異方性の高い材料が知られているが、これらの材料は、それぞれ、高分子材料と分離しやすい、強酸性のドーパントを使用する、水分の影響を受けやすい、添加率が高い、高分散が難しい、といった問題を有している。そのようなことから、低い添加率で高い導電性が得られ、高分子材料中で高分散させやすく、しかもドーパントを使用しないで済む導電材料を配合させた導電性高分子材料が望まれていた。   As described above, the conductive material to be included in the conductive polymer material includes metal particles, short metal fibers, conductive polymer, surfactant, carbon powder such as carbon black, and shape anisotropy such as carbon nanotube. Although these materials are known, these materials are easily separated from the polymer material, use a strongly acidic dopant, are easily affected by moisture, have a high addition rate, and are difficult to disperse. Have the problem. Therefore, there has been a demand for a conductive polymer material in which a high conductivity is obtained at a low addition rate, is easily dispersed in a polymer material, and is blended with a conductive material that does not require the use of a dopant. .

本発明者らは、上記目的を達成するため鋭意検討を進めた結果、黒鉛を酸化して得られ、比誘電率15以上の液体に分散可能である、炭素からなる骨格を持つ薄膜状粒子を導電材料として使用することで、本発明を完成するに至った。すなわち、導電性高分子材料の導電材料として、比誘電率15以上の液体に分散可能である、炭素からなる骨格を持つ薄膜状粒子を使用することで、高分子材料中への分散が容易になり、また、材料の形状異方性が高いことから、少ない添加率で高い導電率を得ることが可能となった。さらには、本発明で使用する導電材料は、導電性を得る上でドーパントが不要なことから、錆発生を引き起こす恐れのある強酸性のドーパントを使用しなくてすむ。   As a result of intensive investigations to achieve the above object, the present inventors have obtained thin-film particles having a skeleton made of carbon, which are obtained by oxidizing graphite and can be dispersed in a liquid having a relative dielectric constant of 15 or more. By using it as a conductive material, the present invention has been completed. That is, by using thin film particles having a skeleton made of carbon that can be dispersed in a liquid having a relative dielectric constant of 15 or more as a conductive material of a conductive polymer material, dispersion into the polymer material is facilitated. Moreover, since the shape anisotropy of the material is high, it has become possible to obtain high conductivity with a small addition rate. Furthermore, since the conductive material used in the present invention does not require a dopant to obtain conductivity, it is not necessary to use a strongly acidic dopant that may cause rust generation.

薄膜状粒子の添加率としては、高分子材料の特性を悪化させることがないように、20重量%以下が望ましい。より望ましくは、10重量%以下の添加率である。これは、10重量%以下でも帯電防止に十分な導電性が得られ、添加率の低い方が高分子材料の特性悪化をより少なく抑えられるからである。また、添加率が0.01重量%未満になると、十分な導電性が得られないことから、添加率は0.01重量%以上が望ましい。なお、本発明における添加率とは、導電性を得るために薄膜状粒子を還元した後、つまり、導電性高分子材料を作製した後の薄膜状粒子の重量を基準としている。そのため、十分に還元を行った場合、還元前の薄膜状粒子の約60重量%(還元により約40重量%重量減少する)が、添加率算出の基準となる。   The addition rate of the thin film-like particles is preferably 20% by weight or less so as not to deteriorate the characteristics of the polymer material. More desirably, the addition rate is 10% by weight or less. This is because even when the content is 10% by weight or less, sufficient conductivity for preventing charging can be obtained, and the lower the addition rate, the more the deterioration of characteristics of the polymer material can be suppressed. Further, if the addition rate is less than 0.01% by weight, sufficient conductivity cannot be obtained, so the addition rate is preferably 0.01% by weight or more. The addition rate in the present invention is based on the weight of the thin film particles after reducing the thin film particles in order to obtain conductivity, that is, after the production of the conductive polymer material. For this reason, when the reduction is sufficiently performed, about 60% by weight of the thin film-like particles before the reduction (decreasing by about 40% by weight due to the reduction) is a criterion for calculating the addition rate.

体積抵抗率としては、10-1〜1011(Ω・cm)の範囲であることが望ましい。
10-1(Ω・cm)以下の体積抵抗率の場合、薄膜状粒子の添加率が高くなり、材料の特性に影響がでるため、望ましくない。また、1011(Ω・cm)以上の体積抵抗率の場合、高分子材料の帯電防止を行うには導電性が不足しているため、望ましくない。
The volume resistivity is desirably in the range of 10 −1 to 10 11 (Ω · cm).
In the case of a volume resistivity of 10 −1 (Ω · cm) or less, the addition rate of the thin film-like particles is increased, which affects the properties of the material, which is not desirable. Further, in the case of a volume resistivity of 10 11 (Ω · cm) or more, it is not desirable because the conductivity is insufficient to prevent the polymer material from being charged.

より少ない添加率で高い導電性を得るためには、使用する薄膜状粒子としては、形状異方性がより高い方が望ましい。具体的には、薄膜状粒子の厚さは0.4nm〜100nm、より望ましくは0.4nm〜10nm、平面方向の大きさは20nm以上、より望ましくは100nm以上、であることが望ましい。   In order to obtain high conductivity with a smaller addition rate, it is desirable that the thin film-like particles used have higher shape anisotropy. Specifically, the thickness of the thin film-like particles is 0.4 nm to 100 nm, more preferably 0.4 nm to 10 nm, and the size in the plane direction is 20 nm or more, more preferably 100 nm or more.

本発明で得られた導電性高分子材料は、導電材料の添加率を少なく抑えることができるため、高分子材料の特性を維持することが可能で、また、低分率添加の場合は透明性も得られることから、導電性塗膜、帯電防止性塗膜、導電性シートまたは導電性フィルムなどの用途に対して有用である。   The conductive polymer material obtained in the present invention can keep the addition rate of the conductive material low, so that the characteristics of the polymer material can be maintained, and in the case of low fraction addition, it is transparent. Therefore, it is useful for applications such as a conductive coating film, an antistatic coating film, a conductive sheet or a conductive film.

複写機やレーザープリンターに使用される転写ベルトにおいては、高速化の要求に伴い、トナーや紙の吸着、搬送、転写のための静電特性の安定性と機械的強度およびその耐久性、耐熱性など多くの特性が要求される。様々な要求を満たす上で、添加する導電性材料は可能な限り少量であることが望ましく、その要求を満たした本発明の導電性高分子材料は、転写ベルトの材料として好適である。   In transfer belts used in copiers and laser printers, due to the demand for higher speed, the stability and mechanical strength of electrostatic properties and the durability and heat resistance of toner and paper for adsorption, transport and transfer Many characteristics are required. In order to satisfy various requirements, it is desirable that the amount of the conductive material to be added is as small as possible. The conductive polymer material of the present invention that satisfies the requirement is suitable as a material for the transfer belt.

サーマルヘッド、レーザー等の加熱手段を用いる熱転写プリンターに使用される熱転写シートにおいては、帯電によりシート表面に埃等が付着した場合、サーマルヘッドに埃等が付着し、形成される画像の解像度が低下するなどの問題がある。このため、熱転写シートの背面に帯電防止層を形成することが知られている。この帯電防止層にカーボンブラックを使った場合、サーマルヘッドの磨耗が激しいなどの問題があるが、添加率を低く抑えることが可能な本発明の導電性高分子材料ではそういった問題もない。また、ポリアニリンなどの導電性高分子で使用されるような強酸性のドーパントを使用する必要もないことから、サーマルヘッドに錆を発生させる恐れもなく、熱転写シートの帯電防止層に使用する材料として好適である。   In thermal transfer sheets used in thermal transfer printers that use heating means such as thermal heads and lasers, when dust or the like adheres to the sheet surface due to electrification, the thermal head adheres to the thermal head and reduces the resolution of the formed image. There are problems such as. For this reason, it is known to form an antistatic layer on the back surface of the thermal transfer sheet. When carbon black is used for the antistatic layer, there is a problem that the thermal head is heavily worn, but the conductive polymer material of the present invention that can keep the addition rate low does not have such a problem. In addition, since there is no need to use a strongly acidic dopant such as that used in conductive polymers such as polyaniline, there is no risk of generating rust on the thermal head, and as a material used for the antistatic layer of the thermal transfer sheet. Is preferred.

本発明による導電性高分子材料は、黒鉛を酸化して得られ、比誘電率15以上の液体に分散可能である、炭素からなる骨格を持つ薄膜状粒子を導電材料に使用することで、導電材料を高分子材料中へ分散させることが容易、低い添加率で高い導電率を得ることが可能、強酸性のドーパントも必要がない、といった特徴を持つことから、極めて有用な導電性高分子材料である。   The conductive polymer material according to the present invention is obtained by oxidizing graphite and using thin film particles having a skeleton made of carbon, which can be dispersed in a liquid having a relative dielectric constant of 15 or more, as a conductive material. Very useful conductive polymer material because it is easy to disperse the material in the polymer material, can obtain high conductivity at a low addition rate, and does not require a strongly acidic dopant. It is.

以下に、好ましい実施の形態を示し、本発明について詳細に説明する。
本発明に用いる黒鉛を酸化して得られる薄膜状粒子としては、公知のBrodie法(硝酸、塩素酸カリウムを使用)、Staudenmaier法(硝酸、硫酸、塩素酸カリウムを使用)、Hummers−Offeman法(硫酸、硝酸ナトリウム、過マンガン酸カリウムを使用)、本発明者らが特開2002−53313および特開2003−176116で開示した方法などによる黒鉛酸化物が利用できる。特に、厚さが0.4nm〜100nm、平面方向の大きさが20nm以上の層数が非常に少ない黒鉛酸化物は、厚さが薄いことで還元が容易であること、他に類似の性状・特性を有する材料が見当たらないことなどから極めて有用であり、これらは特開2002−53313および特開2003−176116で開示した方法により製造できる。
Hereinafter, preferred embodiments will be shown and the present invention will be described in detail.
As the thin film particles obtained by oxidizing graphite used in the present invention, the known Brodie method (using nitric acid and potassium chlorate), the Staudenmeier method (using nitric acid, sulfuric acid and potassium chlorate), the Hummers-Offeman method ( Sulfuric acid, sodium nitrate, potassium permanganate are used), and graphite oxides obtained by the methods disclosed by the present inventors in JP-A-2002-53313 and JP-A-2003-176116 can be used. In particular, graphite oxide with a very small number of layers having a thickness of 0.4 nm to 100 nm and a planar size of 20 nm or more is easy to reduce due to its thin thickness. This is extremely useful because a material having characteristics is not found, and these can be produced by the methods disclosed in JP-A-2002-53313 and JP-A-2003-176116.

通常、黒鉛酸化物合成終了後の分散液の分散媒は水であるが、この分散媒を、水から、水以外のメタノール、エタノール、アセトン、2−ブタノンなどの比誘電率で15以上の高極性の液体に交換することが可能である。このような水以外の高極性の液体を主な分散媒とするための手段として、元の分散液に含まれる水よりも十分多量の水以外の高極性の液体を加えて希釈する方法、水以外の高極性の液体を加えてから遠心分離とデカンテーションなどで上澄みを除くことを繰り返して水以外の高極性の分散媒に徐々に交換する方法、などがある。また、数種類の液体を適当な割合で混合した液体を分散媒として用いることも可能である。この場合、一部に比誘電率15未満の液体を用いてもよい。なお、比誘電率が15未満であっても、水と任意の割合で相互溶解する化合物(例えば、テトラヒドロフラン、ジオキサンなど)は、分散媒中の割合が50重量%以上でも薄膜状粒子を分散させることが可能であることから、例外的に比誘電率が15未満の液体を主な分散媒とすることができる。   Usually, the dispersion medium of the dispersion liquid after the completion of the synthesis of the graphite oxide is water. It is possible to exchange for a polar liquid. As a means for using such a highly polar liquid other than water as the main dispersion medium, a method of diluting by adding a sufficiently large amount of highly polar liquid other than water contained in the original dispersion, water There is a method in which a high-polarity liquid other than water is added and then the supernatant is removed by centrifugation, decantation, etc., and then gradually replaced with a high-polarity dispersion medium other than water. It is also possible to use a liquid obtained by mixing several kinds of liquids at an appropriate ratio as a dispersion medium. In this case, a liquid having a relative dielectric constant of less than 15 may be used in part. Even if the relative dielectric constant is less than 15, a compound (for example, tetrahydrofuran, dioxane, etc.) that mutually dissolves in an arbitrary ratio disperses thin film particles even if the ratio in the dispersion medium is 50% by weight or more. Therefore, a liquid having a relative dielectric constant of less than 15 can be exceptionally used as a main dispersion medium.

薄膜状粒子と高分子材料を含有する導電性高分子材料を作製する最良の形態としては、薄膜状粒子の分散媒に分散あるいは溶解する高分子材料を使用した場合である。必要に応じてバインダーなどの材料を含有させる場合も、分散媒に分散あるいは溶解する材料を使用することが望ましい。この場合、すべての材料を均一に分散あるいは溶解させた導電性高分子材料の分散液を容易に得ることが可能である。導電性高分子材料を塗膜として使用する場合は、得られた分散液を基材に塗布し、分散媒を乾燥・除去することで塗膜が得られる。シート状の導電性高分子材料を製造する場合は、上記分散液を容器やロール上に流し込んでから分散液を乾燥・除去する方法、あるいは、ペレットなどの形態をした導電性高分子材料を一度作製し、その後ペレットを使って溶融押出加工する、などの方法が可能である。   The best mode for producing a conductive polymer material containing thin film particles and a polymer material is when a polymer material that is dispersed or dissolved in a dispersion medium of thin film particles is used. When a material such as a binder is included as necessary, it is desirable to use a material that is dispersed or dissolved in the dispersion medium. In this case, it is possible to easily obtain a dispersion of a conductive polymer material in which all materials are uniformly dispersed or dissolved. When the conductive polymer material is used as a coating film, the coating film is obtained by applying the obtained dispersion to a substrate and drying and removing the dispersion medium. When producing a sheet-like conductive polymer material, a method of drying and removing the dispersion liquid after pouring the dispersion liquid onto a container or a roll, or a conductive polymer material in the form of pellets once. It is possible to use a method such as producing and then melt-extruding using pellets.

より高い導電性を得る方法として、本発明者は、黒鉛を酸化して得られ、比誘電率15以上の液体に分散可能である、炭素からなる骨格を持つ薄膜状粒子に対して還元作用のある化合物を上記分散液に加える方法を、特願2003-278181および特願2003-280232にて出願している。この方法によれば、還元作用のある化合物が薄膜状粒子を還元することにより、より低い温度で高い導電性を得ることができる。   As a method for obtaining higher conductivity, the present inventor has obtained a reducing action on thin-film particles having a skeleton made of carbon, which is obtained by oxidizing graphite and can be dispersed in a liquid having a relative dielectric constant of 15 or more. Japanese Patent Application Nos. 2003-278181 and 2003-280232 have filed a method for adding a certain compound to the above dispersion. According to this method, high conductivity can be obtained at a lower temperature by reducing the thin film particles with a compound having a reducing action.

以下、実施例を用いて本発明をさらに詳しく説明するが、本発明はこれによって限定されるものではない。
(実施例1)
天然黒鉛(純度99.97wt%以上)10gを、硝酸ナトリウム(純度99%)7.5g、硫酸(純度96%)621g、過マンガン酸カリウム(純度99%)45gからなる混合液中に入れ、約20℃で5日間、緩やかに撹拌しながら放置した。得られた高粘度の液を、5wt%硫酸水溶液1000cm3に約1時間で撹拌しながら加えて、さらに2時間撹拌した。得られた液に過酸化水素(30wt%水溶液)30gを加えて、2時間撹拌した。この液を、3wt%硫酸/0.5wt%過酸化水素の混合水溶液を用いた遠心分離と水を用いた遠心分離で精製して、薄膜状粒子の水分散液を得た。液の一部の乾燥前後の重量変化から、液中の薄膜状粒子の濃度は0.5wt%であった。また、40℃で真空乾燥させた薄膜状粒子の元素分析で、酸素は約42wt%、水素は約2wt%であった。以下、この分散液を分散液Aとよぶ。
EXAMPLES Hereinafter, although this invention is demonstrated in more detail using an Example, this invention is not limited by this.
(Example 1)
10 g of natural graphite (purity 99.97 wt% or more) is put in a mixed solution consisting of 7.5 g of sodium nitrate (purity 99%), 621 g of sulfuric acid (purity 96%), 45 g of potassium permanganate (purity 99%), The mixture was left for 5 days at about 20 ° C. with gentle stirring. The obtained high-viscosity liquid was added to 1000 cm 3 of 5 wt% sulfuric acid aqueous solution with stirring for about 1 hour, and further stirred for 2 hours. Hydrogen peroxide (30 wt% aqueous solution) 30g was added to the obtained liquid, and it stirred for 2 hours. This liquid was purified by centrifugal separation using a mixed aqueous solution of 3 wt% sulfuric acid / 0.5 wt% hydrogen peroxide and centrifugal separation using water to obtain an aqueous dispersion of thin film particles. From the weight change before and after drying a part of the liquid, the concentration of the thin-film particles in the liquid was 0.5 wt%. Further, elemental analysis of the thin film-like particles vacuum-dried at 40 ° C. revealed that oxygen was about 42 wt% and hydrogen was about 2 wt%. Hereinafter, this dispersion is referred to as Dispersion A.

分散液A 10gに対して、5gのポリアクリル酸(平均分子量 約5000)を加え、両者をよく混合した。このようにして作製した分散液を目視観察すると、薄膜状粒子とポリアクリル酸が均一に混ざっていることが確認された。続いて、この分散液をガラス基板上に塗布し、70℃,30分間の条件で分散媒を乾燥・除去した。その後、200℃,60分間の加熱処理を行った。得られた塗膜の体積抵抗率を調べた所、体積抵抗率は3×107(Ω・cm)であり、帯電防止機能を果たすに十分な導電性が得られていた。塗膜中の薄膜状粒子の添加率は0.6重量%(還元により薄膜状粒子の重量減少が40重量%として計算)と極めて低いにも拘わらず、高い導電性を示した。 5 g of polyacrylic acid (average molecular weight of about 5000) was added to 10 g of dispersion A, and both were mixed well. When the thus prepared dispersion was visually observed, it was confirmed that the thin film particles and polyacrylic acid were uniformly mixed. Subsequently, this dispersion was applied onto a glass substrate, and the dispersion medium was dried and removed under conditions of 70 ° C. and 30 minutes. Thereafter, heat treatment was performed at 200 ° C. for 60 minutes. When the volume resistivity of the obtained coating film was examined, the volume resistivity was 3 × 10 7 (Ω · cm), and conductivity sufficient to achieve the antistatic function was obtained. Although the addition rate of the thin film-like particles in the coating film was as extremely low as 0.6% by weight (calculated on the assumption that the weight loss of the thin film-like particles was 40% by weight by reduction), high conductivity was exhibited.

(実施例2)
分散液A 10gに対して、15gのポリアクリル酸(平均分子量 約5000)と0.1gのホスフィン酸(30%水溶液)を加え、よく混合した。このようにして作製した分散液を目視観察すると、薄膜状粒子とポリアクリル酸が均一に混ざっていることが確認された。続いて、この分散液をガラス基板上に塗布し、70℃,30分間の条件で分散媒を乾燥・除去した。その後、140℃,20分間の加熱処理を行った。得られた塗膜の体積抵抗率を調べた所、体積抵抗率は5×1010(Ω・cm)であった。塗膜中の薄膜状粒子の添加率は0.2重量%(還元により薄膜状粒子の重量減少が40重量%として計算)と極めて低いにも拘わらず、高い導電性を示した。
(Example 2)
To 10 g of dispersion A, 15 g of polyacrylic acid (average molecular weight of about 5000) and 0.1 g of phosphinic acid (30% aqueous solution) were added and mixed well. When the thus prepared dispersion was visually observed, it was confirmed that the thin film particles and polyacrylic acid were uniformly mixed. Subsequently, this dispersion was applied onto a glass substrate, and the dispersion medium was dried and removed under conditions of 70 ° C. and 30 minutes. Thereafter, heat treatment was performed at 140 ° C. for 20 minutes. When the volume resistivity of the obtained coating film was examined, the volume resistivity was 5 × 10 10 (Ω · cm). Despite the extremely low addition rate of the thin film-like particles in the coating film was 0.2% by weight (calculated on the assumption that the weight loss of the thin film-like particles by reduction was 40% by weight), high conductivity was exhibited.

(実施例3)
分散液A 10gに対して、5gのポリアクリル酸(平均分子量 約5000)と0.1gのホスフィン酸(30%水溶液)を加え、よく混合した。このようにして作製した分散液を目視観察すると、薄膜状粒子とポリアクリル酸が均一に混ざっていることが確認された。続いて、分散液をガラス基板上に塗布し、70℃,30分間の条件で分散媒を乾燥・除去した。その後、140℃,20分間の加熱処理を行った。得られた塗膜の体積抵抗率を調べた所、体積抵抗率は4×105(Ω・cm)であり、帯電防止機能を果たすに十分な導電性が得られていた。塗膜中の薄膜状粒子の添加率は0.6重量%(還元により薄膜状粒子の重量減少が40重量%として計算)と極めて低いにも係わらず、高い導電性を示した。
Example 3
To 10 g of dispersion A, 5 g of polyacrylic acid (average molecular weight of about 5000) and 0.1 g of phosphinic acid (30% aqueous solution) were added and mixed well. When the thus prepared dispersion was visually observed, it was confirmed that the thin film particles and polyacrylic acid were uniformly mixed. Subsequently, the dispersion was applied onto a glass substrate, and the dispersion medium was dried and removed under conditions of 70 ° C. and 30 minutes. Thereafter, heat treatment was performed at 140 ° C. for 20 minutes. When the volume resistivity of the obtained coating film was examined, the volume resistivity was 4 × 10 5 (Ω · cm), and conductivity sufficient to achieve an antistatic function was obtained. Although the addition rate of the thin film-like particles in the coating film was as extremely low as 0.6% by weight (calculated on the assumption that the weight loss of the thin film-like particles was 40% by weight by reduction), high conductivity was exhibited.

(実施例4)
分散液A 10gに対して、0.2gのポリアクリル酸(平均分子量 約5000)と0.1gのホスフィン酸(30%水溶液)を加え、よく混合した。このようにして作製した分散液を目視観察すると、薄膜状粒子とポリアクリル酸が均一に混ざっていることが確認された。続いて、分散液をガラス基板上に塗布し、70℃,30分間の条件で分散媒を乾燥・除去した。その後、140℃,20分間の加熱処理を行った。得られた塗膜の体積抵抗率を調べた所、体積抵抗率は0.6(Ω・cm)であった。塗膜中の薄膜状粒子の添加率は12重量%(還元により薄膜状粒子の重量減少が40重量%として計算)と低いにも係わらず、高い導電性を示した。
Example 4
To 10 g of dispersion A, 0.2 g of polyacrylic acid (average molecular weight of about 5000) and 0.1 g of phosphinic acid (30% aqueous solution) were added and mixed well. When the thus prepared dispersion was visually observed, it was confirmed that the thin film particles and polyacrylic acid were uniformly mixed. Subsequently, the dispersion was applied onto a glass substrate, and the dispersion medium was dried and removed under conditions of 70 ° C. and 30 minutes. Thereafter, heat treatment was performed at 140 ° C. for 20 minutes. When the volume resistivity of the obtained coating film was examined, the volume resistivity was 0.6 (Ω · cm). Although the addition rate of the thin film-like particles in the coating film was as low as 12% by weight (calculated on the assumption that the weight loss of the thin film-like particles by reduction was 40% by weight), high conductivity was exhibited.

(実施例5)
分散液A をテトラヒドロキシフラン(THF)で10倍希釈し、遠心分離してから上澄みを除去した。再度、THFで10倍希釈し、遠心分離してから上澄みを除去した。その結果得られた、薄膜状粒子のTHF分散液を分散液Bとした。液の一部の乾燥前後の重量変化から、液中の薄膜状粒子の濃度は1wt%であった。分散液B 10gに対して、5gのポリカーボネート樹脂を加え、均一になるまで両者をよく混合した。このようにして作製した分散液を目視観察すると、薄膜状粒子とポリカーボネート樹脂が均一に混ざっていることが確認された。続いて、分散液をガラス基板上に塗布し、70℃,30分間の条件で分散媒を乾燥・除去した。その後、200℃,60分間の加熱処理を行った。ガラス基板から膜を剥がすことで、フィルムを作製した。得られたフィルムの体積抵抗率を調べた所、体積抵抗率は2×105(Ω・cm)であり、帯電防止機能を果たすに十分な導電性が得られていた。塗膜中の薄膜状粒子の添加率は1重量%(還元により薄膜状粒子の重量減少が40重量%として計算)と極めて少量であるにも係わらず、高い導電性を示した。
(Example 5)
Dispersion A was diluted 10-fold with tetrahydroxyfuran (THF), centrifuged, and the supernatant was removed. Again, it was diluted 10 times with THF and centrifuged, and then the supernatant was removed. The resulting dispersion of thin film particles in THF was designated as dispersion B. From the change in weight of the liquid before and after drying, the concentration of the thin film-like particles in the liquid was 1 wt%. To 10 g of dispersion B, 5 g of polycarbonate resin was added and both were mixed well until uniform. When the dispersion thus prepared was visually observed, it was confirmed that the thin film particles and the polycarbonate resin were uniformly mixed. Subsequently, the dispersion was applied onto a glass substrate, and the dispersion medium was dried and removed under conditions of 70 ° C. and 30 minutes. Thereafter, heat treatment was performed at 200 ° C. for 60 minutes. A film was produced by peeling the film from the glass substrate. When the volume resistivity of the obtained film was examined, the volume resistivity was 2 × 10 5 (Ω · cm), and conductivity sufficient to achieve the antistatic function was obtained. The addition rate of the thin film-like particles in the coating film was 1% by weight (calculated on the assumption that the weight loss of the thin film-like particles was 40% by weight due to reduction), but showed high conductivity.

(実施例6)
pHを3段階に変化させて細孔分布を調節するゾルゲル法で、薄膜状粒子とシリカガラスによる導電性高分子材料を作製した。テトラメトキシシラン60cm3とメタノール30cm3の混合液に、0.01Nアンモニア水溶液30cm3を加え、0℃で1時間攪拌した。この第1段階のゾルにおけるテトラメトキシシランの加水分解率(ガスクロマトグラフによる)は37%であった。さらに、このゾルに0.05N塩酸水溶液24cm3を加え、0℃で1時間攪拌して加水分解を終了させて第2段階のゾルとした。このゾル20gに、分散液Aを10g加えて攪拌してから、さらに0.1Nアンモニア水溶液を加えてpHを約4.5に調節し、第3段階のゾルを作製した。このゾルを小さなポリスチレン製の複数の容器に注ぎ、ゲル化させた。このゲルを、多量の水に浸漬して塩化アンモニウムを除いた後に、開口率3%の蓋をした容器に入れて、恒温恒湿器中で乾燥(40℃、相対湿度80%の条件から、40℃、相対湿度20%の条件まで15日で移行)し、薄膜状粒子を含む多孔質シリカガラスの茶褐色の基板を得た。さらに、この基板を空気中で400℃まで加熱後にアルゴン中で1000℃まで加熱、焼成して、無孔質の黒色の基板を得た。この基板中の薄膜状粒子は1重量%(還元により薄膜状粒子の重量減少が40重量%として計算)と計算された。得られた基板の体積抵抗率を調べた所、体積抵抗率は1×108(Ω・cm)であった。
Example 6
A conductive polymer material made of thin-film particles and silica glass was produced by a sol-gel method in which the pH distribution was changed in three stages to adjust the pore distribution. In a mixture of tetramethoxysilane 60cm 3 of methanol 30 cm 3, was added 0.01N aqueous ammonia solution 30 cm 3, and stirred for 1 hour at 0 ° C.. The hydrolysis rate of tetramethoxysilane in this first-stage sol (according to gas chromatograph) was 37%. Further, 24 cm 3 of 0.05N hydrochloric acid aqueous solution was added to this sol, and the mixture was stirred at 0 ° C. for 1 hour to complete the hydrolysis, thereby obtaining a second-stage sol. To 20 g of this sol, 10 g of dispersion A was added and stirred, and then a 0.1N ammonia aqueous solution was further added to adjust the pH to about 4.5 to prepare a third-stage sol. This sol was poured into a plurality of small polystyrene containers and allowed to gel. After this gel was immersed in a large amount of water to remove ammonium chloride, it was put in a container with a lid with an opening ratio of 3% and dried in a constant temperature and humidity chamber (from the condition of 40 ° C. and relative humidity of 80%, The transition to the conditions of 40 ° C. and 20% relative humidity takes 15 days) to obtain a brown substrate of porous silica glass containing thin film-like particles. Further, this substrate was heated to 400 ° C. in air, and then heated to 1000 ° C. in argon and baked to obtain a nonporous black substrate. The thin film-like particles in the substrate were calculated to be 1% by weight (calculated assuming that the weight loss of the thin film-like particles was 40% by weight by reduction). When the volume resistivity of the obtained substrate was examined, the volume resistivity was 1 × 10 8 (Ω · cm).

(比較例1)
ポリアクリル酸(平均分子量 約5000) 10gに対して、0.5gのカーボンブラックを加えてよく混合した。さらに、水を10g加え、よく攪拌した。このようにして作製した分散液を目視観察すると、一部凝集が発生していることが確認された。続いて、分散液をガラス基板上に塗布し、70℃,30分間の条件で分散媒を乾燥・除去した。得られた塗膜の体積抵抗率を調べた所、体積抵抗率は1×1014(Ω・cm)以上であった。塗膜中のカーボンブラックの量は5重量%であるにもかかわらず、導電性は低かった。
(Comparative Example 1)
To 10 g of polyacrylic acid (average molecular weight of about 5000), 0.5 g of carbon black was added and mixed well. Furthermore, 10 g of water was added and stirred well. When the dispersion thus prepared was visually observed, it was confirmed that partial aggregation had occurred. Subsequently, the dispersion was applied onto a glass substrate, and the dispersion medium was dried and removed under conditions of 70 ° C. and 30 minutes. When the volume resistivity of the obtained coating film was examined, the volume resistivity was 1 × 10 14 (Ω · cm) or more. Despite the 5% by weight of carbon black in the coating, the conductivity was low.

Claims (7)

黒鉛を酸化して得られ、比誘電率15以上の液体に分散可能である、炭素からなる骨格を持つ薄膜状粒子と高分子材料を含有してなり、該薄膜状粒子の含有量が0.01重量%〜20重量%の範囲であり、体積抵抗率が10-1(Ω・cm)〜1011(Ω・cm)の範囲であることを特徴とする導電性高分子材料。 A thin film-like particle having a skeleton made of carbon and a polymer material, which is obtained by oxidizing graphite and is dispersible in a liquid having a relative dielectric constant of 15 or more, is contained. A conductive polymer material having a volume resistivity in the range of 01 wt% to 20 wt% and a volume resistivity in the range of 10 −1 (Ω · cm) to 10 11 (Ω · cm). 該薄膜状粒子が、厚さが0.4nm〜100nm、平面方向の大きさが20nm以上であることを特徴とする、請求項1記載の導電性高分子材料。 The conductive polymer material according to claim 1, wherein the thin film-like particles have a thickness of 0.4 nm to 100 nm and a planar size of 20 nm or more. 請求項1記載または請求項2記載の導電性高分子材料を用いてなる導電性塗膜。 A conductive coating film using the conductive polymer material according to claim 1. 請求項1記載または請求項2記載の導電性高分子材料を用いてなる帯電防止性塗膜。 An antistatic coating film comprising the conductive polymer material according to claim 1. 請求項1記載または請求項2記載の導電性高分子材料を用いてなる導電性シートまたは導電性フィルム。 The electroconductive sheet or electroconductive film which uses the electroconductive polymer material of Claim 1 or Claim 2. 請求項1記載または請求項2記載の導電性高分子材料を用いてなる転写ベルト。 A transfer belt comprising the conductive polymer material according to claim 1. 帯電防止層が請求項1記載または請求項2記載の導電性高分子材料を用いてなることを特徴とした熱転写シート。 A thermal transfer sheet, wherein the antistatic layer comprises the conductive polymer material according to claim 1 or 2.
JP2003282556A 2003-07-30 2003-07-30 Conductive polymer material Pending JP2005048089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003282556A JP2005048089A (en) 2003-07-30 2003-07-30 Conductive polymer material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003282556A JP2005048089A (en) 2003-07-30 2003-07-30 Conductive polymer material

Publications (1)

Publication Number Publication Date
JP2005048089A true JP2005048089A (en) 2005-02-24

Family

ID=34267740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003282556A Pending JP2005048089A (en) 2003-07-30 2003-07-30 Conductive polymer material

Country Status (1)

Country Link
JP (1) JP2005048089A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009511415A (en) * 2005-10-14 2009-03-19 ザ、トラスティーズ オブ プリンストン ユニバーシティ Thermally exfoliated graphite oxide
JP2011144071A (en) * 2010-01-14 2011-07-28 Sekisui Chem Co Ltd Method for manufacturing thinly exfoliated graphite dispersion, thinly exfoliated graphite dispersion and method for manufacturing thin film
JP2011144060A (en) * 2010-01-13 2011-07-28 Sekisui Chem Co Ltd Method for producing dispersion liquid of flaked graphite, method for producing flaked graphite and method for producing composite material
JP2011184264A (en) * 2010-03-10 2011-09-22 Sekisui Chem Co Ltd Method for producing dispersion of flaked graphite, dispersion of flaked graphite, and method for producing thin film
JP2012020903A (en) * 2010-07-15 2012-02-02 Nippon Telegr & Teleph Corp <Ntt> Method for forming graphene and graphite thin film, and method for forming graphene and graphite thin film substrate
WO2017033375A1 (en) * 2015-08-24 2017-03-02 パナソニックIpマネジメント株式会社 Electrically conductive coating composition, electrically conductive material, method for producing electrically conductive coating composition, and method for producing electrically conductive material

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009511415A (en) * 2005-10-14 2009-03-19 ザ、トラスティーズ オブ プリンストン ユニバーシティ Thermally exfoliated graphite oxide
US8891247B2 (en) 2005-10-14 2014-11-18 The Trustees Of Princeton University Conductive circuit containing a polymer composition containing thermally exfoliated graphite oxide and method of making the same
US9642254B2 (en) 2005-10-14 2017-05-02 The Trustees Of Princeton University Conductive circuit containing a polymer composition containing thermally exfoliated graphite oxide and method of making the same
US10057986B2 (en) 2005-10-14 2018-08-21 The Trustees Of Princeton University Thermal overload device containing a polymer composition containing thermally exfoliated graphite oxide and method of making the same
JP2011144060A (en) * 2010-01-13 2011-07-28 Sekisui Chem Co Ltd Method for producing dispersion liquid of flaked graphite, method for producing flaked graphite and method for producing composite material
JP2011144071A (en) * 2010-01-14 2011-07-28 Sekisui Chem Co Ltd Method for manufacturing thinly exfoliated graphite dispersion, thinly exfoliated graphite dispersion and method for manufacturing thin film
JP2011184264A (en) * 2010-03-10 2011-09-22 Sekisui Chem Co Ltd Method for producing dispersion of flaked graphite, dispersion of flaked graphite, and method for producing thin film
JP2012020903A (en) * 2010-07-15 2012-02-02 Nippon Telegr & Teleph Corp <Ntt> Method for forming graphene and graphite thin film, and method for forming graphene and graphite thin film substrate
WO2017033375A1 (en) * 2015-08-24 2017-03-02 パナソニックIpマネジメント株式会社 Electrically conductive coating composition, electrically conductive material, method for producing electrically conductive coating composition, and method for producing electrically conductive material
CN107709486A (en) * 2015-08-24 2018-02-16 松下知识产权经营株式会社 Conductive coating paint composition, conductive material, the manufacture method of conductive coating paint composition, the manufacture method of conductive material
JPWO2017033375A1 (en) * 2015-08-24 2018-05-24 パナソニックIpマネジメント株式会社 Conductive paint composition, conductive material, process for producing conductive paint composition, process for producing conductive material

Similar Documents

Publication Publication Date Title
JP6339136B2 (en) Coatings containing functionalized graphene sheets and articles coated with those coatings
JP4591666B2 (en) Dispersion liquid containing thin-film particles having a skeleton made of carbon, conductive coating film, conductive composite material, and production method thereof
CN107848803B (en) Preparation method of two-dimensional hybrid composite material
Yan et al. Electrical conductivity and major mechanical and thermal properties of carbon nanotube‐filled polyurethane foams
Morgan et al. Characterization of the dispersion of clay in a polyetherimide nanocomposite
JP2015040211A (en) Graphene dispersion composition, and carbon-containing resin laminated body
Liu et al. Ultralow-carbon nanotube-toughened epoxy: the critical role of a double-layer interface
KR20130013689A (en) Conducting film and manufacturing method of the same
TW200918586A (en) Method of preparation of a MWCNT/polymer composite having electromagnetic interference shielding effectiveness
US8080179B2 (en) Dispersion comprising thin particles having a skeleton consisting of carbons, electroconductive coating film, electroconductive composite material, and a process for producing them
Huang et al. Study on the PMMA/GO nanocomposites with good thermal stability prepared by in situ Pickering emulsion polymerization
CN103642384A (en) Intrinsic anti-static hardened film and preparation method thereof
JP5326336B2 (en) Conductor and manufacturing method thereof
KR102259478B1 (en) Graphene ink composition and method for fabricating the same
CN111732743A (en) Preparation method of carbon nanotube/graphene flexible film
JP2005048089A (en) Conductive polymer material
Rehim et al. Epoxy resin reinforced with graphene derivatives: physical and dielectric properties
Ma et al. POSS-pendanted in epoxy chain inorganic-organic hybrid for highly thermo-mechanical, permeable and hydrothermal-resistant coatings
JP2005053773A (en) Dispersion of thin film-like particle with skeleton consisting of carbon
Guan et al. The surface modification of BaTiO3 and its effects on the microstructure and electrical properties of BaTiO3/silicone rubber composites
Zhu et al. In Situ Polymerization Approach to Graphene‐Oxide‐Reinforced Silicone Composites for Superior Anticorrosive Coating
WO2013047809A1 (en) Conductive particles and application therefor
JP2009155593A (en) Composition containing carbon nanotube and cured product
KR101210496B1 (en) Method For Manufacturing The Conductive Transparent And Superhydrophobic Film Using Carbon Nanotube
JP2022541285A (en) SELF-HEALING OR REPEATABLE PRODUCTS, PRODUCTION METHOD AND APPLICATION THEREOF